The smallest degree sum that yields potentially $K_{r+1}-Z$-graphical Sequences *

Chunhui Lai
Department of Mathematics, Zhangzhou Teachers College, Zhangzhou, Fujian 363000, P. R. of CHINA. e-mail: zjlaichu@public.zzptt.fj.cn

Abstract

Let $K_{m}-H$ be the graph obtained from K_{m} by removing the edges set $E(H)$ of the graph H (H is a subgraph of K_{m}). We use the symbol Z_{4} to denote $K_{4}-P_{2}$. A sequence S is potentially $K_{m}-H$-graphical if it has a realization containing a $K_{m}-H$ as a subgraph. Let $\sigma\left(K_{m}-H, n\right)$ denote the smallest degree sum such that every n-term graphical sequence S with $\sigma(S) \geq \sigma\left(K_{m}-H, n\right)$ is potentially $K_{m}-H$-graphical. In this paper, we determine the values of $\sigma\left(K_{r+1}-Z, n\right)$ for $n \geq 5 r+19, r+1 \geq$ $k \geq 5, j \geq 5$ where Z is a graph on k vertices and j edges which contains a graph Z_{4} but not contains a cycle on 4 vertices. We also determine the values of $\sigma\left(K_{r+1}-Z_{4}, n\right), \sigma\left(K_{r+1}-\left(K_{4}-e\right), n\right), \sigma\left(K_{r+1}-K_{4}, n\right)$ for $n \geq 5 r+16, r \geq 4$. Key words: subgraph; degree sequence; potentially $K_{r+1}-Z$-graphic; potentially $K_{r+1}-Z_{4}$-graphic sequence AMS Subject Classifications: 05C07, 05C35

1 Introduction

The set of all non-increasing nonnegative integers sequence $\pi=\left(d_{1}, d_{2}, \ldots\right.$, d_{n}) is denoted by $N S_{n}$. A sequence $\pi \in N S_{n}$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is

[^0]called a realization of π. The set of all graphic sequences in $N S_{n}$ is denoted by $G S_{n}$. A graphical sequence π is potentially H-graphical if there is a realization of π containing H as a subgraph, while π is forcibly H-graphical if every realization of π contains H as a subgraph. If π has a realization in which the $r+1$ vertices of largest degree induce a clique, then π is said to be potentially A_{r+1}-graphic. Let $\sigma(\pi)=d_{1}+d_{2}+\ldots+d_{n}$, and $[x]$ denote the largest integer less than or equal to x. If G and G_{1} are graphs, then $G \cup G_{1}$ is the disjoint union of G and G_{1}. If $G=G_{1}$, we abbreviate $G \cup G_{1}$ as $2 G$. We denote $G+H$ as the graph with $V(G+H)=V(G) \bigcup V(H)$ and $E(G+H)=E(G) \bigcup E(H) \bigcup\{x y: x \in V(G), y \in V(H)\}$. Let K_{k}, C_{k}, T_{k}, and P_{k} denote a complete graph on k vertices, a cycle on k vertices, a tree on $k+1$ vertices, and a path on $k+1$ vertices, respectively. Let $K_{m}-H$ be the graph obtained from K_{m} by removing the edges set $E(H)$ of the graph $H\left(H\right.$ is a subgraph of $\left.K_{m}\right)$. We use the symbol Z_{4} to denote $K_{4}-P_{2}$. We use the symbol $G\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ to denote the subgraph of G induced by vertex set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. We use the symbol $\epsilon(G)$ to denote the numbers of edges in graph G.

Given a graph H, what is the maximum number of edges of a graph with n vertices not containing H as a subgraph? This number is denoted $e x(n, H)$, and is known as the Turán number. This problem was proposed for $H=C_{4}$ by Erdös [2] in 1938 and in general by Turán [19]. In terms of graphic sequences, the number $2 e x(n, H)+2$ is the minimum even integer l such that every n-term graphical sequence π with $\sigma(\pi) \geq l$ is forcibly H graphical. Here we consider the following variant: determine the minimum even integer l such that every n-term graphical sequence π with $\sigma(\pi) \geq l$ is potentially H-graphical. We denote this minimum l by $\sigma(H, n)$. Erdös, Jacobson and Lehel [4] showed that $\sigma\left(K_{k}, n\right) \geq(k-2)(2 n-k+1)+2$ and conjectured that equality holds. They proved that if π does not contain zero terms, this conjecture is true for $k=3, n \geq 6$. The conjecture is confirmed in [5],[14],[15],,[16] and [17].

