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Abstract

This paper studies the dynamics of a network-based SISmgdeodel with nonmonotone incidence rate. This type

of nonlinear incidence can be used to describe the psycivalagfect of certain diseases spread in a contact network
at high infective levels. We first find a threshold value fog thansmission rate. This value completely determines
the dynamics of the model and interestingly, the threst®ltbit dependent on the functional form of the nonlinear

incidence rate. Furthermore, if the transmission ratess than or equal to the threshold value, the disease will die
out. Otherwise, it will be permanent. Numerical experinseante given to illustrate the theoretical results. We also
consider the fect of the nonlinear incidence on the epidemic dynamics.
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1. Introduction

To better predict and control the spread of infectious diseamathematical modeling of infectious disease dynamics
has been extensively studied for a long time (see the revagvepby Hethcote [2]). At the early stages, studies on
various epidemic models mainly focus on the homogeneoummassumption, that is, each susceptible individual
within a population has the same probability to contact withinfected one. However, théfect of contact het-
erogeneity should be incorporated into consideration @litsebecause there might exist some members who could
transmit infection to many other members of the populatibmerefore, the disease transmission should be modeled
over complex networks. In recent years, the study of epidemadel in complex networks has attracted a lot of
attention due to its theoretical interest [1, 4, 5, 6, 7, 8®,11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25].

In mathematical terms, a complex network is composed by afsebdes and edges. Each node represents an
individual in its corresponding epidemiological statedarach edge between two nodes stands for an interaction
that may allow disease transmission. For instance, as am@dsy the so-called SIS model, all the nodes in a given
network can be firstly classified intogroups such that the nodes in the same group have equal détyaes, each
node in thek-th group has degrdefor k = 1,2,--- ,n. In addition, according to the spreading of SIS processh eac
node within the network has one of the two epidemiologicaest: susceptible and infected. Lft) andok(t) be
respectively the densities of susceptible and infectedsdu thek-th group at timet, and letNk(t) := s(t) + pk(t)
forallt > 0 andk = 1,2,---,n. With these notations, the dynamics of the SIS model in angivetwork can be
formulated as the following system of ODEs:

{%®=—M&®®®+WM&

(D) = ks MO — ypul), k=12, .n, (1)
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whered > 0 is the transmission rate,> 0 is the recovery rate of infected nodes, and without loseokgality, one
can assume that= 1. The dynamics of the groups of SIS subsystems are coupled through the fun@gfnwhich

is the probability that a given edge connected to an infentate. For simplicity, the connectivity of nodes in this
network is assumed to be uncorrelated, so

0() = 75 > PR
h=1

® £

Here,P(h) > 0 is the probability that a node has degheand thusy;;,_; P(h) = 1; (k) = >;n_, hP(h) denotes the mean
degree of the network. Sind¢/(t) = 0 for all't > 0 and for allk, this implies thatN(t) is a constant. By introducing
the normalization condition, namels,(0) + ox(0) = 1 for all k, (1) becomes the following system

P = KA - p®)O) - p(t),  k=1,2,---.n. )

Pastor-Satorras and Vespignani [11, 12] studied systerin(2}ale-free networks and showed that there exists an
epidemic threshold, that is; := (k)/(k?) with (k?) = ¥'1_, i?P(h), for the transmission raté. If A < A, then the
disease will disappear. Otherwise, the infection spreadss@comes endemic. Besides, they also showed that even
if the transmission rate is vanishingly small, the diseasespread and persist in the infinite size limit. Also, the SIR
model in scale-free network was studied in [9], the authorsctuded that this model exhibits the same absence of
epidemic threshold. Besides, other network-based epweradels, such as SIRS [5], SEIRS [7], SIQRS [6], and a
generalized model [25] have been formulated and analyzéteEhe attractivity of the equilibria or the permanence
of the models has been reported in these works. For the dsé@msmitted by a vector, network-based models with
infective media are also investigated in [14, 18].

