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ABSTRACT

In this article, we consider the convex min-max problem with
in�nite constraints. We propose an exchange method to solve
the problem by using e�cient inactive constraint dropping rules.
There is no need to solve the maximization problem over the
metric space, as the algorithm has merely to �nd some points
in the metric space such that a certain criterion is satis�ed at
each iteration. Under some mild assumptions, the proposed
algorithm is shown to terminate in a �nite number of iterations
and to provide an approximate solution to the original problem.
Preliminary numerical results with the algorithm are promising.
To our knowledge, this article is the �rst one conceived to apply
explicit exchange methods for solving nonlinear semi-in�nite
convex min-max problems.
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1. Introduction

In this article, we consider the following nonlinear min-max problem with

in	nite constraints:

(P) min
x∈Rn

f (x) := max{f1(x), f2(x), . . . , f�(x)}

s.t. g(x,ω) ≤ 0,∀ω ∈ �,

which is called the semi-in	nite min-max problem. Throughout this study, the

following assumptions about the data in (P) are made.

Assumption 1.1.

(a) � is a compact and nonempty subset of Rm;

(b) fi : R
n → R, i = 1, . . . , � are convex and continuously di�erentiable on R

n

and are not equal to each other;

(c) g : Rn × � → R is continuous on R
n × �, g(·,ω) is convex for all ω ∈ �,

and ∇xg(x,ω) exists and is continuous on R
n × �;

(d) There is a Slater point x̂ ∈ R
n such that g(x̂,ω) < 0 for all ω ∈ �.
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We call problems in the form of (P) with Assumption 1.1 min-max convex

semi-in	nite programming problems. In the particular case that � = 1, (P)

is an ordinary convex semi-in	nite programming (CSIP) problem. Notice that

although the function f is piecewise smooth and locally Lipschitz continuous,

it is not di�erentiable. Hence, it is important to 	nd an approach to solving

the min-max CSIP problem (P). See [9] for more information on min-max

optimization problems.

Min-max semi-in	nite programming problems arise in various engineering

applications. For example, in civil engineering, electronic circuit design, and

optimal control in robot path planning (see, e.g., [2–4, 6, 7, 10, 12]). A lot of

literature deals with solution methods for solving these types of problems. For

example, Polak et al. [11, 12] proposed algorithms with smoothing techniques

for solving 	nite and semi-in	nite min-max problems. Auslender et al. [1]

proposed penalty and smoothing methods for solving min-max CSIP in the

form of (P) where the number of fi(x) is in	nite. Obviously, an ordinary CSIP

problem is the special case of (P). Many solution methods were presented for

solving semi-in	nite programming problems (SIPs) [7, 13]. The main idea used

in solution methods is to replace (P) by a sequence of 	nite programming

problems, i.e., problems with only a 	nite number of constraints. According

to the way that 	nite problems are generated, there are three important types

of numerical methods for solving SIPs including discretization methods, local

reduction based methods, and exchange methods (see [13]). Discretization

methods (see, e.g., [15, 16]) have the advantage of internally working with

	nite subsets of � only. However, they are computationally costly, and the cost

per iteration increases dramatically as the cardinality of the auxiliary problem

grows. Globally convergent reduction based methods (see, e.g., [5, 17]), on the

other hand, require strong assumptions and are o�en conceptualmethodswhich

can merely be implemented in a rather simpli	ed form. The exchange method

(see, e.g., [8, 18]) is one of the important methods beyond discretization and

reduction based methods. For linear SIP, Lai and Wu [8] proposed an explicit

algorithm in which they solved a linear programming with a 	nite feasible set

�k. They drop out redundant points in�k at each iteration and only keep active

points. Hence, the algorithm is very e�cient in saving computational time.

Similar to the exchange method, an iterative method was recently proposed in

[14] for solving the KKT system of SIP in which some redundant points were

dropped at certain iterations. Recently, Zhang, Wu and López [19] proposed a

new exchange method for solving convex SIP based on the algorithm in [8]. It is

shown that the algorithmprovides an approximate solution a�er a 	nite number

of iterations under weaker conditions.

In this article, motivated by the ideas in [8, 14, 19], we design an exchange

method for solving the min-max CSIP (P). However, our analysis techniques

are quite di�erent from the ones used in [8, 14], because the objective function

is of the min-max form, the in	nite constraints functions are nonlinear, and
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the nonnegative constraint does not exist on which the analysis techniques in

[8] mainly depended. We note that our algorithm introduces a relaxed scheme

which does not require solving the global maximization problem with respect

to ω ∈ � at each iteration. Our algorithm has merely to 	nd some ω ∈ �

such that a certain criterion with small scalar ρ > 0 is satis	ed. We prove that

the algorithm terminates in a 	nite number of iterations and the output is an

approximate optimal solution of (P). Namely, we show that the obtained solution

converges to the solution of (P) as ρ tends to zero.

