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We study the asymptotic behavior of the solution to some time harmonic wave 
problems when the wave number is taken as a small asymptotic parameter. Our 
basic strategy is to introduce suitable Lagrangian multipliers into the governing 
equations, and transforming them into saddle point problems. These saddle point 
problems are uniformly invertible with respect to the wave number k ∈ [0, k0], with 
k0 being an arbitrary but fixed positive number. The asymptotic expansion is then 
derived by the standard regular perturbation technique.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

PDE problems with small asymptotic parameter are ubiquitous in the science and engineering applica-
tions. The study of asymptotic behavior for these problems is crucial at least for two reasons, understanding 
the possible new physics in the asymptotic regime and designing uniformly stable numerical schemes. Gen-
erally, if the limiting problem is well-posed, we call these PDE problems regularly perturbed. Otherwise, 
we call them singularly perturbed. The regularly perturbed problems are easier, since the solution admits 
a power series expansion which is valid at least when the asymptotic parameter is sufficiently small. It 
is the singularly perturbed problems which make the analysis more complicated. Even in the linear case, 
the asymptotic solutions behavior can be very different, strongly depending on the nature of these PDE 
problems. A correct solution ansatz with respect to the asymptotic parameter is the key ingredient for this 
kind of investigations. In this paper, we are interested in the time harmonic wave problems with small wave 
number.

The first problem we consider is the boundary value problem of the Helmholtz equation

−Δu− k2u = f, ∀x ∈ Ω, (1)

∂nu− iku = g, ∀x ∈ Γ, (2)
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where i =
√
−1 denotes the imaginary unit, k is the wave number parameter, Ω ⊂ Rn (n = 2 or 3) is 

a bounded connected Lipschitz domain with connected boundary Γ, n denotes the unit outward normal, 
f ∈ L2(Ω) and g ∈ H1/2(Γ) are prescribed complex-valued functions. The weak formulation associated with 
the boundary value problem (1)–(2) is to find u ∈ H1(Ω), such that for all v ∈ H1(Ω) it holds that

(∇v,∇u) − ik < v, u > −k2(v, u) = (v, f)+ < v, g > . (3)

Here and hereafter, we define the volume and boundary duals as

(v, u) =
∫
Ω

v̄udx, < v, u >=
∫
Γ

v̄uds.

By the Riesz representation theorem, we can define three bounded linear operators {Aj}2
j=0 from H1(Ω) to 

H1(Ω), and an element b ∈ H1(Ω) as

(v,A0u)1 = (∇v,∇u), (4)

(v,A1u)1 =< v, u >, (5)

(v,A2u)1 = (v, u), (6)

(v, b)1 = (v, f)+ < v, g > . (7)

In the above, (·, ·)1 stands for the standard H1-inner product, i.e.,

(v, w)1 = (∇v,∇w) + (v, w).

The variational problem (3) can then be written into an equivalent form of operator equation: find u ∈ H1(Ω)
such that

(A0 − ikA1 − k2A2)u = b. (8)

The second problem we consider is the boundary value problem of Navier equation

−∇ · σ(u) − k2u = f, ∀x ∈ Ω, (9)

n · σ(u) − iku = g, ∀x ∈ Γ, (10)

where Ω ⊂ Rn (n = 2 or 3) is a bounded connected Lipschitz domain with connected boundary Γ, σ(u)
stands for the stress tensor of the displacement vector field u. For simplicity, we assume that the stress 
tensor σ(u) relates to the strain tensor ε(u) through

ε(u) = (∇u + (∇u)†)/2, σ(u) = λtrε(u)I + 2με(u).

In the above, λ and μ denote the Lame’s constants. The weak formulation associated with the boundary 
value problem (9)–(10) is to find u ∈ (H1(Ω))n, such that for all v ∈ (H1(Ω))n it holds that

λ(trε(v), trε(u)) + 2μ(ε(v), ε(u)) − ik < v, u > −k2(v, u) = (v, f)+ < v, g > . (11)

By the Riesz representation theorem, we can define three bounded linear operators {Aj}2
j=0 from (H1(Ω))n

to (H1(Ω))n, and an element b ∈ (H1(Ω))n as
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(v,A0u)1 = λ(trε(v), trε(u)) + 2μ(ε(v), ε(u)), (12)

(v,A1u)1 =< v, u >, (13)

(v,A2u)1 = (v, u), (14)

(v, b)1 = (v, f)+ < v, g > . (15)

The variational problem (11) can then be written into the equivalent form of operator equation: find u ∈
(H1(Ω))n such that

(A0 − ikA1 − k2A2)u = b. (16)

The last problem we consider is the boundary value problem of the Maxwell equation

curl curlu− k2u = f, ∀x ∈ Ω, (17)

n× curlu + ikut = g, ∀x ∈ Γ, (18)

where Ω ⊂ R3 is a bounded connected Lipschitz domain with connected boundary Γ, ut = (n ×u) ×n on Γ, 
f is the source field, and g is a prescribed tangential vector field on Γ. Let us introduce the function space

H(imp;Ω) = {v ∈ (L2(Ω))3| curl v ∈ (L2(Ω))3, vt ∈ L2
t (Γ)},

where

L2
t (Γ) = {v ∈ (L(Γ))3|n · v = 0}.

