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Abstract

This paper studies the dynamics of a network-based SIS epidemic model with nonmonotone incidence rate. This type
of nonlinear incidence can be used to describe the psychological effect of certain diseases spread in a contact network
at high infective levels. We first find a threshold value for the transmission rate. This value completely determines
the dynamics of the model and interestingly, the threshold is not dependent on the functional form of the nonlinear
incidence rate. Furthermore, if the transmission rate is less than or equal to the threshold value, the disease will die
out. Otherwise, it will be permanent. Numerical experiments are given to illustrate the theoretical results. We also
consider the effect of the nonlinear incidence on the epidemic dynamics.
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1. Introduction

To better predict and control the spread of infectious diseases, mathematical modeling of infectious disease dynamics
has been extensively studied for a long time (see the review paper by Hethcote [2]). At the early stages, studies on
various epidemic models mainly focus on the homogeneous mixing assumption, that is, each susceptible individual
within a population has the same probability to contact withan infected one. However, the effect of contact het-
erogeneity should be incorporated into consideration in reality because there might exist some members who could
transmit infection to many other members of the population.Therefore, the disease transmission should be modeled
over complex networks. In recent years, the study of epidemic model in complex networks has attracted a lot of
attention due to its theoretical interest [1, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25].

In mathematical terms, a complex network is composed by a setof nodes and edges. Each node represents an
individual in its corresponding epidemiological state, and each edge between two nodes stands for an interaction
that may allow disease transmission. For instance, as one consider the so-called SIS model, all the nodes in a given
network can be firstly classified inton groups such that the nodes in the same group have equal degree. That is, each
node in thek-th group has degreek for k = 1, 2, · · · , n. In addition, according to the spreading of SIS process, each
node within the network has one of the two epidemiological states: susceptible and infected. Letsk(t) andρk(t) be
respectively the densities of susceptible and infected nodes in thek-th group at timet, and letNk(t) := sk(t) + ρk(t)
for all t ≥ 0 andk = 1, 2, · · · , n. With these notations, the dynamics of the SIS model in a given network can be
formulated as the following system of ODEs:

{

s′k(t) = −λksk(t)Θ(t) + γρk(t),
ρ′k(t) = λksk(t)Θ(t) − γρk(t), k = 1, 2, · · · , n,

(1)
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whereλ > 0 is the transmission rate,γ > 0 is the recovery rate of infected nodes, and without loss of generality, one
can assume thatγ = 1. The dynamics of then groups of SIS subsystems are coupled through the functionΘ(t), which
is the probability that a given edge connected to an infectednode. For simplicity, the connectivity of nodes in this
network is assumed to be uncorrelated, so

Θ(t) =
1
〈k〉

n
∑

h=1

hP(h)ρh(t).

Here,P(h) > 0 is the probability that a node has degreeh and thus
∑n

h=1 P(h) = 1; 〈k〉 =
∑n

h=1 hP(h) denotes the mean
degree of the network. SinceN′k(t) = 0 for all t > 0 and for allk, this implies thatNk(t) is a constant. By introducing
the normalization condition, namely,sk(0)+ ρk(0) = 1 for all k, (1) becomes the following system

ρ′k(t) = λk(1− ρk(t))Θ(t) − ρk(t), k = 1, 2, · · · , n. (2)

Pastor-Satorras and Vespignani [11, 12] studied system (2)in scale-free networks and showed that there exists an
epidemic threshold, that is,λc := 〈k〉/〈k2〉 with 〈k2〉 =

∑n
h=1 h2P(h), for the transmission rateλ. If λ < λc, then the

disease will disappear. Otherwise, the infection spreads and becomes endemic. Besides, they also showed that even
if the transmission rate is vanishingly small, the disease can spread and persist in the infinite size limit. Also, the SIR
model in scale-free network was studied in [9], the authors concluded that this model exhibits the same absence of
epidemic threshold. Besides, other network-based epidemic models, such as SIRS [5], SEIRS [7], SIQRS [6], and a
generalized model [25] have been formulated and analyzed. Either the attractivity of the equilibria or the permanence
of the models has been reported in these works. For the diseases transmitted by a vector, network-based models with
infective media are also investigated in [14, 18].