Gould, Jacobson and Lehel [5] also proved that $\sigma\left(p K_{2}, n\right)=(p-1)(2 n-$ $2)+2$ for $p \geq 2 ; \sigma\left(C_{4}, n\right)=2\left[\frac{3 n-1}{2}\right]$ for $n \geq 4$. They also pointed out that it would be nice to see where in the range for $3 n-2$ to $4 n-4$, the value $\sigma\left(K_{4}-e, n\right)$ lies. Luo [18] characterized the potentially C_{k} graphic sequence for $k=3,4,5$. Lai [7] determined $\sigma\left(K_{4}-e, n\right)$ for $n \geq 4$. Yin,Li and Mao[21] determined $\sigma\left(K_{r+1}-e, n\right)$ for $r \geq 3, r+1 \leq n \leq 2 r$ and $\sigma\left(K_{5}-e, n\right)$ for $n \geq 5$. Yin and Li [20] gave a good method (Yin-Li method) of determining the values $\sigma\left(K_{r+1}-e, n\right)$ for $r \geq 2$ and $n \geq 3 r^{2}-r-1$ (In fact, Yin and $\mathrm{Li}[20]$ also determining the values $\sigma\left(K_{r+1}-k e, n\right)$ for $r \geq 2$ and $n \geq 3 r^{2}-r-1$). After reading[20], using Yin-Li method Yin [22] determined $\sigma\left(K_{r+1}-K_{3}, n\right)$ for $n \geq 3 r+5, r \geq 3$. Lai [8] determined $\sigma\left(K_{5}-K_{3}, n\right)$, for $n \geq 5$. Lai [9] gave a lower bound of $\sigma\left(K_{t+p}-K_{p}, n\right)$. Lai $[10,11]$ determined $\sigma\left(K_{5}-C_{4}, n\right), \sigma\left(K_{5}-P_{3}, n\right)$ and $\sigma\left(K_{5}-P_{4}, n\right)$, for
$n \geq 5$. Determining $\sigma\left(K_{r+1}-H, n\right)$, where H is a tree on 4 vertices is more useful than a cycle on 4 vertices (for example, $C_{4} \not \subset C_{i}$, but $P_{3} \subset C_{i}$ for $i \geq 5$). So, after reading[20] and [22], using Yin-Li method Lai and $\mathrm{Hu}[12]$ determined $\sigma\left(K_{r+1}-H, n\right)$ for $n \geq 4 r+10, r \geq 3, r+1 \geq k \geq 4$ and H be a graph on k vertices which containing a tree on 4 vertices but not containing a cycle on 3 vertices and $\sigma\left(K_{r+1}-P_{2}, n\right)$ for $n \geq 4 r+8, r \geq 3$. Using Yin-Li method Lai and Sun[13] determined $\sigma\left(K_{r+1}-\left(k P_{2} \bigcup t K_{2}\right), n\right)$ for $n \geq 4 r+10, r+1 \geq 3 k+2 t, k+t \geq 2, k \geq 1, t \geq 0$. To now, the problem of determining $\sigma\left(K_{r+1}-H, n\right)$ for H not containing a cycle on 3 vertices and sufficiently large n has been solved. In this paper, using Yin-Li method we prove the following two theorems.

Theorem 1.1. If $r \geq 4$ and $n \geq 5 r+16$, then

$$
\begin{gathered}
\sigma\left(K_{r+1}-K_{4}, n\right)=\sigma\left(K_{r+1}-\left(K_{4}-e\right), n\right)= \\
\sigma\left(K_{r+1}-Z_{4}, n\right)=\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)+1, \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)+2, \\
\text { if } n-r \text { is even }
\end{array}\right.
\end{gathered}
$$

Theorem 1.2. If $n \geq 5 r+19, r+1 \geq k \geq 5$, and $j \geq 5$, then

$$
\sigma\left(K_{r+1}-Z, n\right)=\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1, \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2, \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

where Z is a graph on k vertices and j edges which contains a graph Z_{4} but not contains a cycle on 4 vertices.

There are a number of graphs on k vertices and j edges which contains a graph Z_{4} but not contains a cycle on 4 vertices.

2 Preparations

In order to prove our main result, we need the following notations and results.

Let $\pi=\left(d_{1}, \cdots, d_{n}\right) \in N S_{n}, 1 \leq k \leq n$. Let

$$
\pi_{k}^{\prime \prime}=\left\{\begin{array}{l}
\left(d_{1}-1, \cdots, d_{k-1}-1, d_{k+1}-1, \cdots, d_{d_{k}+1}-1, d_{d_{k}+2}, \cdots, d_{n}\right) \\
\text { if } d_{k} \geq k, \\
\left(d_{1}-1, \cdots, d_{d_{k}}-1, d_{d_{k}+1}, \cdots, d_{k-1}, d_{k+1}, \cdots, d_{n}\right) \\
\text { if } d_{k}<k
\end{array}\right.
$$

Denote $\pi_{k}^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \cdots, d_{n-1}^{\prime}\right)$, where $d_{1}^{\prime} \geq d_{2}^{\prime} \geq \cdots \geq d_{n-1}^{\prime}$ is a rearrangement of the $n-1$ terms of $\pi_{k}^{\prime \prime}$. Then π_{k}^{\prime} is called the residual sequence obtained by laying off d_{k} from π.

Theorem 2.1[20] Let $n \geq r+1$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r+1} \geq r$. If $d_{i} \geq 2 r-i$ for $i=1,2, \cdots, r-1$, then π is potentially A_{r+1}-graphic.

Theorem 2.2[20] Let $n \geq 2 r+2$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r+1} \geq r$. If $d_{2 r+2} \geq r-1$, then π is potentially A_{r+1}-graphic.

Theorem 2.3[20] Let $n \geq r+1$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r+1} \geq r-1$. If $d_{i} \geq 2 r-i$ for $i=1,2, \cdots, r-1$, then π is potentially $K_{r+1}-e$-graphic.

Theorem 2.4[20] Let $n \geq 2 r+2$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r-1} \geq r$. If $d_{2 r+2} \geq r-1$, then π is potentially $K_{r+1}-e$-graphic.

Theorem 2.5[6] Let $\pi=\left(d_{1}, \cdots, d_{n}\right) \in N S_{n}$ and $1 \leq k \leq n$. Then $\pi \in G S_{n}$ if and only if $\pi_{k}^{\prime} \in G S_{n-1}$.