The function space H(imp; Ω) is a Hilbert space equipped with the inner product ([10])

(v, u)H(imp;Ω) = (curl v, curlu) + (v, u)+ < vt, ut > .

Given f ∈ (L2(Ω))3 and g ∈ L2
t (Γ), the weak formulation associated with the boundary value problem 

(17)–(18) is to determine u ∈ H(imp; Ω), such that for all v ∈ H(imp; Ω) it holds that

(curl v, curlu) − k2(v, u) − ik < vt, ut >= (v, f)− < vt, g > . (19)

By the Riesz representation theorem, we can define three bounded linear operators {Aj}2
j=0 from H(imp; Ω)

to H(imp; Ω), and an element b ∈ H(imp; Ω) as

(v,A0u)H(imp;Ω) = (curl v, curlu), (20)

(v,A1u)H(imp;Ω) =< vt, ut >, (21)

(v,A2u)H(imp;Ω) = (v, u), (22)

(v, b)H(imp;Ω) = (v, f)− < v, g > . (23)

The variational problem (19) is then equivalent to the operator equation: find u ∈ H(imp; Ω) such that

(A0 − ikA1 − k2A2)u = b. (24)

It is known that for all k > 0, the Helmholtz boundary value problem (1)–(2) (see [4]), the Navier 
boundary value problem (9)–(10) (see [5]), and the Maxwell boundary value problem (17)–(18) (see [10]) 
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admit a unique solution in the corresponding function spaces which continuously depends on the data f
and g. Equivalently speaking, the operator families A0 − ikA1 −k2A2 in (8), (16) and (24) are invertible for 
all k > 0. Since these operator families are analytic functions of k, the inverse operator families (A0−ikA1−
k2A2)−1 are also analytic for all k > 0. However, the analyticity property cannot be extended to k = 0, since 
the operator A0 is not invertible. The implication of this observation is such that the operator equations (8), 
(16) and (24), thus the boundary value problems (1)–(2), (9)–(10), and (17)–(18) are singularly perturbed 
if we take the wave number k as a small asymptotic parameter.

The study of asymptotic behavior for the time harmonic wave problems with small wave number has a 
long history, and appeared in the literature as early as in [9,11,3]. Later on, Feng and Sheen considered this 
issue for the Helmholtz problem and the Navier problem in [6,5]. Hsiao and Wendland [7,8] performed the 
asymptotic analysis for the Helmholtz problem. They derived the first two asymptotic terms for both interior 
and exterior problems by the integral equation method. This paper aims mainly at an asymptotic analysis 
for the Helmholtz problem (1)–(2), the Navier problem (9)–(10), and the Maxwell problem (17)–(18). It 
turns out that we can make this analysis for all these problems in a uniform manner, since their equivalent 
operator equations (8), (16) and (24) have a similar form. By introducing suitable Lagrangian multipliers, we 
transform the governing equations into saddle point problems, which are uniformly invertible with respect to 
the wave number k ∈ [0, k0], with k0 being an arbitrary but fixed positive number. The regular perturbation 
technique can then be straightforwardly applied to derive the asymptotic solution behavior. Different from 
the integral equation method used in [6,5,7,8], our method can be easily extended to problems with variable 
coefficients.

The rest of this paper is organized as follows. We first study the asymptotic solution behavior for this 
abstract operator equation in Section 2. Then taking the Helmholtz problem (1)–(2), the Navier problem 
(9)–(10), and the Maxwell problem (17)–(18) as three specific instances, we figure out the leading order 
terms of the corresponding asymptotic expansions in Section 3, Section 4 and Section 5, respectively.

2. An abstract operator equation

Let X be a complex Hilbert space with inner product (·, ·)X . The induced norm is denoted by ‖ · ‖X . 
Given three bounded linear operators A0, A1 and A2 from X to X, we consider the operator equation with 
real parameter k > 0: find u ∈ X such that

(A0 − ikA1 − k2A2)u = b, (25)

where b is a prescribed element in X. We hypothesize that:

H0: the bounded linear operators A0, A1 and A2 are self-adjoint, namely,

(Aiv, u)X = (v,Aiu)X , ∀v, u ∈ X;

H1: the bounded linear operator family A0 − ikA1 − k2A2 is invertible for all k > 0.

Note that the inverse of an invertible bounded linear operator is also bounded by the closed graph theorem.
The operator equation (25) is a perturbation problem when k → 0. If A0 is invertible, this perturbation 

is regular, and the solution of (25) admits a power series expansion with respect to k. However, when A0
is not invertible, this perturbation becomes singular. This section aims at an asymptotic expansion for the 
solution of (25) in the singularly perturbed case, namely, when the kernel space of A0 is not trivial.

