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Abstract
This paper presents a least-squares (LS) finite element method for linear Phan-Thien–Tanner
(PTT) viscoelastic fluid flows. We consider stabilized weights in the LS method for the
viscoelastic model and prove that the LS approximation converges to the linearized solutions
of the linear PTTmodel; the convergence is at the optimal rate for the velocity in the H1-norm
and at suboptimal rates for the stress and pressure in the L2-norm, respectively. For numerical
experiments we first consider the flow through a planar channel to illustrate our theoretical
results. The LS method is then applied to a flow through the slot channel with two depth
ratios and the effects of physical parameters are discussed. Numerical solutions of the channel
problem indicate that flowcharacteristics of the viscoelastic polymer solution are describedby
the results obtained using the method. Furthermore, we present the hole pressure for various
Weissenberg numbers, and compare with that derived from the Higashitani–Pritchard (HP)
theory.

Keywords Least-squares · The PTT model · Hole pressure · Normal-stress difference ·
Transverse slot · Weissenberg number

1 Introduction

The objective of this study is to develop a least-squares finite element method (LS) for
analyzing linear Phan-Thien–Tanner (PTT) viscoelastic fluid flow problems. In contrast to
Newtonian model problems, PTT model problems are associated with fluid viscosity, elas-
ticity, and memory. Phan-Thien and Tanner [19] developed a three-parameter model by
using molecular concepts that are based on nonlinear stress. This model has gained promi-
nencebecause it describes the power-law regions for viscosity and normal-stress coefficients.
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In the PTT model, the extra-stress is written as a superposition of the polymeric and viscous
stresses, i.e.

τ = τ p + τ s .

The viscous stress, which is associated with a solvent in some applications, is Newtonian,
i.e.,

τ s = 2ηsD(u), (1)

where ηs is a constant viscosity and D(u) = 0.5(∇u+∇uT ) is the standard strain rate tensor
with the velocity u. In the linear PTT model, the polymer contribution to the stress obeys the
following equation [1,17],

τ p

(
1 + ελ

ηp
(tr(τ p))

)
+ λ(u · ∇τ p − A(∇u, τ p)) = 2ηpD(u), (2)

where

A(∇u, τ p) = (∇u)T · τ p + τ p · ∇u.

In (2), λ is a relaxation time and ηp is the polymeric contribution to the viscosity. The
extensibility parameter ε lies in the range 0 ≤ ε ≤ 1, and setting ε = 0 reduces the model
to the Oldroyd-B model. Replacing the first term of (2) by τ p exp(

ελ
ηp

(tr(τ p))) yields the
exponential form, which is another extensively used PTT model [1,2].

Consider the steady-state, incompressible Navier–Stokes problem in a two-dimensional
bounded domain Ω with the Lipschitz continuous boundary Γ . Collecting (2), we have the
linear PTT model written as

ρ(u · ∇u) − ∇ · τ p − ∇ · τ s + ∇ p = f in Ω,

∇ · u = 0 in Ω,

τ s − 2ηsD(u) = 0 in Ω,

τ p + λ(u · ∇τ p − A(∇u, τ p)) + ελtr(τ p)τ p

ηp
− 2ηpD(u) = 0 in Ω,

u = 0 on Γ , (3)

where ρ is the density and f is the body force vector. We assume that the scalar pressure p
satisfies a zero mean constraint to ensure the uniqueness of pressure.

As pointed out in [1], this first-order problem can be nondimensionalized as:

Re(u · ∇u) − ∇ · τ p − ∇ · τ s + ∇ p = f in Ω, (4)

∇ · u = 0 in Ω, (5)

τ s − 2βD(u) = 0 in Ω, (6)

τ p + We(u · ∇τ p − A(∇u, τ p)) + εWetr(τ p)τ p

(1 − β)
− 2(1 − β)D(u) = 0 in Ω, (7)

u = 0 on Γ , (8)

where Re is theReynolds number, Re ≡ LcUcρ/η0, inwhichηo = ηs + ηp is the zero-shear-
rate viscosity, Lc and Uc are characteristic length and velocity, respectively. β ≡ ηs/ηo ∈
[0, 1] is the ratio of solvent viscosity to the total zero-shear-rate viscosity and We ≥ 0 is the
Weissenberg number defined by We ≡ λUc/Lc. In the case of We = 0, the model reduces
to a Newtonian model, the Navier–Stokes equations.
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Various developments have been reported in the use of LS methods for viscoelastic flow
problems [4,6,7,11,22]. LS methods use the L2-norm of the residuals of the continuity
equation multiplied by appropriately adjusted weights. These problems can be conveniently
simulated by splitting the extra-stress tensor into viscous and elastic components by changing
the variables in the LS formulations. LS methods offer several theoretical and computational
advantages [3]. Discretization generates an algebraic system that is always symmetric and
positive definite, and a single approximating space for all variables can be used for program-
ming LS methods [6]. The LS functional also provides a local and inexpensive a posteriori
error estimate that is highly effective and reliable for error control [16]. In [8], Coronado et
al. presented a Galerkin least-squares (GLS) method for the Oldroyd-Bmodel, where LS sta-
bilization terms are added to the standard Galerkin formulation. In their work, appropriately
chosen weights are used in the LS stabilization terms and equal order linear interpolation
functions are considered for numerical experiments. In our previous research [6,7,11], nonlin-
ear functions have been used for LS methods (NWLS) to solve viscoelastic fluid flows past a
4-to-1 contraction. The results show that the NWLS solutions can be improved by sufficiently
weighting the mass equation and by the choice of nonlinear weights on velocity gradient and
constitutive equations; however, the numerical computations have been performed at lowWe
numbers without the inertial term.