We shall emphasize that for most of the homogeneous mixindetsdn the literature, the incidence rates are
usually assumed to be a bilinear function based on the mtes &uow for infection. Such type of incidence rate is also
frequently used in network epidemic models. More precjsalynost of the above-mentioned network models, the
incidence rate is usually given bk s(t)®(t). However, it has been pointed out that a nonlinear incideate seems
more reasonable than the bilinear incidence rate [17]. i&taince, in practical situation, the incidence rate would
decrease at high infective levels (i.®.,is large) because of the protection measures by the suskeejidividuals
or due to the quarantine of infected ones. Therefore, limeadence rate cannot reflect such behavioral change of
individuals in the network and a new incidence rate shouldken into consideration to respond to such psychological
or inhibit effect. Motivated by Xiao and Ruan [17], in this paper we will @sgonlinear incidence rate defined by

C)
k = k() ——=
Aks(1)g(®) 1= k(1) 17002 (3)
wherea > 0 is a parameter and we are mainly concerned with a netwas&eb&IS model which is governed by the
following system of ODEs:

{ S(1) = —Aks()IO(D)) + px(D), "
Pi(t) = Aks(YOM) - pi(t),  k=1,2,---,n,

where the parameters and variables are the same as afoi@meentVe remark here that when= 0, the nonlinear
incidence rate becomes the bilinear one. Hence systemrd)ecsimplified to system (2). The graphs of the function
0(®) with different values of are plotted in Fig. 1. As one can see in Fig. lgiis large enough (e.gg > 2), the
functiong becomes a nonmonotone function. The biological meaninasdt high infective risk (i.e., whe@ is
suficiently large), the incidence rate may decreas® asreases because individuals become more careful and tend
to reduce their contacts with other ones.

On the whole there has thus far been relatively little regearo network epidemic models with nonlinear in-
cidence rate. The work most closely related to ours is th&haing and Sun [22], which studied an SIS model
with a feedback mechanism as well as the birth and death. rafée incidence rate proposed in that work is
Ak (D) (1 — aO(1))O(t) and the authors derived the corresponding basic repriotiuntimber. Furthermore, they
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proved that if the basic reproduction number is less than thiea the disease-free equilibrium is globally asymptoti-
cally stable. Conversely, if the basic reproduction nunigdarger than one, then the endemic equilibrium is locally
asymptotically stable. However, the global behavior alemgiemic status is still unsolved. In this paper, we will gtud
the global dynamics of the system (4). We first obtain theepid thresholdl;, see (9) below, and then prove that if
the transmission raté < A, then the disease-free equilibrium is globally attractiMoreover, it is indeed globally
asymptotically stable ift < Ac. But, if 1 > A, then the disease-free equilibrium becomes unstable; wigkm there
exists uniquely a positive endemic equilibrium. Besidesalgo show that the disease will be permanent wiheni..
Numerical examples with a finite size of scale-free netwoitklve proposed to support the theoretical analysis.
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Fig. 1. The graphs of incidence functi@{®) with various values of.

The remainder of this paper is organized as follows. In $ac?i, we show that the solutions of system (4) are
positive and the epidemic threshold is obtained. In Se@iowe study the stability of the disease-free equilibrium
and analyze the permanence of the disease. In Section 4ricah@xperiments are given to illustrate the theoretical
results. Finally, conclusions and future works are draw@ention 5.

2. Positivity of solutionsand the epidemic threshold

In this section, we will show that the solutions of systemydth some feasible initial conditions, see (5) below, is
positive and the epidemic thresholglis obtained.

From a practical perspective, the initial conditions fosteyn (4) satisfy
0 < S((O)spk(o) < 19 S((O) + pk(o) = 17 k= 19 27 s, N, ®(O) > 0. (5)

Note thatN,(t) = 0 ands(0) + pk(0) = 1 fork = 1,2,---,nlead tos(t) + pk(t) = 1 forallt > 0 and for all
k=1,2,---,n. Thus, system (4) becomes the following form:

)

) = (L~ PO o

- ox(D), k=12,---,n (6)
We now establish the positivity of solutions in the followilemma.

