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Abstract. In 2002, Fukaya [16] proposed a remarkable explanation of mirror symmetry detailing
the SYZ conjecture [41] by introducing two correspondences: one between the theory of pseudo-
holomorphic curves on a Calabi-Yau manifold X̌ and the multi-valued Morse theory on the base
B̌ of an SYZ fibration p̌ : X̌ → B̌, and the other between deformation theory of the mirror X
and the same multi-valued Morse theory on B̌. In this paper, we prove a reformulation of the
main conjecture in Fukaya’s second correspondence, where multi-valued Morse theory on the base
B̌ is replaced by tropical geometry on the Legendre dual B. In the proof, we apply techniques of
asymptotic analysis developed in [6, 7] to tropicalize the pre-dgBV algebra which governs smoothing
of a maximally degenerate Calabi-Yau log variety 0X† introduced in [5]. Then a comparison between
this tropicalized algebra with the dgBV algebra associated to the deformation theory of the semi-flat
part Xsf ⊆ X allows us to extract consistent scattering diagrams from appropriate Maurer-Cartan
solutions.

1. Introduction

Two decades ago, in an attempt to understand mirror symmetry using the SYZ conjecture [41],
Fukaya [16] proposed two correspondences:

• Correspondence I: between the theory of pseudo-holomorphic curves (instanton corrections)
on a Calabi-Yau manifold X̌ and the multi-valued Morse theory on the base B̌ of an SYZ
fibration p̌ : X̌ → B̌, and
• Correspondence II: between deformation theory of the mirror X and the same multi-valued

Morse theory on the base B̌.

In this paper, we prove a reformulation of the main conjecture [16, Conj 5.3] in Fukaya’s Correspon-
dence II, where multi-valued Morse theory on the SYZ base B̌ is replaced by tropical geometry on
the Legendre dual B. Such a reformulation of Fukaya’s conjecture was proposed and proved in [6]
in a local setting; the main result of the current paper is a global version of the main result in loc.
cit. A crucial ingredient in the proof is a precise link between tropical geometry on an integral affine
manifold with singularities and smoothing of maximally degenerate Calabi-Yau varieties.

The main conjecture [16, Conj. 5.3] in Fukaya’s Correspondence II asserts that there exists a
Maurer-Cartan element of the Kodaira-Spencer dgLa associated to deformations of the semi-flat
part Xsf of X that is asymptotically close to a Fourier expansion ([16, Eq. (42)]), whose Fourier
modes are given by smoothenings of distribution-valued 1-forms defined by moduli spaces of gradient
Morse flow trees which are expected to encode counting of nontrivial (Maslov index 0) holomorphic
disks bounded by Lagrangian torus fibers (see [16, Rem. 5.4]). Also, the complex structure defined
by this Maurer-Cartan element can be compactified to give a complex structure on X. At the same
time, Fukaya’s Correspondence I suggests that these gradient Morse flow trees arise as adiabatic
limits of loci of those Lagrangian torus fibers which bound nontrivial (Maslov index 0) holomorphic
disks. This can be reformulated as a holomorphic/tropical correspondence, and much evidence has
been found [15, 17, 33, 34, 10, 9, 32, 8, 3].
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The tropical counterpart of such gradient Morse flow trees are given by consistent scattering dia-
grams, which were invented by Kontsevich-Soibelman [30] and extensively used in the Gross-Siebert
program [25] to solve the reconstruction problem in mirror symmetry, namely, the construction of
the mirror X from smoothing of a maximally degenerate Calabi-Yau variety 0X. It is therefore
natural to replace the distribution-valued 1-form in each Fourier mode in the Fourier expansion
[16, Eq. (42)] by a distribution-valued 1-form associated to a wall-crossing factor of a consistent
scattering diagram. This was exactly how Fukaya’s conjecture [16, Conj. 5.3] was reformulated and
proved in the local case in [6].

In order to reformulate the global version of Fukaya’s conjecture, however, we must also relate
deformations of the semi-flat part Xsf with smoothings of the maximally degenerate Calabi-Yau
variety 0X. This is because by Gross-Siebert [24] consistent scattering diagrams are related to
the deformation theory of the compact log variety 0X† (whose log structure is specified by slab
functions), instead of Xsf. For this purpose, we consider the open dense part

0Xsf := µ−1(W0) ⊂ 0X,

where µ : 0X → B is the generalized moment map in [37] and W0 ⊆ B is an open dense subset such
that B \W0 contains the tropical singular locus and all codimension 2 cells of B.

Equipping 0Xsf with the trivial log structure, there is a semi-flat dgBV algebra PV∗,∗sf governing
its smoothings, and the general fiber of a smoothing is given by the semi-flat Calabi-Yau Xsf that
appeared in Fukaya’s original conjecture [16, Conj. 5.3]. However, the Maurer-Cartan elements
of PV∗,∗sf cannot be compactified to give complex structures on X. On the other hand, in [5] we

constructed a Kodaira-Spencer–type pre-dgBV algebra PV ∗,∗ which controls the smoothing of 0X.
A key observation is that a twisting of PV∗,∗sf by slab functions is isomorphic to the restriction of

PV ∗,∗ to 0Xsf (Lemma 5.8).

Our reformulation of the global Fukaya conjecture now claims the existence of a Maurer-Cartan
element φ of this twisted semi-flat dgBV algebra which is asymptotically close to a Fourier expansion
whose Fourier modes give rise to the wall-crossing factors of a consistent scattering diagram. This
conjecture follows from (the proof of) our main result, stated as Theorem 1.1 below, which is a
combination of Theorem 4.16, the construction in §5.3.2 and Theorem 5.20:

Theorem 1.1. There exists a solution φ to the classical Maurer-Cartan equation (4.10) giving rise
to a smoothing of the maximally degenerate Calabi-Yau log variety 0X† over C[[q]], from which a
consistent scattering diagram D(φ) can be extracted by taking asymptotic expansions.

A brief outline of the proof of Theorem 1.1 is now in order. First, recall that the pre-dgBV
algebra PV ∗,∗ which governs smoothing of the maximally degenerate Calabi-Yau variety 0X was
constructed in [5, Thm. 1.1 & §3.5], and we also proved a Bogomolov-Tian-Todorov–type theorem
[5, Thm. 1.2 & §5] showing unobstructedness of the extended Maurer-Cartan equation (4.9), under
the Hodge-to-de Rham degeneracy Condition 4.15 and a holomorphic Poincaré Lemma Condition
4.14 (both proven in [24, 14]). In Theorem 4.16, we will further show how one can extract from the
extended Maurer-Cartan equation (4.9) a smoothing of 0X, described as a solution φ ∈ PV −1,1(B)
to the classical Maurer-Cartan equation (4.10)

∂̄φ+
1

2
[φ, φ] + l = 0,

together with a holomorphic volume form ef ω which satisfies the normalization condition

(1.1)

∫
T
ef ω = 1,

where T is a nearby vanishing torus in the smoothing.
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Next, we need to tropicalize the pre-dgBV algebra PV ∗,∗. However, the original construction of
PV ∗,∗ in [5] using the Thom-Whitney resolution [43, 12] is too algebraic in nature. Here, we con-
struct a geometric resolution exploiting the affine manifold structure on B. Using the generalized
moment map µ : 0X → B [37] and applying the techniques of asymptotic analysis (in particular the
notion of asymptotic support) in [6], we define the sheaf A∗ of monodromy invariant tropical differ-
ential forms on B in §5.1. Accoring to Definition 5.4, a tropical differential form is a smoothening of
a distribution-valued form supported on polyhedral subsets of B. Using the sheaf A∗, we can take
asymptotic expansions of elements in PV ∗,∗, and hence connect differential geometric operations in
dgBV/dgLa with tropical geometry. In this manner, we can extract local scattering diagrams from
Maurer-Cartan solutions as we did in [6], but we need to glue them together to get a global object.