This article is organized as follows.We present the algorithm in Section 2 and

give a convergence analysis in Section 3. In Section 4, we give some numerical

results. We conclude the article with some remarks in Section 5.

2. Algorithm description

In this section, motivated by ideas in [8, 14], we propose an exchange algorithm

to solve the min-max CSIP problem (P).

Although (P) is also regarded as an ordinary CSIP problem satisfying the

Slater constraint quali	cation, it is not easy to solve by directly using algo-

rithms for CSIP because f (x) is not continuously di�erentiable. Introducing an

arti	cial variable xn+1 ∈ R, we equivalently reformulate (P) as the following

n + 1-dimensional minimization problem:

P[�] min xn+1

s.t. fi(x) ≤ xn+1, i = 1, 2, . . . , �,

g(x,ω) ≤ 0, ∀ω ∈ �.

Obviously, problem P[�] is an ordinarily smoothing CSIP problem. This fact

allows us to develop iterative methods based on problem P[�] to solve the

original problem (P) without facing the non-di�erentiability of f (x).

We now present an e�cient exchange algorithm based on the auxiliary

problem P[�]. The exchange algorithm solves a 	nitely constrained convex

programming at each iteration. Associated with each 	nite subset B ⊂ �, we

de	ne the 	nitely constrained convex program by

P[B] : min xn+1

s.t. fi(x) ≤ xn+1, i = 1, 2, . . . , �,

g(x,ω) ≤ 0, ∀ω ∈ B.

We can easily establish the KKT conditions for P[B], which is written as

�
∑

i=1

λi = 1,

�
∑

i=1

λi∇fi(x) +
∑

ω∈B
ν(ω)∇xg(x,ω) = 0, (1)
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λi(fi(x) − xn+1) = 0, λi ≥ 0, fi(x) ≤ xn+1, i = 1, . . . , �,

ν(ω)g(x,ω) = 0, ν(ω) ≥ 0, g(x,ω) ≤ 0, ∀ω ∈ B.

Here, ν(ω), ω ∈ B, and λi, i = 1, . . . , � can be regarded as the Lagrange

multipliers of problem P[B].

Let x̂ ∈ R
n be the Slater point in Assumption 1.1(d). Choose a scalar x̂n+1

such that x̂n+1 > max{f1(x̂), . . . , f�(x̂)}. Then we have fi(x̂) < x̂n+1, i =
1, . . . , �. Hence, under Assumption 1.1(d) there is a Slater point for problem

P[�]. Consequently, conditions (1) turn out to be necessary and su�cient

optimality conditions for problem P[B].

Theorem 2.1. Let (x∗, x∗
n+1) ∈ R

n+1 be a feasible solution for problem P[B] and
Assumption 1.1 be satis�ed. Then, (x∗, x∗

n+1) is optimal if and only if there exist

Lagrange multipliers {ν∗(ω)|ω ∈ B} and {λ∗| i = 1, . . . , �} such that conditions

(1) are satis�ed.

The details of the algorithm are described as follows.

Algorithm 2.1 (An e�cient exchange method).

Step 0. Choose 	nite points �0 = {ω0
1, . . . ,ω

0
m0

} and a su�ciently small

number ρ > 0. Solve problem P[�0] to obtain its optimum (x0, x0n+1).

Set k := 0.

Step 1. Find a ω
k
new ∈ � such that

g(xk,ωk
new) > ρ. (2)

If such a ω
k
new does not exist, then stop. Otherwise, let

�̄k+1 := �k ∪ {ωk
new}.

Step 2. Solve problem P[�̄k+1] to obtain its optimum (xk+1, xk+1
n+1) and the cor-

responding Lagrange multipliers {νk+1(ω)|ω ∈ �̄k+1} and {λk+1
i | i =

1, . . . , �}.
Step 3. Let

�k+1 := {ω ∈ �̄k+1|νk+1(ω) > 0}.
Set k := k + 1 and go to Step 1.

There are some remarks for Algorithm 2.1:

(a) Steps 1–3 are the main di�erences from the algorithms of [8, 14].

(b) In Step 1, it is also possible to choose multiple elements satisfying (2).