We shall emphasize that for most of the homogeneous mixing models in the literature, the incidence rates are
usually assumed to be a bilinear function based on the mass action law for infection. Such type of incidence rate is also
frequently used in network epidemic models. More precisely, in most of the above-mentioned network models, the
incidence rate is usually given byλksk(t)Θ(t). However, it has been pointed out that a nonlinear incidence rate seems
more reasonable than the bilinear incidence rate [17]. For instance, in practical situation, the incidence rate would
decrease at high infective levels (i.e.,Θ is large) because of the protection measures by the susceptible individuals
or due to the quarantine of infected ones. Therefore, linearincidence rate cannot reflect such behavioral change of
individuals in the network and a new incidence rate should betaken into consideration to respond to such psychological
or inhibit effect. Motivated by Xiao and Ruan [17], in this paper we will usea nonlinear incidence rate defined by

λksk(t)g(Θ) := λksk(t)
Θ

1+ αΘ2
, (3)

whereα ≥ 0 is a parameter and we are mainly concerned with a network-based SIS model which is governed by the
following system of ODEs:

{

s′k(t) = −λksk(t)g(Θ(t)) + ρk(t),
ρ′k(t) = λksk(t)g(Θ(t)) − ρk(t), k = 1, 2, · · · , n,

(4)

where the parameters and variables are the same as aforementioned. We remark here that whenα = 0, the nonlinear
incidence rate becomes the bilinear one. Hence system (4) can be simplified to system (2). The graphs of the function
g(Θ) with different values ofα are plotted in Fig. 1. As one can see in Fig. 1, ifα is large enough (e.g.,α ≥ 2), the
functiong becomes a nonmonotone function. The biological meaning is that at high infective risk (i.e., whenΘ is
sufficiently large), the incidence rate may decrease asΘ increases because individuals become more careful and tend
to reduce their contacts with other ones.

On the whole there has thus far been relatively little research into network epidemic models with nonlinear in-
cidence rate. The work most closely related to ours is that ofZhang and Sun [22], which studied an SIS model
with a feedback mechanism as well as the birth and death rates. The incidence rate proposed in that work is
λksk(t)(1 − αΘ(t))Θ(t) and the authors derived the corresponding basic reproduction number. Furthermore, they
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proved that if the basic reproduction number is less than one, then the disease-free equilibrium is globally asymptoti-
cally stable. Conversely, if the basic reproduction numberis larger than one, then the endemic equilibrium is locally
asymptotically stable. However, the global behavior aboutendemic status is still unsolved. In this paper, we will study
the global dynamics of the system (4). We first obtain the epidemic thresholdλc, see (9) below, and then prove that if
the transmission rateλ ≤ λc, then the disease-free equilibrium is globally attractive. Moreover, it is indeed globally
asymptotically stable ifλ < λc. But, if λ > λc, then the disease-free equilibrium becomes unstable; meanwhile, there
exists uniquely a positive endemic equilibrium. Besides, we also show that the disease will be permanent whenλ > λc.
Numerical examples with a finite size of scale-free network will be proposed to support the theoretical analysis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Θ

g(
Θ)

=Θ
/(1

+α
Θ

2 )

 

 

α = 0
α = 0.5
α = 1
α = 2
α = 3
α = 4
α = 5

Fig. 1. The graphs of incidence functiong(Θ) with various values ofα.

The remainder of this paper is organized as follows. In Section 2, we show that the solutions of system (4) are
positive and the epidemic threshold is obtained. In Section3, we study the stability of the disease-free equilibrium
and analyze the permanence of the disease. In Section 4, numerical experiments are given to illustrate the theoretical
results. Finally, conclusions and future works are drawn inSection 5.