To achieve this, we need the aforementioned comparison between PV ∗,∗ and the semi-flat dgBV
algebra PV∗,∗sf which governs smoothing of the semi-flat part 0Xsf := µ−1(W0) ⊂ 0X equipped with
the trivial log structure. The key Lemma 5.8 says that the restriction of PV ∗,∗ to the semi-flat part
is isomorphic to PV∗,∗sf precisely after we twist the semi-flat operator ∂̄0 by elements corresponding
to the slab functions associated to the initial walls of the form:

φin = −
∑
v∈ρ

δv,ρ ⊗ log(fv,ρ)∂ďρ ;

here the sum is over vertices in codimension 1 cells ρ’s which intersect with the essential singular
locus Se (defined in §3.2), δv,ρ is a distribution-valued 1-form supported on a component of ρ \ Se
containing v, ∂ďρ is a holomorphic vector field and fv,ρ’s are the slab functions associated to the

initial walls. We remark that slab functions were used to specify the log structure on 0X as well as
the local models for smoothing 0X in the Gross-Siebert program; see §2 for a review.

Now, the Maurer-Cartan solution φ ∈ PV −1,1(B) obtained in Theorem 4.16 defines a new operator
∂̄φ on PV ∗,∗ which squares to zero. Applying the above comparison of dgBV algebras, in §5.2.4 we
show that, after restricting to W0, there is an isomorphism(

PV −1,1(W0), ∂̄φ
) ∼= (PV−1,1

sf (W0), ∂̄0 + [φin + φs, ·]
)

for some element φs, where ‘s’ stands for scattering terms. From the description of A∗, the element
φs, to any fixed order k, is written locally as a finite sum of terms supported on codimension 1 walls
w’s. Also, in a neighborhood Uw of each wall w, the operator ∂̄0 + [φin + φs, ·] is gauge equivalent

to ∂̄0 via some vector field θw ∈ PV−1,0
sf (W0), i.e.

e[θw,·] ◦ ∂̄0 ◦ e−[θw,·] = ∂̄0 + [φin + φs, ·].
Employing the techniques for analyzing the gauge which we developed in [6, 7, 31], we see that the
gauge will jump across the wall, resulting in a wall-crossing factor Θw satisfying

e[θw,·]|C± =

{
Θw|C+ on Uw ∩ C+,

id on Uw ∩ C−,

where C± are the two chambers separated by w. Then from the fact that the volume form ef ω is
normalized as in (1.1), it follows that φs is closed under the semi-flat BV operator ∆0, and hence we
conclude that the wall-crossing factor Θw lies in the tropical vertex group. This defines a scattering
diagram D(φ) on the semi-flat part W0 associated to φ; see §5.3.2 for details. Finally, we prove
consistency of the scattering diagram D(φ) in Theorem 5.20. We emphasize that the consistency
is over the whole B even though the diagram is only defined on W0, because the Maurer-Cartan
solution φ is globally defined on B.

Remark 1.2. Our notion of scattering diagrams (Definition 5.14) is a little bit more relaxed than
the usual notion defined in [30, 25]. The only difference is that we do not require the generator of
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the exponents of the wall-crossing factor to be orthogonal to the wall. This simply means that we are
considering a larger gauge equivalence class (or equivalently, a weaker gauge equivalence), which is
natural from the point of view of both the Bogomolov-Tian-Todorov Theorem and mirror symmetry
(in the A-side, this amounts to flexibility in the choice of the almost complex structure). We also
have a different, but more or less equivalent, formulation of the consistency of a scattering diagram;
see Definition 5.17 and §5.3.1 for details.

Along the way of proving Fukaya’s conjecture, besides figuring out the precise relation between
the semi-flat part Xsf and the maximally degenerate Calabi-Yau log variety 0X†, we also find the
correct description of the Maurer-Cartan solutions near the singular locus, namely, they should be
extendable to the local models prescribed by the log structure (or slab functions), as was hinted by
the Gross-Siebert program. This is related to a remark by Fukaya [16, Pt. (2) after Conj. 5.3].

Another important point is that we have established in the global setting an interplay between
the differential-geometric properties of the tropical dgBV algebra and the scattering (and other
combinatorial) properties of tropical disks, which was speculated by Fukaya as well ([16, Pt. (1)
after Conj. 5.3]) although he considered holomorphic disks instead of tropical ones.

Furthermore, by providing a direct linkage between Fukaya’s conjecture with the Gross-Siebert
program [23, 24, 25] and Katzarkov-Kontsevich-Pantev’s Hodge theoretic viewpoint [27] through
PV ∗,∗ (recall from [5] that a semi-infinite variation of Hodge structures can be constructed from
PV ∗,∗, using the techniques of Barannikov-Kontsevich [2, 1] and Katzarkov-Kontsevich-Pantev [27]),
we obtain a more transparent understanding of mirror symmetry through the SYZ framework.

Remark 1.3. After completing the proof of (our reformulated version of) Fukaya’s conjecture, a
future direction is to apply the framework in this paper and [6, 5] to develop a local-to-global approach
to understand genus 0 mirror symmetry. In view of the ideas of Seidel [40] and Kontsevich [29], and
also recent breakthroughs by Ganatra-Pardon-Shende [22, 21, 20] and Gammage-Shende [19, 18], we
expect that the sheaf of L∞ algebras on the A-side mirror to (the L∞ enhancement of) PV ∗,∗ can
also be constructed by gluing local models. More precisely, a large volume limit of the Calabi-Yau
manifold X̌ can be specified by removing from it a normal crossing divisor Ď which represents the
Kähler class of X̌. This gives rise to a Weinstein manifold X̌ \ Ď, and produces a mirror pair
X̌ \ Ď ↔ 0X at the large volume/complex structure limits. In [18], Gammage-Shende constructed a
Lagrangian skeleton Λ(Φ) ⊂ X̌ \ Ď from a combinatorial structure Φ called fanifold, which can be
extracted from the integral tropical manifold B equipped with a polyhedral decomposition P (here we
assume that the gluing data s is trivial). They also proved an HMS statement at the large limits. We
expect that an A-side analogue of PV ∗,∗ can be constructed from the Lagrangian skeleton Λ(Φ) in
X̌ \ Ď by gluing local models. A local-to-global comparsion on the A-side and isomorphisms between
the local models on the two sides are then expected to yield an isomorphism of Frobenius manifolds.
This program will be taken up in future works.

Acknowledgement

We thank Kenji Fukaya, Mark Gross, Helge Ruddat, Bernd Siebert and Richard Thomas for their
interest and encouragement. We are also grateful to Helge Ruddat and Bernd Siebert for useful
comments on an earlier draft of this paper.

K. Chan was supported by grants of the Hong Kong Research Grants Council (Project No.
CUHK14301420 & CUHK14301621) and direct grants from CUHK. N. C. Leung was supported by
grants of the Hong Kong Research Grants Council (Project No. CUHK14301619 & CUHK14306720)
and a direct grant (Project No. 4053400) from CUHK. Z. N. Ma was supported by National Science
Fund for Excellent Young Scholars (Overseas). These authors contributed equally to this work.



