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Abstract

We study a nonlinear weighted least-squares finite elemetitad for the Navier-
Stokes equations governing non-Newtonian fluid flows by gishee Carreau-
Yasuda model. The Carreau-Yasuda model is used to deshatshear-thinning
behavior of blood. We prove that the least-squares appb@m converges to
linearized solutions of the non-Newtonian model at theroptirate. By using
continuous piecewise linear finite element spaces for aidles and by appro-
priately adjusting the nonlinear weighting function, weaib optimalL2-norm
error convergence rates in all variables. Numerical resukt given for a Carreau
fluid in the 4-to-1 contraction problem, revealing the shbarning behavior. The
physical parameter effects are also investigated.

Keywords: weighted least-squares; nonlinear weight; non-Newtgnian
Carreau-Yasuda; shear-thinning

1. Introduction

The objective of this study is to analyze a nonlinear weidHeast-squares
finite element method for the Carreau-Yasuda non-Newtamiate! based on the
Navier-Stokes equations. The Carreau-Yasuda model is@grapon-Newtonian
model for describing the shear-thinning behavior of blaodemodynamic simu-
lations [1, 2].

Let Q be an open, connected, and bounded domaiknd = 2 or 3 with
boundaryl". The steady-state, incompressible Navier-Stokes equatith the
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velocity boundary condition can be posed as follows:

A

u-Ou—0O-74+0p = finQ,
S AGWDW o 0
noRe

O-u = 0inQ,

= 0onrl,

whereD(u) = 0.5(0u+ OuT) is the standard strain rate tens@®e> 1 is the
Reynolds numbeiRe= LU p/no, in which ng is the zero-shear-rate viscosity,
andU are characteristic length and velocity, respectively, aiithe densityf is

the body force vector, the unknownsandr are the velocity and the extra-stress
tensor, respectively, anglis the scalar pressure. We assume that the pregsure
satisfies a zero mean constraint:

/ pdx=0,
Q

in order to assure the uniqueness of pressure [3]. As forybhem (1), it is
illustrated in [4] that the system is suitable for incomgibe non-Newtonian
flows when a direct approximation of the extra stress terssdesired.

Let y(u) = 1/2(D(u) : D(u)) be the shear rate with the double-dot product
between two second-order tenserando defined as

T o= Z’TijO’ji.
]
We implement the non-Newtonian fluid equation known as thedaa-Yasuda
model [2], i.e.

n-1

N(Y(U) = Ne + (Mo — Neo)[1+ (AcY(U)?] =, (2)

wherea, n, andA. are determined constant parameters. 0 is the dimensionless
parameter) is the Carreau time constant, and the parametsithe power law
exponent. In the case of= 1, the model reduces to the linear Newtonian model,
i.e. the Navier-Stokes equations. For a shear-thinning,ftuis less than one, the
viscosity decreases by increasing shear rate. At high shesg, the viscosity of
the fluid isn«, whereas at low shear rates, the viscositggs Sample values of
the parameters in the Carreau-Yasuda model are given imT[igy indicate that
many concentrated polymer solutions and melts can be autdora = 2 and
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N« = 0. Equation (2), witha = 2, is usually referred to as the Carreau equation,
and the parameteris added later by Yasuda; see [5].

Numerous developments using least-squares finite elemethioshs for non-
Newtonian fluid flow problems have been made in recent years, [4, 8, 9, 10,
11]. Least-squares finite element methods have been repurteffer several
theoretical and computational advantages over the Galenlethod for various
boundary value problems [3]. Discretization generateslgebaaic system that
is always symmetric and positive definite, and a single apprating space for
all variables can be used for programming least-squardse #tement methods
[12]. The least-squares functional of the velocity-presssiress formulation has
the advantage that stress tensor components are compreetydjl3]. Hence,
the method is suitable for cases in which a direct approxonatf the extra stress
tensor is necessary (e.g., non-Newtonian fluid flows).

In [4], Bose and Carey present a least-squares method udiypedinite el-
ements and a mesh redistribution for non-Newtonian flowd,iadicate the im-
portance of scaling in the original differential equatidoisthe least-squares min-
imization process. In [12], Lee and Chen propose a nonlimeaghted least-
squares (NL-WDLS) method that allows for the use of simplelomations of
interpolations, including equal-order linear elementsStokes equations. They
indicate the choice of weights used to balance the resiadumitibutions, and their
results show some improvement over the case with no wegghti@n the basis of
their ideas, NL-WDLS methods based on the velocity-stpFessure formulation
of Stokes equations have been applied to generalized Nemtamd viscoelas-
tic fluid flows in numerical experiments [8, 9]. The resultgizate that when
linear approximations in all variables are employed, ttestesquares solutions
exhibit numerical convergence rates ©fh?) in the L>-norm for all dependent
variables (or nearly so for the viscoelastic case). In [&Af],adaptively refined
least-squares (AR-LS) approach with an inertial term isliagpto the Carreau
model; the least-squares approach uses a grading fundtiiozity magnitude
to adaptively refine the mesh. The results indicate that lgumear approxima-
tions in all variables, the resulting convergence rateb@teast-squares solutions
on uniform grids are not optimal, and those on adaptivelynegfigirds can be
restored using adaptive mesh refinements.