On the basis of these studies, we present a linear weighted LS method for analyzing
the linear PTT viscoelastic fluid flows past a transverse slot. Numerical simulations of high
Weissenberg flows are known to be challenging due to somemathematical and physical issues
[17]. In this study we consider an LS method involving appropriate weights to prevent the
violation of mass conservation and to improve convergence of numerical schemes for the
high Weissenberg flows [6,11]. We use a residual-type a posteriori error estimator for the LS
functional to adjust the weight of the mass equation [15], and use a weight function of the
extensibility parameter and the Weissenberg number. For viscoelastic fluid flows, the use of
the LS method with constant weights is much simpler than the NWLS method [6,11] or the
GLSmethod [8]. Furthermore,we estimate the coercivity and continuity for the homogeneous
LS functional, which involves the sum of equation residuals measured in L2-norm. A similar
proof is given in [22] for a non-weighted LS functional, but we present our detailed proof
involving the convection term for the completeness of this paper. Even though we provide the
analysis of error bounds with the condition of a small solution or small Weissenberg number,
our numerical results in Sect. 4 show this assumption may not be necessary for simulations.

One of numerical examples considered in this study is the viscoelastic fluid flow between
two parallel plates past a transverse slot (Fig. 1). Pressure transducers mounted at points
a and b show the readings of Pa = (pa − τ a

pyy) and Pb = (pb − τ b
pyy), respectively.

Ph = Pb − Pa = (pb − pa) + (τ a
pyy − τ b

pyy) represents the hole pressure (Ph), with
Ph > 0 for polymeric fluids and Ph = 0 for the Newtonian flow. These are the feature of
viscoelastic effects [20]. Numerous studies have been attempted to improve understanding
of such a flow. In [18], Tanner and Pipkin presented theoretical and experimental results for
the creeping flow of a second-order fluid over a slot. They indicated that the hole pressure
was one-quarter of the first normal-stress difference (N1). Higashitani and Pritchard [9] used
a different approach and developed the Higashitani–Pritchard (HP) equation to estimate the
hole pressure (Ph):

Ph =
∫ τ b

w

0

N1

2τ
dτ , (9)
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Fig. 1 The slot channel

where N1 is the primary normal-stress difference in terms of the shear stress in a simple
shear flow, and τ b

w is the disturbed wall shear stress at point b shown in Fig. 1. Note that the
HP equation (9), is formulated in [20] under the symmetric assumption of the streamlines,
shear stress, and axial stress about the centreline of the slot. In [20], the results show that this
equation is valid only for a creeping flow with a low We. The streamlines of pressure with
different values of d/h and l/h are shown in [10]. They indicated that as the slot become
deeper, it is expected that the shear rate at the bottom would diminish and the flow pattern
would change at the bottom of the slot.

We apply our LS method to simulate flows through the transverse slot considered in
[21] and address the physical parameter effects. The resulting hole pressure is evaluated
numerically for various We, and compared with that derived form the HP theory. Numerical
results show that (9) is valid whenWe is low, as demonstrated in [20] and invalid whenWe is
high. In other numerical example of a planar channel problem,we demonstrate that numerical
solutions exhibit the highest convergence rates, which are consistent with the theoretically
predicted rates, when conforming piecewise polynomial elements are used for all variables.

The rest of this paper is organized as follows. Section 2 presents the notation, preliminar-
ies, and coercivity and continuity estimates for the LS functional. Section 3 presents error
estimates of the LS approximations. Section 4 presents numerical results for flows through
a planar channel and past a slot in a channel, respectively. Finally, Sect. 5 offers concluding
remarks.

2 An LS Finite Element Functional

LetD (Ω) be the linear space of infinitely differentiable functions with compact supports on
Ω , that is,

D
(
Ω̄

) = {ψ |Ω : ψ ∈ D(O) for some open subsect ⊂ O ⊂ R
2},

where Ω̄ is the closure ofΩ [13]. Let Hs (Ω), s ≥ 0, be the Sobolev spaces with the standard
associated inner products (·, ·)s and their respective norms ‖·‖s . For s = 0, Hs (Ω) coincides
with L2 (Ω), and Hs

0 (Ω) denotes the closure of D (Ω) with respect to the norm ‖·‖s . For
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positive values of s, the space H−s (Ω) is defined as the dual space of Hs
0 (Ω) equipped with

the norm

‖σ‖−s := sup
0 	=v∈Hs

0 (Ω)

〈σ, v〉
‖v‖s ,

where (·, ·) is the duality pairing between H−s (Ω) and Hs
0 (Ω) when there is no risk of

confusion.
The function spaces used in our variational formulations are defined as

V := (H1
0 (Ω))2, Q := L2

0(Ω) ∩ H1(Ω),

�s := {σ | σ ∈ (H1 (Ω))2×2, σi j = σ j i }, � p := �s

and let the product space Φ := V × Q × �s × � p .
Based on [4], linearizing (4)–(8) about the approximation

u · ∇u ≈ u1 · ∇u + u · ∇u1 − u1 · ∇u1,

τ p1 ≈ τ p, u1 ≈ u,

where we assume � · u1 = 0 and

max{‖u1‖∞, ‖∇u1‖∞, ‖τ p1‖∞, ‖∇τ p1‖∞} ≤ M < ∞, (10)

results in the following replacement rules:

u · ∇τ p ≈ u1 · ∇τ p + u · ∇τ p1 − u1 · ∇τ p1 ,

A(∇u, τ p) ≈ A(∇u1, τ p) + A(∇u, τ p1) − A(∇u1, τ p1),

tr(τ p)τ p ≈ tr(τ p1)τ p + tr(τ p)τ p1 − tr(τ p1)τ p1.