SMOOTHING, SCATTERING, AND A CONJECTURE OF FUKAYA 5

List of notations

M , MA §2.1 lattice, MA := M ⊗Z A for any Z-module A
N , NA §2.1 dual lattice of M , NA := N ⊗Z A for any Z-module A
(B,P) Def. 2.1 integral tropical manifold equipped with a polyhedral decomposition
Λσ §2.1 lattice generated by integral tangent vectors along σ
intre(τ) §2.1 relative interior of a polyhedron τ
Uτ §2.1 open neighborhood of intre(τ)
Qτ §2.1 lattice generated by normal vectors to τ
Sτ : Uτ → Qτ,R §2.1 fan structure along τ
Στ §2.1 complete fan in Qτ,R constructed from Sτ
Kτσ §2.1 Kτσ = R≥0Sτ (σ ∩ Uτ ) is a cone in Στ corresponding to σ
Tx §2.2 lattice of integral tangent vectors of B at x
∆i(τ), ∆̌i(τ) Def. 2.6 monodromy polytope of τ , dual monodromy polytope of τ
Aff Def. 2.2 sheaf of affine functions on B
PLP Def. 2.2 sheaf of piecewise affine functions on B with respect to P

MPLP Def. 2.3 sheaf of multi-valued piecewise affine functions on B with respect to P

ϕ Def. 2.4 strictly convex multi-valued piecewise linear function
τ−1Σv §2.3 localization of the fan Σv at τ
V (τ) §2.3 local affine scheme associated to τ used for open gluing
PM(τ) §2.3 group of piecewise multiplicative maps on τ−1Σv

D(µ, ρ, v) Def. 2.10 number encoding the change of µ ∈ PM(τ) across ρ through v
0Xτ §2.3 closed stratum of 0X associated to τ
Cτ §2.4 cone defined by the strictly convex function ϕ̄τ : Στ → R representing ϕ
P̄τ §2.4 monoid of integral points in Cτ
q = z% §2.4 parameter for a toric degeneration
Nρ §2.4 line bundle on 0Xρ having slab functions fρ as sections
fvρ §2.4 local slab function associate to ρ in the chart V (v)
κτ,i : 0Xτ → Prτ,i §2.4 toric morphism induced from the monodromy polytope ∆i(τ)
Pτ,x §2.4 toric monoid describing the local model of toric degeneration near x ∈ 0Xτ

Qτ,x §2.4 toric monoid isomorphic to Pτ,x/(%+ Pτ,x)
Nτ §2.4 normal fan of a polytope τ
µ : 0X → B §3.1 generalized moment map
S (resp. Se) §3.2 (resp. essential) tropical singular locus in B
ν : 0X → B Def. 3.5 surjective map with ν(Z) ⊂ S

{Wα}α §4 good cover (Condition 4.1) of B with Vα := ν−1(Wα) being Stein
kV†α §4 kth-order local smoothing model of Vα
kG∗α Def. 4.2 sheaf of kth-order holomorphic relative log polyvector fields on kV†α
kK∗α Def. 4.2 sheaf of kth-order holomorphic log de Rham differentials on kV†α
k
‖K∗α §4.1 sheaf of kth-order holomorphic relative log de Rham differentials on kV†α
kωα Def. 4.2 kth-order relative log volume form on kV†α
k∆α §4.1 BV operator on kGα
kPV ∗,∗α Def. 4.8 local sheaf of kth-order polyvector fields
kA∗,∗α Def. 4.9 local sheaf of kth-order de Rham forms
kPV ∗,∗ Def. 4.13 global sheaf of kth-order polyvector fields from gluing of kPV ∗,∗α ’s
kA∗,∗ Def. 4.13 global sheaf of kth-order de Rham forms from gluing of kA∗,∗α ’s
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A∗ Def. 5.5 global sheaf of tropical differential forms on B
W0 §5.2.1 semi-flat locus
kG∗sf §5.2.1 sheaf of kth-order semi-flat holomorphic relative vector fields
kK∗sf §5.2.1 sheaf of kth-order semi-flat holomorphic log de Rham forms
kh eqt. (5.2) sheaf of kth-order semi-flat holomorphic tropical vertex Lie algebras
kPV∗,∗sf Def. 5.7 sheaf of kth-order semi-flat polyvector fields
kA∗,∗sf Def. 5.7 sheaf of kth-order semi-flat log de Rham forms
kTL∗sf Def. 5.10 sheaf of kth-order semi-flat tropical vertex Lie algebras
(w,Θw) Def. 5.11 wall equipped with a wall-crossing factor
(b,Θb) Def. 5.12 slab equipped with a wall-crossing factor
D Def. 5.14 scattering diagram
W0(D) §5.3.1 complement of joints in the semi-flat locus
i §5.3.1 the embedding i : W0(D)→ B
kOD §5.3.1 kth-order wall-crossing sheaf associated to D

Notation 1.4. We usually fix a rank s lattice K together with a strictly convex s-dimensional
rational polyhedral cone QR ⊂ KR = K ⊗Z R. We call Q := QR ∩K the universal monoid. We
consider the ring R := C[Q], a monomial element of which is written as qm ∈ R for m ∈ Q, and
the maximal ideal m := C[Q \ {0}]. Then kR := R/mk+1 is an Artinian ring, and we denote

by R̂ := lim←−k
kR the completion of R. We further equip R, kR and R̂ with the natural monoid

homomorphism Q → R, m 7→ qm, which gives them the structure of a log ring (see [25, Definition

2.11]); the corresponding log analytic spaces are denoted as S†, kS† and Ŝ† respectively.

Furthermore, we let Ω∗
S†

:= R ⊗C
∧∗KC, kΩ∗

S†
:= kR ⊗C

∧∗KC and Ω̂∗
S†

:= R̂ ⊗C
∧∗KC (here

KC = K⊗Z C) be the spaces of log de Rham differentials on S†, kS† and Ŝ† respectively, where we
write 1 ⊗ m = d log qm for m ∈ K; these are equipped with the de Rham differential ∂ satisfying
∂(qm) = qmd log qm. We also denote by ΘS† := R ⊗C K∨C, ΘS† and Θ̂S†, respectively, the spaces
of log derivations, which are equipped with a natural Lie bracket [·, ·]. We write ∂n for the element
1⊗ n with action ∂n(qm) = (m,n)qm, where (m,n) is the natural pairing between KC and K∨C.

2. Gross-Siebert’s cone construction of maximally degenerate Calabi-Yau varieties

This section is a brief review of Gross-Siebert’s construction of the maximally degenerate Calabi-
Yau variety 0X from the affine manifold B and its log structure from slab functions [23, 24, 25].

2.1. Integral tropical manifolds. We first recall the notion of integral tropical manifolds from
[25, §1.1]. Given a lattice M , a rational convex polyhedron σ is a convex subset in MR given by a
finite intersection of rational (i.e. defined over MQ) affine half-spaces. We usually drop the attributes
“rational” and “convex” for polyhedra. A polyhedron σ is said to be integral if all its vertices lie
in M ; a polytope is a compact polyhedron. The group Aff(M) := M o GL(M) of integral affine
transformations acts on the set of polyhedra in MR. Given a polyhedron σ ⊂ MR, let Λσ,R ⊂ MR
be the smallest affine subspace containing σ, and denote by Λσ := Λσ,R ∩ M the corresponding
lattice. The relative interior intre(σ) refers to taking interior of σ in Λσ,R. There is an identification
Tσ,x ∼= Λσ,R for the tangent space at x ∈ intre(σ). Write ∂σ = σ \ intre(σ). Then a face of σ is the
intersection of ∂σ with a hyperplane. Codimension one faces are called facets.

