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Abstract

Let K,, — H be the graph obtained from K,, by removing the edges set
E(H) of the graph H (H is a subgraph of K,,). We use the symbol Z, to
denote K4 — P». A sequence S is potentially K, — H-graphical if it has a
realization containing a K,,, — H as a subgraph. Let o(K,,—H,n) denote
the smallest degree sum such that every n-term graphical sequence S
with o(S) > o(K,, — H,n) is potentially K,, — H-graphical. In this
paper, we determine the values of 0(K,41—Z,n) forn > 5r+19,r+1 >
k > 5,7 > 5 where Z is a graph on k vertices and j edges which contains
a graph Z, but not contains a cycle on 4 vertices. We also determine
the values of 0(K,41 — Z4,n), 0(K,41 — (K4 —e€),n), 0(Kr41 — K4,n)
forn > 5r 4+ 16,r > 4.

Key words: subgraph; degree sequence; potentially K1 — Z-graphic;
potentially K, 1 — Z4-graphic sequence

AMS Subject Classifications: 05C07, 05C35

1 Introduction

The set of all non-increasing nonnegative integers sequence m = (dy, da, ...,
d,) is denoted by N S,,. A sequence m € NS, is said to be graphic if it is the
degree sequence of a simple graph G on n vertices, and such a graph G is
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called a realization of w. The set of all graphic sequences in V.S, is denoted
by GS,. A graphical sequence m is potentially H-graphical if there is a
realization of 7 containing H as a subgraph, while 7 is forcibly H-graphical
if every realization of 7 contains H as a subgraph. If 7 has a realization in
which the r + 1 vertices of largest degree induce a clique, then 7 is said to
be potentially A, -graphic. Let o(7) = dy + d3 + ... + dy, and [z] denote
the largest integer less than or equal to x. If G and G are graphs, then
G UG is the disjoint union of G and G. If G = G, we abbreviate G UGy
as 2G. We denote G + H as the graph with V(G+ H) = V(G) UV (H) and
E(G+H)=EGUEH)J{zy: 2 V(G),y e V(H)}. Let Ky, Cy, Ty,
and Py, denote a complete graph on k vertices, a cycle on k vertices, a tree
on k41 vertices, and a path on k4 1 vertices, respectively. Let K,, — H be
the graph obtained from K, by removing the edges set E(H) of the graph
H (H is a subgraph of K,,). We use the symbol Z; to denote Ky — P,.
We use the symbol Glvy, v, ..., v to denote the subgraph of G induced by
vertex set {v1,va,...,v}. We use the symbol €(G) to denote the numbers
of edges in graph G.

Given a graph H, what is the maximum number of edges of a graph
with n vertices not containing H as a subgraph? This number is denoted
ex(n, H), and is known as the Turdn number. This problem was proposed
for H = C4 by Erdos [2] in 1938 and in general by Turan [19]. In terms of
graphic sequences, the number 2ex(n, H) + 2 is the minimum even integer
I such that every n-term graphical sequence m with o(m) > [ is forcibly H-
graphical. Here we consider the following variant: determine the minimum
even integer [ such that every n-term graphical sequence m with o(7) > 1
is potentially H-graphical. We denote this minimum ! by o(H,n). Erdés,
Jacobson and Lehel [4] showed that o(Kj,n) > (k—2)(2n—k+1)+2 and
conjectured that equality holds. They proved that if 7 does not contain
zero terms, this conjecture is true for k = 3, n > 6. The conjecture is
confirmed in [5],[14],[15],[16] and [17].

Gould, Jacobson and Lehel [5] also proved that o(pKa,n) = (p—1)(2n—
2) + 2 for p > 2; 0(Cy,n) = 2[2%1] for n > 4. They also pointed out
that it would be nice to see where in the range for 3n — 2 to 4n — 4, the
value o(Ky — e,n) lies. Luo [18] characterized the potentially Cj graphic
sequence for k = 3,4,5. Lai [7] determined o(Ky — e,n) for n > 4. Yin,Li
and Mao|[21] determined o(K,4+; —e,n) for r > 3, r+1 < n < 2r and
o(Ks—e,n) forn > 5. Yin and Li [20] gave a good method (Yin-Li method)
of determining the values o(K,;1 —e,n) for r > 2 and n > 3r2 —r — 1
(In fact, Yin and Li[20] also determining the values o (K, 41 — ke, n) for
r>2and n > 3r? —r —1). After reading[20], using Yin-Li method Yin
[22] determined o(K,+; — K3,n) for n > 3r + 5,7 > 3. Lai [8] determined
o0(K5 — K3,n), for n > 5. Lai [9] gave a lower bound of o(Ky, — Kp,n).
Lai [10,11] determined (K5 — Cy4,n),0(K5 — P3,n) and o(K5 — Py, n), for



