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Abstract We investigate k-uniform loose paths. We show that the largest H-
eigenvalues of their adjacency tensors, Laplacian tensors, and signless Laplacian
tensors are computable. For a k-uniform loose path with length � � 3, we show
that the largest H-eigenvalue of its adjacency tensor is ((1 +

√
5 )/2)2/k when

� = 3 and λ(A ) = 31/k when � = 4, respectively. For the case of � � 5, we
tighten the existing upper bound 2. We also show that the largest H-eigenvalue
of its signless Laplacian tensor lies in the interval (2, 3) when � � 5. Finally, we
investigate the largest H-eigenvalue of its Laplacian tensor when k is even and
we tighten the upper bound 4.

Keywords H-eigenvalue, hypergraph, adjacency tensor, signless Laplacian
tensor, Laplacian tensor, loose path
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1 Introduction

In recent years, the study of spectral hypergraph theory via tensors [4,7,8,10–
12,14,18,20,21] has attracted extensive attention and interest since the work of
[4,11,16,18]. As was in [16], a real tensor T = (ti1···ik) of order k and dimension
n refers to a multidimensional array (also called hypermatrix) with entries ti1···ik
such that ti1···ik ∈ R for all ij ∈ [n] := [1, . . . , n] and j ∈ [k]. Given a vector
x ∈ R

n, T xk−1 is defined as an n-dimensional vector such that its ith element
being ∑

i2,...,ik∈[n]

tii2···ikxi2 · · · xik , i ∈ [n].

Let I be the identity tensor of appropriate dimension, e.g., ii1···ik = 1 if and
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only if i1 = · · · = ik ∈ [n], and zero otherwise, when the dimension is n. The
following definition was introduced by Qi [16].

Definition 1 Let T be a k-th order n-dimensional real tensor. For some
λ ∈ R, if polynomial system (λI − T )xk−1 = 0 has a solution x ∈ R

n\{0},
then λ is called an H-eigenvalue and x an H-eigenvector.

Obviously, H-eigenvalues are real number. By [6,16], we have the number
of H-eigenvalues of a real tensor is finite. By [18], we have all the tensors
considered in this paper have at least one H-eigenvalue. Hence, we can denote
by λ(T ) as the largest H-eigenvalue of a real tensor T .

As was in [18], a hypergraph means an undirected simple k-uniform
hypergraph G with vertex set V, which is labeled as [n], and edge set E. By
k-uniformity, we mean that for every edge e ∈ E, the cardinality |e| of e is
equal to k. Throughout this paper, k � 3 and n � k. Moreover, since the trivial
hypergraph (i.e., E = ∅) is of less interest, we consider only hypergraphs having
at least one edge (i.e., nontrivial) in this paper. The following definition was
introduced by Qi [18].

Definition 2 Let G = (V,E) be a k-uniform hypergraph. The adjacency
tensor of G is defined as the k-th order n dimensional tensor A whose (i1 · · · ik)-
entry is

ai1···ik :=

⎧⎨
⎩

1
(k − 1)!

, {i1, . . . , ik} ∈ E,

0, otherwise.

Let D be a k-th order n-dimensional diagonal tensor with its diagonal element
di···i being di, the degree of vertex i, for all i ∈ [n]. Then L := D − A is
the Laplacian tensor of the hypergraph G, and Q := D + A is the signless
Laplacian tensor of the k-uniform hypergraph G.

By [18], zero is always the smallest H-eigenvalue of L and Q, and we have

d � λ(L ) � λ(Q) � 2d,

where d is the maximum degree of G. By [4, Theorem 3.8], we have

d � λ(A) � d,

where d be the average degree of G.
Recently, Hu et al. [10] introduced the class of cored hypergraphs and power

hypergraphs, and investigated the properties of their Laplacian H-eigenvalues.
Power hypergraphs are cored hypergraphs, but not vice versa. Loose paths are
power hypergraphs. They showed that when k is even, the largest Laplacian
H-eigenvalue and the largest signless Laplacian H-eigenvalue of a cored hyper-
graph are the same [10, Proposition 3.2]. Especially, they showed that when k
is odd, the largest Laplacian H-eigenvalue of a k-uniform loose path is equal to
the maximum degree, i.e., 2 [10, Proposition 4.2]. They also computed the
Laplacian H-spectra of the loose path of length 3. Actually, there are still
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changing open problems for the loose path which are worthy of being
investigated. First, it is known that [10,18] the largest Laplacian H-eigenvalue
is between 2 and 4 when k is even. Can we compute its largest Laplacian
H-eigenvalue when k is even or can we tighten its upper bound? Second, can
we describe the properties of its largest adjacency and signless Laplacian H-
eigenvalues? It is known that its largest adjacency H-eigenvalue is less than or
equal to 2 [4, Theorem 3.8]. Can we tighten the upper bound? Motivated by
these questions, we study the adjacency and signless Laplacian H-eigenvalues
of the class of loose paths in this paper.

We first investigate the properties of H-eigenvectors of adjacency tensor
and signless Laplacian tensors for power hypergraphs. We next establish some
facts on the class of loose paths. We investigate the largest H-eigenvalues of
its adjacency tensor and signless Laplacian tensor. For a k-uniform loose path
with length � � 3, we show that λ(A ) equals ((1 +

√
5 )/2)2/k when � = 3 and

31/k when � = 4, respectively. We establish an upper bound for λ(A ) that is
better than 2 when � � 5. We also give a good upper bound for λ(Q) which
is better than 4 and we show 2 � λ(Q) � 3. By [10, Proposition 3.2], this
conclusion also holds for λ(L ) when k is even. Very recently, Qi et al. [19]
studied many properties of regular uniform hypergraphs, s-cycles, s-paths, and
their largest Laplacian H-eigenvalues. When s = 1, s-paths [19] are just the
loose paths in our paper. However, our results are not different. They mainly
established that a k-uniform s-path is odd-bipartite (k � 4, 1 � s � k − 1).

The rest of this paper is organized as follows. We recall some notations and
establish some facts on H-eigenvectors of cored hypergraphs and power hyper-
graphs in the next section. We investigate the largest adjacency H-eigenvalue
of loose paths in Section 3. We investigate the largest signless Laplacian
and Laplacian H-eigenvalues of loose paths in Section 4. We also give some
numerical experiments to compute the largest signless Laplacian and Laplacian
H-eigenvalues in Section 5. Some final remarks are given in Section 6.

