VERTEX ALGEBRAS AND QUANTUM MASTER EQUATION

SILI

ABSTRACT. We study the effective Batalin-Vilkovisky quantization theory for
chiral deformation of two dimensional conformal field theories. We establish
an exact correspondence between renormalized quantum master equations for
effective functionals and Maurer-Cartan equations for chiral vertex operators.
The generating functions are proven to have modular property with mild holo-
morphic anomaly. As an application, we construct an exact solution of quan-
tum B-model (BCOV theory) in complex one dimension that solves the higher

genus mirror symmetry conjecture on elliptic curves.
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1. INTRODUCTION

Quantum field theory provides a rich source of mathematical thoughts. One
important feature of quantum field theory that lies secretly behind many of its
surprising mathematical predictions is about its nature of infinite dimensional-
ity. A famous example is the mysterious mirror symmetry conjecture between
symplectic and complex geometries, which can be viewed as a version of infinite
dimensional Fourier transform. Typically, many quantum problems are formu-
lated in terms of “path integrals”, which require measures that are mostly not
yet known to mathematicians. Nevertheless, asymptotic analysis can always be
performed with the help of the celebrated idea of renormalization.

Despite the great success of renormalization theory in physics applications,
its use in mathematics is relatively limited but extremely powerful when it does
apply. One such example is Kontsevich’s solution [21] to the deformation quan-
tization problem on arbitrary Poisson manifolds. Kontsevich’s explicit formula
of star product is obtained via graph integrals on a compactification of configu-
ration space on the disk, which can be viewed as a geometric renormalization of
the perturbative expansion of Poisson sigma model (see also [5]). Another recent
example is Costello’s homotopic theory [7] of effective renormalizations in the
Batalin-Vilkovisky formalism. This leads to a systematic construction of factor-
ization algebras via quantum field theories [9]. For example, a natural geometric
interpretation of the Witten genus is obtained in such a way [38]].

To facilitate geometric applications of effective renormalization methods, it
would be key to connect renormalized quantities to geometric objects. We will
be mainly interested in quantum field theory with gauge symmetries. The most
general framework of quantizing gauge theories is the Batalin-Vilkovisky for-
malism [4], where the quantum consistency of gauge transformations is de-
scribed by the so-called quantum master equation. There have developed sev-
eral mathematical approaches to incorporate Batalin-Vilkovisky formalism with
renormalizations since their birth. The central quantity of all approaches lies
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in the renormalized quantum master equation. In this paper, we will mainly
discuss the formalism in [7]], which has developed a convenient framework that
is also rooted in the homotopic culture of derived algebraic geometry. A brief
introduction to the philosophy of this approach is discussed in Section 2]

The simplest nontrivial example is given by quantum mechanical models,
which can be viewed as quantum field theories in one dimension. The renormal-
ized Batalin-Vilkovisky quantization in the above fashion is analyzed in [18,23]]
for topological quantum mechanics. In particular, it is shown in [23]] that the
renormalized quantum master equation can be identified with the geometric
equation of Fedosov’s abelian connection [14] on Weyl bundles over symplectic
manifolds. The algebraic nature of this correspondence is reviewed in Section
Such a correspondence leads to a simple geometric approach to algebraic
index theorem [15, 31], where the index formula follows from the homotopic
renormalization group flow together with an equivariant localization of BV in-
tegration [23].

In this paper, we study systematically the renormalized quantum master equa-
tion in two dimensions. We will focus on quantum theories obtained by chiral
deformations of free CFI’s (see Section for our precise set-up). One im-
portant feature of such two dimensional chiral theories is that they are free of
ultra-violet divergence (see Theorem [3.9). This greatly simplifies the analysis of
quantization since singular counter-terms are not required. However, the renor-
malized quantum master equation requires quantum corrections by chiral local
functionals. Such quantum corrections could in principle be very complicated.

One of our main results in this paper (Theorem is an exact description of
the quantum corrections in terms of vertex algebras. Briefly speaking, Theorem
B.11]states that the renormalized quantum master equations (QME) is equivalent
to quantum corrected chiral vertex operators that satisfies Maurer-Cartan (MC)
equations. In other words, we have an exact description of the quantization of
chiral deformation of two dimensional conformal field theories

renormalized QME ‘ = ’ MC equations for chiral vertex operators ‘

The Maurer-Cartan equation serves as an integrability condition for chiral ver-
tex operators, which is often related to integrable hierarchies in concrete cases.
We discuss such an example in Section[d Furthermore, we prove a general result
on the modularity property of the generating functions and their holomorphic
anomaly (Theorem . This work is also motivated from understanding Dijk-
graaf’s description [13] of chiral deformation of conformal field theories.
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The above correspondence can be viewed as the two dimensional vertex alge-
bra analogue of the one dimensional result in [23]. In fact, one main motivation
of the current work is to explore the analogue of index theorem for chiral vertex
operators in terms of the method of equivariant localization in BV integration as
proceeded in [23]. It allows us to solve many quantization problems in terms of
powerful techniques in vertex algebras.

As an application in Section [, we construct an exact solution of quantum B-
model on elliptic curves, which leads to the solution of the corresponding higher
genus mirror symmetry conjecture. Mirror symmetry is a famous duality be-
tween symplectic (A-model) and complex (B-model) geometries that arises from
superconformal field theories. It has been a long-standing challenge for mathe-
maticians to construct quantum B-model on compact Calabi-Yau manifolds. In
[10], we construct a gauge theory of polyvector fields on Calabi-Yau manifolds
(called BCOV theory) as a generalization of the Kodaira-Spencer gauge theory
[3]. It is proposed in [10] (as a generalization of [3]]) that the Batalin-Vilkovisky
quantization of BCOV theory leads to quantum B-model that is mirror to the A-
model Gromov-Witten theory of counting higher genus curves. Our construc-
tion in Section [4] gives a concrete realization of this program. This leads to the
first mathematically fully established example of quantum B-model on compact
Calabi-Yau manifolds.

Our result in Section [4also leads to an interesting result in physics. Quantum
BCOV theory can be viewed as a complete description of topological B-twisted
closed string field theory in the sense of Zwiebach [33]. Zwiebach’s closed string
tield theory describes the dynamics of closed strings in term of the so-called
string vertices. Despite the beauty of this construction, string vertices are very
difficult to compute and few concrete examples are known. Our exact solution
in Section {4f can be viewed as giving an explicit realization of Zwiebach’s string
vertices for B-twisted topological string on elliptic curves.
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Conventions

e Let V be a Z-graded k-vector space. We use V,, to denote its degree m
component. Given a € V,,, we let 2 = m be its degree.

— V[n] denotes the degree shifting of V such that V[n],, = Vyipm.

— V* denotes its dual such that V;;, = Homy(V_,,, k). Our base field k
will mainly be R or C.

- Sym™(V) and A™(V) denote the graded symmetric product and
graded skew-symmetric product respectively. We also denote
Sym(V) := @ Sym™(V), Sym(V):= [] Sym™(V).

m=>0 m>0

GivenI = Y I, € %(V*), and ay,--- ,a, € V, we denote its

m>0
m-order Taylor coefficient
J J

E@I(O) = Im(al,'-' ,am)

where we have viewed I, as a multi-linear map V" — k.
— Given P € Sym?(V), it defines a “second order operator” dp on
Sym(V*) or Sym(V*) by
dp : Sym™(V*) — Sym™2(V*), I — dpl,
where forany ay, -+ ,a,2 €V,
apl(al, st am_z) = I(P, ai,--- am_z).

- V|[z], V[[z]] and V((2z)) denote polynomial series, formal power se-
ries and Laurent series respectively in a variable z valued in V.
o Let Abe a graded commutative algebra. [—, —] always means the graded
commutator, i.e., for elements a, b with specific degrees,

[a,b] :=a-b—(—1)%b-a.
We always assume Koszul sign rule in dealing with graded objects.

e ® without subscript means tensoring over the real numbers R.
¢ Given a manifold X, we denote the space of real smooth forms by

0*(X) = P o'(X)
k
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where QF(X) is the subspace of k-forms. If furthermore X is a complex
manifold, we denote the space of complex smooth forms by

Q" (X) =P ao"(X)=0*(X)®C
P4

where QP7(X) is the subspace of (p, q)-forms.

e Dens(X) denotes the density bundle on a manifold X. When X is ori-
ented, we naturally identify Dens(X) with top differential forms on X.

e Let E be a vector bundle on a manifold X. £ = T(X, E) denotes the
space of smooth sections, and £’ = D'(X, E) denotes the distributional
sections. If E* is the dual bundle of E, then we have a natural pairing

E'@N(X,E* @ Dens(X)) — R.

e H denotes the upper half plane.

2. BATALIN-VILKOVISKY FORMALISM AND EFFECTIVE RENORMALIZATION

In this section, we collect basics and fix notations on the quantization of gauge
theories in the Batalin-Vilkovisky (BV) formalism. We explain Costello’s homo-
topic renormalization theory of Batalin-Vilkovisky quantization and present a
one-dimensional example to motivate our discussions in two dimensions.

2.1. Batalin-Vilkovisky algebras and the master equation.
Definition 2.1. A differential Batalin-Vilkovisky (BV) algebrais a triple (A, Q, A)

e Aisa Z-graded commutative associative unital algebra.

e Q: A — Aisa derivation of degree 1 such that Q? = 0.

e A: A — Aisasecond-order operator of degree 1 such that A2 = 0.
e Qand A are compatible: [Q,A] = QA+ AQ = 0.

Here A is called the BV operator. A being “second-order” means the follow-
ing: define the BV bracket { —, —} as measuring the failure of A being a derivation
{a,b} := A(ab) — (Aa)b — (—1)"aAb.