Note thatu1 and τ p1 will be replaced byuh
� and τ p

h
� which are the �th iterative approximations

in Sect. 3.
The linearized system of the linear PTT model may now be written as

Re(u1 · ∇u + u · ∇u1) − ∇ · τ p − ∇ · τ s + ∇ p = f1 in Ω, (11)

∇ · u = 0 in Ω, (12)

τ s − 2βD(u) = 0 in Ω, (13)

τ p + We
(
u1 · ∇τ p

) + B(u, τ p) + C(τ p) − 2(1 − β)D(u) = f2 in Ω, (14)

u = 0 on Γ , (15)

where we define

f1 = Re(u1 · ∇u1) + f,

B(u, τ p) = We
(
u · ∇τ p1 − A(∇u1, τ p) − A(∇u, τ p1)

)
,

C(τ p) = (εWe/(1 − β))
(
tr(τ p1)τ p + tr(τ p)τ p1

)
,

f2 = We
(
u1 · ∇τ p1 − A(∇u1, τ p1)

) + (εWe/(1 − β))(tr(τ p1)τ p1).

The LS functional for (11)–(15) is given by

J (u, p, τ s, τ p; F)

= ∥∥Re(u1 · ∇u + u · ∇u1) − ∇ · τ s − ∇ · τ p + ∇ p − f1
∥∥2
0

+ K ‖∇ · u‖20 + ‖τ s − 2βD(u)‖20
+W

∥∥τ p + We
(
u1 · ∇τ p

) + B(u, τ p) + C(τ p) − 2(1 − β)D(u) − f2
∥∥2
0 , (16)
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where the positive constant K is a weight of themass equation. Themass conservationweight
is chosen as K = 10m for 0 ≤ m ≤ 10 based on [6,11–13,15]. Their results indicate that
LS solutions can be improved by sufficiently weighting the divergence term. In addition,
the weight W is introduced to stabilize the LS form at a high We and ε in the constitutive
equation. The weight given by W = (1 + We + ε)2 will be used, which is simpler than the
nonlinear weight of the NWLS method in [6,11]. In [6,11], some physical parameters are
used in a nonlinear weighting function for reflecting flow characteristics of the viscoelastic
polymer solution. The nonlinear weighting function stabilizes the least-squares form in the
constitutive equation and improves convergence rates over the case of noweighting. In [8,11],
appropriately designed weight functions aboutWe are employed when using the NWLS and
GLS methods to solve the Oldroyd-B model at high We numbers. In this work we use the
simpler weight W = (1 + We + ε)2 based on successful numerical tests of those methods
and our preliminary test.

We now consider the LS minimization problem for the solution of system (11)−(15)
defined as: choose U ∈ Φ such that

J (U; F) = inf
V∈Φ

J (V ; F), (17)

where U = (u, p, τ s, τ p) and V = (v, q, σ s, σ p).
To appropriately adjust theweight value K in numerical experiments,wewill also consider

the LS functional of the residual of the system (4)–(8), as follows:

g(U; f)

= ∥∥Re(u · ∇u) − ∇ · τ s − ∇ · τ p + ∇ p − f
∥∥2
0 + ‖∇ · u‖20 + ‖τ s − 2βD(u)‖20

+
∥∥∥∥τ p + We(u · ∇τ p − A(∇u, τ p)) + εWe

(1 − β)
tr(τ p)τ p − 2(1 − β)D(u)

∥∥∥∥
2

0
,(18)

∀ U = (u, p, τ s, τ p) ∈ Φ. The L2 functional g(U; f) is an a posteriori error estimate for
the first-order system LS method as in [12,15] and serves as an indicator to adjust the weight
K = 10m .

Denote two norms on Φ as

‖|U |‖ =
(
‖u‖21 + ‖p‖20 + ‖τ s‖20 + ∥∥τ p

∥∥2
0

)1/2
(19)

and

‖|U |‖1 =
(
Re2 ‖u‖21 + ‖p‖21 + ‖τ s‖21 + ∥∥τ p

∥∥2
1

)1/2
(20)

∀U = (u, p, τ s, τ p) ∈ Φ. We now derive some a priori estimates for the first-order system
(16), i.e., the coercivity and continuity estimates for the homogeneous LS functional. As
mentioned in Sect. 1, a similar proof is found in [22], however we present a detailed proof
because the a priori estimates will play crucial roles in the error estimation of our weighted
LS method.

Theorem 1 For any U = (u, p, τ s, τ p) ∈ Φ, there are positive constants, c0 and c1, which
depend on Ω , β, We, ε, and M in (10), such that

c0 ‖|U |‖2 ≤ J (U; 0) ≤ c1 ‖|U |‖21 , (21)

for sufficiently small M in Ω .
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Proof The upper bound follows naturally from the triangle inequality. We proceed to show
the validity of the lower bound in (21). For the lower bound, we define

H := ∥∥−∇ · τ s − ∇ · τ p + ∇ p
∥∥2
0 + ‖∇ · u‖20 + ‖τ s − 2βD(u)‖20

+ ∥∥τ p + We
(
u1 · ∇τ p

) − 2(1 − β)D(u)
∥∥2
0 ,

as shown in [11]. By Green’s formula and the Cauchy–Schwarz inequality, for any ϕ ∈
(H1

0 (Ω))2,

〈∇ p,ϕ〉 = 〈−∇ · τ s − ∇ · τ p + ∇ p,ϕ
〉 + 〈τ s, D(ϕ)〉 + 〈

τ p, D(ϕ)
〉

(22)

≤ (∥∥−∇ · τ s − ∇ · τ p + ∇ p
∥∥
0 + ‖τ s‖0 + ∥∥τ p

∥∥
0

) ‖ϕ‖1 . (23)

Using the inequality (see [5])

‖p‖0 ≤ C1 ‖∇ p‖−1 ,

we have

‖p‖0 ≤ C1 ‖∇ p‖−1 ≤ C1
(∥∥−∇ · τ s − ∇ · τ p + ∇ p

∥∥
0 + ‖τ s‖0 + ∥∥τ p

∥∥
0

)
.