2 Preliminaries

In this section, we list some essential notions of uniform hypergraphs which will
be used in the sequel. Please refer to [1–3,5,9,18] for comprehensive references.
In this paper, unless stated otherwise, a hypergraph means an undirected simple
k-uniform hypergraph G with vertex set V and edge set E. For a subset S ⊂ [n],
we denote by ES the set of edges {e ∈ E | S ∩ e �= ∅}. For a vertex i ∈ V, we
simplify E{i} as Ei. It is the set of edges containing the vertex i, i.e.,

Ei := {e ∈ E | i ∈ e}.
The cardinality |Ei| of the set Ei is defined as the degree of the vertex i, which
is denoted by di. Two different vertices i and j are connected to each other (or
the pair i and j is connected), if there is a sequence of edges (e1, . . . , em) such
that i ∈ e1, j ∈ em, and er ∩ er+1 �= ∅ for all r ∈ [m − 1]. A hypergraph is
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called connected, if every pair of different vertices of G is connected. In the
sequel, unless stated otherwise, all the notations introduced above are reserved
for the specific meanings. For the sake of simplicity, we mainly consider
connected hypergraphs in the subsequent analysis. By the techniques in [9,18],
the conclusion on connected hypergraphs can be easily generalized to general
hypergraphs.

In the following, we recall the definitions of cored hypergraphs and power
hypergraphs introduced in [10]. We also list the definition of loose paths
introduced in [10,13,15].

Definition 3 Let G = (V,E) be a k-uniform hypergraph. If for every edge
e ∈ E, there is a vertex ie ∈ e such that the degree of the vertex ie is one, then
G is a cored hypergraph. A vertex with degree one is a cored vertex, and a
vertex with degree larger than one is an intersectional vertex.

Definition 4 Let G = (V,E) be a 2-uniform graph. For any k � 3, the kth
power of G, Gk := (V k, Ek) is defined as the k-uniform hypergraph with the
set of edges

Ek := {e ∪ {ie,1, . . . , ie,k−2} | e ∈ E},
and the set of vertices

V k := V ∪ {ie,1, . . . , ie,k−2, e ∈ E}.
Definition 5 Let G = (V,E) be a k-uniform hypergraph. If we can number
the vertex set V as

V := {i1,1, . . . , i1,k, i2,2, . . . , i2,k, . . . , i�−1,2, . . . , i�−1,k, i�,2, . . . , i�,k}
for some positive integer � such that

E = {{i1,1, . . . , i1,k}, {i1,k, i2,2, . . . , i2,k}, . . . , {i�−1,k, i�,2, . . . , i�,k}},
then G is a loose path. � is the length of the loose path.

It is easy to see that the class of power hypergraphs is a subclass of cored
hypergraphs and not all cored hypergraphs are power hypergraphs. Power
hypergraphs contain loose paths [10,13,15]. Recently, the Laplacian tensor of
a k-uniform loose path was investigated by Hu et al. [10]. It is shown that its
largest Laplacian H-eigenvalue is 2 when k is odd. They also investigated the
properties of Laplacian H-eigenvalues for a loose path of length � = 3 when k is
odd. In this paper, one of our purposes is to compute the largest H-eigenvalues
of adjacency tensor and signless Laplacian tensor of a k-uniform loose path with
length � � 3. The other is to tighten the upper bound of its largest Laplacian
H-eigenvalue when k is even.

In the following, we establish some facts on H-eigenvectors of cored hyper-
graphs and power hypergraphs, which will be used in the sequel.

By Definition 1 and the notation of core vertices, we immediately get the
following results via the similar proof of [10, Lemma 3.1].
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Lemma 1 Let G = (V,E) be a k-uniform cored hypergraph, and let x ∈ R
n be

an H-eigenvector of its adjacency tensor A corresponding to an H-eigenvalue
λ �= 0. If there are two core vertices i and j in an edge e ∈ E, then |xi| = |xj |.
Moreover, xi = xj when k is an odd number.

Lemma 2 Let G = (V,E) be a k-uniform cored hypergraph, and let x ∈ R
n

be an H-eigenvector of its signless Laplacian tensor Q corresponding to an H-
eigenvalue λ �= 1. If there are two cored vertices i and j in an edge e ∈ E, then
|xi| = |xj|. Moreover, xi = xj when k is an odd number.

By Definition 1, Lemmas 1 and 2, we get the following lemmas on odd-
uniform power hypergraphs in the similar way of [10, Lemma 4.1].

Lemma 3 Let k be odd, and let G = (V,E) be a k-uniform power hypergraph.
Let x ∈ R

n be an H-eigenvector of its adjacency tensor A corresponding to an
H-eigenvalue λ. Let e ∈ E be an arbitrary but fixed edge.

(i) If e has only one intersectional vertex i, and xs �= 0 for some cored
vertex s ∈ e, then λxs = xi.

(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored
vertex s ∈ e, then λx2

s = xixj .

Lemma 4 Let k be odd, and let G = (V,E) be a k-uniform power hypergraph.
Let x ∈ R

n be an H-eigenvector of its signless Laplacian tensor Q corresponding
to an H-eigenvalue λ. Let e ∈ E be an arbitrary but fixed edge.

(i) If e has only one intersectional vertex i, and xs �= 0 for some cored
vertex s ∈ e, then (λ − 1)xs = xi.

(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored
vertex s ∈ e, then (λ − 1)x2

s = xixj.

The following results are given for even-uniform power hypergraphs.

Lemma 5 Let k be even, let G = (V,E) be a k-uniform power hypergraph,
and let x ∈ R

n be an H-eigenvector of its adjacency tensor A corresponding
to an H-eigenvalue λ �= 0. Let e ∈ E be an arbitrary but fixed edge, and let
e′ be the set of its intersectional vertices. Let α be the cardinality of the set
{i ∈ e\e′ | xi < 0}.

(i) If e has only one intersectional vertex i, and xs �= 0 for some cored
vertex s ∈ e, then λxi > 0 when α is even and λxi < 0 when α is odd. Here,
xs = xi/λ or −xi/λ.

(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored
vertex s ∈ e, then λxixj > 0 when α is even and λxixj < 0 when α is odd.
Here, xs = ±√

xixj/λ or ±√−xixj/λ .