2. Positivity of solutions and the epidemic threshold

In this section, we will show that the solutions of system (4)with some feasible initial conditions, see (5) below, is
positive and the epidemic thresholdλc is obtained.

From a practical perspective, the initial conditions for system (4) satisfy

0 ≤ sk(0), ρk(0) ≤ 1, sk(0)+ ρk(0) = 1, k = 1, 2, · · · , n, Θ(0) > 0. (5)

Note thatN′k(t) = 0 andsk(0) + ρk(0) = 1 for k = 1, 2, · · · , n lead tosk(t) + ρk(t) = 1 for all t ≥ 0 and for all
k = 1, 2, · · · , n. Thus, system (4) becomes the following form:

ρ′k(t) = λk(1− ρk(t))
Θ(t)

1+ αΘ2(t)
− ρk(t), k = 1, 2, · · · , n. (6)

We now establish the positivity of solutions in the following lemma.

Lemma 2.1. Let (s1, ρ1, · · · , sn, ρn) be the solution of SIS system (4) with initial conditions (5). Then for k =
1, 2, · · · , n, we have0 < sk(t) < 1, 0 < ρk(t) < 1, and0 < Θ(t) < 1 for all t > 0.

Proof. We first claim thatρk(t) < 1 for all k = 1, 2, · · · , n and for allt > 0. Note thatρk(0) ≤ 1. Using system (6)
and the continuity ofρk(t), one can find a smallδ > 0 such thatρk(t) < 1 for t ∈ (0, δ). Now we want to show that
ρk(t) < 1 for all t > 0. If not, we can findt0 ≥ δ > 0 so thatρk(t0) = 1 andρk(t) < 1 for t ∈ (0, t0). From (6), we have
ρ′k(t0) = −1 < 0 which implies that there existst ∈ (0, t0) such thatρk(t) > 1. This leads to a contradiction. Therefore,
ρk(t) < 1 for all k and for allt > 0.
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We proceed to prove thatρk(t) > 0 for all k and for allt > 0. Integrating (6), we have

ρk(t) = ρk(0)e−t
+

∫ t

0
e−(t−u)λk(1− ρk(u))

Θ(u)
1+ αΘ2(u)

du. (7)

If the assertion would not hold, then there exists an integerk1 ∈ {1, 2, · · · , n} and a numbert1 > 0 such thatρk(t) > 0
hold for allk andt ∈ (0, t1). This yieldsΘ(t) > 0 for t ∈ [0, t1) andρk1(t1) = 0. However, it follows from (7) that

ρk1(t1) = ρk1(0)e−t1 +

∫ t1

0
e−(t1−u)λk1(1− ρk1(u))

Θ(u)
1+ αΘ2(u)

du> 0,

which is apparently a contradiction. Thus,ρk(t) > 0 for all k and for allt > 0. Consequently, we infer that 0< ρk(t) < 1
for all k and for allt > 0.

A similar argument can show that 0< sk(t) < 1 for all k and for allt > 0. Since 0< ρk(t) < 1 for all k and for all
t > 0, one can easily see that 0< Θ(t) < 1 for all t > 0. The proof is completed.

Now, we are going to compute all biologically feasible equilibriaρk ≥ 0 admitted by system (6) and then show that
there exists a threshold valueλc, which is related to the network structure such that ifλ > λc, then a unique endemic
equilibrium exists as well.

It can easily be seen that there exists a zero equilibriumρk = 0 (k = 1, 2, · · · , n), which is corresponding to the
disease-free equilibrium of system (4). Letρ′k(t) = 0. It follows from (6) that

ρk =
λkΘ

1+ λkΘ + αΘ2
, (8)

whereΘ = 〈k〉−1 ∑n
h=1 hP(h)ρh. Substituting (8) intoΘ, one can obtain an equation of the formΘ f (Θ) = Θ, where

f (Θ) ≡
1
〈k〉

n
∑

h=1

λh2P(h)
1+ λhΘ + αΘ2

.

