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Abstract  This paper introduces a new concept, called quasi-range-preserving operator, and gives nec-
essary and sufficient conditions for a linear operator to be quasi-range-preserving. As a special case of

its corollary Glicksberg’s problem for special case is affirmatively answered.
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Glicksbergt'l asked whether any proper unitorm algebra 4 on a compact Hausdorff space X
(i.e. , C(X)\A is nonempty ) is uncoraplememed, (hat is, whether there is no bounded projec-
tion from C(X) onto A. Glicksberg, Rosenthal, Pelczyrski, Kisijakov, Etcheberry and other
mathematisian:’ vork on this problem has been summarized in Pelczyriski’s monograph (see
[2D). Sidney™, Kislyakovi*and Lai" “Yhave obtained some results too.

For studying this problem, 1 introduce a new concept of quasi-range-preserving operator.
Let X, Y be topological spaces, and Z a normed linear space with Z74{0}. By M(X—Z) we de-
note the normed linear space of all bounded mappings from X to % with the norm || f|=
flelell f(x)||. The constant mapping f(z)===z is identified 'with z. Let A be a linear subspace of
M(X—Z) which contains the constant mappings, and 7' a linear operator from A4 to M (Y—2).
T is called a quasi-range-preserving operator if R(7T'f)Cthe convex closed hull of R(S) (here,
R(PH={f(x) |zE X}, RCIH={TI() |yEY}), for all fE A. We prove that (1) if Z is an in-
ner product space, then a necessary and sufficient condition for 7T to be a quasi-range-preserving
-1l

then a necessary and sufficient condition for T to be a quasi-range-presetving operator is; ||7||'=

operator is; ||T||=1, Tz=z, for all zEZ; (2) if Z is a normed linear space with the norm

1, Tz==z for all notms || +|’ which are equivalent to ||+|| and for all zE Z. As a special case of its
éorollary Glicksberg’s problem for special case is affirmatively answered.
Theorem 1 If 7 is a quasi-range-preserving operator, then ||T}|=1, Tz=z for all zE Z.
Proof Suppose ||fl|<{1, fE A. Since {z]|]|z||<X1, 2€Z} is a convex closed set and T is a
quasi-range-preserving operator, we have R(7f) Cthe convex closed hull of R(f)C{z|||z||<1,
z€7Z}. Hence |Tf||<(1. Since {z} is a convex closed set, we have Tz==z for all zE Z. Hence
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7)|=1.

Theorem 2 Let H be a real (complex) Hilbert space with H7{0}, A4 be a linear subspace
of M(X-~H) which contains the constant mappings, and T be a linear operator from A to M(Y
—H). Then a necessary and sufficient condition for 7' to be a quasi-range-preserving operator
is '

7| =1, Th=rt for all & € H.

Proof Since a complex Hilbert space can be regarded as a real Hilbert space, without loss
of generality we may assume that H is a real Hilbert space.

(1) By Theorem 1, the condition is necessary.

(2) Sufficiency. Suppose 7' is not a quasi-range-preserving operator. Then there is an fE A

such that R(7Tf) the convex closed hull of R(f) L3N S, that is, there is y € 1, such that
(TF) (yo) & S. It is easy to prove that there is a bounded linear functionaf ¢ and a constant b such
that
gLrN @] >0 =9() torali s € 8.
Then there is k& H such that
(h. 1) = gk foralln € H.
Hence
(@) y b)) >b= (s, b)) foralls € 8.

Since {fi/lj#1]|} is a normal orthogonal system of H, there is a complete normal orthogonal

system E of H such that £ {k /||k]]}.

Let
v? .
Tal? + 712 = N Go) |} 2 .
k> max 9 » Sup (s, m)i
mﬂ(’l‘f) Go)y k) — 0] € .
Then
< (@ —h‘—+/c— f(-)+,cL o\ b o
’ “/11“ - z “h]” ”hl” \”hl“
Hence
ki 2
Since

A
T(f+ ki) = o
(”’“nh]u)u/ 1! @D + ki u“

= [l@n @ 12+ # + hcrnaw, ],

r+ el = (s +opip )]+ D v o

e€CE
ety
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’

<[(ﬂfm+k>2+ ||fl12]%<

- M
1 ( S+ k W)
one gets
iir) > 1.
This contradicts ||7||=1.

Theorem 3 Let Z be a real (complex) inner product space with Z=%{0}, 4 be a linear sub-
space of M(X—Z) which contains the constant mappings, and 7" be a linear operator from A to
M(Y—Z). Then a necessary and sufficient condition for 7’ to be a quasi-range-preserving opera-
tér is

Il =1, Tz== for all z € Z.

Proof (1) By Theorem 1, we obtain the necessity.

(2) Sufficiency. Without loss of generality we may assume that Z is a real inner product
space. We denote the completion of 7Z by H. Then Z(H. Hence A can be regarded as a linear
subspace of M(X—H).

Let A' denote the linear subspace spaned by A|J H. For any g==af-+, where a, bER (all
real numbers), f€ A, and hE€ H, in A we define T (@) =T [-L0h. Tt is easy to prove that
T' (@) has nothing to do with the <hoic: of a, &, f, k. Obviously, T"h="h for all k& H. For any
a, bER, fE A, and h& H. there are z, € /7 such that lim z.=h. Thus

177 Caf 4+ om)|| = llaTf + bhll = llaTf 40 limz|
= || tim?Caf + bz || < T 7]l llaf + bl = llas + el
Hence
7] = 1.
By Theorem 2, 7" is a quasi-range-preserving operator. Hence for any fin A
RCTf) =R f) [ Z C {the convex closed hull of R(f) in H} (| Z
=the convex closed hull of R(f) in Z,
that is, 7' is a quasi-range-preserving operator.
Theorem 4 Let Z be a real (complex) inner product space with Z5%{0}, a be a real (com-
plex) constant, A be a linear subspace of M(X—Z) which contains the constant mappings, and

T be a linear operator from A to M (Y —Z%). Then a necessary and sufficient condition for
d.f.