Let LPoly be the category whose objects are integral polyhedra and morphisms consist of the
identity and integral affine isomorphisms τ → σ identifying τ as a face of σ. An integral polyhedral
complex is a functor P → LPoly from a finite category P such that for every τ, σ ∈ P, there is at
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most one arrow τ → σ. By abuse of notation, we write σ ∈ P for an integral polyhedron in the image
of the functor. From an integral polyhedral complex, we obtain a topological space B := lim←−σ∈P σ
via gluing of the polyhedra along faces. We further assume that:

(1) the natural map σ → B is injective for each σ ∈ P, so that σ can be identified with a closed
subset of B called a cell, and a morphism τ → σ can be identified with an inclusion of
subsets;

(2) a finite intersection of cells is a cell; and
(3) B is a connected orientable topological manifold of dimension n without boundary and such

that H1(B,Q) = 0.

The set of k-dimensional cells is denoted by P[k], and the k-skeleton by P[≤k]. For every τ ∈ P,
we define its open star by

Uτ :=
⋃
σ⊃τ

intre(σ),

which is an open subset of B containing intre(τ). A fan structure along τ ∈ P[n−k] is a continuous
map Sτ : Uτ → Rk such that

• S−1
τ (0) = intre(τ),

• for every σ ⊃ τ , the restriction Sτ |intre(σ) is an affine submersion onto its image, and
• the collection of cones {Kτσ := R≥0Sτ (σ ∩ Uτ )}σ⊃τ forms a complete finite fan Στ .

Two fan structures along τ are equivalent if they differ by composition with an integral affine
transformation of Rk. If Sτ is a fan structure along τ and σ ⊃ τ , then Uσ ⊂ Uτ and there is a fan
structure along σ induced from Sτ via composition with the quotient map Rk → Rk/RSτ (σ∩Uτ ) ∼=
Rl:

Uσ ↪→ Uτ → Rk → Rl.
Via Sτ , the lattice Qτ of normal vectors is identified with Zk, and we may write Sτ : Uτ → Qτ,R.

Definition 2.1 ([25], Def. 1.2). An integral tropical manifold is an integral polyhedral complex
(B,P) together with a fan structure Sτ along each τ ∈ P such that whenever τ ⊂ σ, the fan structure
induced from Sτ is equivalent to Sσ.

Taking sufficiently small mutually disjoint open subsets Wv ⊂ Uv for v ∈ P[0] and intre(σ) for

σ ∈ P[n], there is an integral affine structure on
⋃
v∈P[0] Wv ∪

⋃
σ∈P[n] intre(σ). This defines an affine

structure which can be extended to B outside of a closed subset of codimension two. We will describe
the monodromy transformations and the precise singular locus of the affine structure below.

Definition 2.2 ([23], Def. 1.43). An integral affine function on an open subset U ⊂ B is a

continuous function ϕ on U which is integral affine on U ∩ intre(σ) for σ ∈ P[n] and on U ∩Wv for

v ∈ P[0]. We denote by Aff B (or simply Aff ) the sheaf of integral affine functions on B.

A piecewise integral affine function (abbrev. as PA-function) on U is a continuous function ϕ on
U which can be written as ϕ = ψ + S∗τ (ϕ̄) on U ∩ Uτ for every τ ∈ P, where ψ ∈ Aff (U ∩ Uτ ) and
ϕ̄ is a piecewise linear function on Qτ,R with respect to the fan Στ . The sheaf of PA-functions on B
is denoted by PLP.

There is a natural inclusion Aff ↪→ PLP, and we let MPLP be the quotient:

0→ Aff → PLP →MPLP → 0.

Locally, an element ϕ ∈ Γ(B,MPLP) is a collection of piecewise affine functions {ϕU} such that on
each overlap U ∩ V , the difference ϕU |V − ϕV |U is an integral affine function on U ∩ V .
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Definition 2.3 ([23], Def. 1.45 and 1.47). The sheafMPLP is called the sheaf of multi-valued piece-
wise affine functions (abbrev. as MPA-funtions) of the pair (B,P). A section ϕ ∈ H0(B,MPLP)
is said to be (strictly) convex if for any vertex {v} ∈ P, there is a (strictly) convex representative
ϕv on Uv.

The set of all convex multi-valued piecewise affine functions gives a sub-monoid of H0(B,MPLP)
under addition, denoted as H0(B,MPLP,N), and we let Q be the dual monoid.

Definition 2.4 ([23], Def. 1.48). The polyhedral decomposition P is said to be regular if there exists
a strictly convex multi-valued piecewise linear function ϕ ∈ H0(B,MPLP).

We always assume that P is regular with a fixed strictly convex ϕ ∈ H0(B,MPLP).

2.2. Monodromy, positivity and simplicity. To describe monodromy, we consider two maximal
cells σ± and two of their common vertices v±. Taking a path γ going from v+ to v− through σ+,
and then from v− back to v+ through σ−, we obtain a monodromy transformation Tγ . As in [23,
§1.5], we are interested in two cases. The first case is when v+ is connected to v− via a bounded

edge ω ∈ P[1]. Let dω ∈ Λω be the unique primitive vector pointing to v− along ω. For an integral
tangent vector m ∈ Tv+ := Tv+,ZB, the monodromy transformation Tγ is given by

(2.1) Tγ(m) = m+ 〈m,nσ+σ−
ω 〉dω

for some n
σ+σ−
ω ∈ Q∗σ+∩σ− ⊂ T ∗v+

, where 〈·, ·〉 is the natural pairing between Tv+ and T ∗v+
. The

second case is when σ+ and σ− are separated by a codimension one cell ρ ∈ P[n−1]. Let ďρ ∈ Q∗ρ be
the unique primitive covector which is positive on σ+. The monodromy transformation is given by

(2.2) Tγ(m) = m+ 〈m, ďρ〉mρ
v+v−

for some mρ
v+v− ∈ Λτ , where τ ⊂ ρ is the smallest face of ρ containing v±. In particular, if we fix

both v± ∈ ω ⊂ ρ ⊂ σ± one obtain the formula

(2.3) Tγ(m) = m+ κωρ〈m, ďρ〉dω
for some integer κωρ.

Definition 2.5 ([23], Def. 1.54). We say that (B,P) is positive if κωρ ≥ 0 for all ω ∈ P[1] and

ρ ∈ P[n−1].

Following [23, Definition 1.58], we package the monodromy data into polytopes associated to

τ ∈ P[k] for 1 ≤ k ≤ n − 1. The simplest case is when ρ ∈ P[n−1], whose monodromy polytope is
defined by fixing a vertex v0 ∈ ρ and let

(2.4) ∆(ρ) := Conv{mρ
v0v | v ∈ ρ, v ∈ P[0]} ⊂ Λρ,R,

where Conv refers to taking convex hull. It is well-defined up to translation and independent of the
choice of v0. Edges in ∆(ρ) can be identified with those ω such that κωρ = 1. The normal fan of

ρ in Λ∗ρ,R will be a refinement of the normal fan of ∆(ρ). Similarly, when ω ∈ P[1], one defines the
dual monodromy polytope by fixing σ0 ⊃ ω and let

(2.5) ∆̌(ω) := Conv{nσ0σ
ω | σ ⊃ ω, σ ∈ P[n−1]} ⊂ Q∗ω,R.

Again, this is well-defined up to translation and independent of the choice of σ0. The fan Σω in
Qω,R will be a refinement of the normal fan of ∆̌(ω). For 1 < dimR(τ) < n − 1, a combination of

monodromy and dual monodromy polytopes is needed. We let P1(τ) = {ω | ω ∈ P[1], ω ⊂ τ} and

Pn−1(τ) = {ρ | ρ ∈ P[n−1], ρ ⊃ τ}. For each ρ ∈ Pn−1(τ), we choose a vertex v0 ∈ ρ and let

∆ρ(τ) := Conv{mρ
v0v | v ∈ τ, v ∈ P[0]} ⊂ Λτ,R.
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Similarly, for each ω ∈ P1(τ), we choose σ0 ⊃ τ and let

∆̌ω(τ) := Conv{nσ0σ
ω | σ ⊃ τ, σ ∈ P[n−1]} ⊂ Q∗τ,R.