Since f ′(θ) < 0 and f (1) < 1, the equationΘ f (Θ) = Θ has a unique non-trivial solution if and only iff (0) > 1, that
is,

λ〈k2〉

〈k〉
> 1.

These analysis lead to the following result.

Lemma 2.2. Define the epidemic threshold

λc :=
〈k〉
〈k2〉
. (9)

If λ > λc, then system (6) admits a unique positive equilibriumρ∗k (k = 1, 2, · · · , n), which corresponds to the endemic
equilibrium of system (4) and satisfies

ρ∗k =
λkΘ∗

1+ λkΘ∗ + α(Θ∗)2
and Θ

∗
=

1
〈k〉

n
∑

h=1

hP(h)ρ∗h.

Remark. From Lemma 2.2, we can see that the epidemic threshold is determined in terms of the network structure
and this threshold is just the same as that one derived in [11]. In other words, the nonlinear incidence rate does not
affect the thresholdλc. Besides, as the result obtained in [11], the spreading processes of our model do not possess
an epidemic threshold in an infinite scale-free network since 〈k2〉 → ∞ in this situation.
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3. Stability of the disease-free equilibrium and the permanence of the disease

In this section, the stability of the disease-free equilibrium and the permanence of the disease will be analyzed. Firstly,
we consider the local asymptotic stability and then the global attractivity of the disease-free equilibrium. More pre-
cisely, we will show that ifλ ≤ λc, then the disease-free equilibrium is globally attractive. Otherwise, it is unstable.
Secondly, from a result derived in [3], we will show that system (4) is permanent ifλ > λc.

The following lemma is introduced to facilitate the stability analysis.

Lemma 3.1. ([16]) For a real n× n matrix A= (ai j ) where ai j = δi jσi + piq j (pi , q j ≥ 0, i, j = 1, 2, · · · , n) andδi j is
the Kronecker symbol. The determinant of A is given by

det(A) = σ1σ2 · · ·σn + p1q1σ2σ3 · · ·σn + σ1p2q2σ3 · · ·σn + · · · + σ1σ2 · · ·σn−1pnqn.

Specially, ifσi , 0, i = 1, 2, · · · , n, then

det(A) =















1+
n

∑

i=1

piqi

σi















n
∏

i=1

σi .

We now state the results of the local stability of the disease-free equilibrium.

Theorem 3.1. The disease-free equilibrium of system (4) is locally asymptotically stable ifλ < λc and it is unstable if
λ > λc.

Proof. Here, we consider system (6). The Jacobian matrix evaluatedat the zero equilibriumρk = 0 (k = 1, 2, · · · , n)
is given by then× n matrix

A =

































































−1+ λ·1·1·P(1)
〈k〉

λ·1·2·P(2)
〈k〉

λ·1·3·P(3)
〈k〉 · · ·

λ·1·(n−1)·P(n−1)
〈k〉

λ·1·n·P(n)
〈k〉

λ·2·1·P(1)
〈k〉 −1+ λ·2·2·P(2)

〈k〉
λ·2·3·P(3)
〈k〉 · · ·

λ·2·(n−1)·P(n−1)
〈k〉

λ·2·n·P(n)
〈k〉

λ·3·1·P(1)
〈k〉

λ·3·2·P(2)
〈k〉 −1+ λ·3·3·P(3)

〈k〉 · · ·
λ·3·(n−1)·P(n−1)

〈k〉
λ·3·n·P(n)
〈k〉

...
...

...
. . .

...
...

λ·(n−1)·1·P(1)
〈k〉

λ·(n−1)·2·P(2)
〈k〉

λ·(n−1)·3·P(3)
〈k〉 · · · −1+ λ·(n−1)·(n−1)·P(n−1)

〈k〉
λ·(n−1)·n·P(n)

〈k〉
λ·n·1·P(1)
〈k〉

λ·n·2·P(2)
〈k〉

λ·n·3·P(3)
〈k〉 · · ·

λ·n·n−1·P(n−1)
〈k〉 −1+ λ·n·n·P(n)

〈k〉

































































.