Then {—, -} : A® A — A defines a Poisson bracket of degree 1 satisfying

e {a,b} = (~=1)" {b,a}.
e {a,bc} = {a,b}c+ (—1)@Vbp{g, c}.
e A{a,b} = —{Aa,b} — (—1)"{a, Ab}.
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The (Q, A)-compatibility condition implies the following Leibniz rule
Q{a, b} = —{Qa, b} — (-1)" {a, Qb}.
Definition 2.2. Let (A, Q, A) be a differential BV algebra. A degree 0 element
I € Ay is said to satisfy classical master equation (CME) if
QI+%{I,I} —0.

If I solves CME, then it is easy to see that Q + {I, —} defines a differential
on A, which can be viewed as a Poisson deformation of Q. However, it may
not be compatible with A. A sufficient condition for the compatibility is the
“divergence freeness” Al = 0. A slight generalization of this is the following.

Definition 2.3. Let (A, Q, A) be a differential BV algebra. A degree 0 element
I € A[[h]] is said to satisfy quantum master equation (QME) if

QI+hAI+%{I,I}:O.

Here 7 is a formal variable representing the quantum parameter.

The “second-order” property of A implies that QME is equivalent to
(Q+nhA)e!m = .

If we decompose I = Y. L7, then the i — 0 limit of QME is precisely CME
8§20

1
Qlo+ 5 {Io, Io} = 0.

We can rephrase the (Q, A)-compatibility as the nilpotency of Q + hA. It is
direct to check that QME implies the nilpotency of Q + hA + {I, —}, which can
be viewed as a compatible deformation.

2.2. Odd symplectic space and the toy model. We discuss a toy model of dif-
ferential BV algebra via (—1)-shifted symplectic space. This serves as the main
motivating resources of our quantum field theory examples.

Let (V, Q) be a finite dimensional dg vector space. The differential Q : V — V
induces a differential on various tensors of V, V*, still denoted by Q. Let

w € NV*, Q(w) =0,
be a Q-compatible symplectic structure such that deg(w) = —1. It identifies
V'~ VI1].
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Let K = w™! € Sym?(V) be the Poisson kernel of degree 1 under
A2V* ~ Sym?(V)[2]
w K
where we have used the canonical identification A2(V[1]) ~ Sym?(V)[2]. Let

O(V) := Sym(V*) = [ Sym" (V).

Then (O(V), Q) is a graded-commutative dga.
The degree 1 Poisson kernel K defines the following BV operator
Ax: O(V) = O(V) by
Ag(p1---@u) = Zi(K,qu@(Pj)(Pl"'fﬁi"'fﬁj"'fpn, pi € V"
i,
Here (K, ¢; ® @) denote; the natural paring between V®@ V and V* @ V*. +is
the Koszul sign by permuting ¢;’s. The following lemma is well-known.

Lemma 2.4. (O(V),Q, Ax) defines a differential BV algebra.

The above construction can be summarized as

(—1)-shifted dg symplectic = differential BV.

Remark 2.5. Since we only use K to define BV operator, the above process is well-
defined for (—1)-shifted dg Poisson structure where K may be degenerate. We
will see such an example in Section 4.

2.3. UV problem and homotopic renormalization. Let us now move on to dis-
cuss examples of quantum field theory that we will be mainly interested in.

2.3.1. The ultra-violet problem. One important feature of quantum field theory is
about its infinite dimensionality. It leads to the main challenge in mathematics to
construct measures on infinite dimensional space (called the path integrals). It is
also the source of the difficulty of ultra-violet divergence and the motivation for
the celebrated idea of renormalization in physics. Let us address some of these
issues via the Batalin-Vilkovisky formalism.

In the previous section, we discuss the (—1)-shifted dg symplectic space (V, Q, w).
There V is assumed to be finite dimensional. This is why we call it “toy model”.
Typically in quantum field theory, V will be modified to be the space of smooth
sections of certain vector bundles on a smooth manifold, while the differential Q
and the pairing w come from something “local”. Such V will be called the space
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of fields, which is evidently a very large space with delicate topology. Neverthe-
less, let us naively perform similar constructions as that in the toy model.

More precisely, let X be a smooth oriented manifold without boundary. Let
E*® be a complex of vector bundles on X

...Eflggog]gl...

where Q is the differential. We assume that (E®, Q) is an elliptic complex. Our
space of fields & replacing V will be the space of smooth global sections

£ =T(X,E*),

with the induced differential, still denoted by Q. The symplectic pairing will be

w(s1,s2) == /X(Slfsz), 51,52 € &,

where

(—,—): E*®E®* — Dens(X)
is a non-degenerate graded skew-symmetric pairing of degree —1. To perform
the toy model construction, we need the following steps

(1) The dual vector space £* (analogue of V*). This can be defined via the
space of distributions on &£

" = Hom(&,R)

where Hom is the space of continuous maps.
(2) The tensor space (£*)®F (analogue of (V*)®¥). This can be defined via
the completed tensor product for distributions

(5*)®k :5*@@8*

where (£*)%* is the distributions on the bundle E*X - - - X E® over X x
-+ x X. Sym*(£*) is defined similarly by taking care of the graded per-
mutation. Then we have a well-defined notion (via distributions)
O(&) == [ sym*(€")
k>0

as the analogue of O(V).

(3) The Poisson kernel Ky = w™! (the analogue of K). The pairing w does
not induce an identification between £[1] and its dual £* in this case.
Since w is defined via integration, the Poisson kernel Kj is the d-function
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representing integral kernel of the identity operator. Therefore Kj is a
distributional section of £QE supported on the diagonal X — X x X

Ko € Sym?(&").

See Conventions for £’. It is at Step (3) where we get trouble. In fact, if we
naively define the BV operator

Ax, 1 O(E) 5 0(E),

0

then A, is ill-defined, since we can not pair a distribution Ky with another dis-
tribution from O(&). This difficulty originates from the infinite dimensional
nature of the problem.

2.3.2. Homotopic renormalization. The solution to the above problem requires the
method of renormalization in quantum field theory. There are several different
approaches to renormalizations, and we will adopt Costello’s homotopic theory
[7] in this paper that will be convenient for our applications.

The key observations are

(1) Ko is a Q-closed distribution: Q(Kp) = (Q®1+1® Q)Ky = 0.
(2) elliptic regularity: there is a canonical isomorphism of cohomologies

H*(smooth, Q) = H*(distribution, Q).
It follows that we can find a distribution P, € Sym?(£’) and a smooth element
K, € Sym?(&) such that
KO - Kr + Q(Pr).

P, is the familiar notion of a parametrix.

Definition 2.6. K, will be called the renormalized BV kernel with respect to the
parametrix P;.

Since K; is smooth, there is no problem to pair K, with distributions. The same
formula as in the toy model leads to

Lemma/Definition 2.7. We define the renormalized BV operator Ag,

Ax - O(E) = O(E)

T

via the smooth renormalized BV kernel K,. The triple (O(E), Q, Ak, ) defines a differ-
ential BV algebra, called the renormalized differential BV algebra (with respect to P,).
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Therefore (O(€), Q, Ak,) can be viewed as a homotopic replacement of the
original naive problematic differential BV algebra. As the formalism suggests,
we need to understand relations between difference choices of the parametrices.

Let P;, and P,, be two parametrices, K;, and K;, be the corresponding renor-
malized BV kernels. Let us denote

P2 =P, — Py,.
Since Q(P?) = Ky, — Ky, is smooth, P;? is smooth itself by elliptic regularity.
Definition 2.8. P;? will be called the regularized propagator.

Example 2.9. Typically, suppose we have an adjoint operator Q' such that [Q, Q]
is a generalized Laplacian. Then given t > 0, the integral kernel K; for the heat
operator ¢~ [9Q") can be viewed as a renormalized BV kernel. In this case, the
regularized propagator is given by

P = Q@ 1)Kt
t f it

P;? can be viewed as a homotopy linking two different renormalized differen-
tial BV algebras. In fact, similar to the definition of renormalized BV operator,

Definition 2.10. We define 0, : O(€) — O(&) as the second-order operator of
n

contracting with the smooth kernel P} € Sym?(&) (see also Conventions).

Lemma 2.11. The following equation holds formally as operators on O(E)[[h]]

W,

(Q+hak,)e " = (Qnay, ),
i.e., the following diagram commutes

Q+hAK,1
o)A ————0(&)[[n]]

O] —5a— 0[]

Sketch. This follows from the observation that
Q95| = Ak, — A,

See for example [7] for further discussions. ]
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Definition 2.12. Let
O*(&E)[[1)] == Sym=>(£*) +hO(E)[[M)] € O(€)][n]]

be the subspace of those functionals which are at least cubic modulo #. Given
any two parametrices P, , P,,, we define the homotopic renormalization group
(HRG) operator

W(P2, =) : OF(E)[[n)] = OT(E)[[n]]

a4

1o r
W(P?, 1) :=hlog (e P’lzel/h> .

The real content of the above formula is

WP, = Y We(P2I)

r’
I' connected

where the summation is over all connected Feynman graphs with P;? being the
propagator and I being the vertex (see for example [2] for Feynman graph tech-
niques). Wick’s Theoreom identifies the above two formula. In particular, the
graph expansion formula implies that HRG operator W(P;2?, —) is well-defined
on O (E)][[h]]. We refer to [7] for a thorough discussion in the current context.

Lemma motivates the following definition.

Definition 2.13 ([7]). A solution of effective quantum master equation is an as-
signement I[r] € O(E)|[[h]] for each parametrix P, satisfying

e Renormalized quantum master equation (RQME)
(Q + R ) = 0,

e Homotopic renormalization group flow equation (HRG): for any two
parametrices P, P;,,

1[1’2] = W(Prrlz, 1[7’1]).
RQME and HRG are compatible by Lemma A solution of effective quan-
tum master equation is completely determined by its value at a fixed parametrix.
Functionals at other paramatrices are obtained via HRG.

Remark 2.14. Here we adopt the name “homotopic RG flow” as opposed to the
name "RG flow” in [7]. If the manifold preserves a rescaling symmetry, it will in-
duce a rescaling action on the solution space of effective quantum master equa-
tions. Such flow equation will be called RG flow to be consistent with the physics
terminology.
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2.3.3. Locality and counter-term technique. In practice, we obtain solutions of renor-
malized quantum master equations via local functionals with the help of the
method of counter-terms. We explain this construction in this subsection.