Theorem 2.6[3] Let $\pi=\left(d_{1}, \cdots, d_{n}\right) \in N S_{n}$ with even $\sigma(\pi)$. Then $\pi \in G S_{n}$ if and only if for any $t, 1 \leq t \leq n-1$,

$$
\sum_{i=1}^{t} d_{i} \leq t(t-1)+\sum_{j=t+1}^{n} \min \left\{t, d_{j}\right\}
$$

Theorem 2.7[5] If $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is a graphic sequence with a realization G containing H as a subgraph, then there exists a realization G^{\prime} of π containing H as a subgraph so that the vertices of H have the largest degrees of π.

Theorem 2.8[9] If $n \geq p+t$, then $\sigma\left(K_{p+t}-K_{p}, n\right) \geq 2[((p+2 t-3) n+$ $\left.\left.p+2 t+1-p t-t^{2}\right) / 2\right]$.

Lemma 2.1 [22] If $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in N S_{n}$ is potentially $K_{r+1}-e-$ graphic, then there is a realization G of π containing $K_{r+1}-e$ with the $r+1$ vertices v_{1}, \cdots, v_{r+1} such that $d_{G}\left(v_{i}\right)=d_{i}$ for $i=1,2, \cdots, r+1$ and $e=v_{r} v_{r+1}$.

Lemma 2.2 [12] Let $n \geq 2 r+2$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r-2} \geq r$. If $d_{2 r+2} \geq r-1$, then π is potentially $K_{r+1}-P_{2}$-graphic.

Lemma 2.3 Let $\pi=\left(d_{1}, \cdots, d_{n}\right) \in G S_{n}$ and G be a realization of π. If $\epsilon\left(G\left[v_{1}, v_{2}, \ldots, v_{r+1}\right]\right) \leq \epsilon\left(K_{r+1}\right)-1$, then there is a realization H of π such that $d_{H}\left(v_{i}\right)=d_{i}$ for $i=1,2, \cdots, r+1$ and $v_{r} v_{r+1} \notin E(H)$.

The proof is similar to the proof of Lemma 2.1.

3 Proof of Main results.

Lemma 3.1. Let $n \geq 2 r$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r-1} \geq r$, $d_{r+1} \geq r-1$. If $d_{i} \geq 2 r-i$ for $i=1,2, \cdots, r-2$, then π is potentially $K_{r+1}-e$-graphic.

Proof. We consider the following two cases.
Case 1: $d_{r+1} \geq r$.
If $d_{r-1} \geq r+1$.
Then π is potentially $K_{r+1}-e$-graphic by Theorem 2.3.
If $d_{r-1}=r$, then $d_{r-1}=d_{r}=d_{r+1}=r$
Suppose π is not potentially $K_{r+1}-e$-graphic. Let H be a realization of π, then $\epsilon\left(H\left[v_{1}, v_{2}, \ldots, v_{r+1}\right]\right) \leq \epsilon\left(K_{r+1}\right)-2$. Let $S=\left(d_{1}, d_{2}, \cdots, d_{r-2}, d_{r-1}\right.$, $\left.d_{r}+1, d_{r+1}+1, \cdots, d_{n}\right)$, then by Theorem $2.1, S$ is potentially $A_{r+1^{-}}$ graphic (Denote $S^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \cdots, d_{n}^{\prime}\right)$, where $d_{1}^{\prime} \geq d_{2}^{\prime} \geq \cdots \geq d_{n}^{\prime}$ is a rearrangement of the n terms of S. Therefore $S^{\prime} \in G S_{n}$ by Lemma 2.3. Then $S^{\prime \prime}$ satisfies the conditions of Theorem 2.1). Therefore, there is a realization G of S with $v_{1}, v_{2}, \cdots, v_{r+1}\left(d\left(v_{i}\right)=d_{i}, i=1,2, \cdots, r-1\right.$, $\left.d\left(v_{r}\right)=d_{r}+1, d\left(v_{r+1}\right)=d_{r+1}+1\right)$, the $r+1$ vertices of highest degree containing a K_{r+1}. Hence, $G-v_{r+1} v_{r}$ is a realization of π. Thus, π is potentially $K_{r+1}-e$-graphic, which is a contradiction.

Case 2: $d_{r+1}=r-1$, then the residual sequence $\pi_{r+1}^{\prime}=\left(d_{1}^{\prime}, \cdots, d_{n-1}^{\prime}\right)$ obtained by laying off $d_{r+1}=r-1$ from π satisfies: $d_{1}^{\prime} \geq 2(r-1)-1, \cdots$, $d_{(r-1)-1}^{\prime}=d_{r-2}^{\prime} \geq 2(r-1)-(r-2), d_{(r-1)+1}^{\prime}=d_{r}^{\prime} \geq r-1$. By Theorem 2.1, π_{r+1}^{\prime} is potentially $A_{(r-1)+1}$-graphic. Therefore, π is potentially $K_{r+1}-e-$ graphic by $\left\{d_{1}-1, \cdots, d_{r-1}-1\right\} \subseteq\left\{d_{1}^{\prime}, \cdots, d_{r}^{\prime}\right\}$ and Theorem 2.7.

Lemma 3.2. Let $n \geq 2 r$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r-2} \geq$ $r+1, d_{r+1} \geq r, d_{r}-1 \geq d_{d_{r+1}+2}$. If $d_{i} \geq 2 r-i$ for $i=1,2, \cdots, r-3$, then π is potentially A_{r+1}-graphic.