Onthe basis of these studies, we develop a NL-WDLS methdtédCarreau-
Yasuda non-Newtonian model based on the Navier-StokegiegsaUnlike pre-
vious studies based on adaptive grids [11], we consider (h&MDLS method
by using uniform grids. The least-squares functional imedltheL?-norm of the



residuals of each equation multiplied by appropriate wisigicluding the mass
conservation constant, a mesh dependent, and a nonlinegintimg function.
The analysis of error bounds for the NL-WDLS method follolwe toncept in-
troduced in [3, 11, 13]. Using continuous piecewise linewitdielement spaces
for all variables, the numerical solutions exhibit a seconder convergence rate
in the L2-norm. These results show that the additional weightingtéoes not
affect most of the convergence of least-squares finite elemmethods for the
linearized Navier-Stokes equations in [3, 11]; howeves,dgkpected optimal con-
vergence rates in numerical results can be restored withedut@hoice of non-
linear weighting functions. We extend the implementatositmulate the 4-to-1
contraction problem in a range of lowRBenumbers (1< Re< 100) as shown in
[4, 14] and address the physical parameter effects. In Zidgni and Frey present
a Galerkin least-squares (GLS) with an equal-order linet@rpolation function
that adds stabilized formulations to the Carreau model. NM#svghat the results
of the NL-WDLS approach are compatible with those of the AR+hethod [11],
as well as the reduced GLS method presented by Zinani andriH&§]. We also
show that the inertial term and viscosity parameter effeetsome dominant in
cases of highly nonlinear viscosity in the non-Newtoniardeio

The rest of this paper is organized as follows. Section 2gmssthe nota-
tion, preliminaries, and ellipticity of thel ~! least-squares functional. Section 3
provides the error estimates of the discrete nonlinearhted 2 least-squares ap-
proximations. Section 4 presents the nonlinear iteratigtiod for approximating
the solution of the Navier-Stokes problem with the Carr¥asuda model using
the nonlinear weighted least-squares approach. Sectioovidps test problems
for the flow past a planar channel and 4-to-1 contraction lprab, and finally,
Section 6 offers concluding remarks.

2. Notation and preliminaries

Let » (Q) be the linear space of infinitely differentiable functionghacom-
pact supports o, that is,

D (Q) = {W|a: W € D(0) for some open subse@ c 0 c RY};

see [15]. LetH®(Q), s> 0, be the Sobolev spaces with the standard associated
inner productg-, - ) and their respective normis||. Fors= 0, H®(Q) coincides

with L?(Q), andH$(Q) denotes the closure af (Q) with respect to the norm
|-||s. For positive values of, the spacéd—=(Q) is defined as the dual space of
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Hg (Q) equipped with the norm

(6,V)

lofl_s:= sup ,
overs@) IVIls

where (.,.) is the duality pairing betweehl;®(Q) and H5(Q) when there is
no risk of confusion. Define the product spadd%(Q)d = NL,HS(Q) and
Ho®(Q)Y = ML, Hy3(Q). LetH (div;Q) = {u e L2(Q)%: 0-v € L2(Q)} with

. 2 2.1
the respective ”O”TT'UHH(diV;Q) = (JJu]lo+IC-vlg)2.

The function spaces used in our variational formulatioesdmfined as
Vi={v|veHYQ)? v=00n0Q},
Q:={alqeL?(@). [ adx=0}.
g:={o|o€ LZ(Q)d, gij = 0ji },

and let the product space:=V x Q x Xs.
Based on [11], linearizing (1) about the approximation

Up ~ U,
where we assume
V-Ug=0, 3)
and
M = max{||uo||e, [|BUol|e} < o, (4)

results in the following replacement rules:
U-Uu=ug-Uu+u-Oug— ugp- Uup,

N(y(u))D(u) = n(y(uo))D(u) + n(¥(u))D(uo) —N(¥(Uo))D(Uo),
and
n(Y(uo)) ~ No-
As stated in [11], we apply Newton’s method to the nonlingacasity equa-

tion (2). Letu = {1+ ug, whereug is the initial guess and is the correction in the
Newton iteration. A binomial expansion gf(y(up + €01)) yields the equation

N (V(uo + &) =N (V(uo)) [1+€G (uo, T) + O (e%)], ()
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where
@2 (D(up) : D(i))

G (Uo,T) = 22 (n— 1)A3(D(Up) : D(ug)) 2 : : 6

( 0 ) ( ) C( ( O) ( 0)) 1+)\€[V(Uo)]a ( )
Hence,

N (Y(u)) ~no[1+ G(uo,u) — G(uo,Uo)]. (7)

The linearized velocity-pressure-stress system may nowritien as
Up-Ou+u-Oup—0O-7+0p = finQ, (8)
2 2 .