Hence, we have the estimate

‖p‖0 ≤ C1
(
H1/2 + ∥∥τ p

∥∥
0 + ‖τ s‖0

)
. (24)

Note that
〈
u1 · ∇τ p, τ p

〉 = 0 with ∇ · u1 = 0 and u1|Γ = 0, therefore we also have

2β

1 − β

∥∥τ p
∥∥2
0 =

〈
τ p + We(u1 · ∇τ p) − 2(1 − β)D (u),

2β

1 − β
τ p

〉
+ 4β

〈
D (u), τ p

〉
.

(25)
By Green’s formula and the Poincaré–Friedrichs inequality

‖u‖0 ≤ C2 ‖D (u)‖0 , (26)

we have

〈
τ s + τ p, D (u)

〉 = 〈−∇ · τ s − ∇ · τ p + ∇ p, u
〉 + 〈p,∇ · u〉

≤ ‖ − ∇ · τ s − ∇ · τ p + ∇ p‖0‖u‖0 + ‖p‖0‖∇ · u‖0
≤ H1/2‖u‖0 + H1/2‖p‖0 ≤ H1/2(C2‖D(u)‖0 + ‖p‖0). (27)
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Combining (26) and (27), we bound the linear combination

4β2 ‖D (u)‖20 + ‖τ s‖20 + 2β

1 − β

∥∥τ p
∥∥2
0

= 〈−τ s + 2βD (u), 2βD (u)〉 + 2β 〈τ s , D (u)〉 + 〈τ s − 2βD (u), τ s〉 + 2β 〈D (u), τ s〉
+

〈
τ p + We(u1 · ∇τ p) − 2(1 − β)D (u),

2β

1 − β
τ p

〉
+ 4β

〈
D (u), τ p

〉
≤ ‖τ s − 2βD (u)‖0(2β)‖D (u)‖0 + ‖τ s − 2βD (u)‖0‖τ s‖0

+‖τ p + We(u1 · ∇τ p) − 2(1 − β)D (u)‖0
(

2β

1 − β

)
‖τ p‖0 + 〈

4βτ s + 4βτ p, D (u)
〉

≤ ‖τ s − 2βD (u)‖0(2β‖D (u)‖0 + ‖τ s‖0)
+ 2β

1 − β
‖τ p + We(u1 · ∇τ p) − 2(1 − β)D (u)‖0‖τ p‖0 + 4βH1/2(C2‖D(u)‖0 + ‖p‖0)

≤ [‖τ s − 2βD (u)‖0 + ‖τ p + We(u1 · ∇τ p) − 2(1 − β)D (u)‖0
]

·
(
2β‖D (u)‖0 + ‖τ s‖0 + 2β

1 − β
‖τ p‖0

)
+ 4βH1/2(C2‖D(u)‖0 + ‖p‖0)

≤ √
2H1/2

(
2β‖D (u)‖0 + ‖τ s‖0 + 2β

1 − β
‖τ p‖0

)
+ 4βH1/2(C2‖D (u)‖0 + ‖p‖0)

≤ C(β)H1/2(‖D (u)‖0 + ‖τ s‖0 + ‖τ p‖0 + ‖p‖0), (28)

where C(β) is a constant depends on β. Using (24), (28) and Young’s inequality,

‖D (u)‖20 + ‖τ s‖20 + ∥∥τ p
∥∥2
0 ≤ C(β)H1/2(‖D (u)‖0 + ‖τ s‖0 + ‖τ p‖0 + H1/2)

≤ C(β)
[
δ−1H + 3δ(‖D (u)‖20 + ‖τ s‖20 + ‖τ p‖20) + H

]
for any δ > 0. By choosing sufficiently small δ, we establish

‖D (u)‖20 + ‖τ s‖20 + ∥∥τ p
∥∥2
0 ≤ C(β)H . (29)

Using (24), (26), and (29), we obtain

‖|U |‖2 ≤ C(β)H . (30)

To estimate a lower bound of J (U; 0) we first consider the following.

‖B(u, τ p)‖0 = We‖u · ∇τ p1 − A(∇u1, τ p) − A(∇u, τ p1)‖0
≤ We(M‖u‖0 + 2M‖τ p‖0 + 2M‖∇u‖0)
≤ 2We M(

√
2‖u‖1 + ‖τ p‖0), (31)

‖C(τ p)‖0 = (εWe/(1 − β))‖tr(τ p1)τ p + tr(τ p)τ p1‖0
≤ (εWe/(1 − β))2M‖τ p‖0, (32)

‖Re(u1 · ∇u + u · ∇u1)‖0 ≤ Re M(‖∇u‖0 + ‖u‖0)
≤ √

2Re M‖u‖1. (33)

The estimates (31), (32) and the triangular inequality yield

‖B(u, τ p) + C(τ p)‖20 ≤
[
2MWe

(
(1 + ε

1 − β
)‖τ p‖0 + √

2‖u‖1
)]2

≤ We2M2
[
8(1 + ε

1 − β
)2‖τ p‖20 + 16‖u‖21

]
. (34)
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By the way to choose the LS weights K ,W , it is clear thatmin{ 12 , K , W
2 } = 1

2 . Hence, using
the inequality ‖a + b‖2 ≥ 1

2 ‖a‖2 − ‖b‖2 and the estimates (30), (33), (34), we have

J (U; 0)

≥ 1

2

∥∥−∇ · τ s − ∇ · τ p + ∇ p
∥∥2
0 − ‖Re(u1 · ∇u + u · ∇u1)‖20

+ K ‖∇ · u‖20 + ‖τ s − 2βD(u)‖20
+W

2

∥∥τ p + We
(
u1 · ∇τ p

) − 2(1 − β)D(u)
∥∥2
0 − W

∥∥B(u, τ p) + C(τ p)
∥∥2
0

≥ 1

2

(∥∥−∇ · τ s − ∇ · τ p + ∇ p
∥∥2
0 + ‖∇ · u‖20 + ‖τ s − 2βD(u)‖20

+ ∥∥τ p + We
(
u1 · ∇τ p

) − 2(1 − β)D(u)
∥∥2
0

)

−‖Re(u1 · ∇u + u · ∇u1)‖20 − W
∥∥B(u, τ p) + C(τ p)

∥∥2
0

≥ 1

2
H − 2Re2M2‖u‖21 − We2M2W

[
8(1 + ε

1 − β
)2‖τ p‖2 + 16‖u‖21

]

≥ 1

2
H − M2

[
(2Re2 + 16We2W )‖u‖21 + 8We2W (1 + ε

1 − β
)2‖τ p‖2

]

≥ 1

2
C(β) ‖|U |‖2 − M2max

{
2Re2 + 16We2W , 8We2W (1 + ε

1 − β
)2

}
‖|U |‖2 .