Although we merely deal with the single-point exchange scheme in the fol-

lowing analysis, the obtained results are also applicable tomultiple exchange

type algorithms.
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(c) In Step 2, the optimal solution (xk+1, xk+1
n+1) of problem P[�̄k+1] also solves

problem P[�k+1].
(d) In Step 3, all inactive constraints at the optimum (xk+1, xk+1

n+1) are removed

since the KKT conditions of problem P[�̄k+1] implies that νk+1(ω) = 0 for

any ω ∈ �̄k+1 with g(xk+1,ω) < 0.

We now de	ne some notations for convenience in analyzing the convergence

properties of Algorithm 2.1. Let v∗ denote the optimal value of problem P[�],
and let {(xk, xkn+1)}, {νk(ω)| ω ∈ �k}, and {λki | i = 1, . . . , �} be the sequences
of optimal solution and corresponding Lagrangian multipliers generated by

Algorithm 2.1. For k = 1, 2, . . ., we de	ne

dk := xk+1 − xk, θki := xkn+1 − fi(x
k), i = 1, . . . , �. (3)

Then, byAssumption 1.1(d) andKKTconditions (1) for problemP[�k], we have
�

∑

i=1

λki = 1,

�
∑

i=1

λki ∇fi(x
k) +

∑

ω∈�k

νk(ω)∇xg(x
k,ω) = 0, (4)

λki θ
k
i = 0, λki ≥ 0, θki ≥ 0, i = 1, . . . , �,

νk(ω)g(xk,ω) = 0, νk(ω) ≥ 0, g(xk,ω) ≤ 0, ∀ω ∈ �k.

We also de	ne

Dk
i := fi(x

k+1) − fi(x
k) − ∇fi(x

k)Tdk, i = 1, . . . , �,

Gk
i := fi(x

k) − fi(x
k+1) + ∇fi(x

k+1)Tdk, i = 1, . . . , �,
(5)

Sk(ω) := g(xk+1,ω) − g(xk,ω) − ∇xg(x
k,ω)Tdk,

Hk(ω) := g(xk,ω) − g(xk+1,ω) + ∇xg(x
k+1,ω)Tdk.

Then, by using the Taylor expansion and the convexity of fi and g(·,ω) for ω ∈
�, we obtain

0 ≤ Dk
i = o(‖dk‖), 0 ≤ Gk

i = o(‖dk‖), i = 1, . . . , �,
(6)

0 ≤ Sk(ω) = o(‖dk‖), 0 ≤ Hk(ω) = o(‖dk‖).
Let v(�k) denote the optimal value of problem P[�k]. From Step 1 of

Algorithm 2.1, it is easy to see that

�̄k+1 ⊇ �k,

which implies that the feasible region of problem P[�̄k+1] is contained in that

of problem P[�k]. Hence, from (c) we have

v(�k+1) = v(�̄k+1) ≥ v(�k).

Consequently, we immediately obtain the following theorem.
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Theorem 2.2. The sequence of optimal values {v(�k)} of {P[�k]} is nondecreas-
ing, i.e.,

v(�k+1) ≥ v(�k) for k = 1, 2, . . . .

The following theorem is very important for analyzing the convergence

properties of Algorithm 2.1, because it evaluates the increment of the optimal

value v(�k) of problem P[�k] at each iteration.

Theorem 2.3. For k = 1, 2, . . ., we have

v(�k+1) − v(�k) =
�

∑

i=1

λki

(

θk+1
i + Dk

i

)

+
∑

ω∈�k

νk(ω)

(

Sk(ω) − g(xk+1,ω)

)

= g(xk,ωk
new)νk+1(ωk

new) −
∑

ω∈�k+1

νk+1(ω)Hk(ω)

−
�

∑

i=1

λk+1
i (Gk

i + θki ). (7)

Proof. First, we prove that the 	rst equality in (7) is satis	ed. From (4) we have

v(�k+1) − v(�k) =
�

∑

i=1

λki x
k+1
n+1 −

�
∑

i=1

λki fi(x
k)

=
�

∑

i=1

λki θ
k+1
i +

�
∑

i=1

λki (D
k
i + ∇fi(x

k)Tdk)

=
�

∑

i=1

λki (θ
k+1
i + Dk

i ) −
∑

ω∈�k

νk(ω)∇xg(x
k,ω)Tdk

=
�

∑

i=1

λki (θ
k+1
i + Dk

i ) +
∑

ω∈�k

νk(ω)

(

Sk(ω) − g(xk+1,ω)

)

,

(8)

where the 	rst and the third equalities follow from (4), the second one follows

from (3) and (5), and the last one holds due to (5) and g(xk,ω) = 0 for ω ∈ �k.

Hence, the 	rst equality in (7) holds.