T—R—eD(U)—R—eD(U@G(Uo,U) = ginQ, (9)

O-u = 0inQ, (20)

u = 0onrl, (11)

where we define
f = up- DUo—l—f,

-2
g = @D(UO)G(UO,UO)-

The standard least-squares functional for (8)-(11) isrgbse

J(u, p,7;F) (12)
= ||up-Ou+u-Oup—O-7+Op—F||%,
2 2D(up) S| ’
— ZD(u) - G - = ||0-ul)?.

Define the norm

1 1/2
I(u,p. )l = (||r||é+ IPlo+ 52 ||u||§) ,

over®. In [13], Lee presents the standafid ! least-squares functiond for the
velocity-pressure-stress formulation of the linearizeavidr-Stokes equations as
follows

J(u,p,mF) = ||uo-Du-i—u-Duo—D-T-i—Dp—fHEl
¢ |l Zow[ + L o ug2 (13)
Re o Ré& 0
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and establishes the following a priori error estimate,

C|l[(u, p, 7)1 < Js(u, p,7;0) < Cl||(u, p,7)||%, (14)
for M in (4) satisfying
1
< —
M < 2Re (15)

andC > 0 independent dRe V(u, p,7) € ®

Based on [11] and using (14), we now derive some a priori egémfor the
first-order system (8)-(11). The a priori estimates willyallae crucial roles in the
error estimates of our least-squares finite element method.
Theorem 1. For any(u, p,7) € ®, there are positive constantg,andc;, which
depend o2, n, A¢ andM in (4), such that

colll(u, p,)[1% < 3(u, p,750) < ca | (u, p, )%, (16)
for sufficiently smallM in Q satisfying

1
< —.
M < SRe @an
Proof.
Let (u, p, ™) € ®. The upper bound follows naturally from the triangle indiya
Using the inequalityla-+ b||> > (1/2) ||a]|* — |b||? and the estimate (14) with (15),
we have

J(u, p,7;0)

2
> 2 0w, p.m50)) — TP 6 0,0 3 (18)

1 _
> 2 (1w, p.7)IIP) = Can— )AZRe 2M* 2 Jul}

I\)H

>Co <||7'||o+ 1Pl + =g ||u||§<1—Ma+2))-
By using (17), we have & M32 > 0. Hence,
3(u, p,730) > coll|(u, p, 7%,

for some positive constang which is independent dRe
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O

Therefore, the coercivity and continuity estimates of tirectionald(u, p, 7; 0)
have been established in Theorem 1. The least-squares izatiom problem for
the solution of system (8)-(11) is to choage p, ) € ® such that

J(u,p,7;F)= inf J(v,q,0;F). (29)
(v,0,0)eP
The ellipticity of the functionall has been established in Theorem 1, but the
H-1 least-squares functional is not practical in the compaoitatiBased on [3,
12, 13], the mesh dependdrt least-squares functional will be considered in the
work.

3. A nonlinear weighted least-squares functional

In this section, we define and analyze weighted least-sguaethods for
the approximate solutions of (8)-(11). For the finite eletregyproximation, we
assume that the domai is a polygon ford = 2 or a polyhedron fod = 3,
and thatly is a regular triangulation of the domaf®, asQ = Urcr, T with
h=max{diam(T) : T € 'y} (see [13]). LetP, (T) denote the space of polyno-
mials with the degree less than or equat ttefined oveil . Define finite element
spaces for the approximate @f, p, 7):

V="V evn(c®Q)d, v |t e R(T)Y, VT eTpl,

Q"= {d"[d"eQNC(Q), ¢" [t € R(T), VT € n},

Y= (ol ol e 2N (COQ)%, ol |t e R(T)?, VT ey}
Let " := V" x Q" x = be finite element subspaces ®fwith the following
approximation prosperities: there exists a positive ietegsuch that the spaces
Sj approximate optimally with respect to the spade™ (Q), j =1, 2. More

precisely, we assume that for alE H'*1 (Q) there exists an elemeut € Sj such
that0<m<1,