To assess the eigenvalues ofA by Lemma 3.1, let the entries ofA−µI beai j = δi jσi + piq j , whereσi = −1−µ, pi = λi,
andq j = jP( j)/〈k〉. Therefore, it follows from Lemma 3.1 that the characteristic equation can be expressed as

det(A− µIn) = (−1− µ)n−1

(

−1− µ +
λ〈k2〉

〈k〉

)

= 0.

It is easy to see thatµ = −1 is the negative characteristic root with multiplicityn − 1. Thus, the stability of the
disease-free equilibrium completely depends on the sign ofthe root of

−1− µ +
λ〈k2〉

〈k〉
= 0.

Clearly,µ < 0 if λ < λc andµ > 0 if λ > λc. Hence, the disease-free equilibrium is locally asymptotically stable if
λ < λc and it is unstable ifλ > λc. This completes the proof.

Our task now is to claim that the disease-free equilibrium isindeed globally attractive.

Theorem 3.2. If λ < λc, then the disease-free equilibrium of system (4) is globally asymptotically stable. Ifλ = λc,
then it is globally attractive.
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Proof. According to system (6), we have

Θ
′(t) = −Θ(t) +

λ

〈k〉

n
∑

h=1

h2P(h) (1− ρh(t))
Θ(t)

1+ αΘ2(t)
,

= Θ(t)

(

−1+
1

1+ αΘ2(t)
λ〈k2〉

〈k〉
−

1
1+ αΘ2(t)

λ

〈k〉

n
∑

h=1

h2P(h)ρh(t)

)

.

Sinceρk(t) > 0 (k = 1, 2, · · · , n) andΘ(t) > 0 for all t > 0, one can derive that

Θ
′(t) <

1
λc

(λ − λc)Θ(t), t > 0.

Thus, if λ ≤ λc, thenΘ′(t) < 0 and this yields limt→∞ Θ(t) = 0 due to the positivity ofΘ(t). SinceP(k) > 0 for
all k = 1, 2, · · · , n, we have limt→∞ ρk(t) = 0. This proves that the disease-free equilibrium of system (4) is globally
attractive ifλ ≤ λc. From Theorem 3.1, we can conclude that the disease-free equilibrium is globally asymptotically
stable ifλ < λc. This completes the proof.

We have established the stability of the disease-free equilibrium of system (4), and now we want to show that
system (4) is indeed permanent ifλ > λc. To this end, we need the following Lemma.

Lemma 3.2. ([3]) Consider the system
y′ = Ay + N(y), (10)

where A is an n× n matrix and N(y) is continuously differentiable in a regionD ⊂ Rn. Assume

(i) the compact convex setC ⊂ D is positively invariant with respect to system (10), and0 ∈ C;

(ii) limy→0 ‖N(y)‖/‖y‖ = 0;

(iii) there exist r> 0 and a (real) eigenvectorw of A⊤ such that(w · y) ≥ r‖y‖ for all y ∈ C;

(iv) (w · N(y)) ≤ 0 for all y ∈ C;

(v) y = 0 is the largest positively invariant set for (10) contained in H = {y ∈ C : (w · N(y)) = 0}.

Then eithery = 0 is globally asymptotically stable inC, or for any y0 ∈ C − {0} the solutionφ(t, y0) of (10) satis-
fies lim inf t→∞ ‖φ(t, y0)‖ ≥ m, where m> 0, independent ofy0. Moreover, there exists a constant solution of (10),
y = y∗, y∗ ∈ C − {0}.

The following result states the conditions for the permanence of system (4) which relies on the conclusion of
Lemma 3.2.

Theorem 3.3. If λ > λc, then system (4) is permanent, that is, there exists a numberζ > 0 such that

lim inf
t→∞

{ρk(t)}nk=1 ≥ ζ,

for any solution of system (4) withρk(0) > 0 for some k.