Definition 2.15. A functional I € O(€) is called local if it can be expressed in
terms of an integration of a Lagrangian density £

1(#)= [ £(®), de¢.

L can be viewed as a Dens(X)-valued function on the jet bundle of £. The
subspace of local functionals of O(€) is denoted by O,.(£). We also denote

O (E)[[H]] = OT(E)[[1]] N Opoc (€) [[]-

loc

Let us assume we are in the situation of Example Given L > 0, we have

a smoothly regularized BV kernel K in terms of the heat kernel. Let PL be the
regularized propagator for 0 < e < L < oo.

Given any local functional I € O} (€), we can find an e-dependent local

functional I7 (€) € 1Oy, (€)][[1]], such that the following limit exists

I1L] = im W(PL, 1+ 17 (e)) € O* (&) [A]].

Here I¢T(¢) has a singular dependence on € when € — 0, and this singularity
exactly cancels those that come from the naive graph integral W(PL, I). I¢T(e)
is called the counter-term, which plays an important role in the renormalization
theory of quantum fields. For a proof of the existence of counter-terms in the
current context, see for example [7, Appendix 1].

By construction, I[L] satisfies HRG for all heat kernel regularizations:
I[Lo] = W(P[2, I[L1]), VO < Ly, Ly < oo.
It remains to analyze the quantum master equation.

Firstly, although the BV operator A; becomes singular as L — 0, its associated
BV bracket is in fact well-defined on local functionals.

Definition 2.16. We define the classical BV bracket on O),.(£) by

{11112} = llm {Ill IZ}L/ 11112 € OZOC(E)‘
L—0

The reason that the above limit exists lies in the observation that the delta-
function can be naturally paired with integration.
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Definition 2.17. A local functional I € O),.(€) is said to satisfy classical master
equation (CME) if

1
QI+ 5 {LI}=0.

Therefore classical master equation does not require renormalization. In prac-
tice, any local functional with a gauge symmetry can be completed into a local
functional that satisfies the classical master equation. This fact lies in the heart
of the Batalin-Vilkovisky formalism.

Remark 2.18. Given Iy € Oj,(£) satisfying the classical master equation, Q +
{Ip, —} defines a nilpotent vector field on £. The physical meaning is that it
generates the infinitesimal gauge transformation. In mathematical terminology,
it defines a (local) L, structure on £.

To proceed to construct solutions of effective quantum master equations, let
us naively use counter-terms to construct a family I[L] as above from Ij. It can
be shown that I[L] satisfies renormalized quantum master equation modulo /

1
QI[L] +hALI[L] + 2 {I[L], I[L]}; = O(h).
Then we need to find quantum corrections

Iy — Iop+hl +1P L+ € OF (€)[[1]

loc

such that the renormalized quantum master equation holds true at all orders of
h. This can be formulated as a deformation problem. The quantum corrections
may become very complicated in general, and intrinsic obstructions for solving
the quantum master equation could exist at certain 7-order (gauge anomalies).
Nevertheless, one of our main purposes here is to understand the geometric
meaning of such quantum corrections and find their solutions.

2.4. Example: Topological quantum mechanics. The simplest nontrivial exam-
ple is when X is one-dimensional. This corresponds to quantum mechanical
models. We explain the one dimensional Chern-Simons theory that is studied in
detail in [23]. In such a geometric situation, the renormalized BV master equa-
tion is related to Fedosov’s abelian connection on Weyl bundles [14]. In the next
section, we generalize this analysis to two dimensional models.

Let X = S!. Let V be a graded vector space with a degree 0 symplectic pairing

(—,—):A?V =R
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The space of fields will be
E=0Q(SHeV

Let us denote X,z by the super-manifold whose underlying topological space
is X and whose structure sheaf is the de Rham complex on X. We can identify
@ € £ with a map @ between super-manifolds

(Ap:XdR—>V

whose underlying map on topological spaces is the constant map to0 € V.

The differential Q = dg on & is the de Rham differential on Q°*(S'). The
(—1)-shifted symplectic pairing is the pairing
w(e1, ¢2) == /S](@lfwz)-

The induced differential BV structure is just the AKSZ-formalism []1] applied
to the one-dimensional o-model. Given I € O(V) of degree k, it induces an
element [ € O(&) of degree k — 1 via

o)== [ @'(1), voee.

We choose the standard flat metric on S! and use the heat kernel regulariza-
tion as in Example 2.9 The following Theorem is a consequence of [23].
Theorem 2.19 ([23]). Given I € Sym=3(V*) +hO(V)[[h]] of degree 1, the limit

I[L] = im W(PL, 1)
e—0
exists as an degree 0 element of OF (€)[[1]]. The family {I[L]}1~0 solves the effective
quantum master equation if and only if
[1,1], =0.

Here O(V)[[h]] inherits a natural Moyal product x from the linear symplectic form
(=, =). [=, =]« is the commutator with respect to the Moyal product.

In [23], the above theorem is formulated as a family version of V parametrized
by a symplectic manifold. Then the effective quantum master equation is equiv-
alent to a flat connection gluing the Weyl bundle (i.e. the bundle of associative
algebra with fiberwise Moyal product). A further analysis of the partition func-
tion leads to a simple formulation of the algebraic index theorem.
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3. VERTEX ALGEBRA AND BV MASTER EQUATION

In this section we establish our main theorem on the correspondence between
solutions of the renormalized quantum master equation for two dimensional
chiral theories and Maurer-Cartan elements for chiral vertex operators (Theo-
rem 3.11). We prove the modularity property of generating functions of chi-
ral theories on elliptic curves and establish the polynomial nature of their anti-
holomorphic dependence on the moduli (Theorem [3.21).

3.1. Vertex algebra. In this section we collect some basics on vertex algebras
that will be used in this paper. We refer to [16,[19]] for details.

3.1.1. Definition of vertex algebras. In this section V will always denote a Z/2Z-
graded superspace over C. It has two components with different parities

V=Vy@®V;, Z/2Z={0,1}.
We say v € V has parity p(a) € Z/2Zif v € V) y).

Definition 3.1. A field on V is a power series

Alz) =) A(k)z_k_l € End(V)[[z,z7 Y]]
kez

such that for any v € V, A(z)v € V((z)). We will denote

A(Z)+ = Z A(k)kafl, A(Z)_ = Z A(k)kafl.
k<0 k=0

e Given two fields A(z), B(z), we define their normal ordered product
: A(2)B(w) := A(z) B(w) + (—1)PPE)B(w)A(z) .

Note that End (V) is naturally a superspace. p(A), p(B) are the parities.
e Two fields A(z), B(z) are called mutually local if

N-1
ABw) = ¥ (Z(ikg‘;?{ﬂ+ . A(z)B(w) : .

for some N € ZZ0 and fields Cy. The first term on the right is called the
singular part, and we shall write

N-1 w
A(2)B(w) ~ ¥ (Z(ik(w)ZH

k=0
The above two formulae are called the operator product expansion (OPE).

Definition 3.2. A vertex algebra is a collection of data
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e (space of states) a superspace V;

e (vacuum) a vector |0) € Vy;

e (translation operator) an even linear operator T : V — V;

o (state-field correspondence) an even linear operation (vertex operators)

Y(-,z):V — End V[[z,z Y]]

taking each A € Vtoafield Y(A,z) = ¥ Az "}

nez

satisfying the following axioms:
e (vaccum axiom) Y(]0), z) = Idy. Furthermore, for any A € V we have
Y(A,z)|0) € V][z]], and lirréY(A,z)|O> = A.
z—

e (translation axiom) T|0) = 0. Forany A € V, [T, Y(A,z)] = 9,Y (A, z);
o (locality axiom) All fields Y(A, z), A € V, are mutually local.

Let A, B € V. Their OPE can be expanded as

Y(A,z)Y(Bw) =Y, )T

nez

where {A(n) -B } , can be viewed as defining an infinite tower of products.
ne

Definition 3.3. A vertex algebra V is called conformal, of central charge c € C, if
there is a vector w,;; € V (called a conformal vector) such that under the state-

field correspondence Y (wy;;, z) = ¥ Lyz "%
nez

e L1 =T,Lyis diagonalizable on V;
o {L,},cz span the Virasoro algebra with central charge c.

Let V be a conformal vertex algebra. The field Y(w, z) will often be denoted
by T(z), called the enerqy momentum tensor. ) can be decomposed as

V=V Ly, =a

A € V¥ is said to have conformal weight «. Its field will often be expressed by

Y(Az) =Y Az7F%, A vt vk
k

where Ay has conformal weight —k. In previous notations, Ay = A(yq—1)-
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3.1.2. Modes Lie algebra. Following the presentation in [16], we associate a canon-
ical Lie algebra to a vertex algebra via Fourier modes of vertex operators.

Definition 3.4. Given a vertex algebra V, we define a Lie algebra, denoted by
4V, as follows. As a vector space, the Lie algebra § 1 has a basis given by A)’s

%V = Spang {f.dszY(A,z) = A(k)}AeV kez

The Lie bracket is determined by the OPE (Borcherds commutator formula)

Ay B = ¥, (7) (AmB)W,j-

j20

Here we use a different notation ¢ than U(-) in [16} Section 4.1] to emphasize
its nature of mode expansion. The commutator relations are better illustrated
formally in terms of residues

W)
[]{ dzsz(A,z),fdww”Y(B,w } %dww % dzz" Z ]+1 ,
JEZL
where ¢ dz := fc 5 is the integration over a small loop C;, around w.

Equivalently, the vector space § V can be described as
%V =V[z,z7!]/imd

where (A ® zF) := T(A) @ ZF + kA ® zF"1, A € V. Then A ® zF represents the
Fourier mode § dzzFY (A, z) and im 9 represents the space of total derivatives.