Therefore, if M is sufficiently small

J (U; 0) ≥ c0 ‖|U |‖2 .

��

3 Finite Element Approximation

For the finite element approximation, we assume that the domain Ω is a polygon and that Th
is a partition of Ω into finite elements Ω = ⋃

T∈Th
T with h = max{diam(T ) : T ∈ Th}.

Assume that the triangulation Th is regular and satisfies the inverse assumption [11]. The grid
size is defined as h = √

2A/
√
N , where A is the area of the domain and N is the number of

elements in Th . Let Pr (T ) denote the standard space of degree r polynomials on element T .
Define finite element spaces for the approximate of (u, p, τ s , τ p):

V h = {vh | vh ∈ V ∩ (C0(Ω))2, vh |T ∈ Pr+1(T )2 ∀T ∈ Th},
Qh = {qh | qh ∈ Q ∩ C0(Ω), qh |T ∈ Pr+1(T ) ∀T ∈ Th},
�h

s = {σ h | σ h ∈ �s ∩ (C0(Ω))2×2, σ h |T ∈ Pr+1(T )2×2 ∀T ∈ Th},
�h

p = {σ h | σ h ∈ � ∩ (C0(Ω))2×2, σ h |T ∈ Pr+1(T )2×2 ∀T ∈ Th}.
Let Φh := Vh × Qh × �h

s × �h
p be finite element subspaces of Φ with the following

approximation properties. Let Sh = {u ∈ C0(Ω) : u|T ∈ Pr+1(T ) ∀T ∈ Th} admit the
property

inf
uh∈Sh

∥∥∥u − uh
∥∥∥
l
≤ Chm ‖u‖m+l ∀u ∈ Hm+l (Ω) , (35)
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for l = 0, 1.
The discrete minimization problem is to choose Uh ∈ Φh such that

J (Uh; F) = inf
V h∈Φh

J (V h; F), (36)

where Uh = (uh, ph, τ h
s , τ

h
p) and V h = (vh, qh, σ h

s , σ
h
p). Let the differential operators

L1(Uh), L2(uh), L3(uh, τ h
s ), and L4(uh, τ h

p) be defined so that the finite element approxi-

mation to (36) is equivalent to seek Uh ∈ Φh such that

B(Uh; V h) = F(V h) ∀V h ∈ Φh, (37)

where Uh = (uh, ph, τ h
s , τ

h
p), V

h = (vh, qh, σ h
s , σ

h
p), and

B(Uh; V h)

=
∫

Ω

LT
1

(
Uh

)
· L1

(
V h

)
dΩ + K

∫
Ω

LT
2 (uh)L2(vh)dΩ

+
∫

Ω

LT
3

(
uh, τ h

s

)
: L3

(
vh, σ h

s

)
dΩ + W

∫
Ω

LT
4

(
uh, τ h

p

)
: L4

(
vh, σ h

p

)
dΩ

(38)

and

F(V h) =
∫

Ω

f1 · L1

(
V h

)
+ W

∫
Ω

f2 · L4

(
vh, σ h

p

)
dΩ.

Using Theorem1 and the approximation property (35), the following error estimate is
established.

Theorem 2 Consider approximating the solution to (11)–(15) through the discrete minimiza-
tion problem (36) under the assumption in (10). Assume that the solution U to (17) is regular
enough such that U ∈ Φ ∩ (Hm+1(Ω))2 × Hm+1(Ω) × (Hm+1(Ω))2×2 × (Hm+1(Ω))2×2

and M is small, then the LS approximation Uh ∈ Φh satisfies∥∥∥
∣∣∣Uh − U

∣∣∣
∥∥∥ ≤ Chm

(
‖τ s‖m+1 + ∥∥τ p

∥∥
m+1 + ‖p‖m+1 + Re ‖u‖m+1

)
, (39)

for m ≤ r + 1.

Proof The orthogonal propertyB(U−Uh; V h) = 0 for all V h ∈ Φh and Theorem 1 directly
lead to the bound ∥∥∥

∣∣∣Uh − U
∣∣∣
∥∥∥ ≤ inf

V h∈Φh

c1
c0

∥∥∥
∣∣∣V h − U

∣∣∣
∥∥∥
1
,

which yields the desired error bound using the approximation property in (35). ��
Note that the use of continuous piecewise linear polynomials for all unknowns yields the

following rates:

‖τ h
s − τ s‖0 = O(h), ‖τ h

p − τ p‖0 = O(h), ‖ph − p‖0 = O(h),

and

‖uh − u‖1 = O(h).

The theoretically predicted error bounds are only O(h) in the L2-norm for τ s , τ p , and p,
O(h) in the H1-norm for u. Hence, we have the optimal convergence rate of the velocity in
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the H1-norm and suboptimal convergence rates of the stress and pressure in the L2-norm.
For the finite element space used here, the nonlinear functional norm g1/2 in (18) is an a
posteriori error estimate for the LS method. In Sect. 4 our numerical experiments will show
that the a posteriori error bound is consistent with the a priori error bound, i.e., the error
bound for g1/2 is O(h) when the continuous piecewise linear finite elements are used for the
approximations of all variables.