Ju—u'], < CHE=™ |yl (20)

and the spaceS; satisfy the inverse assumption, i.e. that

ol = o

. wWhes;. (21)
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We can consider the nonlinear weighted least-squaresifumattassociated
with the first-order system (8)-(11):

I(u,p,;F) (22)
—h?|up-Ou+u-Oug—0O-7+0Op—f3

(o) (7 2P0 - 26l - g)

2 1 5
—||U-u

§

overallu e VM, pe Q", andr € =!. In (22), the weight? and the functiomws
are chosen based on similar considerations as those usE®, ibj]. The weight
Ws in (22) indicates that the nonlinear weigh is evaluated atip. The nonlinear
weight functionws is defined in each element as

Ws(U) = ; (23)

1+ (Y(w))®

Based on [11, 13, 16] and application of Theorem 1, we estalgiror esti-
mates of a discrete least-squares finite element functamfallows.

We have the following inequality (cf. [16, p.583]):
Lemma 1. Assume thaf) is a bounded open region@® c RY, d =2 ord = 3
and7, is a uniformly regular partition of2 into finite elements. Then there exists
a constan€ > 0, independent df, such that, for all € L?(Q),

CHjull-1 < C(hllullo+ fJul|-1). (24)

If, in addition, 0< C < 1, then (24) can be replaced by

2

C
Jul -1 < = 5(hllulo) (25)

Lemma 2. For any(u,p,7) € ®", there exist positive constantsindC, indepen-
dent ofh, such that

cll|(u, p,7)|1? < I"(u, p,7;0) < C|l|(u, p,7)||I?, (26)

for anyh < 1 and sufficiently small values & in (4) satisfying (17).
Proof.



Let (u,7,p) € ®". The upper bound is naturally obtained from the triangle in-
equality and the inverse inequalities

18- 7llo <Ch *|I7]lo, IEPllo < Ch*|pllo-
Application of Theorem 1 and Lemma 1 yields the estimate

cll|(u, p,7)II?
2 2D(uo)
- RPW - s

IN

2
G(up,u)| +Re?||0-u|3
0

+ h?|lug-Ou+u-Oup—0O-7+0p||3

We(Uo) <T _ éD(u) _ 25;;‘2 G(uo, u))

+ h2||uo-Du—i—u-Duo-l—D-T-i—DpHg,

< C

2
+Re2||0-u|3
0

for C; = 2max{1,2M?} |Q| with (y(up))? < 2M? < = using (4). Hence, the lower
bound is established.

O

The discrete least-squares minimization problem for tHetiem of system
(8)-(11) is to chooséu, p", ") € ®" such that

W " e = inf o 3P 0" F). (27)
(Vh,qh70'h)e¢>h

Since®" is a finite element subspace ®f using Theorem 1, Lemma 2, and
the Lax-Milgram lemma, the following theorem is proved.

Theorem 2. The least-squares functional (22) has the unique mininoiaeof the
spaced” for anyh < 1 and sufficiently smalM.

Using similar arguments as in [11] and the approximatiorpproes (20), the
following error estimate is established.

Theorem 3. LetU = (u,p,7) € ® be the solution of the problem (8)-(11) and

Uh = (u", p", 7" € ®" denote the solution of the variational problem (27). Then
there exists a consta@t independent of the mesh sik@ndRe such that

[lw=tp— g7 = <o (il s+ ol gl o) - (2
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under the assumptions in (4) and (17).

Under some assumptions, the error in (28) is of the same asd#re error in
the least-squares solutions of the linearized Navier<taquations [13]. Note
that the use of continuous piecewise linear polynomialsafbunknowns yields
the convergence rates,

|7~ "o =O(h), |p—p"o = O(h), andlu—u"; = O(h).

The theoretically predicted error bounds are d@fy) in the L2-norm for p and

7 andO(h) in theH'-norm foru. Hence, we have the optimal convergence rate
of the velocity in theH1-norm and suboptimal convergence rates of the stress and
pressure in th&2-norm.