Proof. The residual sequence $\pi_{r+1}^{\prime}=\left(d_{1}^{\prime}, \cdots, d_{n-1}^{\prime}\right)$ obtained by laying off d_{r+1} from π satisfies: $d_{1}^{\prime} \geq 2(r-1)-1, \cdots, d_{(r-1)-2}^{\prime}=d_{r-3}^{\prime} \geq 2(r-$ 1) $-(r-3), d_{(r-1)-1}^{\prime}=d_{r-2}^{\prime} \geq 2(r-1)-(r-2), d_{(r-1)+1}^{\prime}=d_{r}^{\prime} \geq r-1$. By Theorem 2.1, π_{r+1}^{\prime} is potentially $A_{(r-1)+1}$-graphic. Therefore, π is potentially A_{r+1}-graphic by $\left\{d_{1}-1, \cdots, d_{r}-1\right\}=\left\{d_{1}^{\prime}, \cdots, d_{r}^{\prime}\right\}$ and Theorem 2.7.

Lemma 3.3 Let $n \geq 2 r+2, r \geq 4$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r-2} \geq r-1$ and $d_{r+1} \geq r-2$,

$$
\sigma(\pi) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1 \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

If $d_{i} \geq 2 r-i$ for $i=1,2, \cdots, r-3$, then π is potentially $K_{r+1}-Z_{4}$-graphic.
Proof. We consider the following two cases.
Case 1: $d_{r+1} \geq r-1$.
Subcase 1.1: $d_{r-1} \geq r+1$.
If $d_{r-2} \geq r+2$, then π is potentially $K_{r+1}-e$-graphic by Theorem 2.3. Hence, π is potentially $K_{r+1}-Z_{4}$-graphic.

If $d_{r-2}=r+1$, then $d_{r-3}-1 \geq d_{r-2}$. The residual sequence $\pi_{r+1}^{\prime}=$ $\left(d_{1}^{\prime}, \cdots, d_{n-1}^{\prime}\right)$ obtained by laying off d_{r+1} from π satisfies: $d_{1}^{\prime} \geq 2(r-$ 1) $-1, \cdots, d_{(r-1)-2}^{\prime}=d_{r-3}^{\prime} \geq 2(r-1)-(r-3), d_{(r-1)-1}^{\prime}=d_{r-2}^{\prime} \geq$ $r-1, d_{(r-1)+1}^{\prime}=d_{r}^{\prime} \geq(r-1)-1$. By Lemma 3.1, π_{r+1}^{\prime} is potentially $K_{(r-1)+1}-e$-graphic. Therefore, π is potentially $K_{r+1}-Z_{4}$-graphic by $\left\{d_{1}-1, \cdots, d_{r-3}-1\right\} \subseteq\left\{d_{1}^{\prime}, \cdots, d_{r}^{\prime}\right\}$ and Lemma 2.1.

Subcase 1.2: $d_{r-1} \leq r$. then $d_{r-3}-1 \geq d_{r-1}$. The residual sequence $\pi_{r+1}^{\prime}=\left(d_{1}^{\prime}, \cdots, d_{n-1}^{\prime}\right)$ obtained by laying off d_{r+1} from π satisfies: $d_{1}^{\prime} \geq$ $2(r-1)-1, \cdots, d_{(r-1)-2}^{\prime}=d_{r-3}^{\prime} \geq 2(r-1)-(r-3), d_{(r-1)-1}^{\prime}=d_{r-2}^{\prime} \geq$ $r-1, d_{(r-1)+1}^{\prime}=d_{r}^{\prime} \geq(r-1)-1$. By Lemma 3.1, π_{r+1}^{\prime} is potentially $K_{(r-1)+1}-e$-graphic. Therefore, π is potentially $K_{r+1}-Z_{4}$-graphic by $\left\{d_{1}-1, \cdots, d_{r-3}-1\right\} \subseteq\left\{d_{1}^{\prime}, \cdots, d_{r}^{\prime}\right\}$ and Lemma 2.1.

Case 2: $d_{r+1}=r-2$.
If $d_{r-1}<d_{r-2}$.
If $d_{r-2} \geq r$, then the residual sequence $\pi_{r+1}^{\prime}=\left(d_{1}^{\prime}, \cdots, d_{n-1}^{\prime}\right)$ obtained by laying off $d_{r+1}=r-2$ from π satisfies: (1) $d_{i}^{\prime}=d_{i}-1$ for $i=1,2, \cdots, r-$ $2,(2) d_{1}^{\prime}=d_{1}-1 \geq 2(r-1)-1, \cdots, d_{(r-1)-2}^{\prime}=d_{r-3}^{\prime} \geq d_{r-3}-1 \geq$ $2(r-1)-[(r-1)-2], d_{(r-1)-1}^{\prime}=d_{r-2}^{\prime} \geq r-1$, and $d_{(r-1)+1}^{\prime}=d_{r}^{\prime}=d_{r} \geq$ $r-2$. By Lemma 3.1, π_{r+1}^{\prime} is potentially $K_{(r-1)+1}-e$-graphic. Therefore, π is potentially $K_{r+1}-Z_{4}$-graphic by $\left\{d_{1}-1, \cdots, d_{r-2}-1, d_{r-1}, d_{r}\right\}=$ $\left\{d_{1}^{\prime}, \cdots, d_{r}^{\prime}\right\}$ and Lemma 2.1.

If $d_{r-2}=r-1$, then $d_{r-1}=d_{r}=r-2$ and

$$
\begin{aligned}
\sigma(\pi) & \leq(r-3)(n-1)+r-1+(r-2)(n-r+2) \\
& =(r-1)(n-1)-2(n-1)+(r-1)(n-r+3)-(n-r+2) \\
& =(r-1)(2 n-r)-3(n-r)-2
\end{aligned}
$$

Hence, $\pi=\left((n-1)^{r-3},(r-1)^{1},(r-2)^{n-r+2}\right)$ and $n-r$ is even. Clearly, π is potentially $K_{r+1}-Z_{4}$-graphic.