Next, we show the validity of the second equality in (7). By g(xk,ω) = 0 for

ω ∈ �k and �̄k+1 = �k ∪ {ωk
new}, we have

∑

ω∈�̄k+1

νk+1(ω)g(xk,ω) =
∑

ω∈�k

νk+1(ω)g(xk,ω) + νk+1(ωk
new)g(xk,ωk

new)

= νk+1(ωk
new)g(xk,ωk

new). (9)
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On the other hand, it follows from �k+1 = {ω ∈ �̄k+1|νk+1(ω) > 0} that
∑

ω∈�̄k+1

νk+1(ω)g(xk,ω)

=
∑

ω∈�k+1

νk+1(ω)(g(xk+1,ω) + Hk(ω) − ∇xg(x
k+1,ω)Tdk)

=
∑

ω∈�k+1

νk+1(ω)Hk(ω) +
�

∑

i=1

λk+1
i ∇fi(x

k+1)Tdk

=
∑

ω∈�k+1

νk+1(ω)Hk(ω) +
�

∑

i=1

λk+1
i (Gk

i + fi(x
k+1) − fi(x

k))

= xk+1
n+1 − xkn+1 +

∑

ω∈�k+1

νk+1(ω)Hk(ω) +
�

∑

i=1

λk+1
i (Gk

i + θki ), (10)

where the 	rst and the third equalities follow from (5), the second one holds due

to (4) and g(xk+1,ω) = 0 for ω ∈ �k+1, and the last one is satis	ed since

�
∑

i=1

λk+1
i (fi(x

k+1) − fi(x
k)) =

�
∑

i=1

λk+1
i xk+1

n+1 +
�

∑

i=1

λk+1
i (θki − xkn+1)

= xk+1
n+1 − xkn+1 +

�
∑

i=1

λk+1
i θki

= v(�k+1) − v(�k) +
�

∑

i=1

λk+1
i θki ,

where the second equality follows from
∑�

i=1 λk+1
i = 1. Thus, equalities (9) and

(10) imply that the second equality in (7) holds.

3. Finite termination convergence analysis

In this section, we show that Algorithm 2.1 terminates in a 	nite number of

iterations under somemild conditions. Furthermore, we prove that the output at

the 	nal iteration is su�ciently close to the optimal solution of (P) if the criterion

value ρ is su�ciently close to zero.

Lemma 3.1. For any given k ∈ {1, 2, . . .}, we have
v(�k+1) > v(�k), ω

k
new ∈ �k+1,

hold if (xk, xkn+1) is the unique optimal solution to problem P[�k].
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Proof. For any given k ≥ 1, it follows from Theorem 2.2 that

v(�k+1) ≥ v(�k).

Suppose, reasoning by contradiction, that there exists k0 such that

v(�k0+1) = v(�k0). (11)

Let Fk0 and F̄k0+1 be the feasible regions of P[�k0] and P[�̄k0+1], respectively.
Then, from Step 1 of Algorithm 2.1, we have

F
k0 ⊇ F̄

k0+1,

which together with (11) implies that (xk0+1, x
k0+1
n+1 ) is also an optimal solution

to problem P[�k0]. Since (xk0 , x
k0
n+1) is the unique optimal solution to problem

P[�k0], it follows that xk0+1 = xk0 . Therefore, by (2) and Step 2 of Algorithm

2.1, we obtain the following contradiction:

0 ≥ g(xk0+1,ωk0
new) = g(xk0 ,ωk0

new) > ρ > 0.

Thus, v(�k+1) > v(�k).

To prove the fact that ω
k
new ∈ �k+1, it su�ces to show νk+1(ωk

new) > 0.

It follows from (4) that νk+1(ωk
new) ≥ 0. Suppose, reasoning by contradiction,

that there exists an integer k1 ≥ 0 such that νk1+1(ω
k1
new) = 0. Then, the second

equality in (7) and v(�k1+1) > v(�k1) imply that

−
∑

ω∈�k1+1

νk1+1(ω)Hk1(ω) −
�

∑

i=1

λ
k1+1
i (Gk1

i + θ
k1
i ) > 0. (12)

On the other hand, combining (4) and (6), we have

νk1+1(ω) > 0, Hk1(ω) ≥ 0, ∀ω ∈ �k1+1,

λ
k1+1
i ≥ 0, Gk1

i ≥ 0, θ
k1
i ≥ 0, i = 1, . . . , �,

which contradicts (12). This completes the proof.

There are su�cient conditions for the assumption in Lemma 3.1.

Lemma3.2. If either fi, i = 1, . . . , � are strictly convex, or g(·,ω),ω ∈ � is strictly

convex, then the sequence {P[�k]} of �nite minimization subproblems generated

by Algorithm 2.1 has the unique optimal solution {(xk, xkn+1)}.