Both of these are well-defined up to translation and independent of the choices of v0 and σ0 respec-
tively.

Definition 2.6 ([23], Def. 1.60). We say (B,P) is simple if for every τ ∈ P, there are disjoint
subsets

Ω1, . . . ,Ωp ⊂ P1(τ), R1, . . . , Rp ⊂ Pn−1(τ)

such that

(1) for ω ∈ P1(τ) and ρ ∈ Pn−1(τ), κωρ 6= 0 if and only if ω ∈ Ωi and ρ ∈ Ri for some 1 ≤ i ≤ p;
(2) ∆ρ(τ) is independent (up to translation) of ρ ∈ Ri and will be denoted by ∆i(τ); similarly,

∆̌ω(τ) is independent (up to translation) of ω ∈ Ωi and will be denoted by ∆̌i(τ);
(3) if e1, . . . , ep denotes the standard basis in Zp, then

∆(τ) := Conv

(
p⋃
i=1

∆i(τ)× {ei}

)
, ∆̌(τ) := Conv

(
p⋃
i=1

∆̌i(τ)× {ei}

)
are elementary polytopes in (Λτ ⊕ Zp)R and (Q∗τ ⊕ Zp)R respectively.

We need the following stronger condition in order to apply [24, Thm. 3.21] in a later stage:

Definition 2.7. We say (B,P) is strongly simple if it is simple and for every τ ∈ P, both ∆(τ)
and ∆̌(τ) are standard simplices.

Throughout this paper, we always assume that (B,P) is positive and strongly simple. In partic-
ular, both ∆i(τ) and ∆̌i(τ) are standard simplices of positive dimensions, and Λ∆1(τ)⊕ · · · ⊕Λ∆p(τ)

(resp. Λ∆̌1(τ) ⊕ · · · ⊕ Λ∆̌p(τ)) forms an internal direct summand of Λτ (resp.Q∗τ ).

2.3. Cone construction by gluing open affine charts. In this subsection, we recall the cone
construction of the maximally degenerate Calabi-Yau 0X = 0X(B,P, s), following [23] and [25, §1.2].
For this purpose, we take K = Z and Q to be the positive real axis in Notation 1.4. Throughout
this paper, we will work in the category of analytic schemes.

We will construct 0X as a gluing of affine analytic schemes V (v) parametrized by the vertices of
P. For each vertex v, we consider the fan Σv and take

V (v) := Specan(C[Σv]),

where Specan means analytification of the algebraic affine scheme given by Spec; here, the monoid
structure for a general fan Σ ⊂MR is given by

p+ q =

{
p+ q if p, q ∈M are contained in a cone of Σ,

∞ otherwise,

and we set z∞ = 1 in taking Spec(C[Σ]).

To glue these affine analytic schemes together, we need affine subschemes {V (τ)} associated to
τ ∈ P with v ∈ τ and natural embeddings V (ω) ↪→ V (τ) for v ∈ ω ⊂ τ . First, for τ ∈ P such that
v ∈ τ , we consider the localization of Σv at τ given by

τ−1Σv := {Kvσ + Λτ,R |σ ⊃ τ},
whose elements are convex, but not strictly convex, cones in Tv,R. Abstractly, τ−1Σv can be identified
(not canonically) with the fan Στ ×Λτ,R in Qτ,R×Λτ,R. If τ contains another vertex v′, one identifies
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the tangent spaces Tv ∼= Tv′ via parallel transport in σ ⊃ τ . This gives an identification between
the maximal cones Kvσ + Λτ,R and Kv′σ + Λτ,R in the fans τ−1Σv and τ−1Σv′ respectively. These
transformations on maximal cells can be patched together to give a piecewise linear transformation
from Tv to Tv′ , identifying the monoids τ−1Σv and τ−1Σv′ . This defines the affine analytic scheme

V (τ) := Specan(C[τ−1Σv]),

up to unique isomorphism. For any ω ⊂ τ , there is a map of monoids ω−1Σv → τ−1Σv given by

p 7→

{
p if p ∈ Kvσ + Λω,R for some σ ⊃ τ,
∞ otherwise

(though there is no fan map from ω−1Σv to τ−1Σv in general), and hence a ring map ι∗ωτ :
C[ω−1Σv]→ C[τ−1Σv]. This gives an open inclusion of affine schemes

ιωτ : V (τ) ↪→ V (ω),

and hence a functor F : P→ Schan defined by

F (τ) := V (τ), F (e) := ιωτ : V (τ)→ V (ω)

for ω ⊂ τ .

We can further introduce twistings of the gluing of the affine analytic schemes {V (τ)}τ∈P. Toric
automorphisms µ of V (τ) are in bijection with the set of C∗-valued piecewise multiplicative maps

on Λv ∩ |τ−1Σv| with respect to the fan τ−1Σv. Explicitly, for each maximal cone σ ∈ P[n] with

τ ⊂ σ, there is a monoid homomorphism µσ : Λσ → C∗ such that if σ′ ∈ P[n] also contains τ , then
µσ|Λσ∩σ′ = µσ′ |Λσ∩σ′ . Denote by PM(τ) the multiplicative group of piecewise multiplicative map on

Λv∩|τ−1Σv|. For ω ⊂ τ , there is a natural restriction map |τ : PM(ω)→ PM(τ) given by restricting
to a maximal cell σ ⊃ τ .

Definition 2.8 ([25], Def. 1.18). An open gluing data (for the cone construction) for (B,P) is a
set of data s = (sωτ )ω⊂τ with sωτ ∈ PM(τ) such that

(1) sττ = 1 for all τ ∈ P, and
(2) if ω ⊂ τ ⊂ ρ, then

sωρ = sτρ · sωτ |ρ.

Two open gluing data s, s′ are cohomologous if for any τ ∈ P, there exists tτ ∈ PM(τ) such that
sωτ = tτ (tω|τ )−1s′ωτ , for any ω ⊂ τ .

The set of cohomology classes of open gluing data is a group under multiplication, denoted as
H1(P,QP⊗C×). Given s ∈ PM(τ), denote also by s the corresponding toric automorphism on V (τ)
which is explicitly given by s∗(zm) = sσ(m)zm for m ∈ σ ⊃ τ . If s is an open gluing data, then we
can define an s-twisted functor Fs : P → Schan by setting Fs(τ) := F (τ) = V (τ) on objects and
Fs(ω ⊂ τ) := F (ω ⊂ τ) ◦ s−1

ωτ : V (τ)→ V (ω) on morphisms. This defines the analytic scheme

0X = 0X(B,P, s) := lim
←−

Fs.

Gross-Siebert [23] showed that 0X(B,P, s) ∼= 0X(B,P, s′) as schemes when s, s′ are cohomologous.

Remark 2.9. Given τ ∈ P, one can define a closed stratum ιτ : 0Xτ → 0X of dimension
dimC(0Xτ ) = dimR(τ) by taking the toric stratum Vτ (ω) corresponding to the fan τ in V (ω) =
Specan(C[ω−1Σv]) for ω ⊂ τ . Abstractly, it is isomorphic to the toric variety associated to the poly-
tope τ ⊂ Λτ,R. Also, for every pair ω ⊂ τ , there is a natural inclusion ιωτ : 0Xω → 0Xτ . One

can alternatively construct 0X by gluing along the closed strata 0Xτ ’s according to the polyhedral
decomposition; see [23, §2.2].
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We recall the following definition from [23], which serves as an alternative set of combinatorial
data for encoding µ ∈ PM(τ).