If $d_{r-1}=d_{r-2}$ and $d_{r-3} \geq d_{r}$, then π_{r+1}^{\prime} satisfies: $d_{1}^{\prime} \geq d_{1}-1 \geq$ $2(r-1)-1, \cdots, d_{(r-1)-2}^{\prime}=d_{r-3}^{\prime} \geq d_{r-3}-1 \geq 2(r-1)-[(r-1)-2]$, $d_{(r-1)-1}^{\prime}=d_{r-2}^{\prime} \geq r-1$ and $d_{(r-1)+1}^{\prime}=d_{r}^{\prime} \geq r-2$. By Lemma 3.1, π_{r+1}^{\prime} is potentially $K_{(r-1)+1}-e$-graphic. Therefore, π is potentially $K_{r+1}-Z_{4^{-}}$ graphic by $\left\{d_{r-1}, d_{r}, d_{1}-1 \cdots, d_{r-2}-1\right\}=\left\{d_{1}^{\prime}, \cdots, d_{r}^{\prime}\right\}$ and Lemma 2.1.

If $d_{r-1}=d_{r-2}$ and $d_{r-3}=d_{r}$, then $d_{r-3}=d_{r-2}=d_{r-1}=d_{r} \geq r+3$. Let H be a realization of π. Since $d_{r+1}=r-2$, then there is $i, j \leq r$ such that $v_{r+1} v_{i}, v_{r+1} v_{j} \notin E(H)$. Let $S=\left(d_{1}, d_{2}, \cdots, d_{i}+1, \cdots, d_{j}+1, \cdots\right.$, $\left.d_{r}, d_{r+1}+2, \cdots, d_{n}\right)$, then by Theorem $2.1, S$ is potentially A_{r+1}-graphic (Denote $S^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \cdots, d_{n}^{\prime}\right)$, where $d_{1}^{\prime} \geq d_{2}^{\prime} \geq \cdots \geq d_{n}^{\prime}$ is a rearrangement of the n terms of S. Therefore $S^{\prime} \in G S_{n}$. Then S^{\prime} satisfies the conditions of Theorem 2.1). Therefore, there is a realization G of S with $v_{1}, v_{2}, \cdots, v_{r+1}$ $\left(d\left(v_{t}\right)=d_{t}, t \neq i, j, r+1, d\left(v_{i}\right)=d_{i}+1, d\left(v_{j}\right)=d_{j}+1, d\left(v_{r+1}\right)=d_{r+1}+\right.$ 2), the $r+1$ vertices of highest degree containing a K_{r+1}. Hence, $G-$
$\left\{v_{r+1} v_{i}, v_{r+1} v_{j}\right\}$ is a realization of π. Thus, π is potentially $K_{r+1}-Z_{4^{-}}$ graphic.

Lemma 3.4 Let $n \geq 2 r+2$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r-t} \geq r$. If $d_{2 r+2} \geq r-1$, then π is potentially $K_{r+1}-K_{1, t}{ }^{-}$graphic.

Proof. We consider the following two cases.
Case 1: If $d_{r-1} \geq r$. Then π is potentially $K_{r+1}-e$-graphic by Theorem 2.4. Hence, π is potentially $K_{r+1}-K_{1, t}$-graphic.

Case 2: $d_{r-1} \leq r-1$, that is, $d_{r-1}=r-1$, then $d_{r-1}=d_{r}=$ $d_{r+1}=\cdots=d_{2 r+2}=r-1$ and π_{r+1}^{\prime} satisfies: $d_{(r-1)+1}^{\prime}=d_{r}^{\prime} \geq r-1$ and $d_{2(r-1)+2}^{\prime}=d_{2 r}^{\prime} \geq(r-1)-1$. By Theorem 2.2, π_{r+1}^{\prime} is potentially A_{r}-graphic. Therefore, π is potentially $K_{r+1}-K_{1, t}$-graphic by $\left\{d_{1}-\right.$ $\left.1, \cdots, d_{r-t}-1\right\} \subseteq\left\{d_{1}^{\prime}, \cdots, d_{r}^{\prime}\right\}$ and Theorem 2.7.

Lemma 3.5 Let $n \geq 2 r+2$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with $d_{r-4} \geq r$,

$$
\sigma(\pi) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1 \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

If $d_{2 r+2} \geq r-1$, then π is potentially $K_{r+1}-\left(P_{2} \bigcup K_{2}\right)$-graphic.
Proof. We consider the following two cases.
Case 1: If $d_{r-2} \geq r$. Then π is potentially $K_{r+1}-P_{2}$-graphic by Lemma 2.2. Hence, π is potentially $K_{r+1}-\left(P_{2} \bigcup K_{2}\right)$-graphic.