3.1.3. Examples. Let h = @©4eqh”, where h* = h¥ @ h{, be a Q-graded super-
space. Here the Q-grading is the conformal welght and we assume for simplicity
only finitely many weights appear in h. Let h be equipped with an even sym-
plectic pairing
(—,=):A*h = C
which is of conformal weight —1, that is, the only nontrivial pairing is
(—,—) :h*@h!™* - C.

For each a € h*, we associate a field
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This is equivalent to the commutator relations
T
la,, bs] = % (a,b) 6,050, Va,behr €L —as€l+a

The vertex algebra V[h] that realizes the above OPE relations is given by the
Fock representation space. The vaccum vector satisfies

a,/0) =0, Vaeh%r+a>0,

and V[h] is freely generated from the vaccum by the operators {4, } <0, 4 € h%.
For any a € h, a(z) becomes a field acting naturally on the Fock space V[h]. V[h]
is a conformal vertex algebra structure, with energy momentum tensor

1 o
T(z) = ZiZ];wij :0a'(z)al (z) :
where {a'} is a basis of h, wj; is the inverse matrix of {a’, b/): ¥y wy (a¥,a/) = 51]
The central charge is dim hj — dim hj.

Remark 3.5. When h = hy is purely bosonic, the associated vertex algebra is the
3 — v system (or the chiral differential operators [17,29]). When h = hj is purely
fermionic, the associated vertex algebra is the b — ¢ system.

Under the state-field correspondence, the vertex algebra V[h| can be identi-
fied with the polynomial algebra

Vh]=C {akai] , a'isabasisof h,k > 0.
We also denote its formal completion by
V[h]] = C[[o"a]].
V[h], V[[h]] can be viewed as the chiral analogue of the Weyl algebra.
3.2. Two dimensional chiral QFT. Let X be a complex curve, Ky be its canonical
line bundle. We will be interested in the following data as a BV set-up:

e (E*,$) is a differential complex of holomorphic bundles on Z;
e A degree 0 symplectic pairing of complexes

(—,—): E*®E®* — K.

Here Ky is viewed as a complex concentrated at degree 0.
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The space of quantum fields associated to the above data will be
£ =0%(L,E).

The (—1)-symplectic pairing w on £ is obtained via

ERE =) 0% (5,Ky)
C

Then the triple (£, Q = 0 + 8, w) defines an infinite dimensional (—1)-symplectic
structure in the sense of section 2l Our main goal in this section is to study the
associated renormalized quantum master equation.

We will be mainly concerning the flat situation in this paper when ~ = C, C*
or the elliptic curve E; = C/(Z & Z7) (t € H). We assume this from now on.

Definition 3.6. We will fix a coordinate z on XZ: this is the linear coordinate on
C,z~z+1~ z+7on E,, and €27 parametrizes C*. Our convention of the
volume form is )

Pz = édz A dz.
We also use the following notation: f (7) means a smooth function on z while
f(z) means a holomorphic function.

Since I is flat, we will focus on the situation in this paper when (E°®, (—, —))
comes from linear data (h, (—, —)) as follows:
e h = @ hy, is a Z-graded vector space (the grading is the cohomology

MEL

degree);
o (—, —): A’h — Cisa degree 0 symplectic pairing;
e E*=0s®h,and £ = Q"*(Z) ® h;
e ecC {%] ® @ Hom(h™, h™*1). Here C {%] represents the space of
m

translation invariant holomorphic differential operators on Z;
e (—,—)isinduced from fiberwise (—, —) via the identification Ky = Osdz

(o1, 02) = / dz A (@1, @2) -

We consider the dual Z-graded vector space h* with the induced symplectic
pairing still denoted by (—, —). The Z/27Z-grading associated to the Z-grading
defines the parity on h*. The extra Z-grading of conformal weight will not be
explicit at this stage. At this stage, we assume for simplicity that the pairing
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(—,—) on h* has conformal weight —1 and obtain the vertex algebra V[[h*]]
as in Section The same discussion can be easily generalized when the
conformal weight (—, —) is different from —1. We describe such an example in
Section 4l

The relevant chiral local functionals will be described by § V[[h*]]. Precisely,
Definition 3.7. Given I € V[[h*]][[i]], we extend it Q%*[[}]]-linearly to a map
I:&— Q% [[n]].
Explicitly, if I = ¥ 9"ay - - - 9*a,, € V[[h*]], where a; € h*, p € £, then
I(p) = Y, £0%ar(p) - 3" an(9),

Here a;(¢) € Q% comes from the natural pairing between h* and h. 9, is the
holomorphic derivative with respect to our prescribed linear coordinate z on X.
+ is the Koszul sign. We associate a local functional [ € O;,.(€)[[}1]] on & by

f(e) := i/zdzl(<p), peE.

Note that deg([) = deg(I) — 1.

We will fix the standard flat metric on L. Let 9* denote the adjoint of d, and
hy € C®(Z x Z),t > 0, be the heat kernel function of the Laplacian operator
H = [0,9%]. It is normalized by

(e ™M F) (1) :/Zdzzz h(Z1, Z2)f(Z2), t>0.

For £ = C, we have 9* = —2BZL;,Z_ and H = —20,0; = % (8,26 +a§) where

z
z = x + iy, and (;_ is the contraction with the vector field %. Then explicitly

1
h(Z1,22) = ﬁe_‘zl_zﬂz/%.

When X = C* or E4, h; is obtained from the above heat kernel on C by a further

summation over the relevant lattices.

The regularized BV kernel K; € Sym?(€) is given by
Ki(Z1,Z2) =ih(Z1, Z2)(d21 ®1 - 1®d2)Ch.

Here Cp, = ¥ j w; j(ai ® a') is the Casimir element where {a'} is a basis of h, w; i
is the inverse matrix of <ui, b > The normalization constant is chosen such that

1
(e_LH(p)(7l) = —E/ZdZQ A\ <KL(71, 72),@(72», Vo € E
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where (—, —) inside the integral is the pairing in the z;-component. The factor

% is the symmetry factor, while the extra minus sign comes froming passing

Ky through dz;. Then K| is precisely the desired singular Poisson tensor. The
regularized propagator is

L _
pﬁ:/ (3 © 1)Kudu, 0<e<L < oco.
€

Definition 3.8. We define the subspace V' [[h*]|[[]] C V[[h*]][[]] by saying
that I € V*[[h*]][[]] if and only if %in& I is at least cubic when V[[h*]] is viewed
%

as a (formal) polynomial ring.

Theorem 3.9. Given I € V' [[h*]][[l]] of degree 1 and L > 0, the limit

I[L] := lim W(PEL, T)

e—0

exists as an element of O+ (£)[[1]]. {I[L]}r>0 defines a family of O (E)[[1]] satisfying
the homotopic RG flow equation, and %irré I[L] = I. Here I is defined in Definition
*>

Proof. The limit behavior of € and L is a consequence of [25, Lemma 3.1 and
Proposition B.1]. The homotopic RG flow equation is similar to the discussion
in Section2.3.3 O

We remark that the order of limit is important in the proof of Theorem[3.9 The
chiral nature of the problem implies that all potential singularities in W(PL, I)
in fact vanish upon integration by parts before taking the limit e — 0 [25].

It remains to analyze the renormalized quantum master equation for [[L].
3.3. Quantum master equation and OPE. The differential 6 induces naturally a
differential on the formal polynomial ring V[[h*]] (denoted by the same symbol)

5 : V[[h*]] = V[[h™]].

Letuswrite$ = D® ¢, where D € C [%} ,¢$ € Hom(h,h). Let ¢* € Hom(h*, h*)
be the dual of ¢. Then in terms of generators,

5(0%a) := o*D(¢p*(a)), a ch”.
This further induces a differential
51 VI = § Vi)
Recall we have a natural Lie bracket defined on § V[[h*]][[i]] as in Section[3.1.2]
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Lemma 3.10. The differential & and the Lie bracket |, | define a structure of differential
graded Lie algebra on ¢ V[[h*]][[1]].

Proof. We leave this formal check to the interested reader. U

The main theorem in this paper is the following, which can be viewed as the
two dimensional chiral analogue of Theorem[2.19]

Theorem 3.11. Let I[L] be defined in Theorem Then the family I[L] satisfies renor-
malized quantum master equation if and only if

5j§d1+ () [?{dzlfdzl}

ie.. $ dzI is a Maurer-Cartan element of ¢ V|[[h]][[h]]

Proof. Itis enough to work with Z = C, since C*, L are quotients by translations
and our 6 and [ are translation invariant. Moreover, the renormalized quantum
master equations

() QILI+RAUL]+ 5 {I[LLIL]}, =0, or (Q+ Ay =0,

are equivalent for each L, therefore it is enough to analyze the limit L — 0. By
Theorem

(Q+hAp) AL/ — 1im (Q+hArL) (ehaPeLef/h>
e—0

= lim ¢"** ((Q +hA) ei/h)
e—0
1 ¢ P Le o i
ﬁLI}ne ot (QI+hA€I+2{I,I}€>e/

N S T ~ 1 44 i/n
= ﬁ?_%e P <5I+2{I,I}€> el
Here we have observed

e A.J = 0, since [ is local and K. becomes zero when restricted to the
diagonal (the factor dz; — dZ, vanishes when z; = z, = z).
e o] = 0, since it contributes to a total derivative.

Therefore formally

—t/h s 1 1o
he I/h%lil’(l](Q—f—hAL) [L]/h—él—kzhmhme I/ ot ({I I, I/h)

L—0e—0
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The first term matches with that in the theorem up to a factor of i (recall Defini-
tion[3.7). It remains to analyze the second term involving effective BV bracket.
We proceed in two steps.

Step 1: Reduction to two-vertex diagram. We claim

lim lim /%"t ({1, I} ¢!/") = lim lim Z W, (, PL, K.).

L—0e—0 L—0e=0 7

Here T}, is the diagram involving only two vertices by [, m propagators by
PL(draw by solid lines), and one extra propagator by K. (draw by dashed line):

This says that only diagrams with two vertices contribute to the limit L — 0.
This claim follows from the L — 0 limit of [25, Proposition B.2].