Proof Let x+ = |xs|. By Definition 1, we have

λxk
s =

∏
t∈e

xt. (1)
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(i) If α is even, then we have

(1) ⇐⇒ λxk
+ = xk−1

+ xi ⇐⇒ λx+ = xi.

If α is odd, then we have

(1) ⇐⇒ λxk
+ = −xk−1

+ xi ⇐⇒ λx+ = −xi.

(ii) If α is even, then

(1) ⇐⇒ λxk
+ = xk−2

+ xixj ⇐⇒ λx2
+ = xixj .

If α is odd, then we have

(1) ⇐⇒ λxk
+ = −xk−2

+ xixj ⇐⇒ λx2
+ = −xixj . �

Lemma 6 Let k be even, let G = (V,E) be a k-uniform power hypergraph,
and let x ∈ R

n be an H-eigenvector of its Laplacian tensor L corresponding
to an H-eigenvalue λ �= 1. Let e ∈ E be an arbitrary but fixed edge, and let
e′ be the set of its intersectional vertices. Let α be the cardinality of the set
{i ∈ e\e′ | xi < 0}.

(i) If e has only one intersectional vertex i, and xs �= 0 for some cored
vertex s ∈ e, then (1 − λ)xi > 0 when α is even and (1 − λ)xi < 0 when α is
odd. Here, xs = xi/(1 − λ) or xi/(λ − 1).

(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored
vertex s ∈ e, then (1 − λ)xixj > 0 when α is even and (1 − λ)xixj < 0 when α

is odd. Here, xs = ±√
xixj/(1 − λ) or ±√

xixj/(λ − 1) .

Proof Let x+ = |xs|. By Definition 1, we have

(λ − 1)xk
s = −

∏
t∈e

xt. (2)

(i) If α is even, then we have

(2) ⇐⇒ (1 − λ)xk
+ = xk−1

+ xi ⇐⇒ (1 − λ)x+ = xi.

If α is odd, then we have

(2) ⇐⇒ λxk
+ = −xk−1

+ xi ⇐⇒ (1 − λ)x+ = −xi.

(ii) If α is even, then

(2) ⇐⇒ (1 − λ)xk
+ = xk−2

+ xixj ⇐⇒ (1 − λ)x2
+ = xixj.

If α is odd, then we have

(2) ⇐⇒ (1 − λ)xk
+ = −xk−2

+ xixj ⇐⇒ (1 − λ)x2
+ = −xixj . �
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The proof for the following lemma is similar to that of Lemma 6.

Lemma 7 Let k be even, let G = (V,E) be a k-uniform power hypergraph, and
let x ∈ R

n be an H-eigenvector of its signless Laplacian tensor Q corresponding
to an H-eigenvalue λ �= 1. Let e ∈ E be an arbitrary but fixed edge, and let
e′ be the set of its intersectional vertices. Let α be the cardinality of the set
{i ∈ e\e′|xi < 0}.

(i) If e has only one intersectional vertex i, and xs �= 0 for some cored
vertex s ∈ e, then (λ − 1)xi > 0 when α is even and (λ − 1)xi < 0 when α is
odd. Here, xs = xi/(λ − 1) or xi/(1 − λ).

(ii) If e has two intersectional vertices i and j, and xs �= 0 for some cored
vertex s ∈ e, then (λ − 1)xixj > 0 when α is even and (λ − 1)xixj < 0 when α

is odd. Here, xs = ±√
xixj/(λ − 1) or ±√

xixj/(1 − λ) .

3 Largest adjacency H-eigenvalue of loose paths

For a k-uniform loose path G with length � � 3, there are few results on the
spectral radius λ(A ) of its adjacency tensorA in the literature. It is known [10]
that its maximum degree is 2 and λ(A ) � 2 [4, Theorem 3.8]. In this section,
based on the lemmas given in Section 2, we show that λ(A ) = ((1+

√
5 )/2)2/k

when � = 3 and λ(A ) = 31/k when � = 4. For the case of � � 5, we tighten the
existing upper bound 2.

Theorem 1 Let G = (V,E) be a k-uniform loose path with length 3, and
let A be its adjacency tensor. Then the spectral radius of A , i.e., the largest
H-eigenvalue

λ(A ) =
(1 +

√
5

2

)2/k
.

Proof It is not restrictive to assume that

E = {{1, . . . , k}, {k, . . . , 2k − 1}, {2k − 1, . . . , 3k − 2}}.
By [22, Theorem 3.20], [17, Theorem 4], and [14, Lemma 3.1], if we can find

a positive H-eigenvector x ∈ R
n of A corresponding to an H-eigenvalue λ, then

λ = λ(A ). By Lemmas 1, 3, and 5, for such an eigenpair (x, λ), we have

x1 = · · · = xk−1 =
xk

λ

if xs �= 0 for some s ∈ {1, . . . , k − 1},

xk+1 = · · · = x2k−2 =
√

xkx2k−1

λ

if xs �= 0 for some s ∈ {k + 1, . . . , 2k − 2}, and

x2k = · · · = x3k−2 =
x2k−1

λ
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if xs �= 0 for some s ∈ {2k, . . . , 3k−2}. Hence, the equations of the H-eigenvalue
λ become

λxk−1
k = x2k−1

(√
xkx2k−1

λ

)k−2

+
(xk

λ

)k−1
,

λxk−1
2k−1 = xk

(√
xkx2k−1

λ

)k−2

+
(x2k−1

λ

)k−1
.

That is,

(λk − 1)xk/2
k = λk/2x

k/2
2k−1, (λk − 1)xk/2

2k−1 = λk/2x
k/2
k . (3)

Define a := λk−1 and b := λk/2. Then the first equality in (3) implies a > 0.
Note that the determinant∣∣∣∣ a −b

−b a

∣∣∣∣ = (a + b)(a − b).