Case 2: $d_{r-2}=r-1$.
Subcase 2.1: $d_{r-3} \geq r$, then $d_{r-3} \geq d_{r}+1=d_{r+1}+1=r>r-$ $1=d_{r-2}=d_{r-1}$. Suppose π is not potentially $K_{r+1}-\left(P_{2} \bigcup K_{2}\right)$-graphic. Let H be a realization of π, then $\epsilon\left(H\left[v_{1}, v_{2}, \ldots, v_{r+1}\right]\right) \leq \epsilon\left(K_{r+1}\right)-3$. Let $S=\left(d_{1}, d_{2}, \cdots, d_{r-2}, d_{r-1}, d_{r}+1, d_{r+1}+1, \cdots, d_{n}\right)$, then by Theorem 2.4, S is potentially $K_{r+1}-e$-graphic (Denote $S^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \cdots, d_{n}^{\prime}\right)$, where $d_{1}^{\prime} \geq$ $d_{2}^{\prime} \geq \cdots \geq d_{n}^{\prime}$ is a rearrangement of the n terms of S. Therefore $S^{\prime} \in G S_{n}$ by Lemma 2.3. Then S^{\prime} satisfies the conditions of Theorem 2.4). Therefore, there is a realization G of S with $v_{1}, v_{2}, \cdots, v_{r+1}\left(d\left(v_{i}\right)=d_{i}, i=1,2, \cdots, r-\right.$ $\left.1, d\left(v_{r}\right)=d_{r}+1, d\left(v_{r+1}\right)=d_{r+1}+1\right)$, the $r+1$ vertices of highest degree containing a $K_{r+1}-e$ and $e=v_{r-1} v_{r-2}$ by Lemma 2.1. Hence, $G-v_{r+1} v_{r}$ is a realization of π. Thus, π is potentially $K_{r+1}-\left(P_{2} \cup K_{2}\right)$-graphic, which is a contradiction.

Subcase 2.2: $d_{r-3}=r-1$, then

$$
\begin{aligned}
\sigma(\pi) & \leq(r-4)(n-1)+(r-1)(n-r+4) \\
& =(r-1)(n-1)-3(n-1)+(r-1)(n-r+1)+3(r-1) \\
& =(r-1)(2 n-r)-3(n-r)
\end{aligned}
$$

Since,

$$
\sigma(\pi) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1 \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

Hence, π is one of the following: $\left((n-1)^{r-5},(n-2)^{1},(r-1)^{n-r+4}\right),((n-$ $\left.1)^{r-4},(r-1)^{n-r+3},(r-2)^{1}\right)$, for $n-r$ is odd, π is one of the following: $\left((n-1)^{r-4},(r-1)^{n-r+4}\right),\left((n-1)^{r-6},(n-2)^{2},(r-1)^{n-r+4}\right),\left((n-1)^{r-5},(n-\right.$ $\left.3)^{1},(r-1)^{n-r+4}\right),\left((n-1)^{r-5},(n-2)^{1},(r-1)^{n-r+3},(r-2)^{1}\right),\left((n-1)^{r-4},(r-\right.$ $\left.1)^{n-r+3},(r-3)^{1}\right),\left((n-1)^{r-4},(r-1)^{n-r+2},(r-2)^{2}\right)$, for $n-r$ is even. Clearly, π is potentially $K_{r+1}-\left(P_{2} \cup K_{2}\right)$-graphic.

Lemma 3.6. If $r \geq 4$ and $n \geq r+1$, then

$$
\sigma\left(K_{r+1}-Z_{4}, n\right) \geq \sigma\left(K_{r+1}-K_{4}, n\right) .
$$

and

$$
\sigma\left(K_{r+1}-K_{4}, n\right) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)+1, \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)+2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

Proof. Obviously, for $r \geq 4$ and $n \geq r+1, \sigma\left(K_{r+1}-Z_{4}, n\right) \geq \sigma\left(K_{r+1}-\right.$ $\left.K_{4}, n\right)$. By Theorem 2.8, for $r \geq 4$ and $n \geq r+1, \sigma\left(K_{r+1}-K_{4}, n\right)=$ $\sigma\left(K_{4+(r-3)}-K_{4}, n\right) \geq 2[((4+2(r-3)-3) n+4+2(r-3)+1-4(r-3)-$ $\left.\left.(r-3)^{2}\right) / 2\right]$. Hence,

$$
\sigma\left(K_{r+1}-K_{4}, n\right) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)+1, \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)+2, \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

Lemma 3.7. If $n \geq r+1, r+1 \geq k \geq 4$, then

$$
\sigma\left(K_{r+1}-H, n\right) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1, \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

where H is a graph on k vertices which not contains a cycle on 4 vertices.
Proof. Let

$$
G=\left\{\begin{array}{l}
K_{r-3}+\left(\frac{n-r+1}{2}+1\right) K_{2}, \\
\text { if } n-r \text { is odd } \\
K_{r-3}+\left(\frac{n-r+2}{2} K_{2} \bigcup K_{1}\right), \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

Then G is a unique realization of

$$
\pi=\left\{\begin{array}{l}
\left((n-1)^{r-3},(r-2)^{n-r+3}\right) \\
\text { if } n-r \text { is odd } \\
\left((n-1)^{r-3},(r-2)^{n-r+2},(r-3)^{1}\right), \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

and G clearly does not contain $K_{r+1}-H$, where the symbol x^{y} means x repeats y times in the sequence. Thus $\sigma\left(K_{r+1}-H, n\right) \geq \sigma(\pi)+2$. Therefore,

$$
\sigma\left(K_{r+1}-H, n\right) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1, \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2, \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

The Proof of Theorem 1.1 According to Lemma 3.6 and $\sigma\left(K_{r+1}-\right.$ $\left.K_{4}, n\right) \leq \sigma\left(K_{r+1}-\left(K_{4}-e\right), n\right) \leq \sigma\left(K_{r+1}-Z_{4}, n\right)$, it is enough to verify that for $n \geq 5 r+16$,

$$
\sigma\left(K_{r+1}-Z_{4}, n\right) \leq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)+1 \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)+2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