Proof. Let ρ = (ρ1, ρ2, · · · , ρn)⊤. Then, system (6) can be rewritten as

ρ
′(t) = Aρ(t) + N(ρ), (11)

whereA = (ai j ) is ann × n real matrix andai j = −δi j + λi jP( j)/〈k〉 for i, j = 1, 2, · · · , n andδi j is the Kronecker
symbol. The nonlinear vectorN(ρ) = (N1(ρ),N2(ρ), · · · ,Nn(ρ))⊤ is given by

Nk(ρ) =
−λkρkΘ − λkαΘ3

1+ αΘ2
, k = 1, 2, · · · , n.
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DenoteS(A) := max{Re(µ) : µ is the eigenvalue ofA}, where Re(µ) represents the real part ofµ. Let

Ω := {(ρ1, ρ2, · · · , ρn) : 0 ≤ ρk ≤ 1, k = 1, 2, · · · , n}.

It follows from Lemma 2.1 thatΩ is positively invariant with respect to (11).

Now, we shall confirm that (11) satisfies the conditions (i)-(v) of Lemma 3.2. Condition (i) holds for (11) by
selectingC = Ω. By using the equivalence relations of norms onRn, we can deduce that

‖N(ρ)‖
‖ρ‖

≤

√

M1‖ρ‖
2 + M2‖ρ‖

4 ≤ ‖ρ‖

√

M(1+ ‖ρ‖2),

where

M1 = λ
2n3

(

n
〈k〉

)2 













1+ 2αn2

(

n
〈k〉

)2












, M2 = α
2λ2n6

(

n
〈k〉

)6

, M = max{M1,M2}.

Thus,

lim
ρ→0

‖N(ρ)‖
‖ρ‖

≤ lim
ρ→0
‖ρ‖

√

M(1+ ‖ρ‖2) = 0

and condition (ii) follows. For condition (iii), notice that A⊤ is irreducible anda ji > 0 wheneverj , i, then by
the Perron-Frobenius Theorem, there exists an eigenvectorw = (w1,w2, · · · ,wn)⊤ of A⊤ such thatwi > 0 for all
i = 1, 2, · · · , n, and the corresponding eigenvalue isS(A⊤) = S(A) = (λ/λc − 1). If we let r = min1≤i≤n wi > 0, then
for anyρ ∈ C one can obtain (w · ρ) ≥ r

∑n
k=1 ρk ≥ r‖ρ‖. Condition (iv) is clearly satisfied due toNk(ρ) ≤ 0 for all

k = 1, 2, · · · , n. To examine condition (v), we setH = {ρ ∈ C : (w · N(ρ)) = 0}. If ρ ∈ H, then we have

n
∑

k=1

wk(λkρkΘ + λkαΘ
3) = 0.

Since each term of the sum is nonnegative, we can conclude that each term is equal to 0, which implies thatρ = 0.
Therefore, the only invariant set with respect to (11) contained inH is ρ = 0, so condition (v) is satisfied. Ifλ > λc,
thenρ = 0 is an unstable equilibrium of (11) and hence the result of this theorem follows by Lemma 3.2. This
completes the proof.

4. Numerical experiments

In this section, we will give some numerical simulations to illustrate the theoretical analysis. Firstly, we chooseα = 5
to make sure that the nonlinear functiong(Θ) is a nonmonotone function (cf. Fig. 1). The considered network archi-
tecture is a finite scale-free network which contains 500 nodes and has the degree distributionP(k) = βk−3, where the
constantβ is chosen to keep

∑500
k=1 P(k) = 1. Then one can verify that the epidemic thresholdλc = 0.2419.