Let us put

X0 = kerA0, X01 = kerA0 ∩ kerA1.
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Obviously, X0 is a closed subspace of X, and X01 is a closed subspace of X0. Suppose that X02 is the 
orthogonal complement of X01 in X0, i.e., X0 = X01 ⊕ X02. Let P1 and P2 be the orthogonal projection 
operator from X onto X01 and X02, I1 and I2 be the inclusion operators from X01 and X02 to X, respectively. 
Furthermore, let I0 be the inclusion operator from X0 to X. Note that P1 is the conjugate operator of I1, 
and P2 is the conjugate operator of I2, i.e.,

(I1v, u)X = (v, P1u)X , ∀v ∈ X01, ∀u ∈ X,

(I2v, u)X = (v, P2u)X , ∀v ∈ X02, ∀u ∈ X.

By the hypothesis H0, A0 and A1 are self-adjoint. It is straightforward to verify that

P1A0 = 0, P1A1 = 0, P2A0 = 0. (26)

With these notations introduced, we further hypothesize that

H2: the bounded linear operator P1A2I1 from X01 to X01 is invertible;
H3: the bounded linear operator P2A1I2 from X02 to X02 is invertible;
H4: confined and projected onto kerP1A2 ∩ kerP2A1, the operator A0 is invertible;
H5: the bounded linear operator (P1A2I0, P2A1I0) from X0 to X01 ×X02 is invertible.

2.1. Equivalent saddle point problem

Applying the projection operators P1 and P2 onto both sides of (25) and recalling (26), we obtain

P1A2u = −k−2P1b,

(P2A1 − ikP2A2)u = (−ik)−1P2b.

These are two constraints on the solution u. By introducing two Lagrangian multipliers p ∈ X01 and t ∈ X02
into the operator equation (25), we derive the following saddle point problem: find (u, p, t) ∈ X×X01 ×X02
such that

(A0 − ikA1 − k2A2)u + A2I1p + A1I2t = b, (27)

P1A2u = −k−2P1b, (28)

(P2A1 − ikP2A2)u = (−ik)−1P2b. (29)

Proposition 2.1. For all k > 0, if u is a solution to the operator equation (25), then (u, 0, 0) is a solution to 
the saddle point problem (27)–(29). On the other hand, if (u, p, t) is a solution to the saddle point problem 
(27)–(29), then p = 0, t = 0, and u is a solution to the operator equation (25).

Proof. It suffices to prove the latter statement. Applying P1 onto both sides of (27) and recalling (26), we 
derive

−k2P1A2u + P1A2I1p = P1b.

Using (28) yields

P1A2I1p = 0,
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which leads to p = 0, since P1A2I1 is invertible on X01 by the hypothesis H2. Furthermore, applying P2
onto both sides of (27) and recalling (26), we derive

(−ikP2A1 − k2P2A2)u + P2A1I2t = P2b.

Using (29) yields

P2A1I2t = 0,

which leads to t = 0, since P2A1I2 is invertible on X02 by the hypothesis H3. The equation (27) is then 
reduced to (25), which implies that u is a solution to (25). �
2.2. Uniform solvability of saddle point problem

The saddle point problem (27)–(29) is a specific instance of the following problem with general data: find 
(u, p, t) ∈ X ×X01 ×X02 such that

(A0 − ikA1 − k2A2)u + A2I1p + A1I2t = b, (30)

P1A2u = n1, (31)

(P2A1 − ikP2A2)u = n2, (32)

where b ∈ X, n1 ∈ X01 and n2 ∈ X02.

Proposition 2.2. ∀k > 0, there exists a constant ck > 0, such that ∀b ∈ X, ∀n1 ∈ X01 and ∀n2 ∈ X02, the 
saddle point problem (30)–(32) admits a unique solution (u, p, t) ∈ X ×X01 ×X02 which satisfies

‖u‖X + ‖p‖X + ‖t‖X ≤ ck (‖b‖X + ‖n1‖X + ‖n2‖X) .