We now prove that if $n \geq 5 r+16$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with

$$
\sigma(\pi) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)+1 \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)+2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

then π is potentially $K_{r+1}-Z_{4}$-graphic.
If $d_{r-3} \leq r-1$, then

$$
\begin{aligned}
\sigma(\pi) & \leq(r-4)(n-1)+(r-1)(n-r+4) \\
& =(r-1)(n-1)-3(n-1)+(r-1)(n-r+4) \\
& =(r-1)(2 n-r)-3(n-r) \\
& <(r-1)(2 n-r)-3(n-r)+1,
\end{aligned}
$$

which is a contradiction. Thus, $d_{r-3} \geq r$.
If $d_{r-2} \leq r-2$, then

$$
\begin{aligned}
\sigma(\pi) & \leq(r-3)(n-1)+(r-2)(n-r+3) \\
& =(r-1)(n-1)-2(n-1)+(r-1)(n-r+3)-(n-r+3) \\
& =(r-1)(2 n-r)-3(n-r)-3 \\
& <(r-1)(2 n-r)-3(n-r)+1,
\end{aligned}
$$

which is a contradiction. Thus, $d_{r-2} \geq r-1$.
If $d_{r+1} \leq r-3$, then

$$
\begin{aligned}
\sigma(\pi) & =\sum_{i=1}^{r} d_{i}+\sum_{i=r+1}^{n} d_{i} \\
& \leq(r-1) r+\sum_{i=r+1}^{n} \min \left\{r, d_{i}\right\}+\sum_{i=r+1}^{n} d_{i} \\
& =(r-1) r+2 \sum_{i=r+1}^{n} d_{i} \\
& \leq(r-1) r+2(n-r)(r-3) \\
& =(r-1)(2 n-r)-4(n-r) \\
& <(r-1)(2 n-r)-3(n-r)+1,
\end{aligned}
$$

which is a contradiction. Thus, $d_{r+1} \geq r-2$.
If $d_{i} \geq 2 r-i$ for $i=1,2, \cdots, r-3$ or $d_{2 r+2} \geq r-1$, then π is potentially $K_{r+1}-Z_{4}$-graphic by Lemma 3.3 or Lemma 3.4. If $d_{2 r+2} \leq r-2$ and there exists an integer $i, 1 \leq i \leq r-3$ such that $d_{i} \leq 2 r-i-1$, then

$$
\begin{aligned}
\sigma(\pi) \leq & (i-1)(n-1)+(2 r+1-i+1)(2 r-i-1) \\
& +(r-2)(n+1-2 r-2) \\
= & i^{2}+i(n-4 r-2)-(n-1) \\
& +(2 r-1)(2 r+2)+(r-2)(n-2 r-1) .
\end{aligned}
$$

Since $n \geq 5 r+16$, it is easy to see that $i^{2}+i(n-4 r-2)$, consider as a function of i, attains its maximum value when $i=r-3$. Therefore,

$$
\begin{aligned}
\sigma(\pi) \leq & (r-3)^{2}+(n-4 r-2)(r-3)-(n-1) \\
& +(2 r-1)(2 r+2)+(r-2)(n-2 r-1) \\
= & (r-1)(2 n-r)-3(n-r)-n+5 r+16 \\
< & \sigma(\pi)
\end{aligned}
$$

which is a contradiction.
Thus,

$$
\sigma\left(K_{r+1}-Z_{4}, n\right) \leq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)+1 \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)+2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

for $n \geq 5 r+16$.
The Proof of Theorem 1.2 According to Lemma 3.7, it is enough to verify that for $n \geq 5 r+19$,

$$
\sigma\left(K_{r+1}-Z, n\right) \leq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1, \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

We now prove that if $n \geq 5 r+19$ and $\pi=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in G S_{n}$ with

$$
\sigma(\pi) \geq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1 \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

then π is potentially $K_{r+1}-Z$-graphic.
If $d_{r-4} \leq r-1$, then

$$
\begin{aligned}
\sigma(\pi) & \leq(r-5)(n-1)+(r-1)(n-r+5) \\
& =(r-1)(n-1)-4(n-1)+(r-1)(n-r+5) \\
& =(r-1)(2 n-r)-4(n-r) \\
& <(r-1)(2 n-r)-3(n-r)-2,
\end{aligned}
$$

which is a contradiction. Thus, $d_{r-4} \geq r$.
If $d_{r-2} \leq r-2$, then

$$
\begin{aligned}
\sigma(\pi) & \leq(r-3)(n-1)+(r-2)(n-r+3) \\
& =(r-1)(n-1)-2(n-1)+(r-1)(n-r+3)-(n-r+3) \\
& =(r-1)(2 n-r)-3(n-r)-3 \\
& <(r-1)(2 n-r)-3(n-r)-2,
\end{aligned}
$$

which is a contradiction. Thus, $d_{r-2} \geq r-1$.
If $d_{r+1} \leq r-3$, then

$$
\begin{aligned}
\sigma(\pi) & =\sum_{i=1}^{r} d_{i}+\sum_{i=r+1}^{n} d_{i} \\
& \leq(r-1) r+\sum_{i=r+1}^{n} \min \left\{r, d_{i}\right\}+\sum_{i=r+1}^{n} d_{i} \\
& =(r-1) r+2 \sum_{i=r+1}^{n} d_{i} \\
& \leq(r-1) r+2(n-r)(r-3) \\
& =(r-1)(2 n-r)-4(n-r) \\
& <(r-1)(2 n-r)-3(n-r)-2,
\end{aligned}
$$

which is a contradiction. Thus, $d_{r+1} \geq r-2$.
If $d_{i} \geq 2 r-i$ for $i=1,2, \cdots, r-3$ or $d_{2 r+2} \geq r-1$, then π is potentially $K_{r+1}-Z$-graphic by Lemma 3.3 or Lemma 3.5. If $d_{2 r+2} \leq r-2$ and there exists an integer $i, 1 \leq i \leq r-3$ such that $d_{i} \leq 2 r-i-1$, then

$$
\begin{aligned}
\sigma(\pi) \leq & (i-1)(n-1)+(2 r+1-i+1)(2 r-i-1) \\
& +(r-2)(n+1-2 r-2) \\
= & i^{2}+i(n-4 r-2)-(n-1) \\
& +(2 r-1)(2 r+2)+(r-2)(n-2 r-1) .
\end{aligned}
$$