n > 5. Determining o(K,+1 — H,n), where H is a tree on 4 vertices is
more useful than a cycle on 4 vertices (for example, Cy ¢ C;, but P; C C;
for ¢ > 5). So, after reading[20] and [22], using Yin-Li method Lai and
Hu[12] determined o(K,+; — H,n) forn > 4r+10,r > 3,r+1 >k > 4 and
H be a graph on k vertices which containing a tree on 4 vertices but not
containing a cycle on 3 vertices and o (K, 41 — Po,n) for n > 4r +8,r > 3.
Using Yin-Li method Lai and Sun[13] determined o (K, 41— (kP2 |JtK2),n)
forn > 4r+10,r+1 > 3k+2t,k+t > 2,k > 1,t > 0. To now, the problem
of determining o (K, 1 — H,n) for H not containing a cycle on 3 vertices
and sufficiently large n has been solved. In this paper, using Yin-Li method
we prove the following two theorems.
Theorem 1.1. If » > 4 and n > 5r + 16, then

O'(KT+1 — K4,TL) = O'(KT+1 — (K4 — 6),TL) =

(r—=1)2n—-—7r)=3(n—r)+1,
if n —ris odd
(r=1)2n—7)—3(n—r)+2,
if n —r is even

(T(Kr+1 — Z4,TL) =

Theorem 1.2. If n > 5r+19,r+ 1>k > 5, and j > 5, then

(r—=1)@2n—-7r)—3(n—-r)—1,
if n —ris odd
(r—=1)2n—-7r)=3(n—-r)—2,
if n —r is even

U(Kr+1 — Z, TL) =

where Z is a graph on k vertices and j edges which contains a graph Z4
but not contains a cycle on 4 vertices.

There are a number of graphs on k vertices and j edges which contains
a graph Z4 but not contains a cycle on 4 vertices.

2 Preparations

In order to prove our main result,we need the following notations and re-
sults.
Let m = (dq,--+,d,) € NS,,1 <k <n. Let

(dl - 1a"'7dk—1 - ladk’-l—l - 17"'addk+1 - laddk+27"'7dn)a
7_‘_// ifdkzka
P (do—1,-da, — 1dagga, s di—y digr, o dy),



Denote ), = (d},d,,---,d,,_;),where di > dy > --- > d/,_, is a rearrange-
ment of the n — 1 terms of 7}. Then =}, is called the residual sequence
obtained by laying off dj from 7.

Theorem 2.1[20] Let n > r + 1 and 7 = (dy,do,---,dy) € GS,, with
dpyy > r. Ifdy > 2r —ifori =1,2,---,7 — 1, then 7 is potentially
A, 1-graphic.

Theorem 2.2[20] Let n > 2r + 2 and 7w = (dy,ds, -+, d,) € GS,, with
dry1 > 1. lf dorig > 7 — 1, then 7 is potentially A,;1-graphic.

Theorem 2.3[20] Let n > r + 1 and 7 = (dy,ds, - ,dy) € GS,, with
dey1 >r—1. Ifd; > 2r —i forv =1,2,---,r — 1, then 7 is potentially
K, 11 — e-graphic.

Theorem 2.4[20] Let n > 2r + 2 and 7 = (dy,ds, -+, d,) € GS,, with
dr—1 > 1. If dopyo > 7 —1, then 7 is potentially K, — e -graphic.

Theorem 2.5[6] Let 7 = (dy,---,d,) € NS, and 1 < k < n. Then
m € GS, if and only if 7, € GS,,_1.