R(Tf)Ca {the convex closed hull of R(f)} = {az|z€E the convex closed hull of R(f)} ¥V f&
Ais
N7 = lal, Tz=uaz for all z € Z.

Proof 1I. If a=0, Theorem 4 is trivial.

I. For a;ﬁO,l since T is a linear operator, so is %T. Applying Theorem 3 to —}l—’[’ we can
obtain Theorem 4.

Theorem 5 Let Z be a real (complex) normed linear space with the norm || +|| and Z5%
{0}, A be a linear subspace of M (X—%) which contains the constant mappings, and T be a
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linear operator from A to M (Y—Z%). Then a necessary and sufficient condition for 7' to be a
quasi-range-preserving operator is
Il =1, 72==

for all norms || +||’ which are equivalent to and for all zE& Z.

Proof (1) The necessity is obvious.

(2) Sufficiency. Without loss of generality we may assume that Z is a real normed linear
space.

Suppose 7' is not a quasi-range-preserving operator. Then there is f& A such that R(Tf)
the convex closed hull of R(f) L

S, that is, there is o€ Y, such that (7'f) (z) & S. Hence
there is a bounded linear functional ¢ and a constant b such that

gL(TN @] >0=g(s) for all s € S.
Thus there is a positive integer = such that ¢[ (7'f) (yo)]>b+%. It is easy to prove that tilere is
206 7 such that g(zo) ==inf ¢(s). Then
SES
g(s) == g(z0) for all s & &,
that is,
g(s) — g(zoy 2> C.
Therefore
Y| 1 1

JLUND G — 2> b+ - 9z = g() — g(z0) + p

1

n

+ 1g(8) —gGo) | = [g(s — z0) | —{—%
1
= lg(— G —a)| + -
For &y, tzy ** tn| & = 1) in the closed interval [0, 1] and pis g2y *=*s pain the set (S—
i=1
m 1 m 1
1-‘7( E“Y"’) l + < t.—( lg(p) ] + 1—£)
=1 i=1

<Etig((7’f) (o) — ) = g((Tf) (yo) — z0).
i=1
Hence, for any d in the convex closed hull of (S—z) U[ —(S—z) ] LE D
K(TDG = 2) = 9@ |+~ > g(@.

Therefore, (Tf) (o) —zo& D. It is clear that if zE€ D then —z€& D. Hence 0=%z+%(-——z) €

D. Since D is closed, we have d((T'f) (o) —z0, DY>0 (d((Tf) (o) —z0, D) is the distance of D
and (7f) (yo) —=z). Let W be all the points whose distance from D is less than or equal to

%d((Tf) (y0) —z0, D). 1t is clear that the points whose distance from 0 is less than or equal to
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—;—d((Tf) (yo) —2z0, D) are all in W, and (Tf) (yo) —z0 €& W. It is easy to prove that W is a
balanced absorbing bounded convex closed set which contains /). Hence the Minkowski functional
of W

P(z) = inflala >0, ¢ 'z € W)

is a norm of Z, denoted by |[|+|I’. It is clear that ||+ ||’ is equivalent to ||+]|, and wE W if and

only if |jw|/<{1. Since
@) —m EDCW forall z € X,
we have
lf(z) — | < 1.
Since |||’ =1, we have
177G — 2l <|TIF — 2l < 1.
Thus
1T o) — 2l <NTS — 2ol = 1T — 20| < i
Then (7f) (yo) —z&W. This contradicts (7'f) (z0) —zo & W.

Theorem 6 Let Z be a real (complex) notred linear space with the norm

and Z5#

{0}, a be a real (complex) constant, A be a lincar suxspace of M(X—Z%) which contains the

constant mappings, 214 4' be a linear operator from A to M (Y—Z). Then a necessary and suffi- »

cient condition for R(Tf)C a{the convex closed hull of R(f)} ¥V fFE A is
171" = lal,  Tz=uaz

and for all z& 7.

for all norms

’ which are equivalent to

Proof 1. If a=0, Theorem 6 is trivial.

I. For a5~0, since 7' is a linear operator, so is %’1’. Applying Theorem 5 to —i—T we can
obtain Theorem 6.

Corollary Let B be a selfadjoint (that is, if f€& BB, then the complex conjugate function (of
F) FE B) linear subspace of M(X—C) (C denotes all complex numbers) which contains the con-
stant functions, A be a linear subspace of M (¥—C) which contains the constant functions, and
T be a linear operator from B onto A. If there is a non-zero constant a such that

Il = lal,  T1=a,

then A is selfadjoint.

Proof 1t is clear that %T is a linear operator from B onto 4 and

4

=1, (ifr) L =1
a
By Theorem 2, —al—’[’ is a quasi-range-preserving operator. Since a straight line segment is a con-

vex closed set, -(11—’1' maps a real valued function into a real valued function. Hence, for any

fEB, %T maps the complex conjugate function (of f) ¥ into (%—’I’) (f). Thus A is selfadjoint.
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As a special case of the corollary we assume that }’=X and X is a compact Hausdorff space,
a=1, B=C(X), and A is a proper uniform algebra of C(X). We know that A is not selfad-

joint. Hence there is no projection from C(X) onto A with norm 1.
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