Proof. For any given k ≥ 1, let (xk, xkn+1) and (x̂k, x̂kn+1) be optimal solutions to

problem P[�k]. Then,

x̂kn+1 = xkn+1. (13)

De	ne yk := x̂k − xk,

Qk
i := fi(x̂

k
) − fi(x

k) − ∇fi(x
k)Tyk, i = 1, . . . , �,
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and

Wk(ω) := g(x̂k,ω) − g(xk,ω) − ∇xg(x
k,ω)Tyk, ω ∈ �k.

Then,

Qk
i ≥ 0, i = 1, . . . , �, Wk

i (ω) ≥ 0, ∀ω ∈ �k. (14)

Using a similar argument as (8), we obtain

x̂kn+1 − xkn+1 =
�

∑

i=1

λki

(

θ̂ki + Qk
i

)

+
∑

ω∈�k

νk(ω)

(

Wk(ω) − g(x̂k,ω)

)

. (15)

Since λki ≥ 0, θ̂ki := x̂kn+1 − fi(x̂
k
) ≥ 0, i = 1, . . . , �, and g(x̂k,ω) ≤ 0 for all

ω ∈ �k, it follows from (13), (14), and (15) that
�

∑

i=1

λki Q
k
i = 0,

∑

ω∈�k

νk(ω)Wk(ω) = 0,

which together with

�
∑

i=1

λki = 1, λki ≥ 0, i = 1, . . . , �, νk(ω) > 0, ∀ω ∈ �k,

implies that there exists i0 such that

Qk
i0

= 0, Wk(ω) = 0, ∀ω ∈ �k. (16)

Since either fi0 or g(·,ω) is strictly convex, it follows from (16) that yk = 0,

i.e., xk = x̂k. Namely, (xk, xkn+1) is the unique optimal solution to problem

P[�k].

Theorem 3.1. Suppose that either fi, i = 1, . . . , � are strictly convex, or g(·,ω)

is strictly convex and there exist k0 > 0 and δ > 0 such that νk(ω) ≥ δ for all

ω ∈ �k and for k ≥ k0. If {xk} is bounded, then Algorithm 2.1 terminates in a

�nite number of iterations.

Proof. Suppose, reasoning by contradiction, that Algorithm 2.1 does not 	nitely

stop. Then, by Theorem 2.2, we have

v∗ ≥ xk+1
n+1 ≥ xkn+1, k = 1, 2, . . . ,

which implies that

lim
k→∞

(xk+1
n+1 − xkn+1) = 0. (17)

Since {xk} is bounded, {ωk
new} ⊂ � and � is compact, and

λki ≥ 0, i = 1, . . . , �,

�
∑

i=1

λki = 1,
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we can assume, without loss of generality, that there exist x̄ ∈ R
n, ω̄ ∈ �, d̄ ∈

R
n, and 0 ≤ λ̄i ≤ 1, i = 1, . . . , � such that

lim
k→∞

λki = λ̄i,

�
∑

i=1

λ̄i = 1, (18)

lim
k→∞

(xk,ωk
new) = (x̄, ω̄), lim

k→∞
dk = d̄.

Hence, it follows from (2) that

lim
k→∞

g(xk,ωk
new) = g(x̄, ω̄) ≥ ρ > 0. (19)

By (18), the 	rst equality in (7), and (17), there exist i0 with λ̄i0 > 0 such that

fi0(x̄ + d̄) − fi0(x̄) − ∇fi0(x̄)
T d̄ = 0. (20)

On the other hand, if there exists k0 > 0 and δ > 0 such that νk(ω) ≥ δ for all

ω ∈ �k and for k ≥ k0, then it follows from (7) and (17) that there exists a point

ω̂ ∈ � such that

g(x̄ + d̄, ω̂) − g(x̄, ω̂) − ∇xg(x̄, ω̂)T d̄ = 0. (21)

Therefore, either from strict convexity of fi0 and (20) or from strict convexity of

g(·, ω̂) and (21), we can obtain

lim
k→∞

dk = d̄ = 0.

Thus for any su�ciently small ε > 0, there exists a large positive integerN ≥ k0
such that

‖xN+1 − xN‖ = ‖dN‖ < ε2. (22)

Lemma 3.1 and Lemma 3.2 imply that ωN
new ∈ �N+1. This, together with (4),

yields g(xN+1,ωN
new) = 0. Since {xk} is bounded and∇xg(x,ω) is continuous on

R
n × �, there exists a constant c0 > 0 such that

‖∇xg(x
N ,ωN

new)‖ ≤ c0.