Definition 2.10 ([23], Def. 3.25 and [25], Def. 1.20). Let µ ∈ PM(τ) and ρ ∈ P(d−1) with τ ⊂ ρ.
For a vertex v ∈ τ , we define

D(µ, ρ, v) :=
µσ(m)

µσ′(m′)
∈ C×,

where σ, σ′ are the two unique maximal cells such that σ ∩ σ′ = ρ, m ∈ Λσ is an element projecting
to the generator in Qρ ∼= Λσ/Λρ ∼= Z pointing to σ′, and m′ is the parallel transport of m ∈ Λσ to
Λσ′ through v. D(µ, ρ, v) is independent of the choice of m.

Let ρ ∈ P(d−1) and σ+, σ− be two unique maximal cells such that σ+ ∩ σ− = ρ. Let ďρ ∈ Q∗ρ be
the unique primitive generator pointing to σ+. For any two vertices v, v′ ∈ τ , we have the formula

(2.6) D(µ, ρ, v) = µ(mρ
vv′)
−1 ·D(µ, ρ, v′)

relating monodromy data to the open gluing data, where mρ
vv′ ∈ Λρ is as discussed in (2.2). The

formula (2.6) describes the interaction between monodromy and a fixed µ ∈ PM(τ). We shall
further impose the following lifting condition from [23, Prop. 4.25] relating svτ , sv′τ ∈ PM(τ) and
monodromy data:

Condition 2.11. We say an open gluing data s satisfies the lifting condition if for any two vertices
v, v′ ∈ τ ⊂ ρ with ρ ∈ P[n−1], we have D(svτ , ρ, v) = D(sv′τ , ρ, v

′) whenever mρ
vv′ = 0.

2.4. Log structures. The combinatorial data ϕ ∈ H0(B,MPLP) enters the picture when one tries
to put a log structure on 0X (see [23, §3 - 5]). For each vertex v, let Uv ⊂ B be a neighborhood of
v. Represent ϕ by a strictly convex piecewise linear ϕv : Uv → R and set

Cv := {(m,h) ∈ Tv,R ⊕ R |h ≥ ϕv(m)}, Pv := Cv ∩ (Tv ⊕ Z).

The projection Tv ⊕ Z→ Z can be regarded as the element % = (0, 1) ∈ Λv ⊕ Z, which gives rise to
a regular function q := z% on Spec(C[Pv]). We have a natural identification

V (v) := Specan(C[Σv]) ∼= Specan(C[Pv]/q),

through which we can view V (v) as the boundary toric divisor in Specan(C[Pv]) corresponding to
the holomorphic function q, and πv : Specan(C[Pv])→ Specan(C[q]) as a model for smoothing V (v).
To relate these with local models for smoothing 0X, we would further need ghost structures and
slab functions to specify log structures.

Let us first construct a sheaf of monoids M, called the ghost sheaf, on 0X. For any τ ∈ P we
take a strictly convex representative ϕ̄τ on Qτ,R, and define Γ(V (τ),M) = P̄τ = Cτ ∩ (Qτ ⊕ Z),
where Cτ := {(m,h) ∈ Qτ,R ⊕ R |h ≥ ϕ̄τ (m)}. For any ω ⊂ τ , we take an integral affine function
ψωτ on Uω such that ψωτ + S∗ω(ϕ̄ω) vanishes on Kωτ , and agrees with S∗τ (ϕ̄τ ) on all σ ∩ Uτ for
σ ⊃ τ . This induces a map Cω → Cωτ := {(m,h) ∈ Qω,R ⊕ R |h ≥ ψωτ (m) + ϕ̄ω(m)} by sending
(m,h) 7→ (m,h + ψωτ (m)), whose composition with the quotient map Qω,R ⊕ R → Qτ,R ⊕ R gives
a map Cω → Cτ of cones corresponding to the monoid homomorphism P̄ω → P̄τ . The P̄τ ’s glue
together to give the ghost sheafM over 0X. There is a well-defined section %̄ ∈ Γ(0X,M) given by
gluing (0, 1) ∈ Cτ for each τ . The pair (M, %̄) and the identification V (v) ∼= Specan(C[Pv]/q) for

each v ∈ P[0] define a ghost structure on 0X in the sense of [23, Def. 3.16. and Ex. 3.17].

Due to presence of monodromy, the log structure on 0X will be log smooth only away from a
complex codimension 2 subset Z ⊂ 0X not containing any toric strata. Such log structures can be
described by sections of a coherent sheaf LS+

pre supported on the scheme-theoretic singular locus
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0Xsing. We now describe the sheaf LS+
pre and some of its sections called slab functions; readers are

referred to [23, §3 and 4] for more details.

For every ρ ∈ P[n−1], we consider ιρ : 0Xρ → 0X, where 0Xρ is the toric variety associated to the
polytope ρ ⊂ Λρ,R. From the fact that the normal fan Nρ ⊂ Λ∗ρ,R of ρ is a refinement of the normal

fan N∆(ρ) ⊂ Λ∗ρ,R of the rρ-dimensional simplex ∆(ρ) (as in §2.2), we have a toric morphism

(2.7) κρ : 0Xρ → Prρ .

Now, ∆(ρ) corresponds to O(1) on Prρ . We let Nρ := κ∗ρ(O(1)) on 0Xρ, and define

(2.8) LS+
pre :=

⊕
ρ∈P[n−1]

ιρ,∗(Nρ).

Sections of LS+
pre can be described explicitly. For each v ∈ P[0], we consider the open subscheme

V (v) of 0X and the local trivialization

LS+
pre|V (v) =

⊕
ρ:v∈ρ

OVρ(v),

whose sections over V (v) are given by (fvρ)v∈ρ. Given v, v′ ∈ τ corresponding to V (τ), these local
sections obey the change of coordinates given by

(2.9) D(sv′τ , ρ, v
′)−1s−1

v′τ (fv′ρ) = z−m
ρ

vv′D(svτ , ρ, v)−1s−1
vτ (fvρ),

where ρ ⊃ τ and svτ , sv′τ are part of the open gluing data s. The section f := (fvρ)v∈ρ is said to be
normalized if fvρ takes the value 1 at the 0-dimensional toric strata corresponding to a vertex v, for
all ρ. We will restrict ourselves to normalized sections f of LS+

pre. We also let Z be the zero locus

of f on 0Xsing.

Only a subset of normalized sections of LS+
pre corresponds to log structures. For every vertex v

and τ ∈ P[n−2] containing v, we choose a cyclic ordering ρ1, . . . , ρl of codimension one cells containing
τ according to an orientation of Qτ,R. Let ďρi ∈ Λ∗v be the positively oriented normal to ρi. The
condition for f = (fvρ)v∈ρ ∈ LS+

pre|V (v) to define a log structure is then given by

(2.10)
l∏

i=1

ďρi ⊗ fvρi |Vτ (v) = 0⊗ 1, in Λ∗v ⊗ Γ(Vτ (v) \ Z,O∗Vτ (v)),

where the group structure on Λ∗v is additive and that on Γ(Vτ (v) \ Z,O∗Vτ (v)) is multiplicative. If

f = (fvρ)v∈ρ is a normalized section satisfying this condition, we call fvρ’s the slab functions.

Theorem 2.12 ([23], Thm. 5.2). Let (B,P) be simple and positive, and let s be an open gluing
data satisfying the lifting condition (Condition 2.11). Then there exists a unique normalized section
f ∈ Γ(0X,LS+

pre) which defines a log structure on 0X (i.e. satisfying the condition (2.10)).