Step 2: It remains to show

lim lim Z Wr, (I, P(e, L), [jl{dzl j{dzl}
L=0e=0 .

[§ dzI, § dzI] is computed by Wick contractions and OPE’s (see [19]). Comparing
with the OPE formula, taking care of factor i in Definition [3.7 and symmetric
factors of the Feynman graphs, it is enough to establish the following identity

lim /dzzl/ d2zzA (21)B(z 2)821( Z 1,72 Ha (z 1,72)

e—0 UGS

m

— (mil)!/chzZB(72)£z dzlA(?l)I:‘[o <ak17r(zll—zz)> :

1

forkg,- -+, ku € Z=°, and smooth functions A, B with compact support. Here

Ke(Z, Z2) = 5o mal/oe
L L dt z0 — %

PH(Z, Z2) = (-20) [ dide (T, ) = (-20) [ o B At
€ €

where we have used the same symbols but only keep factors of the BV kernel
and the regularized propagator that are relevant in this computation. A, B are
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test functions viewed as collecting all inputs on external edges of the two ver-
tices. ¢, dz, means a loop integral of z; around z; normalized by

f‘ dz, _1
zp 21 — 22

Our notation ¢, dz1A(Z 1) H (ak

Z1 Z1—2Zp
i—0
phic derivative of A according to the pole condition, i.e.,
f;z dZ]A( z 1)@ . — %aZZA( z 2).

0 is the summation over permutations of {0, 1, - - - ,m}. The holomorphic deriva-

) means only picking up the holomor-

tives are distributed symmetrically since the local functional [ is symmetric and
contains only holomorphic derivatives.

The above identity essentially follows from [25, Proposition B.2]. We give a
different but more direct computation below for reader’s convenience.
Let us change coordinates by
(z1,20) = (z =21 — 22,20), z=re".

Let us focus on the term when o is the trivial permutation.

/dzzl/dZZQA 21 (Zz)akUK Zl, 22 Ha —>2)

i=1

i /dzzB /d2 A(Z,+7 /Lﬁ dt; \ —n- g% 1 [ kOI’i[ ” kit
2 Z k0+ +k,,,+m € 27tt; 27me \ 2¢ i—1
Zm+1

:7/ d2zzB zz)

00 L m 2oy 2 2\ ko k 2\ kit - =
[ ([T ) SR () () e
0 127t 2mme \2e) £7\2t zl=r  (—z)kotHhntm

To compute [, _ de%, we need to do Taylor expansion of A(Z, + )

[NeES

around z = 0 to get

A(Z2+ 7)) ~ A(Z2) +0,A(Z2)z+ 0,A(Z2)z + - -
However, as shown by [25, Proposition B.2], only terms involving holomorphic
derivatives will survive in the e — 0 limit. Therefore the 0 integral can be re-
placed by

/ 40 A(?z + ?) N 27_[% dzy A(?O
| ‘ r (—Z)k0+"'+km+m Z Zl — ZZ (ZZ — Zl)k0+"'+km+m’
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where the meaning of §, dz; is explained above. In particular, its value does not
depend on r. Therefore the r-integral can be evaluated as

0 R Ak I I A AR
li ’ =1
20 0 rdr (/e I:I 27rtl-> ¢ 27e < ) H ( )

i=1

7’2:26140 1 _ m ¥
ti=euo/u; 27-[)m+1/ d”O/ Hdue i=0 H”
1 m t
(o \m+1 d ( i _”i) )
(27r)m+1 /0<u wot<icm ITO u; H u;'e

i=0

By summation over the permutations of {0, 1, - - - ,m}, this integral leads to

1 ki —u; 1 il;mloki!
(27r)m+1 ( m+1 / HdulH( 1) T @r) T (m+ 1)

It follows by combining the above computations that

. 1 kcr uc kai
lim ) m!/(Cdzzl/(C5122214(71)B(72)3zl(0)he(71r72)1_11821()13&?(7
+1 -

m+1( Hk'

— 2 1)
=Gy | 228( zzfdzlm

ZZ _ Zl)k i+1

2 —
m+1 /d ZzB 22 fdzlA ) Hazlﬂ'Zl—Zz)'

3.4. Generating function and modularity.

3.4.1. Generating function. We describe the generating function when £ = E; =
C/(Z + Zr) is an elliptic curve.

Let I € V[[h*]][[}1]] satisfy the Maurer-Cartan equation in Theorem IL]
be the associated family solving the renormalized quantum master equation

(Q+hAL) L/ =g

Definition 3.12. We define the generating function [ [E;] € O(h[e])[[]] as a
formal function on h[e| where

e ¢ is an odd element of degree 1, representing the generator
monics H*!(E,).

I
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e Under the identification H*(£,9) = h ® H"*(E;) = hle], I[E,] is the
restriction of [[oo] to harmonic elements h @ H**(E.).
e Givenay,- - ,a, € hle|, we denote its m-th Taylor coeffeicient by
d Jd .

<al’. . . /am>g = aial oo Elg[ET](O)

Remark 3.13. Elements of h ® H*(E,) are ofter called zero modes. Our definition
of I[E.] is just the effective theory on zero modes following physics terminology.

The space hle] carries naturally a (—1)-symplectic structure. The nontrivial
pairing is between h and he where

w(a,be) = (a,b), a,beh.

Let A denote the associated BV operator on O(h[e]). It is not hard to see that A
can be identified with A,. The differential § also induces a differential on hle].
Here we only need to keep the constant part of the differential operator in 9,
since % will annihilate the harmonics H**(E).

Proposition 3.14. The triple (O(h[e]), 5, A) is a differential BV algebra. The gener-
ating function [[L.] satisfies the BV master equation

(54 hA) elE/m = 0.

Proof. We observe that the BV kernel K| lies in Sym?(h[e]) when L — oo, which
defines the BV operator A as that on h[e]. The proposition is just the quantum
master equation

(Q + A el = 0
restricted to harmonic subspaces h|e].

0

3.4.2. Modularity. Now we analyze the dependence of [[E;] on the complex
structure 7. We consider the modular group SL(2,Z), which acts on the upper
half plane H by

AT+ B

— = ,
T Ct+D

A B
f SL(2,7), H.
ory € (C D) € SL(2,Z), T¢€

Recall that a function f : H — C is said to have modular weight k under the
modular transformation SL(2,7Z) if

F(y7) = (Ct+ D) f(?), forye (é‘ g) € SL(2,7).
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Definition 3.15. We extend the SL(2,Z) action to C" x H by

s 1_)._ Z1 _ Zn AT+ B
Y, V) = Ct+D" ’'Ctr+D'Ct+D)/’

Y: (er"' /ZHIT) — <7/Zli"

A B
f € € SL(2,7Z).
or y (C D) 2.2)

It is easy to see that this defines a group action, in other words,

Yi(va(z1, - 20, 7)) = (1v2) (21, .20, T), Y1,72 € SL(2,Z).

Definition 3.16. A differential form Q on C" x H is said to have modular weight
k under the above SL(2,Z) action if

y*Q = (Ct + D)kQ.
When n = 0 and Q being a 0-form on H, this reduces to the above modular

function of weight k.

Let h;, be the heat kernel function on E; as before. Pulled back to the universal
cover C of E¢, hy, gives rise to a function hponCxCxH by

~ 1
]’lL(E)l, 72,‘ ?) = ﬁ Z e*|21*22+A‘2/2L, A =ZD7Zr.

AEAL

SL(2,Z) transforms the lattice A by

1 A B
Ay = m/\T, Y € (C D) € SL(2,Z).

It follows that the heat kernel /z; transforms under SL(2,7Z) as

sz()/71,y72;7/’r) =|Ct+ D|2h\cT+D\2L(71’72;?)’ Vy € SL(2,Z).

The regularized BV kernel K| and propagator PL are
KL(71, ?2,‘ ?) = ihL(?l, 72; ?) (d21 ®1-1® d22> Ch
and

L
Pé(?l, 72,‘ ?) = —21/ duazlhu(71, 72,‘ ?)Ch
€

We define similarly K, 15€L as /i; on the universal cover C of E,. The following
lemma is straight-forward.
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Lemma 3.17. We have the following modular transformation properties of the reqular-
ized propagators and effective BV kernel

|Ct+D|*L

*pL __ D
yibe = (Cr+ D)P\CT+D\2e’

v*KL = (Ct+ D)K|cryppr-

In particular, PS°, Koo have weight 1 in the sense of Definition More generally, the
k-th holomorphic derivative 9% P (Z'1, Z2; T ) has modular weight k + 1.

Remark 3.18. Koo(Z1, Z2; T) = H8l18d2

2ImTt

Definition 3.19. A quantization [[L] defined by I = ¥ L8 € § V[[h*]][[A]] in
g>0

Theorem 3.9is called modular invariant if each I, contains exactly ¢ holomorphic
derivatives.

Remark 3.20. This definition may vary according to the conformal weight of the
pairing (—, —) on h*. See Remark [4.5/for a specific example.

Theorem 3.21. Let [[E;] = ¥ I[E;]i8 be the generating function of a modular
8§20

invariant quantization, fg[ET] € O(hle]). Then forany ay,--- ,ax € h, by, - by €
he, the Taylor coefficient of [4[E-]

<(11,"' /ak/bll"' ;bm>g

is modular of weight m + ¢ — 1 as a function on H. Moreover, It has the following
expansion

<[11,"' /ak/bll"' /bm>g:

where f;(T)’s are holomorphic functions in T and N < oo is an integer.

Proof. Let us write

floo)= Y  W(T,I).