Lemma 2.1. Let (S1,p01,- -+, S, on) be the solution of SIS system (4) with initial conditions. (Sjhen for k =
1,2,---,n,we haved < s(t) < 1,0 < pk(t) < 1,and0 < B(t) < 1forallt > 0.

Proof. We first claim thajpy(t) < 1 forallk = 1,2,--- ,nand for allt > 0. Note thaj(0) < 1. Using system (6)
and the continuity opk(t), one can find a smadl > 0 such thapy(t) < 1 fort € (0,). Now we want to show that
ok(t) < 1forallt > 0. If not, we can findg > 6 > 0 so thafok(to) = 1 andpk(t) < 1 fort € (0, tp). From (6), we have
pi(to) = —1 < 0 which implies that there exists (0, to) such thapy(t) > 1. This leads to a contradiction. Therefore,
ok(t) < 1 forallk and for allt > 0.



We proceed to prove thak(t) > O for allk and for allt > 0. Integrating (6), we have

o(u)

t
0 = O+ [ e

(7)
If the assertion would not hold, then there exists an intkger{1,2,--- ,n} and a numbet; > 0 such thapy(t) > 0
hold for allk andt € (0, t;). This yields®(t) > 0 fort € [0, t;) andpy, (t1) = 0. However, it follows from (7) that

o(u) d

u>0,
1ra®2)

1
pra(tr) = pig ()™ + f e k(1 - pig (1)
0
which is apparently a contradiction. Thyg(t) > 0 for allkand for allt > 0. Consequently, we infer that®py(t) < 1
for all k and for allt > 0.

A similar argument can show that9s(t) < 1 for all k and for allt > 0. Since O< p(t) < 1 for all k and for all
t > 0, one can easily see thak0B(t) < 1 for allt > 0. The proof is completed. O

Now, we are going to compute all biologically feasible eipiib px > 0 admitted by system (6) and then show that
there exists a threshold valug, which is related to the network structure such that if A, then a unique endemic
equilibrium exists as well.

It can easily be seen that there exists a zero equilibpigm 0 (k = 1,2, ---,n), which is corresponding to the
disease-free equilibrium of system (4). lg(t) = 0. It follows from (6) that

kO

T 1+ KO + a@?’ (8)

Pk
where® = (k)= 3:0_; hP(h)pn. Substituting (8) int®, one can obtain an equation of the fo@i(®) = ®, where

n 2
f(®) = 1 ﬂ
(K &4 1+ ah© + @2

Sincef’(d) < 0 andf(1) < 1, the equatio®f(®) = ® has a unique non-trivial solution if and onlyfif0) > 1, that
is,

A(K?)
>1
(ky
These analysis lead to the following result.
Lemma 2.2. Define the epidemic threshold
K
Ac = —-. 9
¢= 12 (©)
If A > Ac, then system (6) admits a unique positive equilibrigjrtk = 1,2, - - -, n), which corresponds to the endemic

equilibrium of system (4) and satisfies

L ke
K7 14 k0" + (0*)2

1 n
and 0" = — hP(h)pr..
p <k>§ (Do

Remark. From Lemma 2.2, we can see that the epidemic threshold isndieted in terms of the network structure
and this threshold is just the same as that one derived in.[Irlpther words, the nonlinear incidence rate does not
affect the threshold.. Besides, as the result obtained in [11], the spreading psses of our model do not possess
an epidemic threshold in an infinite scale-free networkeiié) — oo in this situation.



3. Stability of the disease-free equilibrium and the permanence of the disease

In this section, the stability of the disease-free equiilibrand the permanence of the disease will be analyzedlyFirst
we consider the local asymptotic stability and then the glalttractivity of the disease-free equilibrium. More pre-
cisely, we will show that ifd < A, then the disease-free equilibrium is globally attracti@herwise, it is unstable.
Secondly, from a result derived in [3], we will show that gyst(4) is permanentif > A..