We write 0X† if we want to emphasize the log structure. One can describe the log structure
explicitly using local models for smoothing 0X†. On V ⊂ V (v) \Z, where it is log smooth, the local
model is described by Specan(C[Pv]). We have to twist the inclusion [ : V → Specan(C[Σv]) by

(2.11) zm 7→ hm · zm for m ∈ Σv,

where hm is some invertible holomorphic function on V ∩Vm(v) with Vm(v) := {x ∈ V (v) | zm ∈ O∗x}.
These holomorphic functions satisfy the relation

(2.12) hm · hm′ = hm+m′ , on V ∩ Vm+m′(v).
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The choices of hm’s are classified by the slab functions fvρ’s up to equivalence. Here, we shall

just give the formula relating them; see [23, Thm. 3.22] for details. For any ρ ∈ P[n−1] containing
v and two maximal cells σ± such that σ+ ∩ σ− = ρ, we take m+ ∈ Λv ∩Kvσ+ generating Qρ with
some m0 ∈ Λv ∩Kvρ such that m0 −m+ ∈ Λv ∩Kvσ−. The relation is given by

(2.13) fvρ =
h2
m0

hm0−m+ · hm0+m+

∣∣∣
Vρ(v)∩V

∈ O∗Vρ(v)(Vρ(v) ∩ V ),

which is independent of the choices of m0 and m+.

The local model for smoothing V † is then given by composing [ with the natural inclusion
Specan(C[Σv]) ↪→ Specan(C[Pv]). Let [ : V → kV be the k-th order thickening of V over C[q]/qk+1

in the model Specan(C[Pv]) under the above embedding and [ : V → V be the corresponding in-

finitesimal thickening over C[[q]]. There is a natural log structure V† over Ŝ† = Specan(C[[q]])†

induced by restricting the divisorial log structure on Specan(C[Pv])
† over S† given by the embedding

Specan(C[Σv]) ↪→ Specan(C[Pv]). We have a Cartesian diagram of log spaces

(2.14) V † �
� //

��

V†

��
0S† �

� //S†

and the log space 0X† is identified locally with V † over the log point 0S† = C†.
We consider x ∈ Z ∩

(
0Xτ \

⋃
ω⊂τ

0Xω

)
for some τ . Viewing f =

∑
ρ∈P[n−1] fρ where fρ is a

section of Nρ, we let Zρ = Z(fρ) ⊂ 0Xρ ⊂ 0X and write Z =
⋃
ρ Zρ. For every τ ∈ P, we have

the data Ωi’s, Ri’s, ∆i(τ) and ∆̌i(τ) described in Definition 2.6 because (B,P) is simple. Since the
normal fan Nτ ⊂ Λ∗τ,R of τ is a refinement of N∆i(τ) ⊂ Λ∗τ,R, we have a natural toric morphism

(2.15) κτ,i : 0Xτ → Prτ,i ,

and the identification ι∗τρ(Nρ) ∼= κ∗τ,i(O(1)). By the proof of [23, Thm. 5.2], ι∗τρ(fρ) is completely

determined by the gluing data s and the associated monodromy polytope ∆i(τ) where ρ ∈ Ri. In
particular, we have ι∗τρ(fρ) = ι∗τρ′(fρ′) and Zρ ∩ 0Xτ = Zρ′ ∩ 0Xτ =: Zτi for ρ, ρ′ ∈ Ri. Locally, if

we write V (τ) = Specan(C[τ−1Σv]) by choosing some v ∈ τ , then for each 1 ≤ i ≤ p, there exists an
analytic function fv,i on V (τ) such that fv,i|Vρ(τ) = s−1

vτ (fvρ) for ρ ∈ Ri.

According to [24, §2.1], for each 1 ≤ i ≤ p, we have ∆̌i(τ) ⊂ Q∗τ,R, which gives

(2.16) ψi(m) = − inf{〈m,n〉 | n ∈ ∆̌i(τ)}.
By convention, we write ψ0 := ϕ̄τ . By rearranging the indices i’s, we can assume that x ∈ Zτ1∩· · ·∩Zτr
and x /∈ Zτr+1 ∪ · · · ∪ Zτp . We introduce the convention ψx,i = ψi for 0 ≤ i ≤ r and ψx,i ≡ 0 for
r < i ≤ dimR(τ). The local model near x is constructed as Specan(C[Pτ,x]), where

(2.17) Pτ,x := {(m, a0, . . . , al) ∈ Qτ × Zl+1 | ai ≥ ψx,i(m)}
and l = dimR(τ). The distinguished element % = (0, 1, 0, . . . , 0) gives a family Specan(C[Pτ,x]) →
Specan(C[q]) by sending q 7→ z%. The central fiber is given by Specan(C[Qτ,x]), where Qτ,x =
{(m, a0, . . . , al) | a0 = ψx,0(m)} ∼= Pτ,x/(%+ Pτ,x) is equipped with the monoid structure

m+m′ =

{
m+m′ if m+m′ ∈ Qτ,x,
0 otherwise.

We have C[Qτ,x] ∼= C[Στ ⊕ Nl] induced by the monoid isomorphism (m, a0, a1, . . . , al) 7→ (m, a1 −
ψ1(m), . . . , al − ψl(m)).
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We also fix some isomorphism C[τ−1Σv] ∼= C[Στ⊕Zl] coming from the identification of τ−1Σv with
the fan Στ ⊕Rl = {ω⊕Rl | ω is a cone of τ} in Qτ,R⊕Rl. Taking a sufficiently small neighborhood
V of x such that Zρ ∩ V = ∅ if x /∈ Zρ, we define a map V → Specan(C[Qτ,x]) by composing

V ↪→ Specan(C[τ−1Σv]) ∼= Specan(C[Στ⊕Zl]) with the map Specan(C[Στ⊕Zl])→ Specan(C[Στ⊕Nl])
described on generators by 

zm 7→ hm · zm if m ∈ Στ ;

ui 7→ fv,i if 1 ≤ i ≤ r;
ui 7→ zi − zi(x) if r < i ≤ l.

Here ui is the i-th coordinate function of C[Nl], zi is the i-th coordinate function of C[Zl] chosen so

that
(
∂fv,i
∂zj

)
1≤i≤r,1≤j≤r

is non-degenerate on V . The hm’s are invertible holomorphic functions on

V ∩ Vm(v)’s satisfying the equations (2.12) and also (2.13) by replacing fvρ with

f̃vρ =

{
s−1
vτ (fvρ) if x /∈ Zρ,

1 if x ∈ Zρ.

Similarly, we let [ : V → kV be the k-th order thickening of V over C[q]/qk+1 in the model
Specan(C[Pτ,x]) under the above embedding, and [ : V → V be the corresponding infinitesimal

thickening over C[[q]]. There is similarly a natural log structure on V† over Ŝ† induced from the
inclusion Specan(C[Qτ,x]) ↪→ Specan(C[Pτ,x]). Restricting it to V gives V †, which is identified locally

with the log space 0X† over the log point 0S†.

3. A generalized moment map and the tropical singular locus on B

From this section onward, we further assume that 0X = 0X(B,P, s) is projective; this holds if we
impose the condition that o(s) = 1 for the open gluing data s (see [23, Thm. 2.34]).