Theorem 2.6[3] Let 7 = (di,---,d,) € NS, with even o(w). Then
m € GSy, if and only if for any t,1 <t <n—1,

n

Zdi <Ht—1)+ Y min{t,d;}.

j=t+1

Theorem 2.7[5] If 7 = (dy,ds,--,d,) is a graphic sequence with a
realization G containing H as a subgraph, then there exists a realization
G’ of w containing H as a subgraph so that the vertices of H have the
largest degrees of .

Theorem 2.8[9] If n > p+t, then o(K,41 — Kp,n) > 2[((p+2t—3)n+
p+2t+1—pt—1t2)/2].

Lemma 2.1 [22] If 7 = (dy,da,---,d,) € NS, is potentially K, —e-
graphic, then there is a realization G of 7 containing K, ; — e with the
r 4+ 1 vertices vy, -+, vy11 such that dg(v;) =d; fori =1,2,--- r+ 1 and
€= VpUpy1.

Lemma 2.2 [12] Let n > 2r + 2 and © = (dy,dz,- -+, d,) € GS,, with
dyr_o > 1. If dopyo > 1 — 1, then 7 is potentially K,.,1 — P»-graphic.

Lemma 2.3 Let 7 = (dy,---,dy) € GS,, and G be a realization of . If
€(Glv1,v2, .oy Ury1]) < €(Kry1) — 1, then there is a realization H of 7 such
that dg(v;) =d; fori=1,2,---,r+ 1 and v,v,41 € E(H).

The proof is similar to the proof of Lemma 2.1.

3  Proof of Main results.
Lemma 3.1. Let n > 2r and m© = (dy,da, -+, d,) € GS,, with d,_; > r,

dryy >r—1. 1fd; > 2r —ifori=1,2---,r —2, then 7 is potentially
K, 11 — e-graphic.



Proof. We consider the following two cases.

Case 1: dpqyq > 1.

If dr—l Z r+ 1.

Then 7 is potentially K, ;1 — e-graphic by Theorem 2.3.

Ifd._y=rthend,_y =d. =dpy1 =7

Suppose 7 is not potentially K1 —e-graphic. Let H be a realization of
7, then G(H[’Uh’l)z, ...,UT+1]) < G(KT+1> —2.Let S = (dl, do, ++,dpr_o,d._1,
d- + 1,dry1 + 1, --+,dy,), then by Theorem 2.1, S is potentially A, ;-
graphic (Denote S’ = (d},db, ---,d}),where d} > d} > --- > dl is a
rearrangement of the n terms of S. Therefore S’ € GS,, by Lemma 2.3.
Then S’ satisfies the conditions of Theorem 2.1). Therefore, there is a
realization G of S with vy, ve, -+, 0,41 (d(v;) = diyi = 1,2,---,r — 1,
d(vy) = dr + 1,d(vr41) = dry1 + 1), the r + 1 vertices of highest degree
containing a K,y;. Hence, G — v,41v, is a realization of m. Thus, 7 is
potentially K, ;1 — e-graphic, which is a contradiction.

Case 2: d,41 =7 — 1, then the residual sequence 7., = (d},---,d],_;)
obtained by laying off d,.4; = r — 1 from 7 satisfies: d} > 2(r —1) — 1,---,
dl(r71)71 =d_,>2(r—1)—(r-2), dl(ril)Jrl =d.. > r—1. By Theorem 2.1,

7,41 is potentially A(,._1)4q-graphic. Therefore, 7 is potentially K, 1 —e-
graphic by {dy — 1,---,d,—1 — 1} C{d},---,d.} and Theorem 2.7.

Lemma 3.2. Let n > 2r and 7 = (dy,ds, - -,d,) € GS,, with d,_5 >
r+1,dy1 2rdr —12>dg, 4o fd; >2r —ifori=1,2,---,r —3, then
m is potentially A, i-graphic.

Proof. The residual sequence ., = (d},---,d;,_;) obtained by laying
off dy41 from 7 satisfies: dj > 2(r —1) — 1, -+, d2r71)72 =d _q5>2(r-
1) —(r —3), dzr—l)—l =d _5>2(r—1)—(r—2), dl(’l‘*l)+1 =d >r—1.
By Theorem 2.1, 7, is potentially A(._y);i-graphic. Therefore, 7 is
potentially A, i-graphic by {d1—1,---,d,—1} = {d},---,d.} and Theorem
2.7.