Hence, we obtain

g(xN ,ωN
new) = g(xN ,ωN

new) − g(xN+1,ωN
new)

≤ ∇xg(x
N ,ωN

new)T(xN − xN+1)

≤ ‖∇xg(x
N ,ωN

new)‖‖xN+1 − xN‖
≤ c0ε

2 → 0, as ε → 0,

where the 	rst inequality holds due to convexity of g(·,ωN
new), and the last one

follows from (22). This contradicts (19). Thus Algorithm 2.1 terminates in a

	nite number of iterations.
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For any given k ≥ 1, de	ne index sets

I := {1, 2, . . . , �}, Ik+ := {i ∈ I | λki > 0}.

Let us also de	ne a matrix Ak of |Ik+| × n:

Ak := (· · · ∇fi(x
k)T · · · )T

i∈Ik+
.

We introduce the following assumption for discussing the convergence of

Algorithm 2.1.

Assumption 3.1. There exists an integer k0 large enough, scalars σ1 > 0 and

σ2 > 0 such that σ1 ≥ σ2 and the following statements hold for all k ≥ k0.

(a) {xk} is bounded, and σ2 ≤ νk(ω) ≤ σ1 for ω ∈ �k.

(b) λki ≥ σ2 for i ∈ Ik+.
(c) µmin((A

k)TAk) ≥ σ2, where µmin denotes the minimum eigenvalue.

(d) ω
k
new ∈ �k+1.

Note that, Assumption 3.1(a)–(c) are regularity conditions. Assumption

3.1(d) is also mild because the conditions in Lemma 3.1 and Lemma 3.2 all

ensure (d) is satis	ed.

Theorem 3.2. Algorithm 2.1 �nitely terminates if Assumption 3.1 holds.

Proof. Suppose, reasoning by contradiction, that Algorithm 2.1 does not 	nitely

terminate. Then, by Theorem 2.2 we have

v(�k) ≤ v(�k+1) ≤ v∗, k = 1, 2, . . . ,

which implies that

lim
k→∞

(v(�k+1) − v(�k)) = 0.

Since {xk} is bounded and {ωk
new} ⊂ � and � is compact, there exists a

convergent subsequence. For the sake of convenience, we can assume, without

loss of generality, that there exist x∗ ∈ R
n and ω

∗ ∈ � such that

lim
k→∞

(xk,ωk
new) = (x∗,ω∗),

which together with (2) yields

lim
k→∞

g(xk,ωk
new) = g(x∗,ω∗) ≥ ρ > 0. (23)

For any su�ciently small ε ∈ (0,min{σ2, σ 2
2 }), we can 	nd a su�ciently large

integer N > k0 such that

0 ≤ xN+1
n+1 − xNn+1 < ε2, |g(xN ,ωN

new) − g(x∗,ω∗)| < ε2. (24)
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FromTheorem 2.3, the 	rst formulation in (24) andAssumption 3.1(d), we have

0 <

�
∑

i=1

λNi (θN+1
i + DN

i ) +
∑

ω∈�N

νN(ω)(SN(ω) − g(xN+1,ω)) < ε2, (25)

and

g(xN ,ωN
new) ≤

ε2 +
∑

ω∈�N+1

νN+1(ω)HN(ω) +
�

∑

i=1

λN+1
i (GN

i + θNi )

νN+1(ωN
new)

. (26)

Inequality (25) implies that

0 ≤ λNi θN+1
i < ε2, for i ∈ IN+ ,

which together with Assumption 3.1(b) yields

θN+1
i < ε2/σ2, for i ∈ IN+ . (27)

Since fi(x
N) = xNn+1 ≤ xN+1

n+1 for i ∈ IN+ , it follows from (27) that

AN(xN+1 − xN) + o(‖xN+1 − xN‖) = O(ε2/σ2).

Hence, by Assumption 3.1(c) we have

O(ε4/σ 2
2 ) = (xN+1 − xN)T(AN)TAN(xN+1 − xN)

≥ µmin‖xN+1 − xN‖2 ≥ σ2‖xN+1 − xN‖2. (28)

Since 0 < ε < σ 2
2 , it follows from (28) that

‖xN+1 − xN‖ = o(ε).

