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Abstract

In 1975, P. Erdős proposed the problem of determining the maximum num-
ber f(n) of edges in a graph on n vertices in which any two cycles are of different
lengths. Let f∗(n) be the maximum number of edges in a simple graph on n

vertices in which any two cycles are of different lengths. Let Mn be the set
of simple graphs on n vertices and f∗(n) edges in which any two cycles are of
different lengths. Let mc(n) be the maximum cycle length for all G ∈ Mn. In
this paper, it is proved that for n sufficiently large, mc(n) ≤ 15

16n.

We make the following conjecture:

Conjecture.

lim
n→∞

mc(n)

n
= 0.

1 Introduction

Let f(n) be the maximum number of edges in a graph on n vertices in which no two
cycles have the same length. In 1975, P. Erdős raised the problem of determining
f(n) (see [1], p.247, Problem 11). Let f ∗(n) be the maximum number of edges in a
simple graph on n vertices in which any two cycles are of different lengths. Let Mn

be the set of simple graphs on n vertices and f ∗(n) edges in which any two cycles are
of different lengths. Let mc(n) be the maximum cycle length for all G ∈ Mn. Let
sc(n) be the second-largest cycle length for all G ∈ Mn. Let tc(n) be the third-largest
cycle length for all G ∈ Mn. A natural question is what is the numbers of mc(n),
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sc(n), tc(n). Let mcn(n) be the maximum cycle numbers for all G ∈ Mn. A natural
question is what is the numbers of mcn(n). Let b(n) be the maximum 2-connected
block numbers for all G ∈ Mn. A natural question is what is the numbers of b(n).
Shi[23] proved that

Theorem 1 (Shi [23]).

f(n) ≥ n+ [(
√
8n− 23 + 1)/2]

for n ≥ 3 and f(n) = f ∗(n− 1) + 3 for n ≥ 3.
Lai[8] proved that

Theorem 2 (Lai [8]). For n ≥ e2m(2m+ 3)/4,

f(n) < n− 2 +
√

nln(4n/(2m+ 3)) + 2n + log2(n+ 6).

Chen, Lehel, Jacobson and Shreve[3] gave a quick proof of this result.
Jia[6], Lai[7,8,9,10,11,12,13,14,15], Shi[23,24,25,26,27,28], Shi, Tang, Tang, Gong,

Xu[29], Shi, Xu, Chen, Wang[30] obtained some additional related results.
Lai[16] proved that

Theorem 3 (Lai [16]).

lim inf
n→∞

f(n)− n
√
n

≥

√

2 +
40

99
.

and Lai[9] conjectured that

conjecture 4 (Lai [9]).

lim inf
n→∞

f(n)− n
√
n

≤
√
3.

Boros, Caro, Füredi and Yuster[2] proved that

Theorem 5 (Boros, Caro, Füredi and Yuster[2]).

f(n) ≤ n+ 1.98
√
n(1 + o(1)).

Let f2(n) be the maximum number of edges in a 2-connected graph on n vertices
in which no two cycles have the same length.

In 1988, Shi[23] proved that

Theorem 6 (Shi[23]). For every integer n ≥ 3, f2(n) ≤ n+ [1
2
(
√
8n− 15− 3)].

In 1998, G. Chen, J. Lehel, M. S. Jacobson, and W. E. Shreve [3] proved that

Theorem 7 (Chen, Lehel, Jacobson and Shreve [3]). f2(n) ≥ n+
√

n/2−o(
√
n)

In 2001, E. Boros, Y. Caro, Z. Füredi and R. Yuster [2] improved this lower bound
significantly:
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Theorem 8 (Boros, Caro, Füredi and Yuster[2]). f2(n) ≥ n+
√
n−O(n

9

20 ).
and conjectured that

Conjecture 9 (Boros, Caro, Füredi and Yuster[2]). lim f2(n)−n√
n

= 1.

It is easy to see that this Conjecture implies the (difficult) upper bound in the
Erdős Turán Theorem [4][5](see [2]).