Example 4.1. We first consider the stability of the disease-free equilibrium Thus, it follows from Theorem 3.1 that
if the transmission rateλ ≤ λc, then the disease-free equilibrium is globally attractiveand Fig. 2 demonstrates this
result. As one can see, the infected individuals indeed disappear eventually. Moreover, two remarkable findings are
highlighted here: firstly, the smaller transmission rate is, the faster the infected individuals disappear. Secondly,one
can also observe that the larger the degree is, the larger theoutbreak level will be. Besides, Theorem 3.2 indicates
that if λ < λc, the disease-free equilibrium is indeed globally asymptotically stable. To illustrate this result, we fix
λ = 0.2 and choose 10 different initial values to plot the time evolution ofρ100(t) andρ300(t) in Fig. 3. Obviously,
all the trajectories converge to the trivial equilibrium and this could support the global stability of the disease-free
equilibrium.
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Fig. 2. The time series and trajectories of system (6) with (left)λ = 0.1; (right)λ = 0.2. The initial values are given
by ρk(0) = 0.1 for k = 100, 200, 300, 400, 500.
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Fig. 3. The time evolution ofρ100(t) andρ300(t) with λ = 0.2 and 10 different initial values.

Example 4.2. We now consider the case forλ > λc. Theorem 3.3 indicates that ifλ > λc, the disease is permanent
and Fig. 4 confirms this result. We can observe that not only the disease persists but also the density of each infected
individual tends to a positive steady state. We can also point out two noteworthy findings: firstly, the larger the degree
is, the larger value of the steady state will be. Secondly, wecan see that the smaller the transmission rate is, the
lower endemic level will be. Since the density of each infected individual converges to a positive constant, we now
fix λ = 0.3 and use 10 different initial values to plot waveforms ofρ100(t) andρ300(t) in Fig. 5. It seems probable that
the endemic equilibrium is globally asymptotically stable, though the rigorous analysis does not present in this paper.
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Fig. 4. The time series and trajectories of system (6) with (left)λ = 0.3; (right)λ = 0.4. The initial values are given
by ρk(0) = 0.1 for k = 100, 200, 300, 400, 500.
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Fig. 5. The time evolution ofρ100(t) andρ300(t) with λ = 0.3 and 10 different initial values.

Example 4.3. In the final example, we consider the effect of the parameterα on the epidemic dynamics. Even though
the epidemic thresholdλc does not depends onα explicitly, Fig. 6 highlights an interesting discovery that when the
disease is endemic, the densities of the infected nodes decrease asα increases. This suggests that the total of infection
ρT(t) ≡

∑500
k=1 P(k)ρk(t) decreases asα increases (cf. Fig. 7).
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Fig. 6. The time evolution ofρ150(t) andρ250(t) with λ = 0.4 and different values ofα. The right column contains
local amplifications of the left column.
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Fig. 7. The time evolution of the total of infectionρT (t) with λ = 0.4 and different values ofα.

5. Conclusions

In this paper, we have studied the dynamics of a network-based SIS epidemic model with nonmonotone incidence
rate. The nonlinear incidence rate can be used to interpret the psychological effect, namely, the incidence rate would
decrease at high infective levels due to the quarantine of infected individuals or the protection measures by the sus-
ceptible ones. We have proved that there exists an epidemic thresholdλc for the transmission rateλ. The threshold
determines not only the existence of the endemic equilibrium but also the the global stability of the disease-free equi-
librium. More specifically, we have showed that ifλ < λc then the disease-free equilibrium is globally asymptotically
stable, and asλ = λc, it is globally attractive. The biological meaning is that if λ ≤ λc, the disease will disappear even-
tually. On the other hand, ifλ > λc, the disease-free equilibrium becomes unstable; meanwhile, there exists uniquely
an endemic equilibrium. In addition, we further show that the disease will be permanent in the network whenλ > λc.

We have also performed numerical experiments to demonstrate the theoretical results. From the numerical results,
we have observed that the endemic equilibrium seems probable to be globally asymptotically stable. However, the
detailed analysis of the global stability of the endemic equilibrium remains a challenge problem. Besides, the effect of
the parameterα on the epidemic dynamics has been discovered. Numerical simulations indicate that when the disease
is endemic, with the increase of the valueα, the total of infection will decline. In summary, the studies on network
epidemic models with nonlinear incidence rate are still rare. Therefore, studying the spreading dynamics of other
network epidemic models with nonlinear incidence and how tocontrol the disease spreading in complex networks
will be our future works.
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