I' connected

Let I' be a Feynman graph which contributes to (a1, --- ,ax, b1, - - -, bm>g. By the
type reason (the propagator only contains 0-forms on E), I' contains m vertices
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{vj}i., each of which has an external input given by bj, j = 1,---m

b1

Assume the vertex v; has genus g, i.e., given by the local functional I,. Let E
be the set of propagators in I'. Then

m
m+g=1Y gi+I|E[+1
j=1

The graph integral W(T', I) can be written as

dzz
W(T,I) = lim AH/ “T1 0% PEH(Z he) Zreyy ©)
Looco = 1 eGE

where A is a combinatorial coefficient not depending on 7.
ht:E—{1,---,m}

denote the head and the tale of the edge, where we have chosen an arbitrary ori-
entation on edges. 71, denotes the number of holomorphic derivatives applied
to propagator at the edge e. Since all the external inputs 4;,b;’s are harmon-
ics, all holomorphic derivatives in the vertex I, will go to the propagators. By
the modular invariance of the quantization, Iy; contains exactly g; holomorphic
derivatives, hence
m
Y ne=). 8
¢€E j=1

d%z
Imt

It follows from the modular property of the measure

that W(T, I) is a modular function on H of weight

Y (ne+1)=|E[+ ) gj=m+g—1

ecE j=1

The polynomial dependence on ﬁ follows from [25, Proposition 5.1]. U
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N
Given a function f on H of the form f = ¥ (Ifr;(\?)i , we denote
i=0
lim f:= fo(71).

T—00

It is shown in [20] that f is determined by the leading term fy and modular
property. In particular, the operation Th_)nc}o identifies the space of almost holo-
morphic modular forms with the space of quasi-modular forms [20]. In general,
the T — oo limit of the generating function I[E.] will be reduced to certain char-
acters on vertex algebras. This is argued in [13] by the method of contact terms,
and realized in [26] by a method of cohomological localization via the quantum
master equation. This pheonomenon will be systematically studied in [27].

3.5. Example: Poisson o-model. We illustrate the application of Theorem
by the example of the AKSZ formalism of Poisson o-model as described in [6].

Let V = R" and P be a Poisson bi-vector field on V. Let X be a flat surface
as before. We consider the BV formalism of Poisson sigma model in the formal
neighborhood of constant maps from X to the origin of V. The space of fields is

E=0°(D)® (Ve Vil)).
The differential on £ is the de Rham differential ds on Q*(X). The (—1)-shifted

symplectic pairing is

w(p,n) = /Z(go,n), where p € Q*(Z) @V, € Q°(Z) @ V*[1].

Let us choose linear coordinates x' on V and P = ¥, P'/(x)d,: A 9,;. The above
ij
fields ¢, n in coordinate components are

o={o'Y_,, n={n},, whereo' €Q*(%),n €Q*(L)[1].

The action functional is given by [6]
S= Z/):TlidZ(Pi+Z/ZPij((P)Uinj~
i ij

Let us split the differential dy = Q + 6, where Q = d and § = 9 are the
(0,1)-differential and (1, 0)-differential on Z. Then the above theory falls into
the setting of Section and we can apply Theorem to study its quantiza-

tion via chiral deformations. In terms of notations in Section 3.2} we have

h = V[dz] @ V*[dz][1],
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where V[dz] = V ® C[dz], V*[dz] = V* ® C[dz]. The relevant vertex algebra is
generated by ¢, n;: @' represent components in V[dz] and n; represent compo-
nents in V*[dz][1]. The nontrivial OPEs are given by

@' (2)nj(w) ~ & (h) dz — dw

m) z—w
Here it is understood that we have to match the corresponding components in
dz,dw in the above formula. For example, if we write ¢'(z) = ¢} (z) + ¢’ (z)dz
and 1;(z) = nio(z) + ni1(z)dz, then matching the dw component we find

@y (z)nj(w) ~ 8 (lh> -1 )

m) Z—w

The classical interaction is represented by the vertex operator

]{I, where [ = ZPij((p)nm]'.
i.j
Here it is understood by the type reason that only the dz-component of I con-
tributes to § I when we expand the fields @', n; into forms in z.

The classical master equation is satisfied by two independent equations

5741:0, {fl,fl}zo.

The first term vanishes since it produces a total derivative while the vanishing
of the second term follows from Jacobi identity for P [6].

Proposition 3.22. The classical interaction ¢ I satisfies the quantum master equation

of Theorem [3.11]

Sketch of proof. We only need to prove [¢ I, § I] = 0 since 6 § I = 0. By defini-
tion, [§ I, § I] is computed by Wick contractions and OPE’s (see [19]). A single
contraction gives rise to the classical bracket {§ I, § I}. If we have two or more
contractions between the fields, the form of I implies that each contraction con-
tributes a factor of dz — dw. However, the product of two copies of dz — dw is
vanishing by the type reason. This implies [§ [, § I| = {¢ I, § I} = 0. 0

This proposition says that no quantum correction is needed at all! This re-
markable fact lies in cancellations between bosons and fermions, which is just a
incidence of supersymmetry. This result gives a natural interpretation of Kont-
sevich’s graph formula of star product [21], which is argued in [5] by the require-
ment of BV quantum master equation. We remark that the tadpole diagrams (i.e.
with edges that start and end at the same vertex) that appeared in [5] vanish by
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our renormalization scheme: the regularized BV kernel K. and propagator PEL
on the tadpole are zero before we take the limit € — 0 (see the proof of Theorem
B.11). In particular, our construction here should lead to a rigorous formulation
of [5] by gluing the above linear case to Poisson manifolds.

In general, when the surface X is a compact Riemann surface which is no
longer flat, further obstructions may exist for quantization. One such example
is the topological B-model from a genus g surface L to a complex manifold X.
The perturbative BV quantization in the current sense is analyzed in [22]. It is
found that the tadpole diagram gives rise to the obstruction class (anomaly) by
(2¢ — 2)c1(X), requiring for a Calabi-Yau geometry to be quantizable. It would
be very interesting to extend the results in this paper systematically to arbitrary
surfaces and to the string-theoretical formulation of coupling with 2d gravity.

4. APPLICATION: QUANTUM B-MODEL ON ELLIPTIC CURVES

In this section, we apply our theory to solve the higher genus B-model on
elliptic curves. Part of the results are presented in [26] based mainly on sym-
metry argument. Using the technique we have developed in this paper, we give
stronger results on the exact solution of the full system. Combining with the
A-model results in [32] and the B-model computations in [26], it leads to the
establishment of higher genus mirror symmetry on elliptic curves.

4.1. BCOV theory on elliptic curves. We consider topological B-model on Calabi-
Yau geometry, which concerns with the geometry of complex structures. In [3]],
Bershadsky, Cecotti, Ooguri, and Vafa proposed Kodaira-Spencer gauge theory on
Calabi-Yau 3-folds as the leading approximation of B-twisted closed string field
theory. This is fully generalized in [10] to arbitrary Calabi-Yau manifolds, giving
rise to a complete description of B-twisted closed string field theory in the sense
of Zwiebach [33]. We shall call this BCOV theory. An earlier related work on the
finite dimensional toy model of BCOV theory appeared in [28] in the absence of
the issue of renormalization.

In this section, we describe BCOV theory on elliptic curves [26] and study its
quantum geometry in terms of the tools we have developed.

Let E;r = C/(Z & Z7) as before. z denotes the linear holomorphic coordinate.
The space of fields of BCOV theory on E; is given by [10]

& = Q% (E., Og,)[[t] ® Q" (E-, Te, [1])[[]].
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Here Tg_[1] is the holomorphic tangent bundle sitting at degree —1. t is a formal
variable of cohomology degree 0 that represents “gravitational descendants”.
Note that we have used a different grading from [10]. The differential is given

by
Q=0+6, 6=10,

where 0 : Tz, — Of, is the divergence operator with respect to the holormophic
volume form dz. In terms of the set-up in section [3.2) we have

e h = CJ[t,0]],deg(t) = 0,deg(6) = —1. Here 0 represents the global
vector field d,. Then £ = Q%*(E;) ® h.
d 9
[ ] (S — & ® t@.
e However, £ is (—1)-shifted Poisson instead of symplectic. Let

1
(2 Z2) = Y, 5o R A=tz
AeA <70

be the heat kernel function on E-. The regularized BV kernel is given by
K; = iBZth(71, 72)(6121 ®R1-1® de)Ch

where Cp, := t° ® t° € h ® h. The regularized propagator is
L
pL — —21'/ du 9% hy(Z1, 72)Ch.
€

The situation differs a bit from our set-up in Section There is one more
holomorphic derivative for our BV kernel and the factor Cy, is highly degenerate.
Nevertheless, techniques in section [3|can be applied to the Poisson case without
much change (see also Remark [2.5). In particular,

e K; defines a regularized BV operator Ay such that (O(€),Q, Ar) is a dif-
ferential BV algebra.
e Kj well-defines a BV-bracket on local functionals as in Definition 2.16]

{_1_} : Oloc(g) ® Oloc<g> — Oloc(g)'

Introduce

(=)o :Sym*(C[[) = €, (P& -@i) = <k1,n-i?kn>'

(—), represents intersection numbers of -classes on moduli space of stable ra-
tional curves. We extend it Q%*[6]-linearly to

(=)o :Sym*(&) — Q).
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Definition 4.1 ([10]). We define the classical BCOV interaction 9V € O, (&)
by the local functional

[BCOV () :i/ dz/de )y, €&
E;
Here (e?),, is understood as
@k
@0=% (%) -
>3\ % /o0

The fermionic integral | d0 means taking the coefficient of the term with 6

/ d6(a + 6b) = b.

[BCOV gsatisfies the classical master equation [10]

QIBCOV 4 % {IBCOV/ IBCOV} —0.

Remark 4.2. By Remark Q + {IBOV, —} defines a Lo,-structure on &. It is
shown in [10] that this L -structure is quasi-isomorphic to the standard dg Lie
algebra structure with differential Q and Schouten-Nijenhuis bracket.

Since the Poisson kernel is degenerate and contains one more holomorphic
derivative, the application of Theorem to our situation requires slight mod-
ification. Let us parametrize

P = Z bktk + nketk, @ € h.
k>0

We introduce mutually local fields by (z), 1x(z) with OPE relations

bo(o(w) ~ s,

be(z)Ne(w) ~ 0, Me(z)ne(w) ~ 0.