Proof. Applying P1 and P2 onto both sides of (30) and recalling (26), we derive

−k2P1A2u + P1A2I1p = P1b, (33)

(−ikP2A1 − k2P2A2)u + P2A2I1p + P2A1I2t = P2b. (34)

Using (31)–(32) yields

P1A2I1p = P1b + k2n1, (35)

P2A2I1p + P2A1I2t = P2b + ikn2. (36)

The derivation of (35)–(36) implies that if (u, p, t) is a solution of problem (30)–(32), then it is also a solution 
of operator equations (30), (35) and (36). On the other hand, if (u, p, t) is a solution of (30), (35) and (36), 
applying (33)–(34) we derive (31)–(32). These imply that the problem (30)–(32) has the same solution as 
the operator equations (30), (35) and (36). According to the hypotheses H2, H3 and H1, p, t and u can 
be successively solved from (35), (36) and (30). The proof thus finishes since all operators involved are 
bounded. �

Next let us consider the saddle point problem (30)–(32) when k = 0. In this case, the problem (30)–(32)
expresses as
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A0u + A2I1p + A1I2t = b, (37)

P1A2u = n1, (38)

P2A1u = n2. (39)

Proposition 2.3. There exists a constant c0 > 0, such that ∀ b ∈ X, ∀ n1 ∈ X01, ∀ n2 ∈ X02, the saddle point 
problem (37)–(39) admits a unique solution (u, p, t) ∈ X ×X01 ×X02 which satisfies

‖u‖X + ‖p‖X + ‖t‖X ≤ c0(‖b‖X + ‖n1‖X + ‖n2‖X).

Proof. According to the hypothesis H5, let v ∈ X0 be the unique solution of

P1A2I0v = n1, P2A1I0v = n2.

Set ũ = u − I0v, then ũ solves

A0ũ + A2I1p + A1I2t = b−A0I0v, (40)

P1A2ũ = 0, (41)

P2A1ũ = 0. (42)

The above implies that ũ ∈ kerP1A2 ∩ kerP2A1. According to the hypothesis H4, A0 is invertible when 
confined and projected to kerP1A2 ∩ kerP2A1. On the other hand, by the hypothesis H5, there exists a 
constant c > 0 such that for all (0, 0) �= (p, t) ∈ X01 ×X02, there exists 0 �= w ∈ X0 satisfying

P1A2I0w = p, P2A1I0w = t,

and

‖w‖X ≤ c(‖p‖X + ‖t‖X).

Since A1 and A2 are self-adjoint, we have

(I0w,A2I1p + A1I2t) = (P1A2I0w, p) + (P2A1I0w, t) = (p, p) + (t, t) = ‖p‖2
X + ‖t‖2

X ,

which leads to

‖A2I1p + A1I2t‖ ≥ (‖p‖2
X + ‖t‖2

X)/‖w‖X ≥ (‖p‖X + ‖t‖X)/(2c).

The above implies that the mapping A2I1p + A1I2t from X1 × X2 to X satisfies the inf–sup stability 
condition. By the classical mixed variation theory, we know that there exists a constant c2 > 0, such that 
∀ b ∈ X, ∀ n1 ∈ X01, ∀ n2 ∈ X02, the problem (40)–(42) admits a unique solution (ũ, p, t) ∈ X ×X01 ×X02
which satisfies

‖ũ‖X + ‖p‖X + ‖t‖X ≤ c2(‖b‖X + ‖v‖X).

The proof thus finishes since v is bounded by ‖n1‖X + ‖n2‖X . �
Proposition 2.2 and Proposition 2.3 reveal that the left hand of problem (30)–(32) defines an invertible 

bounded operator family on the augmented space X ×X01 ×X02 for all k ≥ 0. Since this operator family 
is analytic with respect to k, we then derive the main result of this paper.
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Theorem 2.1. Given an arbitrary but fixed k0 > 0, there exists a constant c3 = c3(k0), such that ∀ k ∈ [0, k0], 
∀ b ∈ X, ∀ n1 ∈ X01 and ∀ n2 ∈ X02, the saddle point problem (30)–(32) admits a unique solution (u, p, t) ∈
X ×X01 ×X02 which satisfies

‖u‖X + ‖p‖X + ‖t‖X ≤ c3(‖b‖X + ‖n1‖X + ‖n2‖X).

Thanks to Proposition 2.1 and Theorem 2.1, we then derive the stability estimate with respect to k for 
the operator equation (25).

Theorem 2.2. Let u be the solution of (25). Given an arbitrary but fixed k0 > 0, there exists a constant 
c4 = c4(k0), such that for all k ∈ (0, k0] it holds that

‖u‖X ≤ c4

(
‖P1b‖X

k2 + ‖P2b‖X
k

+ ‖b‖X
)
.

2.3. Asymptotic expansion

Now we can make an asymptotic expansion for the solution u of the operator equation (25). By Proposi-
tion 2.1 and Proposition 2.2, (u, p, t) with p = 0 and t = 0 is the unique solution to the saddle point problem 
(27)–(29). Let us make the formal asymptotic expansions

u =
∞∑

m=−2
(−ik)mum, p =

∞∑
m=−2

(−ik)mpm, t =
∞∑

m=−2
(−ik)mtm. (43)

Substituting the above into (27)–(29) and equating the different powers of k, for all m ≥ −2 we have

A0um + A2I1pm + A1I2tm = δm,0b−A1um−1 −A2um−2, (44)

P1A2um = δm,−2P1b, (45)

P2A1um = δm,−1P2b− P2A2um−1. (46)

In the above, δ·,· indicates the Kronecker symbol, which values 1 if two indices are equal, and 0 in the other 
cases. We have also made convention that um = 0 for all m < −2.