Markström [22] raised the problem

Problem 10 (Markström [22]). Determining the maximum number of edges in a
Hamiltonian graph on n vertices with no repeated cycle lengths.

Let g(n) be the maximum number edges in an n-vertex, Hamiltonian graph with
no repeated cycle lengths. J. Lee, C. Timmons [18] proved the following.

Theorem 11 (J. Lee, C. Timmons [18]). If q is a power of a prime and n =
q2 + q + 1, then

g(n) ≥ n+
√

n− 3/4− 3/2

A simple counting argument shows that g(n) < n+
√
2n+ 1.

Let MHn be the set of Hamiltonian graphs on n vertices and g(n) edges in which
any two cycles are of different lengths. Let mcnH(n) be the maximum cycle numbers
for all G ∈ MHn. A natural question is what is the numbers of mcnH(n).

J. Ma, T. Yang [21] proved that

Theorem 12 (Ma, Yang [21]). Any n-vertex 2-connected graph with no two cycles
of the same length contains at most n +

√
n+ o(

√
n) edges.

Let f2(n, k) be the maximum number of edges in a graph G on n verticesin which
no two cycles have the same length and G which consists of k 2-connected blocks. A
natural question is what is the maximum number of edges f2(n, k). It is clearly that
f2(n, 1) = f2(n).

By theorem 5, it is clearly that

f2(n, k) ≤ f(n) ≤ n+ 1.98
√
n(1 + o(1)).

H. Lin, M. Zhai,Y. Zhao [19] proved that

Theorem 13 (Lin, Zhai,Zhao [19]). Let G be a graph of order n ≥ 26. If ρ(G) ≥
ρ(K+

1,n−1), then G contains two cycles of the same length unless G ∼= K+
1,n−1.

and asked the following problem.

Problem 14 (Lin, Zhai,Zhao [19]). What is the maximum spectral radius among
all 2-connected n-vertex graphs without two cycles of the same length?

Y. Shi [27]proved that

Theorem 15 (Shi [27]).

b(n) ≤ [(
√
8n+ 1− 5)/2] + 1

C. Lai [7] proved that
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Theorem 16 (Lai [7]). mc(n) ≤ n− 1 for n ≥
∑71

i=1 i− 8× 18.
Survey papers on this problem can be found in Tian[31], Zhang[32], Lai and

Liu[17].
The progress of all 50 problems in [1] can be found in Locke[20]. Let v(G) denote

the number of vertices, and ε(G) denote the number of edges. In this paper, it is
proved that

Theorem 17. For n sufficiently large,

mc(n) ≤
15

16
n.

2 Proof of the theorem 17

Proof. If mc(n) > 15
16
n, for n sufficiently large, then there is a simple graph G on n

vertices and f ∗(n) edges in which any two cycles are of different lengths, the maximum
cycle length of G is mc(n). Let G1 be the block contain the cycle with length mc(n).
It is clear that v(G1) > 15

16
n. By the result of Ma and Yang [21], ε(G1) ≤ v(G1) +

√

v(G1) + o(
√

v(G1)). By the result of Boros, Caro, Füredi and Yuster [2], ε(G) ≤

v(G1)+
√

v(G1)+o(
√

v(G1))+V (G)−V (G1)+1+1.98
√

V (G)− V (G1) + 1(1+o(1)) ≤

n+1+
√
n+ o(

√
n) + 1.98

√

1
16
n(1+ o(1)) ≤ n+ 3

2

√
n, for n sufficiently large. By the

result of Shi [23] and Lai [16], ε(G) = f ∗(n) = f(n+1)−3 > n+(
√

2 + 40
99
−o(1))

√
n,

for n sufficiently large. Note that ε(G) ≤ n + 3
2

√
n, this contradiction completes the

proof.

It is clear that mcn(n) ≤ mc(n)− 2.
By theorem 3, it is clearly that

mcn(n) ≥

√

2 +
40

99

√
n(1− o(1)).

We make the following conjecture:

Conjecture.

lim
n→∞

mc(n)

n
= 0.
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