Next, we present a Newton iteration scheme for solving the linear PTT model by using
the LS method, as shown in [13]. Denote the unknowns by U = (u, p, τ s, τ p) ∈ Φ and the
steady state residual of (3) by

R(U) : =

⎡
⎢⎢⎣

Re(u · ∇u) − ∇ · τ p − ∇ · τ s + ∇ p − f
∇ · u

τ s − 2βD(u)

τ p + We(u · ∇τ p − A(∇u, τ p)) + εWe
(1−β)

tr(τ p)τ p − 2(1 − β)D(u)

⎤
⎥⎥⎦ . (40)

We now approximate the solution to B(U) := PTR(U) = 0 with a diagonal matrix P
whose diagonal entries consist of LS weighting functions for the momentum, continuity,
velocity gradient, and constitutive equations by an inexact Newton iteration. The �th iterate
approximated on Ω is given by Uh

� . Each linear step in this iterative procedure is found by
solving for the update Sh� = Uh

�+1 − Uh
� in the linear problem

J(Uh
� )S

h
� = −B(Uh

� ), (41)

where J is the Jacobian of B. The new approximation is given by Uh
�+1 = Uh

� + Sh� . Each
linear problem (41) is cast as anLSminimization problembydefining the linear LS functional

J�(Sh� ) = ‖J(Uh
� )S

h
� + B(Uh

� )‖2, (42)

and then finding Sh� ∈ Φh such that

J�(Sh� ) ≤ J�(V h
� ) ∀V h

� ∈ Φh . (43)

4 Numerical Results

The governing equations are solved in two different domains in this section. The first is a
square test domain,where exact boundary conditions are imposed on the boundary tomeasure
convergence rates. To further illustrate the capability of the LS scheme, the method is applied
to a planar channel problem and a slot channel problem. Linear basis functions are considered
for all variables, and the initial u1 and τ p1 in Sect. 2 are set to zero in all computations.

4.1 Flows in a Planar Channel

We consider a square test domain [0, 1] × [0, 1] with exact boundary conditions and non-
zero right-hand sides determined by the exact solutions to measure convergence rates. Due
to the symmetry along y = 0, the computed domain is reduced to the half. The velocity
u = [u , v]T is specified on the inflow, outflow, and wall boundaries. Pressure p is fixed
at the point where the outflow boundary meets the symmetry boundary. On the symmetry
boundary, the y-component of u and τ pxy vanish. At the wall boundaries u = 0 is imposed.
Because there is no analytical solution for the stress of the PTT model, we impose the inflow
stress boundary condition and the source terms determined by the analytical solution of the
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Fig. 2 Uniform Meshes C and T with 8 partitions per unit length. a Mesh C. b Mesh T

Giesekus model [6]

τ pxx = 2We(1 − β)γ̇ 2, τ pxy = (1 − β)γ̇ , τ pyy = 0, (44)

where γ̇ = ∂u
∂ y . Let u = [u, v]T = [1 − y4, 0]T at the inflow and outlet boundaries. Based

on the exact solutions the sources terns of (11) and (14) are given by

f1 =
[
12y2 − 2x

0

]
, (45)

f2 =
[
1024εWe3(1 − β)y12 −128εWe2(1 − β)y9

−128εWe2(1 − β)y9 0

]
, (46)

respectively. In the convergence test, the parameters are set asβ = 1/9, 1−β = 8/9, Re = 1,
We = 0.2, and ε = 0.2. The numerical simulation is performed using first order polynomials
for all variables. We discretize the resulting linearized model through the Newton method.

To illustrate the convergence of the method and the effect of mass conservation, we
use three uniform criss-cross Meshes C with 16, 32, and 64 partitions per unit length in
Fig. 2. Previous studies [6,15] have shown that mass conservation is not favorable in LS
formulations when low-order basis functions are used. To appropriately adjust the weight
given by K = 10m in (16), we iterate on m for 3 ≤ m ≤ 5 to compute g1/2m in (18) as
shown in [15]. Figure 3a shows the convergence of g1/2m with respect to K = 10m , ranging
from 103 to 105, on Mesh C with 16, 32, and 64 partitions per unit length. Figure 3a also
presents numbers of Newton steps for all cases. The reduction in g1/2m for the case of 64
partitions is lower than that for the 8 partitions. The convergence of the iteration scheme
for K = 10m is confirmed when δg1/2m := |g1/2m+1 − g1/2m |/g1/2m+1 < 10−4, and we observed
that this can be achieved with K = 105. Thus, the mass conservation parameter K = 105

is chosen in the LS formulation in this example. The errors of LS solutions are presented
in Figure 3b, which shows that the resulting convergence rates for the velocity converge to
the optimal convergence rate O(h) in the H1-norm. The figure also shows that convergence
rates for the pressure and stresses are suboptimal O(h) in the L2-norm. We also investigate
convergence rates of g1/2 for various combinations of modeling parameters We, ε and Re.
Figure 4 shows convergence rates of g1/2 at (We, ε, Re/10)=(We, 0.2, 1), (0.2, ε, 1),
and (0.2, 0.2, Re/10), where one of We, ε and Re/10 ranges from 0.1 to 1 while the
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Fig. 3 The LS solutions using K = 105 on Mesh C with 16, 32, and 64 partitions per unit length at Re = 1,