Hence, if
p(λ) := λk/2(λk/2 − 1) − 1 = 0,

then system (3) has a nonzero solution. It is easy to see that p(λ) is monotone
increasing when λ > 1 and λ(A ) is a root of p(λ). Since

p(1) = −1, p(2) = 2k − 2k/2 − 1 > 0,

the equation p(λ) = 0 has a unique root in the interval (1, 2). By direct
computation, it is ((1 +

√
5 )/2)2/k . So, we have

λ(A ) =
(1 +

√
5

2

)2/k
. �

Theorem 2 Let G = (V,E) be a k-uniform loose path with length � � 4. Let
A be its adjacency tensor. Then we have

(i) λ(A ) = 31/k when � = 4.
(ii) λ(A ) � λ∗ when � = 5, where λ∗ is the unique root of

(λk − 1)(λk/2 − 1) − λk/2 = 0

in the interval (1, 2).
(iii) λ(A ) � λ∗ when � � 6, where λ∗ is the unique root of

a[(b +
√

b2 − 4 )(�−2)/2 − (b −
√

b2 − 4 )(�−2)/2]

−2b[(b +
√

b2 − 4 )(�−4)/2 + (b −
√

b2 − 4 )(�−4)/2] = 0

in the interval (41/k, 2). Here, a and b is defined as a = λk − 1 and b = λk/2,
respectively.
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Proof Without loss of generality, we assume

E = {{1, . . . , k}, {k, . . . , 2k − 1}, {2k − 1, . . . , 3k − 2}, . . . ,
{(� − 1)k − � + 2, . . . , �k − �, �k − � + 1}}.

By [22, Theorem 3.20], [17, Theorem 4], and [14, Lemma 3.1], if we can find
a positive H-eigenvector x ∈ R

n of A corresponding to an H-eigenvalue λ, then
λ = λ(A ). By Lemmas 2, 3, and 5, for such an eigenpair (x, λ), we have

x1 = · · · = xk−1 =
xk

λ

if xs �= 0 for some s ∈ {1, . . . , k − 1}, and

xk+1 = · · · = x2k−2 =
√

xkx2k−1

λ

if xs �= 0 for some s ∈ {k +1, . . . , 2k−2}. The rest may be deduced by analogy,

x(�−2)k−�+4 = · · · = x(�−1)k−�+1 =
√

x(�−2)k−�+3x(�−1)k−�+2

λ

if xs �= 0 for some s ∈ {(� − 2)k − � + 4, . . . , (� − 1)k − � + 1}, and

x(�−1)k−�+3 = · · · = x�k−�+1 =
x(�−1)k−�+2

λ

if xs �= 0 for some s ∈ {(�−1)k−�+3, . . . , �k−�+1}. Hence, by straightforward
computation, the equations of the H-eigenvalue λ become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λk − 1)xk/2
k = λk/2x

k/2
2k−1,

λk/2x
k/2
2k−1 = x

k/2
k + x

k/2
3k−2,

. . . ,

λk/2x
k/2
(�−2)k−�+3

= x
k/2
(�−3)k−�+4

+ x
k/2
(�−1)k−�+2

,

(λk − 1)xk/2
(�−1)k−�+2 = λk/2x

k/2
(�−2)k−�+3.

(4)

Define a := λk−1 and b := λk/2. Then the first equality in (4) implies a > 0.
Let

AX =

⎛
⎜⎜⎜⎜⎜⎝

a −b
−1 b −1

. . . . . . . . .
−1 b −1

−b a

⎞
⎟⎟⎟⎟⎟⎠

(�−1)×(�−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
k/2
k

x
k/2
2k−1

x
k/2
3k−2
...

x
k/2
(�−3)k−�+4

x
k/2
(�−2)k−�+3

x
k/2
(�−1)k−�+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(�−1)×1

.
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In order to compute λ(A ), we divide into three cases to discuss under what
conditions AX = 0 has nonzero solutions.
Case 1 � = 4.

If ∣∣∣∣∣∣
a −b
−1 b −1

−b a

∣∣∣∣∣∣ = ab(a − 2) = 0,

i.e., a − 2 = 0, then AX = 0 has nonzero solutions. This induces λk − 3 = 0.
Hence, we have λ(A ) = 31/k.

Case 2 � = 5.
If ∣∣∣∣∣∣∣∣

a −b
−1 b −1

−1 b −1
−b a

∣∣∣∣∣∣∣∣
= (b − (b + 1)a)(b − (b − 1)a) = 0,

i.e.,
p1(λ) := b − (b + 1)a = 0

or
p2(λ) := b − (b − 1)a = 0,

then AX = 0 has nonzero solutions. Since a > 0, we have p2(λ) > p1(λ). Hence,
λ(A ) must be the largest real root of p2(λ) = 0. It is easy to see that

p2(1) = 1, p2(2) = −23k/2 + 2k + 2
k
2
+1 − 1 = (2 − 2k)(2k/2 − 1) − 1 < 0.

By straightforward computation, we have

p′2(λ) =
k

2
λ

k
2
−1(−3λk + 2λk/2 + 2).

Since a > 0, p′2(λ) < 0 for λ ∈ (1, 2). Hence, p2(λ) is monotone decreasing in
the interval (1, 2). So, p2(λ) = 0 has the unique root λ∗ ∈ (1, 2). Thus, we have
λ(A ) � λ∗.
Case 3 � � 6.

We consider the nonzero solutions of AX = 0 in (41/k, 2). It is sufficient to
discuss under what conditions |A|, the determinant of A, equals zero. Clearly,
we have b2 > 4 in this interval. Define

Dn =

∣∣∣∣∣∣∣∣∣∣∣

b −1
−1 b −1

. . . . . . . . .
−1 b −1

−1 b

∣∣∣∣∣∣∣∣∣∣∣
n×n

.
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Hence, we have

Dn =
(b +

√
b2 − 4 )n+1 − (b −√

b2 − 4 )n+1

2n+1
√

b2 − 4
. (5)

By straightforward computation and (5), we have

|A| = 0 ⇐⇒ a2D�−3 − 2abD�−4 + b2D�−5 = 0

⇐⇒ a2(w�−2 − u�−2) − 4ab(w�−3 − u�−3) + 4b2(w�−4 − u�−4) = 0

⇐⇒ [a(w(�−2)/2 + u(�−2)/2) − 2b(w(�−4)/2 − u(�−4)/2)]

× [a(w(�−2)/2 − u(�−2)/2) − 2b(w(�−4)/2 + u(�−4)/2)] = 0,

where
w = b +

√
b2 − 4 , u = b −

√
b2 − 4 .

Obviously, w > 0 and u > 0. Let

f1(λ) = a(w(�−2)/2 + u(�−2)/2) − 2b(w(�−4)/2 − u(�−4)/2)

and
f2(λ) = a(w(�−2)/2 − u(�−2)/2) − 2b(w(�−4)/2 + u(�−4)/2).

Since b > 2 and a > 3, we have

f1(λ) = (aw − 2b)w(�−4)/2 + (au + 2b)u(�−4)/2

> (aw − 2b)w(�−4)/2

> (a − 2)bw(�−4)/2

> 0.