The OPEs exactly respect the structure of the our Poisson kernel. The associ-

br(2)by(w) ~ 0,k +m > 0.

ated vertex algebra V[[h*]] is the tensor product of a Heisenberg vertex algebra
(generated by the field by(z)) with several copies of commutative vertex algebra
(generated by the fields (b-((z), me(2z))). Equivalently, if we collect the fields
with parameter ¢
b(z,t) =Y, bi(2)t, n(zt) = ) me(2)t,
k>0 k>0
then the OPE’s can be simply written as
ih 1

b(zlz tl)b(ZZI tz) ~ = m,

b(z1,t1)n(z2, t2) ~ 0, n(z1,t1)n(2z2,t2) ~ 0.



36 SILI

The differential 6 is then dually expressed as
ob(z,t) =t n(z,t), on(zt)=0.
In terms of components,
Obji1 =0z, oM =0,

We adapt notations in section The classical BCOV interaction can be ex-
pressed as [5€OV = [y, where Iy € V[[h*]] is defined similarly to Definition 4.1]

b(b,n) = (@) .

It satisfies the following Maurer-Cartan equation modulo #

17
57{dzlg +52 [7{ dzlo,j{dzlo] — o).

Our goal is to find I = Y, héI, € V[[h*]][[#]] as a quantum correction of the
8§20

classical BCOV interaction Iy satisfying the exact Maurer-Cartan equation

17
5%01214—5% [%dzl,%dz]} —0.

We leave it to the reader to check that a slight modification of Theorem [3.1]
implies that the above Maurer-Cartan equation is equivalent to the renormalized
quantum master equation of our BCOV theory.

4.2. Hodge weight and dilaton equation. The first simplification we will make
is to use rescaling symmetries of quantum master equation.

We assigne the following gradings in V[[h*]][[}]] and ¢ V[[h*]][[}]].

by | Fnk | R ||z |fdz| [, ]
cohomology degree (deg) 0 1 0/1{0| O 0
conformal weight (cw) -k+m+1 |-k+m | 0 |1|-1]| -1 0
dilaton dimension (dim) m m [-2|1/0| O -1
Hodge weight (hw=cw-dim) | -k+1 -k | 2]0]0] -1 1

They are all compatible with quantum master equation. The classical BCOV
interaction has

deg(lp) =1, cw(lp) =2, dim(lp)=0.
Definition 4.3. A solution I € V[[h*|][[}1]] of quantum master equation for which

deg(I) =1, cw(I)=2, dim(I)=0,
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will be called an equivariant quantization.

Remark 4.4. For an equivariant quantization,
hw(Iy) = cw(ly) — dim(Iy) = 2 — 2g.

This is exactly the Hodge weight condition for elliptic curves described in [10].
The condition dim(I) = 0 is essentially equivalent to the dilaton equation [26].
Therefore the equivariance condition is naturally viewed as imposing the Hodge
weight condition and the dilation equation.

Remark 4.5. The dilaton dimension condition implies that the genus g correc-
tion I, contains exactly 2¢ holomorphic derivatives. This is the modification
of modular invariant quantization (Definition [3.19). It changes the number of
holomorphic derivatives from g to 2g exactly because there exists an extra holo-
morphic derivative on our propagator. In particular, an analgue of Theorem
holds in this situation. See also [26].

Definition 4.6. Let us denote the homogeneous component

V)5 == {a € V([h*]]|deg(a) = d,cw(a) = w}.

We will focus on equivariant quantizations, which are given by elements
I € V[[h*]]} satisfying the Maurer-Cartan equation. In this case, we can use
the rescaling symmetry to set i = 7/i. The power of i can be recovered from
counting the number of derivatives.

From now on, we will work with the normalized OPE

bo()n () ~

b.(Z)T].(w) ~ 01 U-(Z)ﬂ.(w) ~ 0.

bi(2)by(w) ~ 0,k +m > 0.

4.3. Reduction to Fedosov’s equation. In this section, we use boson-fermion
correspondence to further reduce quantum master equation to a deformation
quantization problem of Fedosov’s equation [14].

Definition 4.7. Let us package the fields {b~, 17s } into new series denoted by
tk

- tk _
b(z) = Z ku(z), fi(z) = Z Enkq(z)
k>1 k>1
These fields do not appear in the propagator, and will be called the background

fields. by does appear in the propagator, and will be called the dynamical field.
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The deformation quantization problem arises from viewing the linear coor-
dinate z and the descendant variable t as a Darboux system of a holomorphic
symplectic structure on C2:

w =dz Adt.

We consider the following differential ring freely generated by two generators
b, j and two derivatives 9., 0;:

B = C[[020}b, 9297 71] .

Here b has even parity of cohomology degree 0, 7§ has odd parity of cohomology
degree 1. Here we have confused ourselves to use the same symbols b, #j for
our generators in B. Later on, we will plug into expressions in terms of the
background fields in Definition[4.7jwhen the meaning is clear from the context.

The symplectic form induces a Poisson structure on B by
{F,G} = 0;F9,G — 9,F9;G, F G e B.
We also introduce a differential 6 as an analogue of that in our BCOV theory
5:B— B, b— 0.7

It is easy to check that ¢ is compatible with the Poisson bracket, hence 15 becomes
a dg Poisson algebra. It has a natural deformation quantization in terms of the
Moyal product

BxB—B, F+«G= Y (_”b(aklakzp) (afak6)
’ k],k2202k1+k2k1!k2! t Yz t Yz .

The following lemma is straight-forward.

Lemma 4.8. The triple (B,x, 8) defines an associative differential graded algebra. In
particular, (B, 6, [—, —|«) isa DGLA, where [—, —| is the commutator with respect to
the Moyal product.
We also introduce the analogue grading of conformal weight by
cw(d"b) =m—k+1, cw(okf) =m—k+1.
Note that 7 has now cw = 1 by the shift in our Definition[4.7} Then
cw(x) =0, cw(é) =1.
We denote the homogeneous component

Bl = {u € Bldeg(u) =d, cw(u)=w}.



VERTEX ALGEBRAS AND QUANTUM MASTER EQUATION 39

Our goal in this section is to construct a morphism of DGLA preserving the
conformal weight

®: (8,5~ 1) (f0lD) o))

and construct a canonical solution of Maurer-Cartan equation in . This leads
to a solution of quantum master equation for our BCOV theory.

4.3.1. boson-fermion correspondence. We will construct @ in terms of boson-fermion
correspondence. Let us first fix our notations here and refer details to [19,30].
We introduce a pair of fermions 1, ' with OPE

1
z—w

P(2)Pl(w) ~

We introduce a free boson with OPE

—n

p(2)b(w) ~log(z —w), d(z) = Y, T~ +aylogz+p.

k0

p is the momemtum creation operator as a conjugate of ¢g. The boson-fermion
correspondence says that a free boson is equivalent to a pair of fermions, under
the following correspondence rule

Y= Yl=1e%:5 and ¢ =: Yy’ L.

Here : — :p,: — :r denote the normal ordering for bosonic fields and fermionic
fields respectively. The following fundamental relation holds

()Yl (w) p= ! (: )=o) —1).

zZ—w

Let us expand by

z)—p(w z—w)* —n= k
PR -bw) 1+,§1(kl)w"‘)<w>' Wi (z) = ;Zz k)

then Wy(lk) generate the so-called Wy algebra. In terms of bosons,

© k! 1, .\"

Yix1 iki=k

Note that W(*) only depends on 9.¢. We can also express it in terms of fermions

W (, pf) =k : (1)l .
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It follows from the fermionic expression that the Fourier modes § dzz" WKk gen-
erates a central extension of the Lie algebra of differential operators on the circle

kz’”a';_1 ~ fdzzmw(k), k>1,meZ.

If we only look at non-negative modes, then we have a Lie algebra isomorphism

W : C|z,0;] = Span {7{ dzsz(k)}

k>1,m>0

K2kl f dzz" Wb,

Our field by of Heisenberg vertex algebra can be identified via free boson by
bO(Z) = azd)(z)

The other fields b, 1. generate holomorphic(commutative) vertex algebra. Un-
der the boson-fermion correspondence,

V[[0*]][[e*7]] = C[[02'w, o' pT, 80, 02 1e]=0-
If we introduce the charge grading,
charge() =1, charge(y') = —1, charge(others) =0,

then V[[h*]e? corresponds the homogenous component of charge k on the fermionic
side. We will be mainly interested in the charge 0 component. The operator 6
does not involve by. The only nontrivial part of § is

5(8Zmbk+1) = az’”“nk, Vk,m > 0.

4.3.2. Reduction to Fedosov’s equation. Now we construct the map @.

Definition 4.9. We define ® : B — ¢(V[[h*]]) by

o)=Y ki1 fdzw““)(bo) fdtt"“le%a%%f(llﬁ), JeB.

k>0

In this expression, we need to substitute the generators b, fj in terms of the back-
ground fields as in Definition[4.7] § dt is the same as taking the residue at t = 0.
wk+1) (bo) is defined in the previous subsection under by = 0, ¢.

It is easy to see that ® preserves the conformal weight. Moreover,

Proposition 4.10. @ is a morphism of DGLA’s

®: (8,6~ ~1) > (fV]),6 -]
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Proof. In terms of notations in the previous subsection, @ can be written as

() =W <k§) (f dtt—k—le%azaf]) a’;) :

To clarify the meaning of this formula, let
p:Clz,t] = Clz,0,], p(z"t") = z"ok.