The following lemma is introduced to facilitate the statyilanalysis.

Lemma 3.1. ([16]) For a real nx n matrix A= (&j) where & = dijoi + pig;j (pi,dj = 0,i,j =1,2,---,n) anddj; is
the Kronecker symbol. The determinant of A is given by

det$)=0'10'2-'-0'n+ P1Quo203::-0n+ 01P20203 -0+ -+ + 0102 -0n-1Pn0n.

Specially, ifo; # 0,i =1,2,---,n, then

det(d) = (1 +

; m)l—[g
i
A

We now state the results of the local stability of the disdfase equilibrium.

Theorem 3.1. The disease-free equilibrium of system (4) is locally aggtigally stable if1 < A. and it is unstable if
A> Ae.

Proof. Here, we consider system (6). The Jacobian matrix evalwttee zero equilibriunpy =0 (k=1,2,---,n)
is given by then x n matrix

14+ A11-P(1) 112-P(2) 113-P(3) . A1(n-1)P(n-1) A-1:n-P(n)
/1»2»1»Péli 1+ (/lk»>2»2»P(2) 1»2»%%(3) L /1»2»(n—<1k)>»P(n—l) /1-2-<nk-%>(n)
& 5 s Been  aolhm
A-31-P(1) A132:P(2 1+ A33PE) . A-3:(n-1)-P(n-1) A-3-n-P(n)
A= Kk Kk Kk 3 3
A-(n—li-l-P(l) /l»(n—li»Z»P(Z) /l»(n—li»S»P(S) 1+ A-(n—l‘)-(n—l)-P(n—l) /l»(n—lj»n»P(n)
&b &b & (r ®
An1P(1) An-2-P(2) An-3-P(3) Ann-1P(n-1) 1+ A-n-n-P(n)

K K K <K <K

To assess the eigenvaluesfdby Lemma 3.1, let the entries 8f—ul beajj = dijo; + pig;, wheres = —1—-py, pi = Ai,
andg; = jP(j)/{k). Therefore, it follows from Lemma 3.1 that the charact@ristiuation can be expressed as
2
AK >) o
(k)

It is easy to see that = -1 is the negative characteristic root with multiplicity— 1. Thus, the stability of the
disease-free equilibrium completely depends on the sigheofoot of

det(h — i) = (~1 - )™ (—1—# N

AK?)
“1-pu+ =0.
T
Clearly,u < 0if 2 < Ac andu > 0 if 2 > Ac. Hence, the disease-free equilibrium is locally asymp#dty stable if
A < Acanditis unstable ift > A¢. This completes the proof. O

Our task now is to claim that the disease-free equilibriudged globally attractive.

Theorem 3.2. If 1 < A, then the disease-free equilibrium of system (4) is glegtelymptotically stable. If = A,
then it is globally attractive.



Proof. According to system (6), we have

oM = e+ Z R (- 00 1 g
= 1 A& 1
= @(t)(—l 1 2@2(0) (K 1+ a02() Z hZP(h)ph(t))

Sincepk(t) >0 (k=1,2,---,n)andB(t) > 0 for allt > 0, one can derive that
o'(t) < %(/1 - A0)0(1), t>0.
C

Thus, ifA < A¢, then®’(t) < 0 and this yields lim,. O(t) = 0 due to the positivity oB(t). SinceP(k) > 0 for
allk =1,2,---,n, we have lim. pk(t) = 0. This proves that the disease-free equilibrium of sysiénis(globally
attractive if4 < Ac. From Theorem 3.1, we can conclude that the disease-frakbeigun is globally asymptotically
stable ifA < A¢c. This completes the proof. O

We have established the stability of the disease-free ibquin of system (4), and now we want to show that
system (4) is indeed permanenflif- A.. To this end, we need the following Lemma.