We = 0.2, and ε = 0.2. a Reduction of functional norm δg1/2m on Mesh C with 16 (o), 32 (*), and 64 (+) in
nonlinear nested iteration for various weights K = 10m , m ranging from 3 to 5. Here no. of steps Ns means
the number of iterative steps for convergence. b L2 errors in τ s (o), τ p (*), and p (+), and H1 errors in u
(�) of LS solutions using K = 105
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Fig. 4 The convergence rates of the LS solutions in g1/2 at (We, ε, Re/10)=(We, 0.2, 1), (0.2, ε, 1), and
(0.2, 0.2, Re/10) for various We, ε, and Re/10 values ranging from 0.1 to 1

other two are fixed. Note that the convergence rates are much higher than the expected rate
(g1/2m ≈ J 1/2 = O(h)) for We < 0.5, but the rates are close to O(h) for 0.5 ≤ We ≤ 1.
This is consistent with the theoretical predication in Sect. 3 without the small We condition.
Moreover, the convergence rate of g1/2m with respect to ε or Re is much higher than the
expected rate O(h) and close to 1.8. Results show thatWe effects on the solutions are higher
than ε and Re. However, the numerical results indicate that the LS error estimator g1/2 shows
at least the first-order convergence rate when the equal-order linear polynomial is used for
all variables.
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Fig. 5 a Reduction of δg1/2m (∗) functional norm of LS solutions for Re = 1, ε = 0.2, and We = 0.2 on
Mesh T using K = 10m with m = 4 to 6. b Profiles of the horizontal velocity u(2.5,y) of the LS method with
K = 10m with m = 4 to 6 using Mesh T

4.2 Flows Past a Transverse Slot

To further demonstrate the capability of the numerical algorithm in the PTT model, we apply
the LSmethod to analyze the flow through a slot channel (Fig. 1). Here, x (the flow direction)
is in the range of − 2.5 ≤ x ≤ 2.5 and a contraction occurs at x = 0. The length (l) and
width (d) of the slot are both 1 unit; therefore, the width (h) of the channel is also 1 unit. The
boundary conditions include those at the inlet, outlet, and wall boundaries. Let u = (u, v)

and τ p be specified at inflow boundaries as

u = 6(y − y2), v = 0, (47)

τ pxx = 2We(1 − β)γ̇ 2, τ pxy = (1 − β)γ̇ , τ pyy = 0, (48)

γ̇ = ∂u
∂ y and u = 0 at the wall boundaries. The pressure p = 0 and the velocity v = 0 are

specified at the outflow boundary. These boundary conditions are also used in [14,21]. The
analytical prediction of hole pressure may be obtained by substituting N1 = τ pxx − τ pyy =
2We(1−β)γ̇ 2 and τ pxy = (1−β)γ̇ into (9), and then carrying out the integral by changing
the variable from τ = τ pxy to γ̇ :

Ph =
∫ τ b

w

0

N1

2τ
dτ =

∫ γ̇ b
w

0
We(1 − β)γ̇ dγ̇ = 1

2
We(1 − β)(γ̇ b

w)2 = 1

4
Nb
1,w. (49)

In (11)−(15), the parameters (Re, β, 1−β, ε,We) are required to describe the fluid rheology.
In our test, the parameters are set as Re = 1, β = 1/9, and 1 − β = 8/9. To illustrate the
convergence of the LS method, we use the uniform criss-cross Mesh T shown in Fig. 2b for
the linear PTT model at We = 0.2 and ε = 0.2.

First, the optimal weight function K = 10m is chosen in the similar manner to the first
example; we iterate on m for 4 ≤ m ≤ 6 for the functional g1/2m in (18). As shown in Fig. 5a
δg1/2m = |g1/2m+1 − g1/2m |/g1/2m+1 is less than 10−4 at m = 6, therefore, K = 106 is chosen
as an optimal weight for the LS formulation. Figure 5b shows velocity profiles at the outlet
(x = 2.5), indicating that the velocity profiles are identical for K ≥ 104. To illustrate the
convergence of the LS method, streamlines obtained using uniform meshes T, T1, and T2
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Fig. 6 Streamlines for flow over a slot (d/h = 1, l/h = 1) using the LS method on uniform Meshes a T with
1536 elements, b T1 with 6144 elements, and c T2 with 24576 elements at Re = 1, We = 0.2, and ε = 0.2
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Fig. 7 Plots of u(2.5, y) along the line 0 ≤ y ≤ 1 on uniform Meshes T, T1, and T2 at Re = 1, We = 0.2,
and ε = 0.2

with 8, 16, and 32 partitions per unit length are plotted in Fig. 6; the figure shows convergent
streamlines of the LS method for the linear PTT model. Figure 7 shows profiles of u(2.5, y)
for 0 ≤ y ≤ 1 obtained using Meshes T, T1, and T2 with numbers of elements N0 = 1536,
N1 = 6144, and N2 = 24576, respectively.

In Fig. 8, we present the reduction of the functional norm Δg1/2(k) /ΔNk = |g1/2(k) −
g1/2(k−1)|/|Nk − Nk−1| versus the number of elements Nk for k =1, 2, where g1/2(k) denotes
the functional value by Mesh Tk. We consider modeling parameters (We, ε) = (We, 0.2)
and (We, 0.5) for 0.1 ≤ We ≤ 0.5 and We = 1. An uniform mesh convergence for Nk is
confirmed when Δg1/2(k) /ΔNk < 10−4, which can be achieved with k = 2 at (We, 0.2) for
We ≤ 0.3 in Fig. 8a and (We, 0.5) for We ≤ 1 in Fig. 8b. The results show that We effects
on the solutions at a low ε are higher than that at a high ε. We performed extensive numerical
tests for grid convergence at various (We, ε). The LS method and flow characteristics are
well illustrated by the LS solutions presented in Fig. 9 for (We, ε)= (0.2, 0.2), (0.2, 0.5),
and (1, 0.5) on Mesh T2.