Proposition 2.4. For all m ≥ −2, the saddle point problem (44)–(46) admits a unique solution (um, pm, tm)
with pm = 0 and tm = 0. Besides, there exists a constant cm > 0 such that ‖um‖ ≤ cm‖b‖.

Proof. The existence and uniqueness follow by Proposition 2.3. Applying P1 onto the both sides of (44) and 
using (45) yields

P1A2I1pm = δm,0P1b− P1A2um−2 = δm,0P1b− δm−2,−2P1b = 0.

According to the hypothesis H2, we obtain pm = 0. Furthermore, applying P2 onto the both sides of (44)
and using (46) yields

P2A1I2tm = δm,0P2b− P2A1um−1 − P2A2um−2 = 0.

According to the hypothesis H3, we obtain tm = 0. The stability estimate follows by Proposition 2.3 and a 
sequential deduction. �
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Remark 2.1. When m = −2, the equations (44)–(46) express as

A0u−2 + A2I1p−2 + A1I2t−2 = 0,

P1A2u−2 = P1b,

P2A1u−2 = 0.

If P1b = 0, then by Proposition 2.4, we have u−2 = 0, p−2 = 0 and t−2 = 0.

Now for all J ≥ −1, let us truncate the series terms in (43) and put

u(J) =
J∑

m=−2
(−ik)mum, p(J) =

J∑
m=−2

(−ik)mpm, t(J) =
J∑

m=−2
(−ik)mtm,

u(J)
e = u(J) − u, p(J)

e = p(J) − p, t(J)
e = t(J) − t.

A direct computation yields that

(A0 − ikA1 − k2A2)u(J)
e + A2I1p

(J)
e + A1I2t

(J)
e

= (−ik)J+1A1uJ + (−ik)J+1A2uJ−1 + (−ik)J+2A2uJ ,

P1A2u
(J)
e = 0,

(P2A1 − ikP2A2)u(J)
e = (−ik)J+1P2A2uJ .

Applying Proposition 2.4 and Theorem 2.1, we then derive the following asymptotic error estimate.

Theorem 2.3. Let u be the solution of (25) and (um, 0, 0) the unique solution of (44)–(46). Given an arbitrary 
but fixed k0 > 0 and J ≥ −1, there exists a constant c5 = c5(J, k0), such that for all k ∈ (0, k0], it holds that

∥∥∥∥∥
J∑

m=−2
(−ik)mum − u

∥∥∥∥∥
X

≤ c5k
J+1‖b‖X .

3. The Helmholtz problem

The operator equation (8) is an instance of (25) with X = H1(Ω) and {Aj}2
j=0 defined by (4)–(6). It is 

easy to verify that

X0 = C, X01 = {0}, X02 = X0 = C.

Here and hereafter, the symbol C denotes the field of complex numbers. Besides, the hypotheses made on 
the operator equation (25) in Section 2 are all fulfilled for this instance:

H0: The self-adjoint property for {Aj}2
j=0 is obvious;

H1: For all k > 0, A0 − ikA1 − k2A2 is invertible (see [4]);
H2: The hypothesis H2 is trivial since X01 = {0} and P1 = 0;
H3: Given t ∈ X02 = C, let us consider the operator equation: find v ∈ X02 = C such that

P2A1I2v = t.
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This equation is equivalent to

(1, t)1 = (1, P2A1I2v)1 = (1, A1I2v)1 =< 1, I2v >=< 1, v >,

which leads to

v = |Ω|t/|Γ|,

where |Ω| and |Γ| denote the volume and boundary measures, respectively. This certainly implies that 
the operator P2A1I2 from X02 to X02 is invertible;

H4: Actually, since P1 = 0, according to the definition of A1 (see (5)), we have

kerP1A2 ∩ kerP2A1 = kerP2A1 = H1
∗ (Ω) ≡ {v ∈ H1(Ω)| < 1, v >= 0}.

It is known that confined to H1
∗(Ω), the semi-norm | ·|1,Ω is a norm equivalent to the standard H1-norm. 

This implies that the operator A0 (see (4)) is invertible when confined and projected to H1
∗(Ω);

H5: For this instance, this hypothesis is the same as H3, since X01 = {0}, P1 = 0 and I0 = I2.

Note that since X01 = {0} and P1 = 0, the saddle point problem (44)–(46) is reduced to

A0um + A1I2tm = δm,0b−A1um−1 −A2um−2, (47)

P2A1um = δm,−1P2b− P2A2um−1. (48)

According to Remark 2.1, we know that u−2 = 0. In the case that m = −1, the equations (47)–(48) express 
as

A0u−1 + A1I2t−1 = 0, (49)

P2A1u−1 = P2b. (50)

The corresponding variational form is to find (u−1, t−1) ∈ H1(Ω) × C such that for all v ∈ H1(Ω) it holds 
that

(∇v,∇u−1)+ < v, t−1 >= 0,

< 1, u−1 >= (1, b)1 = (1, f)+ < 1, g > .