Hence, it is sufficient to discuss the roots of f2(λ) = 0 in the interval (41/k, 2).
Obviously, f2(41/k) < 0 and

f2(2) > 2(2k/2 +
√

2k − 4 )(�−4)/2(
√

2k − 4 (2k − 1) − 2(K+2)/2)

> 2(2k/2 +
√

2k − 4 )(�−4)/2(7
√

2k − 4 − 2(K+2)/2)
> 0,

where the second inequality holds due to k � 3. Hence, f2(λ) = 0 has a root in
(41/k, 2). Let

a′ = kλk−1, b′ =
k

2
λ(k−2)/2.

By straightforward computation, we obtain

f ′
2(λ) =

1√
b2 − 4

{[(
a′

√
b2 − 4 +

� − 2
2

ab′
)
w − 2b′

√
b2 − 4 − b(� − 4)b′

]
w(�−4)/2

+
[(� − 2

2
ab′ − a′

√
b2 − 4

)
u − 2b′

√
b2 − 4 + b(� − 4)b′

]
u(�−4)/2

}
.
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It follows from the facts b > 2 and a > 3 that

wa′ − 2b′ > 2a′ − 2b′ > 0,

� − 2
2

aw − b(� − 4) >
� − 2

2
ab − b(� − 4) = b

(� − 2
2

a − � + 4
)

> b
� + 2

2
> 0,

and

b(� − 4)b′ − 2b′
√

b2 − 4 = b′(b(� − 4) − 2
√

b2 − 4 ) > b′(b(� − 4) − 2b) � 0.

Due to
(λk − 1)2 − λk(λk − 4) = 1 + 2λk > 0,

we have
� − 2

2
ab′ − a′

√
b2 − 4 =

� − 2
4

kλ(k−2)/2[(λk − 1) − λk/2
√

λk − 4 ] > 0.

Consequently, we obtain f ′
2(λ) > 0 for all λ ∈ (41/k, 2). Hence, f2(λ) = 0 has

the unique root λ∗ ∈ (41/k, 2) and we also have λ(A ) � λ∗. �

4 Largest signless Laplacian H-eigenvalue of loose paths

For a k-uniform loose path G with length � � 3, there are some known results
on the largest H-eigenvalues λ(Q) and λ(L ) of its signless Laplacian tensor Q
and Laplacian tensor L in the literature. It is known [10,18] that

2 � λ(Q) = λ(L ) � 4

when k is even. By [10, Proposition 4.2], λ(L ) = 2 when k is odd. In this
section, based on the lemmas given in Section 2, we mainly show that

2 � λ(Q) < 3

when k � 5. By [10, Proposition 3.2], we tighten the existing upper bound 4
of λ(Q) and λ(L ) when k is even and we also investigate the largest signless
Laplacian H-eigenvalue λ(Q) when k is odd.

The following theorem shows that 2 < λ(Q) < 3 when the length � = 3.

Theorem 3 Let G = (V,E) be a k-uniform loose path with length 3, and let
Q be its signless Laplacian tensor. Then its largest H-eigenvalue λ(Q) ∈ (2, 3).

Proof It is not restrictive to assume that

E = {{1, . . . , k}, {k, . . . , 2k − 1}, {2k − 1, . . . , 3k − 2}}.
By [22, Theorem 3.20], [17, Theorem 4], and [14, Lemma 3.1], if we can find

a positive H-eigenvector x ∈ R
n of Q corresponding to an H-eigenvalue λ, then

λ = λ(Q) � 2. By Lemmas 1, 4, and 7, for such an eigenpair (x, λ), we have

x1 = · · · = xk−1 =
xk

λ − 1
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if xs �= 0 for some s ∈ {1, . . . , k − 1},

xk+1 = · · · = x2k−2 =
√

xkx2k−1

λ − 1

if xs �= 0 for some s ∈ {k + 1, . . . , 2k − 2}, and

x2k = · · · = x3k−2 =
x2k−1

λ − 1

if xs �= 0 for some s ∈ {2k, . . . , 3k−2}. Hence, the equations of the H-eigenvalue
λ become ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(λ − 2)xk−1

k = x2k−1

(√
xkx2k−1

λ − 1

)k−2

+
( xk

λ − 1

)k−1
,

(λ − 2)xk−1
2k−1 = xk

(√
xkx2k−1

λ − 1

)k−2

+
(x2k−1

λ − 1

)k−1
.

By straightforward computation, we have⎧⎨
⎩

((λ − 2)(λ − 1)k−1 − 1)xk/2
k = (λ − 1)k/2x

k/2
2k−1,

((λ − 2)(λ − 1)k−1 − 1)xk/2
2k−1 = (λ − 1)k/2x

k/2
k .

(6)

Define
a := (λ − 2)(λ − 1)k−1 − 1, b = (λ − 1)k/2.

Then the first equality in (6), together with b > 0, xk > 0, and x2k−1 > 0,
implies a > 0. Note that the determinant∣∣∣∣ a −b

−b a

∣∣∣∣ = (a + b)(a − b).

Hence, if f(λ) = 0, then system (6) has a nonzero solution, where

f(λ) = (λ − 2)(λ − 1)k−1 − 1 − (λ − 1)k/2.

It is easy to see that λ(Q) is a root of f(λ) = 0. Since f(2) = −2 < 0 and

f(3) = 2k−1 − 2k/2 − 1 =
1
2

[(2k/2 − 1)2 − 1] >
1
2

[(
√

8 − 1)2 − 3] > 0,

where the first inequality holds due to k � 3, the equation f(λ) = 0 must has
a root in the interval (2, 3). Let

t = λ − 1, p(t) = t
k
2
−1(t − 1), q(t) = 1 +

1
tk/2

.

Then t > 1 due to λ > 2 and

f(λ) = tk/2(p(t) − q(t)).



636 Junjie YUE et al.

Clearly, p(t) is monotone increasing and q(t) is monotone decreasing when t > 1.
Hence, f(λ) is monotone increasing when λ > 2. Thus, f(λ) = 0 has the unique
root in the interval (2, 3). That is, λ(Q). Hence, 2 < λ(Q) < 3. �

Subsequently, we investigate the largest signless Laplacian H-eigenvalue for
the case of � � 4.