Lemma 3.3 Let n > 2r+2,r >4 and 7 = (d1,ds, -+, d,) € GS,, with
dr—o>r—1and d,y1 >r—2,

(r—=1D2n—-r)—3(n—-r)—1,
if n —r is odd

= (r—=1)2n—-7r)=3(n—-r)—2,
if n —r is even

a(m)

Ifd; >2r—ifori=1,2,---,r—3, then 7 is potentially K, 1 — Z4-graphic.
Proof. We consider the following two cases.
Case 1: dpy1 > 1r—1.
Subcase 1.1: d,._qy > r + 1.
Ifd,._o > r—+2, then 7 is potentially K, — e-graphic by Theorem 2.3.
Hence,r is potentially K, — Z4-graphic.



If d.—y = r+1, then d,_3 — 1 > d,_5. The residual sequence =, ; =

(dy,---,d,,_,) obtained by laying off d,,; from 7 satisfies: d} > 2(r —
1) — 1,"', d/(r—l)—Q = d;_3 Z 2(7" - 1) - (T - 3)v dl(r_l)_l = d;—? Z

r—1, dzr—l)ﬂ—l =d, > (r—1) — 1. By Lemma 3.1, 7, is potentially
K(;_1)41 — e-graphic. Therefore, 7 is potentially K,,1 — Z4-graphic by
{dy—1,---,d,_3—1} C {d},---,d.} and Lemma 2.1.

Subcase 1.2: d._1 < r. then d,_3 —1 > d,_;. The residual sequence
w1 = (d},---,d],_;) obtained by laying off d,,; from 7 satisfies: d} >
20r—1) =1, di, gy g =d 3> 20r=1) = (r—=3),d, ), =dj_5>
r—1, d2r71)+1 =d, > (r—1) — 1. By Lemma 3.1, 7. is potentially
K(;_1)41 — e-graphic. Therefore, 7 is potentially K,,1 — Z4-graphic by
{dy—1,---,d_3—1} C {d},---,d.} and Lemma 2.1.

Case 2: dpy1 =1 — 2.

Ifd 1 <dps.

If dy_3 > r, then the residual sequence 7, = (d,---,d;,_;) obtained
by laying off d, 1 = r—2 from = satisfies: (1) d, =d;—1fori=1,2,---,r—
20 dy =di—1>2(r—1) -1, dj, ;) 5, =d_5>d3-12>
2r=1)—[(r—1)-2,,d,_, ,=d._y=>r—1andd, ), =d =d >

r—2. By Lemma 3.1, 7, is potentially K(,_1);; — e-graphic. Therefore,
7 is potentially K, — Zs-graphic by {dy — 1,---,dr—2 — 1,d,_1,d,} =
{d},---,d.} and Lemma 2.1.

Ifd._o=r—1,thend,_1 =d, =r—2 and

( Y n—1+r—1+(r—-2)(n—r+2)
r—=1)(n-1)—-2n-1)+@T-1n—-r+3)—(n—r+2)
( Y2n—1r)—=3(n—r)—2

(

Hence, 7 = ((n — 1)"73,(r — 1)}, (r — 2)"7"*2) and n — r is even. Clearly,
7 is potentially K, — Z4-graphic.

If d.—y = dr—2 and dy—3 > d,, then 7. satisfies: d} > dy — 1 >
2r—1) = 1,-,dl ), =d g >dig—1>2(r—1) = [(r—1) - 2],
dip_yy_y =dr_y=r—landd,_,  , =d. >r—2 By Lemma3.1, 7,
is potentially K(,_1);1 — e-graphic. Therefore, 7 is potentially K, 1 — Z4-
graphic by {d,_1,d;,d1 —1---,dp_o — 1} ={d},---,d,.} and Lemma 2.1.