Therefore, by Proposition 2.4 we have t−1 = 0 and

u−1 = [(1, f)+ < 1, g >]/|Γ|.

Applying Theorem 2.3 we derive

Theorem 3.1. Let u be the solution of (3) and (um, 0) the solution of (47)–(48). Given an arbitrary but fixed 
k0 > 0 and J ≥ −1, there exists a constant c6 = c6(k0, J), such that for all k ∈ (0, k0], it holds that

∥∥∥∥∥
(1, f)+ < 1, g >

−ik|Γ| +
J∑

m=0
(−ik)mum − u

∥∥∥∥∥
1,Ω

≤ c6k
J+1(‖f‖0,Ω + ‖g‖ 1

2 ,Γ).

As a by-product, we derive the following stability estimate.
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Theorem 3.2. Let u be the solution of (3). Given an arbitrary but fixed k0 > 0, there exists a constant 
c7 = c7(k0), such that for all k ∈ (0, k0], it holds that

‖u‖1,Ω ≤ c7

(
|(1, f)+ < 1, g > |

k
+ ‖f‖0,Ω + ‖g‖ 1

2 ,Γ

)
,

|u|2,Ω ≤ c7

(
‖f‖0,Ω + ‖g‖ 1

2 ,Γ

)
.

4. The Navier problem

The operator equation (16) is an instance of (25) with X = (H1(Ω))n and {Aj}2
j=0 defined by (12)–(14). 

For this instance, it is easy to verify that (see [2])

X0 = {Mx + r|∀M ∈ Cn×n, M† = −M, ∀r ∈ Cn}, X01 = {0}, X02 = X0.

Note that X0 is simply the rigid body displacement space. Besides, the hypotheses made on the operator 
equation (25) in Section 2 are all fulfilled for this instance:

H0: The self-adjoint property for {Aj}2
j=0 is obvious;

H1: For all k > 0, A0 − ikA1 − k2A2 is invertible (see [5]);
H2: The hypothesis H2 is trivial since X01 = {0} and P1 = 0;
H3: Given t ∈ X02, let us consider the operator equation: find v ∈ X02 such that

P2A1I2v = t.

This equation is equivalent to find v ∈ X02 such that for all w ∈ X02, it holds that

(w, t)1 = (w,P2A1I2v)1.

Note that according to the definition of A1 (see (13)), we have

(w,P2A1I2v)1 = (w,A1I2v)1 =< w, v > .

Since X02 is of finite dimension, we know that the duals (w, t)1 and < w, v > define two equivalent 
inner products on X02. This implies that the operator P2A1I2 is invertible;

H4: Actually, since P1 = 0 we have

kerP1A2 ∩ kerP2A1 = kerP2A1 = H1
∗(Ω) ≡ {v ∈ (H1(Ω))n| < w, v >= 0, ∀w ∈ X0}.

It is known that confined to H1
∗(Ω), the semi-norm | ·|1,Ω is a norm equivalent to the standard H1-norm. 

Since (·, A0·) is an equivalent quadratic form as (∇·, ∇·) (see [2]), we know that the operator A0 is 
invertible when confined and projected to H1

∗(Ω);
H5: For this instance, this hypothesis is the same as H3, since X01 = {0}, P1 = 0 and I0 = I2.

Note that since X01 = {0} and P1 = 0, the saddle point problem (44)–(46) is reduced to

A0um + A1I2tm = δm,0b−A1um−1 −A2um−2, (51)

P2A1um = δm,−1P2b− P2A2um−1. (52)

According to Remark 2.1, we have u−2 = 0. In the case that m = −1, the equations (51)–(52) express as
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A0u−1 + A1I2t−1 = 0, (53)

P2A1u−1 = P2b. (54)

The corresponding variational form is to find (u−1, t−1) ∈ (H1(Ω))n × X02 such that for all (v, s) ∈
(H1(Ω))n ×X02 it holds that

λ(trε(v), trε(u−1)) + 2μ(ε(v), ε(u−1))+ < v, t−1 >= 0,

< s, u−1 >= (s, b)1 = (s, f)+ < s, g > .

Applying Theorem 2.3 we derive

Theorem 4.1. Let u be the solution of (11) and (um, 0) the solution of (51)–(52). Given an arbitrary but 
fixed k0 > 0 and J ≥ −1, there exists a constant c8 = c8(k0, J), such that for all k ∈ (0, k0], it holds that

∥∥∥∥∥
u−1

−ik
+

J∑
m=0

(−ik)mum − u

∥∥∥∥∥
1,Ω

≤ c8k
J+1(‖f‖0,Ω + ‖g‖ 1

2 ,Γ),

where u−1 ∈ X0 solves

< s, u−1 >= (s, b)1 = (s, f)+ < s, g >, ∀s ∈ X0.