Lemma 3.2. ([3]) Consider the system
y = Ay+N(y), (10)
where A is an x n matrix and Ny) is continuously dferentiable in a regio® c R". Assume

(i) the compact convex s€tc D is positively invariant with respect to system (10), & C;
(i) IimyﬁoIIN()/)II/II)’II =
(iii) there exist r> 0 and a (real) eigenvectowr of A" such thaffw - y) > r|ly|| forall y € C;

(iv) (w-N(y)) <OforallyeC;

(v) y = Ois the largest positively invariant set for (10) containadH = {y € C : (w- N(y)) = 0}

Then eithery = 0 is globally asymptotically stable i@, or for anyy, € C — {0} the solutiong(t, y,) of (10) satis-
fiesliminf i« ll¢(t, yo)Il = m, where m> 0O, independent of,. Moreover, there exists a constant solution of (10),

y:yk’y*GC—

The following result states the conditions for the permaeeof system (4) which relies on the conclusion of
Lemma 3.2.

Theorem 3.3. If 1 > A, then system (4) is permanent, that is, there exists a nuimbér such that
I|m |nf {oe()}p_q =

for any solution of system (4) wigi(0) > 0 for some k.

Proof. Letp = (01,p2,- -+ ,pn)". Then, system (6) can be rewritten as
p'(t) = Ap(t) + N(p), (11)
whereA = (&;) is ann x n real matrix anda;; = —6;; + AijP(j)/<k) fori,j = 1,2,--- ,nandd;; is the Kronecker
symbol. The nonlinear vect®(p) = (N1(p), N2(p), - - - , Nn(p))" is given by
_ —Akok® — tka®®
Nk(p)—W, k—1,2,---,n.
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DenoteS(A) := maxqRe() : u is the eigenvalue of\}, where Reg) represents the real part of Let
Q = {(,Ol»pZ»"' »pn) : ngk < 17 k= 1729"' 7n}'
It follows from Lemma 2.1 tha® is positively invariant with respect to (11).

Now, we shall confirm that (11) satisfies the conditions ¥j)¢f Lemma 3.2. Condition (i) holds for (11) by
selectingC = Q. By using the equivalence relations of normsRh we can deduce that

ING)I
||;(f|)|) < \MullplP + Malloll* < llpll \ M(L + [IpIP),

where
n\2 o( N 2 2,2.6( N °
M= 2203 [—] [1+2 — My = — M = M1, Mo}
1=2%n ((k))( + 2an ((k))]’ 2 =a°A°n ((k)) , maxMai, Mz}
Thus,
im N iy i ML+ 112) = 0
p-0 el p-0

and condition (ii) follows. For condition (iii), notice tha\" is irreducible anda; > 0 wheneverj # i, then by
the Perron-Frobenius Theorem, there exists an eigenvector(wy, Wy, - -+ ,W,)" of AT such thatw; > 0 for all
i =1,2,---,n, and the corresponding eigenvalueSiA™) = S(A) = (1/2c — 1). If we letr = minij<n W > 0, then
for anyp € C one can obtainv - p) > r Y1, px > rllpll. Condition (iv) is clearly satisfied due te(p) < O for all
k=1,2,---,n. To examine condition (v), we set = {p € C : (w- N(p)) = 0}. If p € H, then we have

n
> Wi(Akok® + Aka®®) = 0.
k=1

Since each term of the sum is nonnegative, we can conclutledleh term is equal to 0, which implies that 0.
Therefore, the only invariant set with respect to (11) comd inH is p = 0, so condition (V) is satisfied. If > A,
thenp = 0is an unstable equilibrium of (11) and hence the result of theorem follows by Lemma 3.2. This
completes the proof. O

4. Numerical experiments

In this section, we will give some numerical simulationslkastrate the theoretical analysis. Firstly, we choese 5
to make sure that the nonlinear functig{®) is a nonmonotone function (cf. Fig. 1). The considered petvarchi-
tecture is a finite scale-free network which contains 500esahd has the degree distributi®fk) = k-3, where the

constang is chosen to keep ;%% P(k) = 1. Then one can verify that the epidemic threshilé: 0.2419.