We study the effects of the weight W on LS solutions in (16). Figure 9 illustrates the
reduction in the nonlinear functional norm on LS solutions without and withW usingMeshes
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Fig. 8 Reduction of functional norm Δg1/2
(k) /ΔNk versus the number of elements Nk at k = 1, 2 for the LS

method using Mesh Tk at Re = 1, with a (We, ε)=(We, 0.2) and b (We, ε)=(We, 0.5) for We = 0.1 (o), 0.2
(∗), 0.3 (+), 0.4 (×), 0.5 (�), and 1 (•)
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Fig. 9 Reduction of nonlinear g1/2 functional norm using Meshes T, T1, and T2 for the LS withoutW (o) and
the LS (+) for Re = 1, with a We = 0.2 and ε = 0.2, b We = 0.2 and ε = 0.5, and c We = 1 and ε = 0.5.
Here no. of steps Ns means the number of iterative steps for convergence
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Fig. 10 Streamlines for flow over a slot (d/h = 1, l/h = 1) using the LS method on uniform Mesh T2 for LS
without W with a We = 0.2 and ε = 0.2, b We = 0.2 and ε = 0.5, c We = 1 and ε = 0.5, and for LS with
d We = 0.2 and ε = 0.2, e We = 0.2 and ε = 0.5, f We = 1 and ε = 0.5

T, T1, and T2 for We = 0.2 and ε = 0.2 (Fig. 9a), We = 0.2 and ε = 0.5 (Fig. 9b), and
We = 1 and ε = 0.5 (Fig. 9c). We observe that the reduction in g1/2 for the LS solution
with W is higher than that for the LS solution without W for all cases. As shown in Fig. 9,
the iterative process exceeds the maximum number of Newton steps (100) for two cases of
LS without W using Meshes T1 and T2 at We = 1 and ε = 0.5. Therefore, the number of
iterative steps can be reduced by our LS method in almost all cases, i.e., the LS solution with
W is more effective than that without W . Figure 10 shows streamlines of the LS solution
without W and the LS solution with W for We = 0.2 and ε = 0.2, We = 0.2 and ε = 0.5,
and We = 1 and ε = 0.5. We obtain the smooth streamlines of the LS solutions with W
for all cases. The results reveal that streamlines of the LS solution without W (Fig. 10a and
b) and the LS solution with W (Fig. 10d and e) are in the agreement, however, those of LS
without W near the left side wall are insufficiently smooth for We = 1 (Fig. 10c and f).
Therefore, the LS solutions can be improved by the weight W for a high We fluid. This is
consistent with the results of the a posteriori error estimator g1/2 (Fig. 10).

In the next experiment we double the length of the slot and compare numerical results for
l/h = 1 and l/h = 2 with h = 1 and d = 1 fixed. Figure 11 shows streamlines of the LS
solutions for Re = 1, ε = 0.5 with We = 0.1, 0.5, and 1, respectively. The different vortex
development processes are detailed in Fig. 11. The vortex size increases as We increases,
and the vortex moves toward the reentrant corners. The size also increases as the depth ratio
(l/h) increases, and the vortex occurs at the bottom of the slot when l/h = 2. These results
are consistent with those obtained in [10,21]. Figure 12 shows the profiles of the horizontal
velocity u along the vertical centreline for variousWe numbers (We = 0.1, 0.5, and 1) when
l/h = 1 (Fig. 12a) and l/h = 2 (Fig. 12b). The plots indicate that when We increases, its
effects become more dominant and the profiles at the line y = 0.5 resemble shapes sharper
than a parabola (We = 0.1). Figure 13 shows two profiles of the hole pressure Ph and the
wall normal-stress difference Nb

1,w for various We numbers ((0 ≤ We ≤ 1)) at Re = 1 and
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Fig. 11 Streamlines for flow over a slot (d/h = 1) in the LS solutions at Re = 1 and ε = 0.5 for l/h = 1
with a1 We = 0.1, a2 We = 0.5, and a3 We = 1 and for l/h = 2 with b1 We = 0.1, b2 We = 0.5, and b3
We = 1
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Fig. 12 Plots of u(0, y) along the centreline using the LS method at Re = 1, ε = 0.5, We = 0.1, We = 0.5,
and We = 1 for a −1 ≤ y ≤ 1 (l/h = 1) and b −2 ≤ y ≤ 1 (l/h = 2)

ε = 0.5. For the low We fluid (0 ≤ We ≤ 0.3), an increase in We causes an increase in
the values of Ph and Nb

1,w. For 0.3 < We ≤ 1, a decrease in We causes a decrease in the

values of Ph and Nb
1,w. The plots of Ph agree with Nb

1,w/4 for the low We fluids. Figure 13
indicates that the analytical prediction in (49) and the numerical results are close. The results
are consistent with those obtained in [20] for the lowWe fluids. In addition, the results show
that the two values of Ph and Nb

1,w/4 grow apart as We increase.
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Fig. 13 The results in Ph and Nb
1,w/4 versus We numbers for the linear PTT model at Re = 1 and ε = 0.5

past a slot in the channel (d/h = 1, l/h = 1)

5 Conclusion

We considered an LS method to simulate linear PTT viscoelastic fluid flows. The model
problems considered are flows in a planar channel and a transverse slot, respectively. The
linearized viscoelastic problemby theNewton’smethodwas solved through theminimization
of a LS functional with two weight functions. The weight functions were used to prevent
loss of mass conservation and convergence at high Weissenberg numbers, when low order
basis functions are used. We provided a detailed analysis of an a priori error estimate for the
linearized viscoelastic system and presented numerical results to support the estimate. Using
continuous piecewise linear finite element spaces for all variables and appropriately weighted
continuity and constitutive equations, respectively, we obtained the first order convergence
rate in the H1-norm for velocity, in the L2-norm for the viscous and polymer stresses, and
pressure, respectively; these results agree with the theoretically predicted estimate. We also
discussed the physical parameter effects of the LS method for the slot channel problem. The
resulting hole pressure was evaluated numerically for various We numbers, and compared
with that derived from the HP theory. The results show that the HP equation is valid for
viscoelastic fluid flows with a low We and that streamlines of the flow agree with published
results.
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