Considering u−1 is a linear function of x, as a by-product of the above theorem, we have

Theorem 4.2. Let u be the solution of (11). Given an arbitrary but fixed k0 > 0, there exists a constant 
c9 = c9(k0), such that for all k ∈ (0, k0], it holds that

|u|2,Ω ≤ c9

(
‖f‖0,Ω + ‖g‖ 1

2 ,Γ

)
.

5. The Maxwell problem

The operator equation (24) is an instance of (25) with X = H(imp; Ω) and {Aj}2
j=0 defined by (20)–(22). 

Let us put

Y (Ω) = {w ∈ H1(Ω)|w|Γ ∈ H1(Γ)}.

For this instance, it is easy to verify that

X0 = ∇Y (Ω), X01 = ∇H1
0 (Ω), X02 = ∇e(H1(Γ)).

In the above, e indicates the harmonic extension from H
1
2 (Γ) to H1(Ω). We show that the hypotheses made 

on the operator equation (25) in Section 2 are all fulfilled:

H0: The self-adjointness of A0, A1 and A2 is obvious;
H1: This hypothesis holds since A0 − ikA1 − k2A2 is invertible ([10]);
H2: This hypothesis holds since P1A2I1 = IdX1 ;
H3: Given t′ ∈ H1(Γ)/C, i.e., ∇e(t′) ∈ X02, let us determine t ∈ H1(Γ)/C, i.e., ∇e(t) ∈ X02, such that for 

all s ∈ H1(Γ)/C, it holds that

(∇e(s), P2A1I2∇e(t))H(imp;Ω) = (∇e(s),∇e(t′))H(imp;Ω).
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The above equation is equivalent to

< ∇Γs,∇Γt >= (∇e(s),∇e(t′))+ < ∇Γs,∇Γt
′ >, (55)

since

(∇e(s), P2A1I2∇e(t))H(imp;Ω) =< ∇Γs,∇Γt >,

and

(∇e(s),∇e(t′))H(imp;Ω) = (∇e(s),∇e(t′))+ < ∇Γs,∇Γt
′ > .

Since ‖∇Γ · ‖0,Γ is an equivalent norm on H1(Γ)/C, from (55) we know that t is uniquely determined 
in H1(Γ)/C. Besides, we have

‖∇e(t)‖H(imp;Ω) � |t|1,Γ � |t′|1,Γ � ‖∇e(t′)‖H(imp;Ω).

Here and hereafter, the symbol � implies that the left quantity is bounded by the right quantity 
multiplied with a positive constant which depends only on the geometry of definition domain. The 
above implies that the operator P2A1I2 from X02 to X02 is invertible. Therefore, the hypothesis H3 
holds;

H4: It is straightforward to check that

kerP1A2 ∩ kerP2A1 = H0(imp; Ω) ≡ {v ∈ H(imp; Ω)|div v = 0, divΓ vt = 0}.

The reader is referred to [1,10] for the definition of boundary divergence operator divΓ. By Theorem A.1
in the Appendix, the hypothesis H4 follows;

H5: Given p ∈ H1
0 (Ω) and t ∈ H1(Γ)/C, i.e., ∇p ∈ X01 and ∇e(t) ∈ X02, the system of operator equations: 

find v ∈ X0 such that

P1A2I0v = ∇p, P2A1I0v = ∇e(t),

is equivalent to seek v = ∇z with z ∈ Y (Ω)/C such that for all q ∈ H1
0 (Ω) and all s ∈ H1(Γ)/C, it 

holds that

(∇q,∇z) = (∇q,∇p),

< ∇Γs,∇Γz >= (∇e(s),∇e(t))+ < ∇Γs,∇Γt > .

The solution z is thus unique and existent, and it continuously depends on p and t.

Now we can apply Theorem 2.3 to derive the asymptotic expansion for the solution to the variational 
problem (19). We study the first two terms as follows:

• Term u−2: In the case that m = −2, we have

A0u−2 + A2I1p−2 + A1I2t−2 = 0,

P1A2u−2 = P1b,

P2A1u−2 = 0.
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The corresponding variational problem is to find (u−2, p−2, t−2) ∈ H(imp; Ω) ×H1
0 (Ω) ×H1(Γ)/C such 

that for all (v, q, s) ∈ H(imp; Ω) ×H1
0 (Ω) ×H1(Γ)/C it holds that

(curl v, curlu−2) + (v,∇p−2)+ < vt,∇Γt−2 >= 0,

(∇q, u−2) = (∇q, f),

< ∇Γs, u−2,t >= 0.

By Proposition 2.4, we have p−2 = 0 and t−2 = 0. Besides, u−2 = ∇φ with φ ∈ H1
0 (Ω) solving

(∇q,∇φ) = (∇q, f), ∀q ∈ H1
0 (Ω).