Theorem 4 Let G = (V,E) be a k-uniform loose path with length � � 4, and
let Q be its signless Laplacian tensor. Then we have

(i) if � = 4, then 3 < λ(Q) < 4 for k = 3 and 2 < λ(Q) < 3 for k � 4;
(ii) if � = 5, then 3 < λ(Q) < 4 for k = 3 and 2 < λ(Q) < 3 for k � 4;
(iii) if � � 6, then 2 � λ(Q) � 4 for k = 3 or k = 4 and 2 � λ(Q) < 3 for

k � 5.

Proof Without loss of generality, we assume that

E = {{1, . . . , k}, {k, . . . , 2k − 1}, {2k − 1, . . . , 3k − 2}, . . . ,
{(� − 1)k − � + 2, . . . , �k − �, �k − � + 1}}.

By [22, Theorem 3.20], [17, Theorem 4], and [14, Lemma 3.1], if we can find
a positive H-eigenvector x ∈ R

n of Q corresponding to an H-eigenvalue λ, then

λ = λ(Q) � 2.

By Lemmas 2, 4, and 7, for such an eigenpair (x, λ), we have

x1 = · · · = xk−1 =
xk

λ − 1

if xs �= 0 for some s ∈ {1, . . . , k − 1}, and

xk+1 = · · · = x2k−2 =
√

xkx2k−1

λ − 1

if xs �= 0 for some s ∈ {k +1, . . . , 2k−2}. The rest may be deduced by analogy:

x(�−2)k−�+4 = · · · = x(�−1)k−�+1 =
√

x(�−2)k−�+3x(�−1)k−�+2

λ − 1

if xs �= 0 for some s ∈ {(� − 2)k − � + 4, . . . , (� − 1)k − � + 1}, and

x(�−1)k−�+3 = · · · = x�k−�+1 =
x(�−1)k−�+2

λ − 1

if xs �= 0 for some s ∈ {(� − 1)k − � + 3, . . . , �k − � + 1}. Hence, the equations
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of the H-eigenvalue λ become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ − 2)xk−1
k = x2k−1

(√
xkx2k−1

λ − 1

)k−2

+
( xk

λ − 1

)k−1
,

(λ − 2)xk−1
2k−1 = xk

(√
xkx2k−1

λ − 1

)k−2

+ x3k−2

(√
x2k−1x3k−2

λ − 1

)k−2

,

. . . ,

(λ − 2)xk−1
(�−2)k−�+3 = x(�−3)k−�+4

(√
x(�−3)k−�+4x(�−2)k−�+3

λ − 1

)k−2

+ x(�−1)k−�+2

(√
x(�−2)k−�+3x(�−1)k−�+2

λ − 1

)k−2

,

(λ − 2)xk−1
(�−1)k−�+2 = x(�−2)k−�+3

(√
x(�−2)k−�+3x(�−1)k−�+2

λ − 1

)k−2

+
(x(�−1)k−�+2

λ − 1

)k−1
.

By straightforward computation, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

((λ − 2)(λ − 1)k−1 − 1)xk/2
k = (λ − 1)k/2x

k/2
2k−1,

(λ − 2)(λ − 1)(k−2)/2x
k/2
2k−1 = x

k/2
k + x

k/2
3k−2,

. . . ,

(λ − 2)(λ − 1)(k−2)/2x
k/2
(�−2)k−�+3 = x

k/2
(�−3)k−�+4 + x

k/2
(�−1)k−�+2,

((λ − 2)(λ − 1)k−1 − 1)xk/2
(�−1)k−�+2 = (λ − 1)k/2x

k/2
(�−2)k−�+3.

(7)

Define

a = (λ − 2)(λ − 1)k−1 − 1, b = (λ − 1)k/2, c = (λ − 2)(λ − 1)(k−2)/2.

Then the first inequality in (7) implies a > 0. Let

AX =

⎛
⎜⎜⎜⎜⎜⎝

a −b
−1 c −1

. . . . . . . . .
−1 c −1

−b a

⎞
⎟⎟⎟⎟⎟⎠

(d−1)×(d−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
k/2
k

x
k/2
2k−1

x
k/2
3k−2
...

x
k/2
(d−3)k−d+4

x
k/2
(d−2)k−d+3

x
k/2
(d−1)k−d+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(d−1)×1

.

In order to compute λ(Q), we divide into three cases to discuss under what
conditions AX = 0 has nonzero solutions.
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Case 1 � = 4.
If ∣∣∣∣∣∣

a −b
−1 c −1

−b a

∣∣∣∣∣∣ = a(ac − 2b) = 0,

i.e., ac − 2b = 0, then AX = 0 has nonzero solutions. This shows that λ(Q)
must be a solution of

(λ − 2)2(λ − 1)k−1 − 3λ + 4 = 0.

Let
f(λ) = (λ − 2)2(λ − 1)k−1 − 3λ + 4.

By straightforward computation, we have

f ′(λ) = (λ − 2)(λ − 1)k−2(λk + λ − 2k) − 3.

Clearly, f ′(λ) is monotone increasing when λ > 2. Moreover, we have

f ′(2) = −3 < 0, lim
λ→+∞

f ′(λ) = +∞.

Hence, f(λ) is first monotone decreasing and then monotone increasing. On
the other hand,

f(2) = −2 < 0, lim
λ→+∞

f(λ) = +∞.

Hence, f(λ) = 0 has only one real root when λ > 2.
For k = 3, we have

f(3) = −1, f(4) = 28.

So the real root of f(λ) = 0 is just λ(Q) ∈ (3, 4). For k � 4, we have

f(3) = 2k−1 − 5 > 0.

So the real root λ(Q) is in the interval (2, 3).
Case 2 � = 5.

If ∣∣∣∣∣∣∣∣

a −b
−1 c −1

−1 c −1
−b a

∣∣∣∣∣∣∣∣
= (b − (c + 1)a)(b − (c − 1)a) = 0,

i.e.,
p1(λ) := b − (c + 1)a = 0

or
p2(λ) := b − (c − 1)a = 0,
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then AX = 0 has nonzero solutions. Since a > 0, c > 1, we have p2(λ) > p1(λ).
Hence, λ(Q) must be the largest real root of p2(λ) = 0. Clearly,

p2(2) = 0, p2(3) > 0, p2(4) < 0, k = 3.

When k � 4, we have

p2(3) = 2k/2 − (2(k−2)/2 − 1)(2k−1 − 1)

� 2k/2 − 2k−1 + 1

= 2k/2(1 − 2(k−2)/2) + 1

� − 2k/2 + 1
< 0.