If dr—l = dr_g and dr_g = dr, then dr_g = dr_g = dr—l = dT >r+ 3.
Let H be a realization of w. Since d,11 = r — 2, then there is 7,57 < r
such that v, 105, V410 € E(H). Let S = (d1,d2,---,di+1,---,dj+1,--,
dr,dry1 +2, ---,dy), then by Theorem 2.1, S is potentially A, 1-graphic
(Denote S" = (dy,ds, ---,d}),where d} > d, > --- > d is a rearrangement
of the n terms of S. Therefore S’ € GS,,. Then S’ satisfies the conditions of
Theorem 2.1). Therefore, there is a realization G of S with vy, ve, -+, vq1
(d(vt) = dtat 7& t,j,r+1, d(vl) =d; + 1?d(vj) = dj + 17d(UT+1) = d?”+1 +
2), the r + 1 vertices of highest degree containing a K,i;. Hence, G —



{vr410i,vr410;} is a realization of 7. Thus, 7 is potentially K, 1 — Z4-
graphic.

Lemma 3.4 Let n > 2r +2 and 7 = (dy,ds,--+,d,) € GS, with
dr—y > 7. If doyy92 > 7 — 1, then 7 is potentially K, — K ;-graphic.

Proof. We consider the following two cases.

Case 1: If d,_1 > r. Then 7 is potentially K, 1 —e-graphic by Theorem
2.4. Hence, 7 is potentially K, 1 — K -graphic.

Case 2: d,_1 < r—1, that is, d,._y = r — 1, then d,_; = d, =
dryr = -+ = dory2 = r — 1 and m satisfies: df, ), =d. =2 r—1

and dy, ), = dy. = (r —1) = 1. By Theorem 2.2, m, is poten-
tially A,-graphic. Therefore, 7 is potentially K, ; — K1 ¢-graphic by {d; —
1,-++,dp—y — 1} C{d,---,d.} and Theorem 2.7.
Lemma 3.5 Let n > 2r 4+ 2 and # = (dy,ds, --,d,) € GS, with

dr74 > T,

(r—=1D)2n—-7r)=3(n-r)—1,

if n —ris odd
=) r—1)2n—-1r)—-3n—r)—2,

if n —ris even

o(m)

If doyy2 > 7 — 1, then 7 is potentially K1 — (P2 K2)-graphic.

Proof. We consider the following two cases.

Case 1: If d,_9 > r. Then 7 is potentially K, 1 — P»-graphic by Lemma
2.2. Hence, 7 is potentially K11 — (P2 |J K2)-graphic.

Case 2: dp_9 =1 — 1.

Subcase 2.1: d,._3 > r, thend,_3 > d, +1 =d,j1+1 =7 >1r—
1=d,_2 = dr_1. Suppose 7 is not potentially K1 — (P, |J K2)-graphic.
Let H be a realization of 7, then e(H[vy,va,...,0p11]) < €(Kpq1) — 3. Let
S =(dy,ds, - ,dr_o,dr_1,dr +1,dr31 + 1, ---,dy), then by Theorem 2.4,
S is potentially K, — e-graphic (Denote S’ = (d},d5, - -, d},),where d} >
dy > --- > d!, is a rearrangement of the n terms of S. Therefore S’ € GS,,
by Lemma 2.3. Then S’ satisfies the conditions of Theorem 2.4). Therefore,
there is a realization G of S with vy, ve, -+, vp41 (d(v;) = d;, i = 1,2, r—
1, d(vy) = dr + 1,d(vrq1) = dpg1 + 1), the r 4+ 1 vertices of highest degree
containing a K, 11 —e and e = v,_1v,_2 by Lemma 2.1. Hence, G — v, 10,
is a realization of . Thus, 7 is potentially K11 — (P |J K2)-graphic, which
is a contradiction.

Subcase 2.2: d,._3 =r — 1, then

(r—=4)(n—1)+@r—-1)n-—-r+4)
(r=(n-1)=3n-1)+@r—-1)Mn-r+1)+3(r—-1)
(r—=1)2n—-r)—3(n—r)

a(m)

A



Since,

(r—=1D2n—-r)—3(n—-r)—1,
if n —ris odd
(r—=1)2n—-r)=3(n—-r)—2,
if n —r is even

o(m) >

Hence, 7 is one of the following: ((n —1)"=5, (n —2)!, (r — 1)"~"*4), ((n —
D=4 (r — D)3 (r — 2)1), for n — r is odd, 7 is one of the following:
((n_l)T—Zlv (T_l)n_r+4)’ ((n_l)r_ﬁa (n_2>2> (r_l)n_T-Hl)’ ((n_1)7-_57 (n_
3)1, (r— 1)), (n=1)5, (-2, (1773, (r—2)1), (n—1)7 7, (r—
D (e = 3)Y), (n— D)4 (r — 1) F2 (r — 2)2), for n — 7 is even.
Clearly, 7 is potentially K, 11 — (P> |J K2)-graphic.