4. Nonlinear iterative method

In this section, we present a Newton iteration scheme forisgplNavier-
Stokes equations by using a nonlinear weighted least-sguaethod. The un-
knowns are denoted d$ = (u,p,7) € & and the steady state residual of the
system (1) is denoted as

u-u—0-7+0Op—f
R(U):= |7—(2/Rg(n/no)D(u)—g]| -
-u

We now approximate the solution B(U) := PTR(U) = 0 with a diagonal ma-
trix P whose diagonal entries consist of least-squares weightimgions for the
momentum, constitutive, and continuity equations by araceNewton iteration.
The/th iterate approximated d is given byU,. Each linear step in this iterative
procedure is found by solving for the upd&e= U, 1 — U, in the linear problem

J(Up)S = —-B(Uy), (29)

wherelJ is the Jacobian oB. The new approximation is given &y, 1 = U, +
S. Each linear problem (29) is cast as a least-squares miaiioizproblem by
defining the linear least-squares functional

INS) = 3(U)S +BU)|%,
and then findingy € ®" such that
INS) <IV) W, € BN
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The solution of the nonlinear systems in (1) is approximated sequence of
the linearized system (8)-(11). Then the least-squaresapb to the linearized
system (8)-(11) provides an iterative procedure as folloWge give an initial
approximatiord§ = (u, pf}, 7{!) and then attempt to seek approximatitis, =

(Ul 0],y €@ fore=0, 1, 2, ... satisfying

Il ol F) = inf I g oM ), 30
(U1, Pr1s Tesas F) Vo T o (v, q ) (30)

where the nonlinear weighted least-squares (NL-WDLS)tional Jg‘(u, p,7;F)
is defined as

2
Mu,p,7F) = hz“uQ-Du+u-Du?—D-1-+Dp—fHOJrKRe‘ZHD-uHS,
2

2 2
e 20— 2 pume (b o)
+ \wsww(r G CA R
where
f = u?-Du?-i-?,
_ 2250Mve (yh gh
g = ReD(UﬁG(Ue,Ue),

over the spac@. In our calculation, stabilization parametérs KRe 2, andws
represent the least-squares weighting functions for thrm@mbum, continuity, and
constitutive equations, respectively, as shown in [6, THje h*-term stabilizes
the least-squares form in the momentum equation, and eptheH ~1-norm by
theL2-norm. The mass conservation weidghtmproves the convergence of non-
linear solvers in the problem; where the positive condtaat10™ wheremranges
from 1 to 8, is selected based on [8, 9]. These results inglittedt the ranges
of m vary with the problems, and settiri§ is sufficient to obtain satisfactory
results. The nonlinear weighting functiom, stabilizes the least-squares form
in the constitutive equation and improves convergences raxer the case of no
weighting in Section 5.

5. Test problems

We now consider the flow of the Carreau-Yasuda model withl anda = 2
in the planar channel and the 4-to-1 contraction problem®. ghysical domains
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are symmetric along the centerline of each channel, and rieehalf domains
are used in our computation for efficiency. Both cases pteddmere use linear
basis functions for all variables. All calculations are doated in a computing
environment using the C programming language.

Results of the least-squares method are generated foruvarsiens of (31):
with linear weighting depending only dbandReoutside of the norms (LS), with
linear weighting depending om K, andReoutside of the norms (WDLS), and
with all weights (NL-WDLS). The resulting linear algebragstem of equations
with a symmetric positive-definite coefficient matrix is\&d using the Gaussian
elimination method. Convergence of the iteration schenf@ihis declared when
the relative norm of the residual in velocitiga! ; —ufl||/||uf, ;|| between two
consecutive iterations is less tharr#0In general, the approximation solution is
achieved within 4 iterations.

Two test problems are considered for the Newtonian model3h [In [13],
we display the least-squares solutions by using the masseogation weights
K = 10™, wherem ranges from 1 to 8 for both cases. The results show that we
obtain satisfactory least-squares solutions for all e withK > 107 in the
planar channel problem and > 10° in the 4-to-1 contraction channel problem.
Therefore, it is sufficient to usé€ = 107 for Problem 1 and& = 10° for Problem
2in (31).

5.1. Problem 1: flow in the planar channel

The first problem is a square test domain with exact boundamgitions and
non-zero right-hand sides determined by the exact solsitised to measure con-
vergence rates. For numerical tests, consider the flow ia@aplchannel on the
square domaif0, 1] x [0, 1], where we have a line of symmetry aloyg- 0. The
velocity u = [u,v]" is specified on the inflow, outflow, and wall boundaries. On
the symmetry boundary, theandtyy vanish. The pressungis specified at the
intersection of the wall and outflow boundaries. Smooth egaltitions are given

in [11] by y
'

u —
exact { 0
and
2
Pexact= —X".