By direct computation, we obtain

p′2(λ) = (λ − 1)(k−4)/2
[k

2
(λ − 1) − 1

2
(λk − 2k + 2)((λ − 2)(λ − 1)k−1 − 1)

− (λk − 2k + 1)(λ − 1)k/2((λ − 2)(λ − 1)
k
2
−1 − 1)

]

< (λ − 1)(k−4)/2
[k

2
(λ − 1) − 1

2
(λk − 2k + 2)((λ − 2)(λ − 1)k−1 − 1)

]

� (λ − 1)(k−4)/2
[k

2
(λ − 1) − 3

2
(λk − 2k + 2)

]

= (λ − 1)(k−4)/2
(
− kλ +

5
2

k − 3
)

< 0

for λ, k � 3. This shows that p2(λ) is monotone decreasing when λ � 3. Hence,
it is easy to see that 3 < λ(Q) < 4 when k = 3 and 2 � λ(Q) < 3 when k � 4.
Case 3 � � 6.

We consider the nonzero solutions of AX = 0 in (2, 4). It is sufficient to
discuss under what conditions |A|, the determinant of A, equals zero. Clearly,
we have c > 0 in this interval. Define

Dn =

∣∣∣∣∣∣∣∣∣∣∣

c −1
−1 c −1

. . . . . . . . .
−1 c −1

−1 c

∣∣∣∣∣∣∣∣∣∣∣
n×n

.

By straightforward computation, we obtain

|A| = a2D�−3 − 2abD�−4 + b2D�−5.

By [18], we known that 2 � λ(Q) � 4. So, we discuss the values of λ such that
|A| = 0 when λ > 3. If there is no λ such that |A| = 0, then 2 � λ(Q) � 3
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must hold. Clearly, we have c > 2 and b > 1 when λ > 3 and k � 5. In this
situation, we compute

Dn =
(c +

√
c2 − 4 )n+1 − (c −√

c2 − 4 )n+1

2n+1
√

c2 − 4
.

Let
w = c +

√
c2 − 4, u = c −

√
c2 − 4.

Then, w > c > 2 and u > 0. We have

|A| = 0 ⇐⇒ a2(w�−2 − u�−2) − 4ab(w�−3 − u�−3) + 4b2(w�−4 − u�−4) = 0

⇐⇒ [a(w(�−2)/2 + u(�−2)/2) − 2b(w(�−4)/2 − u(�−4)/2)]

× [a(w(�−2)/2 − u(�−2)/2) − 2b(w(�−4)/2 + u(�−4)/2)] = 0.

Let
f1(λ) = a(w(�−2)/2 + u(�−2)/2) − 2b(w(�−4)/2 − u(�−4)/2)

and
f2(λ) = a(w(�−2)/2 − u(�−2)/2) − 2b(w(�−4)/2 + u(�−4)/2). (8)

Due to a = bc − 1 and c > 2, b > 1, we have

f1(λ) = (wa − 2b)w(�−4)/2 + (ua + 2b)u(�−4)/2

� w(�−4)/2(wa − 2b)

= w(�−4)/2[b(cw − 2) − w]

> w(�−4)/2(w − 2)

> w(�−4)/2
√

c2 − 4
> 0.

Hence, it is sufficient to discuss the root of f2(λ) = 0 in the interval (3, 4). We
obtain via computation that

f2(3) > (2(k−2)/2 −
√

2k−2 − 4 )(�−4)/2(2
√

2k−2 − 4 (2k−1 − 1) − 2(k+4)/2)

� 2
k
2
+2(2

k
2
−1 − 1) − 4

> 2
k
2
+2 − 4

> 0. (9)

Define

a′ = (λ − 1)k−2(λk − 2k + 1), b′ =
k

2
(λ − 1)(k−2)/2,

c′ =
1
2

(λ − 1)(k−4)/2(λk − 2k + 2).
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Then, the derivative of f2(λ) is

f ′
2(λ) =

1√
c2 − 4

{[(
a′

√
c2 − 4 +

� − 2
2

ac′
)
w − 2b′

√
c2 − 4 − b(� − 4)c′

]
w(�−4)/2

+
[(

− a′
√

c2 − 4 +
� − 2

2
ac′

)
u − 2b′

√
c2 − 4 + b(� − 4)c′

]
u(�−4)/2

}
.(10)

First, due to λ > 3 and k � 5, we have

a′w − 2b′ = (c +
√

c2 − 4)(bc′ + cb′) − 2b′ > 2(bc′ + cb′) − 2b′ > 0 (11)

and

� − 2
2

aw − b(� − 4) =
� − 2

2
a(c +

√
c2 − 4 ) − b(� − 4)

> (� − 2)a − b(� − 4)
= (� − 2)(bc − 1) − b(� − 4)
= [(� − 2)c − (� − 4)]b − (� − 2)
� (� − 2)c − (� − 4) − � + 2
> 2(� − 2) − (� − 4) − � + 2
= 2
> 0. (12)

Second, we have

− 2b′
√

c2 − 4 + b(� − 4)c′

=
� − 4

2
(λ − 1)k/2(λ − 1)(k−4)/2(λk − 2k + 2) − k(λ − 1)(k−2)/2

√
c2 − 4

� (λ − 1)k/2(λ − 1)(k−4)/2(λk − 2k + 2) − k(λ − 1)(k−2)/2
√

c2 − 4

= (λ − 1)(k−2)/2[(λ − 1)(k−2)/2(λk − 2k + 2) − k
√

c2 − 4 ]

� (λ − 1)(k−2)/2(λk − 2k + 2) − k
√

c2 − 4.

Since
(λ − 1)k−2(λk − 2k + 2)2 − k2(c2 − 4)

= 4(λ − 1)k−2 + 4k(λ − 2)(λ − 1)k−2 + 4k2

> 0,

we have
(λ − 1)(k−2)/2(λk − 2k + 2) > k

√
c2 − 4.

This yields

−2b′
√

c2 − 4 + b(� − 4)c′ > 0. (13)
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Similarly, from the fact � � 6, we have

− a′
√

c2 − 4 +
� − 2

2
ac′

=
� − 2

4
a(λ − 1)(k−4)/2(λk − 2k + 2) − (λ − 1)k−2(λk − 2k + 1)

√
c2 − 4

> a(λ − 1)(k−4)/2(λk − 2k + 2) − (λ − 1)k−2(λk − 2k + 1)
√

c2 − 4

= (λ − 1)(k−4)/2[a(λk − 2k + 2) − (λ − 1)k/2(λk − 2k + 1)
√

c2 − 4 ].