Example 4.1. We first consider the stability of the disease-free equilitor Thus, it follows from Theorem 3.1 that

if the transmission ratg < A, then the disease-free equilibrium is globally attractinel Fig. 2 demonstrates this
result. As one can see, the infected individuals indeedpbgisar eventually. Moreover, two remarkable findings are
highlighted here: firstly, the smaller transmission rajetie faster the infected individuals disappear. Secoruaig,
can also observe that the larger the degree is, the largeutheeak level will be. Besides, Theorem 3.2 indicates
that if 2 < A, the disease-free equilibrium is indeed globally asynpadiyy stable. To illustrate this result, we fix

A = 0.2 and choose 10 flerent initial values to plot the time evolution pfoo(t) andpsee(t) in Fig. 3. Obviously,

all the trajectories converge to the trivial equilibriumdathis could support the global stability of the disease-fre
equilibrium.
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Example 4.2. We now consider the case far> .. Theorem 3.3 indicates thatif > A, the disease is permanent
and Fig. 4 confirms this result. We can observe that not oydthease persists but also the density of each infected
individual tends to a positive steady state. We can alsatjpoittwo noteworthy findings: firstly, the larger the degree
is, the larger value of the steady state will be. Secondlycame see that the smaller the transmission rate is, the
lower endemic level will be. Since the density of each irdddndividual converges to a positive constant, we now
fix A = 0.3 and use 10 dlierent initial values to plot waveforms pfgo(t) andpsoo(t) in Fig. 5. It seems probable that
the endemic equilibrium is globally asymptotically stghifkeough the rigorous analysis does not present in this paper
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Example4.3. In the final example, we consider thifext of the parameter on the epidemic dynamics. Even though
the epidemic threshold, does not depends anexplicitly, Fig. 6 highlights an interesting discovery thvehen the
disease is endemic, the densities of the infected nodesaexag increases. This suggests that the total of infection
p1(t) = 222 P(K)ok(t) decreases asincreases (cf. Fig. 7).
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Fig. 6. The time evolution op1s0(t) andpzse(t) with 2 = 0.4 and diferent values ofr. The right column contains
local amplifications of the left column.



0.1

0.09 il

0.08

0.07

0.06
= 0.05f

0.04 -

0.03

0.02 : : q

0.01r q

0

o] 20 40 60 80 100
time t

Fig. 7. The time evolution of the total of infectigny (t) with A = 0.4 and diferent values of.

5. Conclusions

In this paper, we have studied the dynamics of a networkeb&8 epidemic model with nonmonotone incidence
rate. The nonlinear incidence rate can be used to intefdpegigychologicalféect, namely, the incidence rate would
decrease at high infective levels due to the quarantinefetied individuals or the protection measures by the sus-
ceptible ones. We have proved that there exists an epidémgsitoldl. for the transmission raté. The threshold
determines not only the existence of the endemic equilibitiut also the the global stability of the disease-free equi-
librium. More specifically, we have showed thaflik 1. then the disease-free equilibrium is globally asymptditica
stable, and ag = A, itis globally attractive. The biological meaning is thiati< A, the disease will disappear even-
tually. On the other hand, it > A, the disease-free equilibrium becomes unstable; meaaythire exists uniquely
an endemic equilibrium. In addition, we further show that tlisease will be permanent in the network when A.

We have also performed numerical experiments to demoastratheoretical results. From the numerical results,
we have observed that the endemic equilibrium seems prebbalile globally asymptotically stable. However, the
detailed analysis of the global stability of the endemicikgyium remains a challenge problem. Besides, tiiect of
the parametar on the epidemic dynamics has been discovered. Numericalaiions indicate that when the disease
is endemic, with the increase of the valugthe total of infection will decline. In summary, the stuslien network
epidemic models with nonlinear incidence rate are stikrafherefore, studying the spreading dynamics of other
network epidemic models with nonlinear incidence and howdaotrol the disease spreading in complex networks
will be our future works.
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