The exact solution for the extra-stress tensor is calodilaseng
1 .
Texact = @(ZI’] (V(Uexact)) D(Uexact» .
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A forcing function,f, must be added to the momentum equation, specifically

. Rie<12y2(1+4amgy3a) (1+(4Acy3)a)”—3a)—2x '
0

In the convergence results, the constitutive equationnpeiers in (2) are set
asno=1,N-=0,n=0.1,A; =1, andRe= 1. Three uniform directional triangu-
lar meshes are verified from88, 16x 16 to 32x 32 and used for all calculations
as shown in [13]. We verify these least-squares method$éCarreau-Yasuda
model ata =1 and 2, and show the errors of these least-squares solutions
Figures 1 and 2, respectively. Figuresd= 1) and 2 & = 2) show optimal
convergence rates irf-norm andH-norm foru and at least suboptimal conver-
gence rates i2-norm for p andr. This is consistent with our analysis for the
least-squares method in Section 3. However, some impravisraee seen when
using the WDLS method over the LS method. The NL-WDLS metmoproves
convergence rates over the WDLS methodpiand ~ from 2 to 2.3 and 1.8 to
2, respectively. We obtain optimal convergence rate of theMDLS solutions
for all variables. The convergence rates foand p are better than those of the
theoretically predicte@(h) in L2-norm. Our results show the expected optimal
convergence rates i’-norm of O(h?) for all variables can be restored with a
careful choice of nonlinear weighting functions.

5.2. Problem 2: flow in the 4-to-1 contraction channel

The second domain is the 4-to-1 contraction channel probtamsisting of an
upstream channel that abruptly narrows to a one quartemehar the original
width. For the 4-to-1 contraction domain, the veloaity- [u,v]T is specified on
the inflow and wall boundaries. On the symmetry boundaryyttedtyy vanish.
The pressurg = 0 and thev = 0 are specified on the outflow boundary. These
boundary conditions are also used in [11, 13].

To further show the NL-WDLS scheme’s capability, we applibd method
using uniform grids to the 4-to-1 contraction channel witfthe flow direction)
varying as—r < x <r, r = 10, and the contraction occurringat 0. The up-
stream channel width is 1, thus the downstream width is 1413], using the
Union Jack grids with a minimum mesh spacing of 0.03125 asvshn Figure
3, we employ the NL-WDLS method to the Newtonian model, anthiobcon-
vergence profiles of the horizontal velocity for the 4-todntaction problem.
Therefore, in our computations, the uniform Union Jack ggidonsidered as the
uniform mesh next.
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The Carreau-Yasuda equation (2) involves five paramétgysne, Ac, N, a)
to describe the fluid rheology. In our calculation, theseapeaters in (2) are set
asno = 1 andn. = 0, and four dimensionless parameters are needed to define the
flow: parameters, power-law indices, Carreau time numbeps, and Reynolds
numbersRe n andA. dominate the nonlinear viscosity, afte dominates the
inertia effects. For the dimensionless paramaiere evaluate the effects of the
parameten on the streamline patterns in Figure 4. Figures 4(a) andptésnent
the streamline patterns ef= 1 anda= 2 for Re=1,n= 0.5, andA; = 1, re-
spectively. The results show that the size of the corneexddr the twoa cases
is similar and causes a light increaseadncreases. Therefore, the caseacf 2
is considered next.

To illustrate capability of these least-squares finite @etriormulations, we
present the streamline patterns of two weighted cases, WADANL-WDLS for-
mulations forRe= 1, n = 0.5, andA; = 1 in Figure 5. The results show that
in comparison with the NL-WDLS solution, the recirculatipone of fluid in the
WDLS solution seems too large. The NL-WDLS results agreh thi¢ AR-LS re-
sults [11], outperform the WDLS method, and yield resultsollare compatible
to those presented in [11]. Therefore, the NL-WDLS funcid81) is considered
for this 4-to-1 contraction problem.

We next evaluate the effects of three physical parametels, and Re on
corner vortex behaviors, viscosity contour behaviors, twedhorizontal velocity
component along the outlet and the axis of symmetry in théraotion plane. To
evaluate how physical parameters affect the vortex upstr@fathe contraction
plane, we varietRe= 1 andRe= 10,A; =1 andA. =2, andn=0.5andn=10.1
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Figure 4: Streamlines in the Carreau-Yasuda models at£a) and (bJa=2 forRe=1,n=0.1,
andA; = 1.
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Figure 5: Streamlines in (a) WDLS and (b) NL-WDLS solutionsRRe= 1,n = 0.5, andA; = 1.

in Figure 6. FolRe= 1 andA. = 1, Figures 6(a)r{= 0.5) and 6(b) 6 = 0.1) show
that a decrease in only causes a light decrease in the vortex upstream of the
contraction plane. FdRe= 1 andn = 0.5, Figures 6(a)Xc = 1) and 6(c) k¢ = 2)
display that the sized of the corner vortex near the contnags decreased as
Ac increases. To evaluate the inertia effect, rioe 0.5 andA; = 1, Figures 6(a)
(Re=1) and 6(d) Re= 10) present an obvious decrease in the vortex upstream of
the contraction plane @&eincreases. The results show that the size of the corner
vortex is decreased agdecreases\; andReincrease.