Lemma 3.6. If r >4 and n > r + 1, then

(K1 — Zayn) 2 o(Kpy1 — Kyyn).

and
(r—=1)C2n—-r)=3(n—-7r)+1,
if n —r is odd
oK1 = Kam) 28 Z yon — ) — 8(n — 1) + 2,
if n —r is even
Proof. Obviously, forr >4andn >r+1, o(K,11—Z4,n) > o(K,q11—
Ky,n). By Theorem 2.8, for r > 4 and n > r + 1, 0(K,4+1 — K4,n) =
0(Kyy(r—3)— Kq,n) > 2[(4+2(r—3) =3)n+4+2(r—3)+1—-4(r—3) -
(r —3)%)/2]. Hence,

(r—=1)C2n—-r)=3(n—-7r)+1,

if n —r is odd
oErii = Kem) 29 1) on— )~ 3(n—1) + 2,

if n —r is even
Lemma 3.7. If n>r+ 1,7+ 1>k > 4, then

(r—=1D)@2n—-—r)—3(n—r)—1,
if n —r is odd

o(Krq1 — Hyn) 2 (r—=1)2n—-r)=3(n—-r)—2,
if n — r is even

where H is a graph on k vertices which not contains a cycle on 4 vertices.
Proof. Let

Krfg + (%_H + ]-)KQa

if n —r is odd

K3+ (=22 K, K1),

if n —r is even



Then G is a unique realization of

((n =173, (r—2)"~"+3),
if n—risodd
((n - 1)T_37 (7" - 2)n_r+27 (7" - 3)1)7

if n —r is even

and G clearly does not contain K,; — H, where the symbol z¥ means x
repeats y times in the sequence. Thus o(K,11—H,n) > o(m)+2. Therefore,

(r—1D@2n—-r)—3(n—-r)—1,
if n—risodd
(r—=1)@2n—-r)—3(n—1)—2,

if n —r is even

U(Kr-i-l - Ha n) >

The Proof of Theorem 1.1 According to Lemma 3.6 and o (K, 41 —
Kyn) <o(Kyy1 — (Ky —e),n) < o(Kp41 — Zs,n), it is enough to verify
that for n > 5r + 16,

(r—1D2n—-7r)—3n-—r)+1,
if n —r is odd
OBt =20 S 9 ) 2n— 1)~ 3(n—1) +2,
if n —r is even

We now prove that if n > 5r + 16 and 7 = (d,ds, -+, d,) € GS,, with

(r—1)2n—-7)—3(n—r)+1,
if n—ris odd
=) r=1)2n—-7r)=-3(n—r)+2,

if n —r is even

o(m)

then 7 is potentially K, 1 — Z4-graphic.
If d._3 <r—1, then

om) < (r=4Hn-1)+@r—-1n—r—+4)
= (r—=1)n-1)=-3n-1)4+@r—-1n-—-r+4)
= (r—=1)2n-r)—3(n-r)
< (r=1D@2n—-7r)—=3n—1r)+1,

which is a contradiction. Thus, d,._3 > 7.
If d._o <r—2, then

om) < (r=3)n-1)+@r—-2)(n—r+3)
= (r—)n—-1)—-2n—-1+@r—-1n—-r+3)—(n—r+3)
= (r—=1)2n—-r)—3(n—-r)—3
< (r=1D@2n-7r)=3(Mn—-7r)+1,



which is a contradiction. Thus, d,._o > r — 1.
Ifd.y1 <r—3, then

Z: 1d +Z? r+1

o(m)

< (r_l)r—i_Zz 7‘+1 mm{r d}+zz r+1
= (r—l)r—i—QZZ Iy

< (r—l)r+2(n—r)(r73)

= (r—=1D2n-r)—4(n-r)

< (r=1D2n—-7r)=3(n—-7r)+1,

which is a contradiction. Thus, d,+1 > 7 — 2.