An equivalent formal description is

o) = X (farise2) 2, fech

k>0

Let x denote the Moyal product on C|z, t]

fxg= 02 (9192, =0z,31,) (f(z1,t1)8(z2,t2))

, f,8€Clzt].
Consider

zi=z,ti=t
e2%%(f x g) = 2 <e;(atlazz_azlat2)(f(21,fl)g(ZLtz)) )
zi=z,ti=t

= 30 9) (1 +31) 3 (O 92 =35, 91 (f(z1,t1)8(22, t2))

Z,‘:Z,ti:t

= %% (e2%1% f (21, b)e2%2% g (22, 1))

zi=z,ti=t '

Comparing with the associative composition o of differential operators, we find

p(eX*% (f x 8)) = p(e2:™ f) o p(e2®:%rg).
In particular,
o[£, gl.) = [p(ef), pled?1g) .
It follows from this algebraic fact and W being a Lie algebra morphism that

O([J1, o)) = [@(h), @(2)], Vi, ]2 € B.
The compatibility of ® with ¢ is easy to verify. O

To construct an equivariant solution of quantum master equation, we only
need to find | € B] satisfying

1
This can be viewed as a version of Fedosov’s abelian connection [14].

Lemma 4.11.
H* (B, §) = C|[a7]].
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Proof. This follows from the observation that the complex (13, §) can be identi-
fied with the de Rham complex of C[[9207b]] valued in the vector space C[[¥7]].

U
Corollary 4.12.
HY(B,s8)1 = Ch, H*(B,s), =0.
Here H¥(1, §), denotes the component of H*(13, &) of conformal weight w.
Proof. H'(B, )1 = Cijis obvious. The only possible term in C[[9¥7]] with deg =
2 and cw = 2 is 2, which vanishes by the odd parity of . U

To solve the above equation, let us introduce an auxiliary grading by
T(0"9%p) =k, T(oMoR) =k,
i.e., T counts the number of d;’s. Let us introduce the operator
5 :B— B, "tk — 9mokh, (m >0), ofn— 0.
Let N = 66" 4 6"6. We define
PN %5*0( if No = ma
0 if No =0
Then 5! can be viewed as a homotopic inverse of &, where 1 — [5,571] is the
projection to C[[9F7]] = H*(B, 5).
Lemma 4.13. There exists a unique JB € B} satisfying
) 8J8+ 5 [J5, JB] =0;
(2) lima0 AT(JP) = 7y
(3) 51 =0.
Proof. Let us decompose J® = ¥ Jk), where T(J)) = k(). The initial condi-
k>0

tion (2) is Jg) = f. We show that other Jx)’s can be uniquely solved satisfying
conditions (1) and (3). Let us denote J .4y = Y J;). Suppose we have solved
0<i<k

J(<k)- The J(x) we are looking for satisfies

Oy = —% [](<k)r](<k)]

(k)
Here the subscript | ) on the right hand side means the component contain-
ing k ds (i.e. T-eigenvalue k). By the standard deformation theory argument,
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-1 { J<iyr J( <k)] ‘(k) is annihilated by 6 and is of conformal weight 2. Then the

existence of [ € B} follows from H?(3, ), = 0. In particular,

solves equation (1) and (3) up to J (1)

Assume Jo +Uis another solution, then U satisfies
deg(U) =1,ew(U) =1, T(U) =k >0, andsU =5 U = 0.

Since H'(B, )1 is spanned by #, while T(#) = 0. It follows that U = 0. O

4.4. Exact solution of quantum BCOYV theory.

Definition 4.14. Let J® be in Lemma[4.13] We denote @ (J¥) = § dzIP.

By Proposition and Lemma ¢ dzI® defines a Maurer-Cartan element
of V[[h*]]. To justify that § dzI® indeed defines a quantization of our BCOV
theory, we are left to check the following two properties:

(1) [Integrality]: only terms with even number of derivatives contributes to
§dzIB.

(2) [Classical limit]: the term in § dzI® containing no derivatives coincide
with our classical BCOV interaction.

Property (1) on integrality comes from our discussion in Section[4.2]on dilaton
dimension. A term with m holomorphic derivatives contributes to i/ 2, while
we only allow integer powers of /1 to appear in our quantization.

Property (2) is just about the classical limit.

We will explicitly check (1) and (2) below.

Remark 4.15. Half integer powers of I appear naturally when open strings are
included. In [11], we have also developed an open-closed BCOV theory. The
terms in J® with odd number of holomorphic derivatives will be total deriva-
tives. They vanish upon integration, but may couple nontrivially with open
string sectors. It would be extremely interesting to see how open string would
play into a role here.
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4.4.1. Integrality. Let us consider the following transformation
R:B— B, 9"b— (—a,)k"b, oa!"n — (—a,)ka"n,

i.e., R is the reflection 0, — —d.. It is easy to check that R(] B) also satisfies
(1)(2)(3) in Lemma It follows from the uniqueness that

R(J%) =J*.
Let us identify by = 0.¢ as in Section[4.3.1] Then

1B) = y kj- : }z{de(kH)(bo) j[dtt—k—le%azat]B

k>0

_%d k+1 bo fdtak 13 at]B
k>0 k+1

¢z+8t) d)(Z) . _
_%d dt e at ‘B 1e%azat]B

. o(z+ion)—d(z—10) .
:fdzftte%azat(e : 5 T B 1]B>
t

_ fdz dt eb(z+3 300 —¢(z—39r) g —1
o

JP.

Here we have formally identified ¢(z + d;) = Z akd)%’ﬁ( in the above manipula-

tion and used the fact that the operator ¢3%%: amounts to shifting z — z + 29;. In
the last line, we have thrown away terms which are total derivatives in z. Now
o(z+ %Bt) —¢p(z— %at) contains only even number of d.’s in terms of the field
by = 9.¢. From R(J®) = JB, we know that J® also contains only even number of
d;’s. Therefore § dzI® = @ (JP) satisfies Property (1) on integrality.

4.4.2. classical limit. We check that the classical limit § dzIP of § dzI® coincides
with our classical BCOV interaction. By dilaton dimension, the classical limit is
related to the component [ of J? which does not involve any 0, and satisfies

1
55 + E{]g,](z)a} =0,

where {—, —} is the Poisson bracket { A, B} = (9;Ad.B — 9,A9;B) . Smilarly, J?
is uniquely determined by further imposing conditions (2)(3) in Lemma[4.13]

Lemma 4.16.

+ ¥ % (o).

k>1
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N k-1 -
Proof. Let [ = A1+ ¥ afT (6*9;7). Let us first rewrite the above formula as

k>1
i = L i Lo = f Den Lo
_7{ iz t+A)  9fi(z,t+A)
—b(z,t+A)  1—0:b(z,t+A) A:E(ZM)'
Here the substitution A = b(z,t + A) means solving A = kgo 2—],{8"13 for A as
a power series in 0b, then plugging A into 9;j(z,t + A) :_kg A 40517 and
0ib(z,t +A) = kg'o 2—};8’;“5 This implies via a simple chain rule computation

Js = 1(z,t + A) Ap(zin) -

Similar computations lead to
9i(t + A)dfi(t + A)
1=0b(t+A)  [hopeaa)
R 3 Lb(t+A) )
008 = (0:7(t+A) + ———afi(t + A
I = (e 0+ L2 ()

It follows that

5fg =

A=b(t+2)

0:b(t+ A)
(1= 3:b(t+ 1))

A 1 » A SR~ o
of8 +5 {8, I8 } = I8 + /5. 18 = (3rm(t+ 7))

A=D(t+A)

where we have used the odd parity of j. Also, ]Ag = 0 satisfies condition (2)(3)
in Lemma It follows from the uniqueness that fg = ]g. 0

Corollary 4.17. § dzI§ coincides with the classical BCOV interaction. In particular,
¢ dzIP is a quantization of the classical BCOV theory satisfying the Hodge weight con-
dition and dilaton equation.

Proof. The above lemma allows us to compute § dzIf explicitly

7{ dz1B = ]é dzb 7{ dt B
k>0

— 1)1 Bkby, b
_]{dz k ;)'ll o . K Tl %dttfka:nfl (tk1+---+km+l)
kl>0k>0 ’
= paz ) kyl- 'l k!
k,1>0,k;>0 1 m

k1+"‘+km+l:k+m—2
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= fdz <eb ®n>0.

O

4.5. Higher genus mirror symmetry. We briefly explain the work [26] and dis-
cuss how our exact solution of quantum BCOV theory on elliptic curves is re-
lated to the Gromov-Witten theory on mirror elliptic curves. We refer to [26] for
further details.

First of all, it is proved in [10}24] that up to gauge equivalence, there exists
at most one solution of quantum master equation of BCOV theory on elliptic
curves that satisfies the Hodge weight condition and the dilaton equation. Such
solution will also satisfy a set of Virasoro equations [26] that is mirror to that in
[32]]. Tt follows that the solution § dzI® we explicitly find here is the canonical
quantization of BCOV theory satisfying Virasoro equations.

The Virasoro equations on elliptic curves reduce the computation of Gromov-
Witten invariants to the so-called stationary sector [32]. There is a mirror story of
this described in [26]]. If we think about the Maurer-Cartan equation

5%5[213 —I—% [%dzIB,%dle} =0

as an evolution equation on the vertex algebra, then the stationary sector of our
BCOV theory can be viewed as the initial condition. More precisely, the station-
ary sector of our fields is defined in the B-model by

b-og =0, nr = constant.

This represents the local 6-cohomology. From our construction, the restriction of
¢ dzI® to our stationary sector, denoted by § dzI°, is given by

]{dzls =0(f) = k;)j{dz

The quantum master equation in the stationary sector becomes

[7{ dzls,?{dzls] = 0.

Expanding the coefficients 1;’s, this is equivalent to

(k+2) (m+2)
[ ]{ de , f dzw

W k+2)
kt2 Tk

=0, km>0,

k+2 m—+ 2

which represents infinite number of commuting Hamiltonians.
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Finally, since our quantization is modular invariant (see Remark[4.5), the gen-
erating functions in the stationary sector will be given by almost holomorphic
modular forms, whose T — oo limit can be computed by the character [26]]

wk+2)

1
1o L Azt .
TI"H qLo 2de k>0 , q — 62711’(’

where H is the Heisenberg vertex algebra generated by by. This coincides with
the A-model computation [32] under the boson-fermion correspondence. This
can be viewed as a full generalization of [12] on the mirror interpretation of the
cubic interaction W),
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