Hence, we have

GN
i = o(‖dN‖) = o(ε), HN(ω) = o(‖dN‖) = o(ε), ∀ω ∈ �N+1,

and

�
∑

i=1

λN+1
i θNi =

�
∑

i=1

λN+1
i [(xNn+1 − xN+1

n+1 ) + (fi(x
N+1) − fi(x

N))]

= O(ε2) +
�

∑

i=1

λN+1
i ∇fi(x

N)T(xN+1 − xN) + o(ε)

= o(ε),

where the second equality follows from (24) and Taylor expansion, and the last

one holds since {xk} is bounded and ∇fi(x) is continuous on R
n. There exists a

constantM > 0 such that

‖∇fi(x
N)‖ ≤ M, ∀i ∈ I,
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which together with
∑�

i=1 λN+1
i = 1 yields

�
∑

i=1

λN+1
i ∇fi(x

N)T(xN+1 − xN) ≤ M‖xN+1 − xN‖.

Consequently, by the second formulation in (24), (26), and Assumption 3.1(a),

we have

|g(x∗,ω∗)| ≤ |g(xN ,ωN
new)| + ε2 < ε2 + o(ε) + ε2

σ2
. (29)

Since σ1 > σ2 > ε, (29) yields

|g(x∗,ω∗)| → 0 as ε → 0,

which contradicts (23). Hence, Algorithm 2.1 terminates in a 	nite number of

iterations.

Until now, we have shown the 	nite termination property of Algorithm 2.1.

Nevertheless, the previous theorems would be meaningless if the obtained solu-

tion were far from the optimum of (P). Hence, we give the following theorem,

which indicates that Algorithm 2.1 can yield an approximate optimal solution

of (P) in a 	nite number of iterations.

Theorem 3.3. Suppose that Algorithm 2.1 terminates in a �nite number of

iterations, and let k∗(ρ) be the number of iterations in which Algorithm 2.1

terminates. If there exists ρ0 > 0 such that the set

Fρ := {(x, xn+1) ∈ R
n+1| fi(x) ≤ xn+1, i = 1, . . . , �, g(x,ω) ≤ ρ, ∀ω ∈ �}

is bounded when ρ = ρ0, then the optimal value of problem P[�k∗(ρ)] is

su�ciently close to the optimal value v∗ of problem P[�] if ρ is tends to zero, i.e.,

lim
ρ→0

v(�k∗(ρ)) = v∗.

Moreover, if (P) has a unique optimal solution x∗, then limρ→0 x
k∗(ρ) = x∗.

Proof. Let F be the feasible region of problem P[�]. It is clear that

(xk
∗(ρ), x

k∗(ρ)
n+1 ) ∈ Fρ , F ⊆ Fρ .

Since there exists ρ0 > 0 such that the set Fρ0 is bounded, we further have

lim
ρ→0

dist(F ,Fρ) = 0, (30)
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where dist(·, ·) is the Hausdor� distance between two sets. Let (xPr, xPrn+1) be the

projection of (xk
∗(ρ), x

k∗(ρ)
n+1 ) onto F . Then, we have

0 ≤ v∗ − v(�k∗(ρ))

= v∗ − xPrn+1 + xPrn+1 − x
k∗(ρ)
n+1

≤ xPrn+1 − x
k∗(ρ)
n+1

≤ ‖(xPr, xPrn+1) − (xk
∗(ρ), x

k∗(ρ)
n+1 )‖

≤ dist(F ,Fρ),

which, together with (30), imply that

lim
ρ→0

v(�k∗(ρ)) = v∗.

Consequently, we can easily show the second conclusion of this theorem by

using the boundedness of {xk∗(ρ)}.

Notice that in Step 1 of Algorithm 2.1 we may also simultaneously choose q

di�erent points {ωk
1, . . . ,ω

k
q} such that

g(xk,ωk
i ) > ρ for i = 1, . . . , q,

and let

�̄k+1 := �k ∪ {ωk
1, . . . ,ω

k
q}.

For such a multiple explicit exchange method, Theorem 2.3 and Theorems

3.1–3.3 can be shown by using analogous techniques.

4. Implementation and numerical examples

In this section, we report some preliminary numerical results for Algorithm 2.1.

We implement Algorithm 2.1 in MATLAB 7.8.0 (R2009a) and run experiments

on a personal computer with Pentium(R) CPU 1.73GHz and RAM of 512MB.

For all examples, we choose the vector of ones as the starting point. We

implement Algorithm 2.1 with multiple exchange, and we apply nonlinear pro-

gramming solver fmincon fromMATLAB toolbox to solve each subproblem. If

� = [a, b], �0 and �̄ are set to be

�0 = {a + i(b − a)/(N0 − 1)| i = 0, 1, . . . ,N0 − 1}, where N0 = 10,

and

�̄ = {a + i(b − a)/(N − 1)| i = 0, 1, . . . ,N − 1}, where N = 10.