Ifd; >2r—ifori=1,2,---,r—3o0r dg.1o > r—1, then 7 is potentially
K, 41— Zy-graphic by Lemma 3.3 or Lemma 3.4. If dy, 2 < r—2 and there
exists an integer ¢, 1 <¢ < r — 3 such that d; < 2r —¢ — 1, then

orm) < (-Dn-1)+@2r+1—-i+1)2r—i-1)
+(r—2)(n+1—-2r—2)
= ?+iln—4r—2)—(n—1)
+(2r —1)(2r +2) + (r—2)(n—2r —1).

Since n > 5r + 16, it is easy to see that i2 4+ i(n — 4r — 2), consider as a
function of 4, attains its maximum value when i = r — 3. Therefore,

olr) < (r=32%+Mn—4r—-2)(r—3)—(n—-1)
+2r-1)2r+2)+(r—2)(n—2r—1)
= (r—=1)2n—-r)—3(n—7r)—n+5r+16

< o(m),

which is a contradiction.
Thus,

(r—=1D)2n—-r)=3n—-7r)+1,
if n —ris odd
(r—1D2n—-r)—3n-—r)+2,

if n —r is even

O(KT+1 - Z47n) S

for n > 5r + 16.
The Proof of Theorem 1.2 According to Lemma 3.7, it is enough
to verify that for n > 5r + 19,

(r—=1)2n—-r)—3(n—-r)—1,
if n —r is odd
(r—=1)2n—-7r)=3(Mn—-r)—2,
if n —ris even

(T(KTJrl — Z, TL) S
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We now prove that if n > 5r + 19 and 7 = (dy,da, - -, d,) € GS,, with

(r—=1)@2n—-r)=3(n—-r)—1,
if n —ris odd
=) r—=1D2n—r)—3(n—r)—2,

if n —r is even

o(m)

then 7 is potentially K, ; — Z-graphic.
Ifd._4 <r—1, then

om) < (r=5)n-1)4+@r—-1)Mn—-r+5H)
= (r=Dn-1)-4mn-1)+(F-1)(n-r+5)
= (r—1D2n-r)—4(n-r)
< (r=1D@2n—-7r)—=3(n—r)—2,

which is a contradiction. Thus, d,_4 > 7.
If d._o <r—2, then

o(m) < (r=3)(n—1)+(r—2)(n—r+3)
= (r—Dn=-1D-2n—-D+(r—-1)n-r+3)—(n—r+3)
= (r—1@2n—-r)—3(n—7r)—3
< (r—=1)@2n-r)=3(n-r)-2,

which is a contradiction. Thus, d,_o > r — 1.
Ifd.y1 <7 —3, then

o(m) = 22:1 di + Z:‘L:er di
< (r—1r+ Z?:T,_H min{r,d;} + Z?:H_l d;
= (T— 1)7"+22?:T+1 dl
< (r=Dr+2(n—r)(r-23)
= (r—=1)2n—-r)—4(n—r1)
< (r—-1)2n-r)—=3(n—-r)-2,

which is a contradiction. Thus, d,+1 > r — 2.

Ifd; >2r—ifori=1,2,---,r—3or do,4o > r—1, then 7 is potentially
K, 41— Z-graphic by Lemma 3.3 or Lemma 3.5 . If do,42 < r—2 and there
exists an integer ¢, 1 < i < r — 3 such that d; < 2r —i — 1, then

or) < (E-Dn-1)+@2r+1-i+1)2r—i-1)
+(r—2)(n+1-2r—2)
= Z+in—4r—-2)—(n—1)
+@2r—-1)2r+2)+ (r—2)(n—2r —1).

Since n > 5r + 19, it is easy to see that i? + i(n — 4r — 2), consider as a

11



function of 7, attains its maximum value when ¢ = r» — 3. Therefore,

olr) < (r=32%+Mn—4r—-2)(r—3)—(n—-1)
+2r—-D2r+2)+(r—2)(n—2r—1)
(r—1)2n—7r)=3(n—r)—n+5r+16
< o(m),

which is a contradiction.
Thus,

(r—=1)2n—-r)=3(Mn-r) -1,
if n —r is odd
(r—1D2n—-7r)—3n—-r)—2,

if n —r is even

U(KTJrl — Z7 ’I’L) S

for n > 5r + 19.
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