Since $n \geq 5 r+19$, it is easy to see that $i^{2}+i(n-4 r-2)$, consider as a
function of i, attains its maximum value when $i=r-3$. Therefore,

$$
\begin{aligned}
\sigma(\pi) \leq & (r-3)^{2}+(n-4 r-2)(r-3)-(n-1) \\
& +(2 r-1)(2 r+2)+(r-2)(n-2 r-1) \\
= & (r-1)(2 n-r)-3(n-r)-n+5 r+16 \\
< & \sigma(\pi)
\end{aligned}
$$

which is a contradiction.
Thus,

$$
\sigma\left(K_{r+1}-Z, n\right) \leq\left\{\begin{array}{l}
(r-1)(2 n-r)-3(n-r)-1 \\
\text { if } n-r \text { is odd } \\
(r-1)(2 n-r)-3(n-r)-2 \\
\text { if } n-r \text { is even }
\end{array}\right.
$$

for $n \geq 5 r+19$.

Acknowledgment

The authors thanks the referees for many helpful comments.

References

[1] B. Bollabás, Extremal Graph Theory, Academic Press, London, 1978.
[2] P. Erdös, On sequences of integers no one of which divides the product of two others and some related problems, Izv. Naustno-Issl. Mat. i Meh. Tomsk 2(1938), 74-82.
[3] P. Erdös and T. Gallai, Graphs with given degrees of vertices, Math. Lapok,11(1960),264-274.
[4] P.Erdös, M.S. Jacobson and J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in Graph Theory, Combinatorics and Application, Vol. 1(Y. Alavi et al., eds.), John Wiley and Sons, Inc., New York, 1991, 439-449.
[5] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphic degree sequences, in Combinatorics, Graph Theory and Algorithms,Vol. 2 (Y. Alavi et al.,eds.), New Issues Press, Kalamazoo, MI, 1999, 451-460.
[6] D.J. Kleitman and D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors,Discrete Math., 6(1973),79-88.
[7] Chunhui Lai, A note on potentially $K_{4}-e$ graphical sequences, Australasian J. of Combinatorics 24(2001), 123-127.
[8] Chunhui Lai, An extremal problem on potentially $K_{p, 1,1}$-graphic sequences, Discrete Mathematics and Theoretical Computer Science 7 (2005), 75-80.
[9] Chunhui Lai, Potentially $K_{p, 1,1, \ldots, 1}$-graphic degree sequences, J. Zhangzhou Teachers College 17(4)(2004), 11-13.
[10] Chunhui Lai, An extremal problem on potentially $K_{m}-C_{4}$-graphic sequences, Journal of Combinatorial Mathematics and Combinatorial Computing, 61 (2007), 59-63.
[11] Chunhui Lai, An extremal problem on potentially $K_{m}-P_{k}$-graphic sequences, accepted by International Journal of Pure and Applied Mathematics.
[12] Chunhui Lai and Lili Hu, An extremal problem on potentially $K_{r+1}-$ H-graphic sequences, accepted by Ars Combinatoria.
[13] Chunhui Lai and Yuzhen Sun, An extremal problem on potentially $K_{r+1}-\left(k P_{2} \bigcup t K_{2}\right)$-graphic sequences, International Journal of Applied Mathematics \& Statistics, 14(2009), 30-36.
[14] Jiong-Sheng Li and Zi-Xia Song, An extremal problem on the potentially P_{k}-graphic sequences, Discrete Math., 212(2000), 223-231.
[15] Jiong-Sheng Li and Zi-Xia Song, The smallest degree sum that yields potentially P_{k}-graphical sequences, J. Graph Theory,29(1998), 63-72.
[16] Jiong-sheng Li and Zi-Xia Song, On the potentially P_{k}-graphic sequences, Discrete Math. 195(1999), 255-262.
[17] Jiong-sheng Li, Zi-Xia Song and Rong Luo, The Erdös-JacobsonLehel conjecture on potentially P_{k}-graphic sequence is true, Science in China(Series A), 41(5)(1998), 510-520.
[18] Rong Luo, On potentially C_{k}-graphic sequences, Ars Combinatoria 64(2002), 301-318.
[19] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48(1941), 436-452.
[20] Jianhua Yin and Jiongsheng Li, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, Discrete Math., 301(2005) 218-227.
[21] Jianhua Yin, Jiongsheng Li and Rui Mao, An extremal problem on the potentially $K_{r+1}-e$-graphic sequences, Ars Combinatoria, 74(2005),151159.
[22] Mengxiao Yin, The smallest degree sum that yields potentially $K_{r+1}-$ K_{3}-graphic sequences, Acta Math. Appl. Sin. Engl. Ser. 22(2006), no. 3, 451-456.

[^0]: *Project Supported by NNSF of China(10271105), NSF of Fujian(Z0511034), Fujian Provincial Training Foundation for "Bai-Quan-Wan Talents Engineering", Project of Fujian Education Department and Project of Zhangzhou Teachers College.