In Step 1 of Algorithm 2.1, we 	nd anω
k
new ∈ � such that g(xk,ωk

new) > ρ in the

following way. We test each point in �̄ to see whether there is a point satisfying

g(xk,ωk
new) > ρ. If all points fail, then we set N = 100 and test each point in
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the new �̄ to 	nd a point satisfying g(xk,ωk
new) > ρ. If this fails again, then

we set N = 1000 and test each point in the new �̄ to seek a point satisfying

g(xk,ωk
new) > ρ. If this fails again, then we set N = 10000, etc. In Step 3,

we relax the criterion νk+1(ω) > 0 to νk+1(ω) > 10−6. We stop the iteration

of Algorithm 2.1 when max{g(xk,ω)|ω ∈ �̄} ≤ ρ, where �̄ is de	ned with

N = 100000.

We implement Algorithm 2.1 on the following three problems with set-

ting ρ := 10−6. The numerical results are summarized in Table 1, where

EXAM denotes the experimented problems, NIT(NIFC) denotes the number

of iterations and the cardinality of set �k at the 	nal iteration, CPU(s) is the

CPU time (in seconds) for solving each problem, FVAL denotes the 	nal value

of the objective function, and MAXG denotes the 	nal value of the function

max{g(x,ω)| ω ∈ �̄}, where �̄ is de	ned with N = 100000.

For comparison, we also apply fseminf, that is a solver for SIP based on an

implementation of the discretization SQPmethod inMATLAB toolbox, to solve

the three examples in the formP[�]. For the solver fseminf, we use all the default

values.

Problem 1

f1(x) = x21 + x42,

f2(x) = (x1 − 2)2 + (x2 − 2)2,

g(x,ω) = 5x21sin(π
√

ω)/(1 + ω
2) − x2 ≤ 0,

� = [0, 1].
A�er 4 iterations, we 	nd the optimal solution

x1 = 0.514474445040588, x2 = 1.256745063664707.

Problem 2

f1(x) = x21 + x22 + x23 + x24 − 2x1 − 5x2 − 36x3 + 7x4,

f2(x) = 11x21 + 11x22 + 12x23 + 11x24 + 5x1 − 15x2 − 11x3 − 3x4 − 80,

f3(x) = 11x21 + 21x22 + 12x23 + 21x24 − 15x1 − 5x2 − 21x3 − 3x4 − 100,

g(x,ω) = (1 + ω
2)2 − x1 − x2ω − x3ω

2 − x4ω
3,

� = [0, 1].

Table 1. Test results for Problems 1–3.

Algorithm EXAM NIT(NIFC) CPU (s) FVAL MAXG

Algorithm 2.1 Problem 1 3(1) 0.14 2.759214074824113 1.88e-007

Problem 2 6(2) 0.63 -55.468813235577016 1.11e-016

Problem 3 4(1) 0.23 -24.637013595823785 9.58e-008

fseminf Problem 1 4 1.09 2.759214129908945 4.04e-008

Problem 2 8698 217.83 -55.469542809472998 1.30e-004

Problem 3 19 1.34 -24.637012132368071 -2.12e-013
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A�er 6 iterations, we 	nd the optimal solution

x1 = 1.00000000, x2 = 1.1328729785, x3 = 1.5256254664,

x4 = 0.3415015551.

Problem 3

f1(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = 11x21 + 11x22 + 12x23 + 11x24 + 5x1 − 15x2 − 11x3 − 3x4 − 80,

f3(x) = 11x21 + 21x22 + 12x23 + 21x24 − 15x1 − 5x2 − 21x3 − 3x4 − 100,

f4(x) = 11x21 + 211x22 + 12x23 + 15x1 − 15x2 − 21x3 − 3x4 − 50,

g(x,ω) = exp(ω) − x1 − x2ω − x3ω
2 − x4ω

3,

� = [0, 1].
A�er 4 iterations, we 	nd the optimal solution

x1 = 1.1808339962, x2 = 0.0756637247, x3 = 1.4436594485,

x4 = 0.8178610799.

The numerical results reported in Table 1 show that Algorithm 2.1 performs

very well for all the tested problems and can give the optimal solutions. In

particular, from the last columns of NIT, CPU (s), and MAXG in Table 1, it is

easy to see thatAlgorithm2.1 is e�ective. The solver fseminf is good for Problem

1 and Problem 3, but it is not good for Problem 2.

5. Concluding remarks

In this article, we present an exchange method for solving convex min-max

problems with in	nite constraints. The algorithm is given based on a sequence

of auxiliary subproblems. Under reasonable assumptions we prove that the pro-

posed algorithm has 	nite termination property and the approximate optimal

solution of the original problem can be derived from the optimal solution of

the subproblem at 	nal iteration. Numerical results show that the algorithm is

e�cient.
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