Since

a2(λk − 2k + 2)2 − (λ − 1)k(λk − 2k + 1)2(c2 − 4)

= (λk − 2k + 1)2 + 2λ(λ − 1)k−1(λk − 2k + 1)2 + 1 + 2(λk − 2k + 1)

+ (λ − 2)2(λ − 1)2k−2 − 2(λ − 2)(λ − 1)k−1

+ 2(λ − 2)2(λ − 1)2k−2(λk − 2k + 1) − 4(λ − 2)(λ − 1)k−1(λk − 2k + 1)

� (λ − 2)2(λ − 1)2k−2 − 2(λ − 2)(λ − 1)k−1

+ 2(λ − 2)2(λ − 1)2k−2(λk − 2k + 1) − 4(λ − 2)(λ − 1)k−1(λk − 2k + 1)

= (λ − 2)(λ − 1)k−1[(λ − 2)(λ − 1)(k−2)/2(λ − 1)k/2 − 2]

+ (λ − 2)(λ − 1)k−1(λk − 2k + 1)[2(λ − 2)(λ − 1)k−1 − 4]

> (λ − 2)(λ − 1)k−1(c − 2) + (λ − 2)(λ − 1)k−1(λk − 2k + 1)

� 2(λ − 2)(λ − 1)(k−2)/2(λ − 1)k/2 − 4

� 2c(λ − 1)k/2 − 4
� 2c − 4 > 0,

we have
−a′

√
c2 − 4 +

� − 2
2

ac′ > 0. (14)

Combining (10)–(14), we have f ′
2(λ) > 0 when λ > 3 and k � 5. This indicates

that f2(λ) is monotone increasing when λ > 3, which together with (9) implies
2 < λ(Q) < 3 for k � 5 and � � 6. Thus, we have the desired results. That is,
when the length � � 6, we have 2 � λ(Q) � 4 for k = 3, 4 and 2 � λ(Q) < 3
for k � 5. �

By [10, Proposition 3.2] and Theorems 3 and 4, we immediately have the
following result.

Corollary 1 Let k be even, and let G = (V,E) be a k-uniform loose path with
length � � 3. Let L be its Laplacian tensor. Then, the following statements
hold:

(i) λ(L ) ∈ (2, 3) when � = 3, 4, 5;
(ii) when � � 6 and k = 4, 2 � λ(L ) � 4;
(iii) when � � 6 and k > 5, 2 � λ(L ) < 3.
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5 Numerical experiments

In this section, according the proof process of Theorems 3 and 4, we design a
procedure to compute the largest signless Laplacian H-eigenvalue of loose paths
for some numerical experiments. The discussion for λ(A ) is similar, we omit
them here.

Procedure Step 1 For fixed k and �, we find out all the real roots of the
polynomial equation in a certain interval.

(i) When � = 3 or � = 4, we can find out the unique real root of

(λ − 2)(λ − 1)k−1 − (λ − 1)k/2 − 1 = 0

or
(λ − 2)2(λ − 1)(3k−4)/2 − (λ − 2)(λ − 1)(k−2)/2 − 2(λ − 1)k/2 = 0

by dichotomy.
(ii) When � = 5 and k � 4, we can find out all the real roots of

(λ−2)(λ−1)k−1+(λ−1)k/2−(λ−2)2(λ−1)(3k−4)/2−(λ−2)(λ−1)(k−2)/2−1 = 0

by judging all discrete points in (2, 3).
(iii) First, we find out the unique real root t of the equations

(λ − 2)(λ − 1)(k−2)/2 = 0, λ > 2.

When k � 5, we compute the unique real root of f2(λ) = 0, where f2(λ)
is defined as in (8), in (t, 3) by dichotomy and find out another real roots by
judging all discrete points in (2, t). When k = 3 or k = 4, we compute the unique
real root in (t, 4) by dichotomy and find out another real roots by judging all
discrete points in (2, t).
Step 2 Check whether all the real roots are the H-eigenvalues of Q or not.

Substituting the real roots into equations

AX = A(x1, . . . , xn)T = 0,

determine whether there is X > 0 or not. Let A be an n × n matrix. If
|A| = 0, then we have rank(A) = n − 1. So x1, . . . , xn−1 can be expressed as
cix1, i ∈ {1, . . . , n − 1}. If ci, i ∈ {1, . . . , n − 1}, are greater than zero, we have
X > 0. The computational complexity is O(n).
Step 3 Choose the largest real roots which satisfy Steps 1 and 2.

From the above procedure, the computational complexity of this algorithm
is

O
(k�(� − 2)

2
+

1
ε

+ log2
1
ε

)
,

where ε is a given tolerance. We also can find out the largest adjacency H-
eigenvalue of loose paths by the similar procedure as above. The results of the
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largest signless Laplacian H-eigenvalues and the largest adjacency H-eigenvalues
are presented in Figs. 1 and 2. Here, we take 3 � k, � � 50. The curve in Fig. 1
(a) is the function with respect to the variable k when � is fixed, while the one in
Fig. 1 (b) is the function with respect to the variable � when k is fixed. As can
be seen in Fig. 1 that λ(Q) with respect to k is a strictly decreasing sequence
when � is fixed, the numerical experiments show that [10, Conjecture 4.1] is
true for loose paths. It also can be discerned from Fig. 1 that the function
λ(Q) with respect to k is convergent when � trends to +∞.

Fig. 1 Largest signless Laplacian H-eigenvalue λ(Q) of loose paths. Function λ(Q) with

respect to (a) variable k when � is fixed and (b) variable � when k is fixed.

Fig. 2 Largest adjacency H-eigenvalue λ(A ) of loose paths. Function λ(A ) with respect to

(a) variable k when � is fixed and (b) variable � when k is fixed.

6 Concluding remarks

We investigate the spectral theory of loose paths. We compute the largest H-
eigenvalue λ(A ) of its adjacency tensor and the largest H-eigenvalue λ(Q) of
its signless Laplacian tensor. We tighten their bounds. The numerical results
shows that λ(Q) with respect to k is a strictly decreasing sequence for a k-
uniform loose path with fixed length �. This is a conjecture to be presented
here for future research.
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