Next, the physical parameter effects on the viscosity fionaj and the hori-
zontal velocity componentare investigated. To evaluate the effects of the power-
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Figure 6: Streamlines in NL-WDLS solutions at @¢=1,n=0.5A; =1, (b)Re=1,n=0.1,
Ac=1,(c)Re=1,n=0.5A. =2, and (dRe=10,n=0.5,A; = 1.

law indexn, we employn = 0.75, 0.5, and 0.25 witRe= 1 andA. = 1 in Figure
7. These figures show the contours of the viscasind the horizontal velocity
u. Our results indicate a build up of boundary layers in the miveam of the
reentrant corner, and the feature of the contour near theinvlie downstream
becomes more obvious as indicesre decreased. Figures 8(a) and 8(b) show
the profiles of the viscosity function and the horizontal velocity componemt
along the outlet, respectively. The results in Figure 8fewsthat the viscosity
of the fluids withn < 1 at the wall y = 0.25) is lower than that at the axis of
symmetry { = 0). Because the low-index fluid near the wall has a low viggpsi
the velocity growth rate away from the wall of the low-indexid is greater than
in the high-index fluid. To ensure mass conservation, in e @& symmetry the
velocity of the low-index fluid is lower than in the high-ind#uid, as shown in
Figure 8(b). The results show that whee= 0.25, the fluid velocity near the wall
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is higher than for other values afand also causes the flattest velocity profile at
the outlet. By decreasing, the viscous effects become less dominant and these
profiles become flatter. Further analysis of the viscosity dladicates that the
feature of nonlinearity becomes more obviousi@ecreases.

12 Re=1, n=0.75, Ac=1 Re=1, n=0.75, Ac=1
1
08
> o6 >
04
02 R -
(a 2 Ex = Ex E—— 05 T (b)
> >
(c) (d)
> >

Figure 7:Re= 1, A = 1. Contours of the viscosity at (a)n=0.75, (c)n= 0.5, and (en = 0.25,

and the horizontal velocity componanat (b)n = 0.75, (d)n= 0.5, and (f)jn = 0.25.

Re=1,A =1
¢

(a) -

0.2

(b)

0.4

Re=1,A =1
¢

—6—n=1
—+—n=0.75
—8&—n=05
—A—n=0.25

0.2 0.25

Figure 8:Re=1,A. = 1. Profiles of (a) the viscosity functiay(r,y) and (b) the horizontal velocity

u(r,y) along the outlet =10 atn=1 (0),n=0.75 (+), n= 0.5 (O), andn = 0.25 (A).

To evaluate the effects of the Carreau time numeRe= 1, andn = 0.5
are used. We employ; = 1, 10, and 100 in Figure 9. These figures show the
contours of the viscosity and the horizontal velocity. The results show that
the feature of the contour near the corner in the upstreawnbes more obvious



whenA is increased. Figures 10(a) and 10(b) show the profiles ofigwsity
functionn and the horizontal velocity componanalong the outlet, respectively.
These results show that Asincreases, the feature of nonlinearity of the viscosity
functionn becomes more obvious and flattens thgrofile. The velocity growth
rate away from the wall of the high; fluid is greater than that of the low,
fluid. The effect of increasing. is similar to that of decreasing. Note that
according to the viscosity contour, the Carreau time nunabpears to be more
sensitive to viscosity compared with the power-law indjgasrticularly in the
upstream region of the contraction flow path. The effecthefgower-law index
and Carreau time number on the velocity field are similar ts¢éhobserved by
Zinani and Frey [14].

To evaluate the inertia effects, we empRg= 1 and 10 in the Carreau model
atn = 0.5, and two values of time numbersg = 1 andA; = 100 in Figures
11(a) and 11(b), respectively. For the low Carreau time remgk, = 1), the
same profiles of the horizontal velocity componarglong the outlet are shown
for variousRecases in Figure 11(a), although the size of the vortex chamge
Figures 6(a) and 6(d). The figure results show that the meftects on the vortex
near the corner are more obvious than the velocity profilésearfully developed
outlet. For the high Carreau time numbag & 100, Figure 11(b)), the growth
rate of the velocity away from the wall of the higtefluid is greater than in the
low Refluid. The results show that the high Carreau time number fnidigh
Remay have affected velocity. For the high Carreau time fllhe, éffects olRe
become dominant and are similar to that of decreasinihe effects oReon the
velocity field for a high Carreau time fluid are similar to tedsund by Reddy
and Padhye [17] for a power-law fluid.