• Term u−1: In the case that m = −1, we have

A0u−1 + A2I1p−1 + A1I2t−1 = 0,

P1A2u−1 = 0,

P2A1u−1 = P2b− P2A2u−2.

The corresponding variational problem is to find (u−1, p−1, t−1) ∈ H(imp; Ω) ×H1
0 (Ω) ×H1(Γ)/C such 

that for all (v, q, s) ∈ H(imp; Ω) ×H1
0 (Ω) ×H1(Γ)/C it holds that

(curl v, curlu−1) + (v,∇p−1)+ < vt,∇Γt−1 >= 0,

(∇q, u−1) = 0,

< ∇Γs, u−1,t >= (e(s), f)− < s, g > −(e(s),∇φ).

By Proposition 2.4, we have p−1 = 0 and t−1 = 0. In addition, u−1 = ∇e(ψ) with ψ ∈ H1(Γ)/C solving

< ∇Γs,∇Γψ >= (e(s), f)− < s, g > −(e(s),∇φ).

Applying Theorem 2.3 we derive

Theorem 5.1. Let u be the solution of (19) and (um, 0, 0) the solution of (44)–(46). Given an arbitrary but 
fixed k0 > 0 and J ≥ −1, there exists a constant c10 = c10(k0, J), such that for all k ∈ (0, k0], it holds that

∥∥∥∥∥(−ik)−2∇φ + (−ik)−1∇e(ψ) +
J∑

m=0
(−ik)mum − u

∥∥∥∥∥
H(imp;Ω)

≤ c10k
J+1(‖f‖0,Ω + ‖g‖ 1

2 ,Γ),

where φ ∈ H1
0 (Ω) solves

(∇q,∇φ) = (∇q, f), ∀q ∈ H1
0 (Ω),

and ψ ∈ H1(Γ)/C solves

< ∇Γs,∇Γψ >= (e(s), f)− < s, g > −(e(s),∇φ), ∀s ∈ H1(Γ)/C.
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6. Conclusion

We have performed asymptotic analysis for several time-harmonic wave problems with small wave number. 
These problems can be categorized into an operator equation frame, whose coefficient operator forms a 
quadratic analytic operator family. When the wave number parameter is set as zero, the coefficient operator 
is not invertible, which renders the operator equation singularly perturbed when the wave number is small. 
By introducing suitable Lagrangian multipliers, we transformed the operator equation into a saddle point 
problem. We proved that the saddle point problem is uniformly solvable. Based on this fact, we derived the 
asymptotic expansion for the solution of operator equation.

It turns out that k = 0 is an order-one pole of the analytic inverse operator family for the Helmholz and 
Navier problems, and a order-two pole of that for the Maxwell problem. The former is a recovered result 
built in [6] and [5]. However, to the authors’ knowledge, the result for the Maxwell problem is new. Besides, 
different from the integral equation method employed in [6] and [5], our method can be easily extended to 
problems with variable coefficient problems.

Appendix A. On the equivalent norm in H0(imp; Ω)

Theorem A.1. Confined to H0(imp; Ω), ‖curl · ‖0,Ω is a norm equivalent to ‖ · ‖H(imp;Ω).

Proof. It suffices to show that for all u ∈ H0(imp; Ω), it holds that

‖u‖0,Ω + ‖ut‖0,Γ � ‖curlu‖0,Ω.

Let us set T = curlu. Since divT = 0, there exists W ∈ H1(Ω) such that

T = curlW, divW = 0, ‖W‖1,Ω � ‖curlu‖0,Ω.

Set Z = u −W , then we have curlZ = 0 and divZ = 0. These imply that there exists a scalar potential 
p ∈ H1(Ω)/C such that Z = ∇p and Δp = 0. Since u = W + ∇p and divΓ ut = 0, it holds that

ΔΓp = −divΓ WT .

This implies that

|p|1,Γ � ‖divΓ WT ‖−1,Γ � ‖W‖0,Γ � ‖W‖1,Ω � ‖curlu‖0,Ω.

By the standard regularity argument, we know that p ∈ H
3
2 (Ω)/C and

|p| 3
2 ,Ω � ‖curlu‖0,Ω.

We then derive

‖u‖ 1
2 ,Ω ≤ ‖W‖ 1

2 ,Ω + ‖∇p‖ 1
2 ,Ω � ‖W‖1,Ω + |p| 3

2 ,Ω � ‖curlu‖0,Ω,

which leads to

‖u‖0,Ω � ‖curlu‖0,Ω. (A.1)

Besides, since

ut = WT + ∇Γp,
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we have

‖ut‖0,Γ ≤ ‖WT ‖0,Γ + ‖∇Γp‖0,Γ � ‖W‖1,Ω + |p|1,Γ � ‖curlu‖0,Ω. (A.2)

Combining (A.1)–(A.2) we finish the proof. �
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