Figure 12 shows the plots ofx,0) along the symmetric line for the effects
of different Carreau time numbeils (A = 10 andA. = 100, Figure 12(a)) and
indicesn (n=0.5andn= 0.1, Figure 12(b)). Figure 12(a) shows that for the same
Reandn, an increase i\ only causes a slight decrease in centerline velocity
values upstream and almost overlaps the regions of fullgldeed flow. Figure
12(b) shows that for the sanfieandA., a change in tha index strongly affects
flow behavior, particularly downstream and near the cotitac Because of the
high strain rates in these regions, a more flattened velpedfile is formed as
n decreases. The results show that the indeffects in the centerline velocity
values downstream are stronger than the Carreau time nuxpkeéects.

Figure 13 shows the profiles afx,0) along the symmetric line for different
Renumbers Re= 1 andRe= 100) in the case of; = 1, n = 0.5 (Figure 13(a))
andn = 0.1 (Figure 13(b)). For the high index= 0.5 fluid (Figure 13(a)), the
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Figure 9:Re=1,n=0.5. Contours of the viscosity at (a)A; = 1, (c)A\¢ = 10, and (e = 100,
and the horizontal velocity componanat (b)Ac = 1, (d)Ac = 10, and (f)A¢ = 100.
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Figure 10:Re= 1, n= 0.5. Profiles of (a) the viscosity functiom(r,y) and (b) the horizontal
velocity u(r,y) along the outlet = 10 at the Newtonian model(d)¢ = 1 (+), Ac = 10 (), and
Ac =100 Q).

maximum velocity in the regions of fully developed flow is tkeme for both

Re The main differences between tRe= 1 andRe= 100 cases occur near
the contraction, because these regions are subjectedhstign rates. For the
low-indexn = 0.1 fluid (Figure 13(b)), an increase Recauses a slight decrease
in centerline velocity values downstream and an increagbdarentrance length
for high Re The Renumber effects become more dominant for the case of low
n. These results show that the NL-WDLS solutions agree wighstiear-thinning
physical behavior of a high shear rate near the channel wa#ling low viscosity
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Figure 11: Profiles of the velocity(r,y) along the outlet = 10 for (a)n = 0.5, A = 1 and (b)
n=0.5,Ac = 100 atRe= 1 (0) andRe= 10 (+).
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Figure 12: Profiles of the velocity(x,0) along the symmetric lineRe= 1 for (a)n = 0.5 with
Ac = 10 (line) andA; = 100 (dash line), and ()¢ = 10 with n = 0.5 (line) andn = 0.1 (dash
line).
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in the region. Because the physical parameters have a lacharge, a high shear
rate is produced and a nonlinear phenomenon of the viscissityore obvious.
Therefore, the physical parameter effects become domioarihe case of the
high nonlinear viscosity.

Figure 14 displays a comparison between our NL-WDLS resuittsthe AR-
LS [11] and GLS results of Zinani and Frey [14] for the horitanvelocity u
profiles along the symmetric line in the contraction planeRe= 1, A = 10,
andn = 0.5. The figure shows that the profiles used in the NL-WDLS metred
similar to those used in the AR-LS and GLS methods. Therefore assumed
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Figure 13: Profiles of the velocity(x,0) along the symmetric lineRe= 1 (line) andRe= 100
(dash line) for (apc =1,n=0.5, and (bA;=1,n=0.1.
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Figure 14: Comparison between results of the NL-WDLS and\MR€.S, and those of Zinani and
Frey. Profiles of the velocity(x, 0) along the symmetric line fdRe= 1 atA. = 10,n=0.5.

that the results are in agreement.
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6. Conclusion

We present a NL-WDLS finite element approximation to the €aurYasuda
non-Newtonian model. Comparisons are made with various-lsguares formu-
lations such as LS, WDLS, and NL-WDLS. These results showthasing lin-
ear polynomials in all variables, the expected optimal eogence rates in numer-
ical results can be restored with a careful choice of noalinesighting functions,
and are superior to those theoretically predicted. In amditwe extended the
NL-WDLS method to the 4-to-1 contraction problem and adslites physical pa-
rameter effects. For flows in the planar contraction, theWDLS method is able
to capture shear-thinning features such as the flattenitigeofelocity profiles in
the contraction plane because of decaying viscosity. Focadlse of high nonlinear
viscosity, our results show that the effects of the powerifedex and of the time
number become dominant, and that the inertial term in the embam equation
cannot be neglected. These results agree with published@\&d GLS results.
Furthermore, the NL-WDLS method is simpler to implementittiee AR-LS and
GLS methods. We will extend the approach to more physicalyistic domains,
including more complex geometries and higlRernon-Newtonian flows in the
future.
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