3.1. A generalized moment map. Under the projectivity assumption, one can construct a gen-
eralized moment map

(3.1) µ : 0X → B

using the argument in [37, Prop. 2.1]. There is a canonical embedding of Φ : 0X ↪→ PN given by
the (0th-order) theta functions {ϑm}m∈BZ , where BZ = {mi}Ni=0 is the set of integral points in B.
Restricting to each toric piece 0Xτ ⊂ 0X associated to τ ∈ P, the only non-zero theta functions are
those corresponding to m ∈ BZ ∩ τ . There is an embedding jτ : Tτ ∼= Λ∗τ,R/Λ

∗
τ,Z ↪→ TN of tori such

that the composition Φτ : 0Xτ → PN of Φ with 0Xτ ↪→ 0X is equivariant. The map µτ := µ|0Xτ
is

given by the formula

(3.2) µτ (z) :=
1∑

m∈BZ∩τ |ϑm(z)|2
∑

m∈BZ∩τ
|ϑm(z)|2 ·m.

It can be understood as a series of compositions

0Xτ
Φτ //PN

µP //(RN )∗
dj∗τ //Λτ,R,

where µP is the moment map for PN and djτ : Λ∗τ,R → RN is the Lie algebra homomorphism induced

by jτ : Tτ → TN .

Fixing a vertex v ∈ P[0], we can naturally embed Λτ,R ↪→ Tv,R for all τ containing v. Furthermore,

we can patch dj∗τ into a linear map dj∗ : (RN )∗ → Tv,R such that µτ = dj∗ ◦ µP ◦ Φτ for those τ
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containing v. In particular, for any v ∈ τ with the associated local chart V (τ) = Specan(C[τ−1Σv]),
we have the local description µ|V (τ) = dj∗ ◦ µP ◦ Φ|V (τ) of the generalized moment map µ.

We consider the amoeba A := µ(Z). As 0Xτ ∩ Z =
⋃p
i=1 Z

τ
i , where each Zτi is the zero set of

a section of κ∗τ,i(O(1)) (see the discussion right after equation (2.15)), we can see that A ∩ τ =⋃p
i=1 µτ (Zτi ) is a union of amoebas Aτi := µτ (Zτi ). It was shown in [37] that the affine structure

defined right after Definition 2.1 extends to B \ A.

Notice that µ(V (τ)) = W (τ) :=
⋃
τ⊂ω intre(ω) for any τ ∈ P. For later purposes, we would

like to relate sufficiently small open convex subsets W ⊂ W (τ) with Stein (or strongly 1-completed
as defined in [11]) open subsets U ⊂ V (τ). To do so, we need to introduce a specific collection
of (non-affine) charts for B. Recall that there is a natural map Λτ,R → τ−1Σv → Στ , and an
identification of fans τ−1Σv

∼= Στ × Λτ,R via a piecewise linear splitting Στ → τ−1Σv. This induces

a biholomorphism V (τ) = Specan(C[τ−1Σv]) ∼= (C∗)l × Specan(C[Στ ]). Fixing a set of generators
{mi}i∈Bτ of the monoid Στ , we can define a map µ̂τ : Specan(C[Στ ])→ Qτ,R by

(3.3) µ̂τ :=
∑
i∈Bτ

1

2
|zmi |2 ·mi.

It factors as an map Specan(C[Στ ])→ R|Bτ |≥0 given by
∑

i∈Bτ
1
2 |z

mi |2 ·ei, compose with the linear map

R|Bτ | → Qτ,R given by ei 7→ mi. Combining with the log map log : (C∗)l → Λ∗τ,R, we obtain a map

µτ : V (τ)→ Λ∗τ,R × Qτ,R,1 and the following diagram

(3.4) V (τ)

µ

��

µτ

xx
Λ∗τ,R × Qτ,R

Υτ //W (τ),

where Υτ is a homomorphism which serves as a chart.

We investigate the transformation between these charts. First, by choosing another piecewise
linear splitting Στ → τ−1Σv, we have a piecewise linear map b : Στ → Λτ,R recording their difference.

In that case, the two coordinate charts Υτ and Υ̃τ are related by Υ̃τ = Υτ ◦ ,ג where

,x)ג y) = (x, ye4π〈b,x〉).

Second, if we choose another set of generators m̃j ’s, the maps µ̂τ , µ̃τ : Specan(C[Στ ]) → Qτ,R are
related by a continuous map ג : Qτ,R → Qτ,R which maps each cone σ ∈ Στ back to itself.

Suppose ω ⊂ τ , then we have Λτ,R/Λω,R → τ−1Σω → Στ and one may choose a piecewise
linear splitting to get τ−1Σω

∼= (Λτ,R/Λω,R)× Στ . Therefore, we have Specan(C[τ−1Σω]) ∼= (C∗)s ×
Specan(C[Στ ]). If we consider the restriction of µ̂ω on Specan(C[τ−1Σω]), the corresponding image is
W (τ) ⊂W (ω). The map µ̂ω depends only on a subcollection {mi}i∈Bω⊂τ of {mi}i∈Bω which contains
those mi’s that belong to some cone σ ⊃ τ . We fix another set {m̃i}i∈Bτ of elements in Στ ⊂ τ−1Σω

such that each mi can be expressed as mi = m̃i + bi for some bi ∈ Λτ/Λω. Notice that if mi ∈ Kωτ ,
we have m̃i = o and hence bi ∈ Kωτ ⊂ Λτ,R/Λω,R. There is a map

(3.5) ג : Λ∗ω,R × (Λτ,R/Λω,R)∗ × Qτ,R → Λ∗ω,R × Qω,R

satisfying

x1)ג − cωτ,1, x2 − cωτ,2,
∑
i

yi|sωτ (m̃i)|−2m̃i) = (x1,
∑
i

yie
4π〈bi,x2〉mi)

1It depends on the choices of the splitting Στ → τ−1Σv and of the generators {mi}i, but we omit these dependency
from our notations.
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for those yi = 1
2 |z

m̃i(y)|2 at some point y ∈ Specan(C[τ−1Σω]). Here sωτ ∈ PM(τ) is the part of
open gluing data associated to ω ⊂ τ , and cωτ = cωτ,1 + cωτ,2 ∈ Λ∗τ,R above is the unique element

representing the linear map log |sωτ | : Λτ,R → R given by log |sωτ |(b) = log |sωτ (b)|. The appearance
of sωτ in the above formula is due to the corresponding twisting by open gluing data (sωτ )ω⊂τ of
V (τ) when glued to V (ω). We have Υω = Υτ ◦ .ג

Lemma 3.1. There is a base B of open subsets of B such that the preimage µ−1(W ) is Stein for
any W ∈ B.

Proof. First of all, it is well-known that analytic spaces associated to affine varieties are Stein. So
V (τ) is Stein for any τ . Now we fix a point x ∈ intre(τ) ⊂ B. It suffices to show that there is a
local base Bx of x such that the preimage µ−1(W ) is Stein for each W ∈ Bx. We work locally on
µ|V (τ) : V (τ) → W (τ). Consider the diagram (3.4) and write Υ−1(x) = (x, o), where o ∈ Qτ,R is

the origin. By [11, Ch. 1, Ex. 7.4], the preimage log−1(W ) under the log map log : (C∗)l → Λ∗τ,R
is Stein for any convex W ⊂ Λ∗τ,R which contains x. Again by [11, Ch. 1, Ex. 7.4], any subset⋂N
j=1{z ∈ Specan(C[Στ ]) | |fj(z)| < ε}, where fj ’s are holomorphic functions, is Stein. By taking

fj ’s to be the functions zmj ’s associated to the set of primitive generators mj of ωj ∈ Στ (1) and
ε sufficiently small, we have a local base Bo of o such that the preimage µ̂−1

τ (W ) is Stein for any
W ∈ Bo. Finally, since product of Stein open subets is Stein we obtain our desired local base Bx by
taking product of these subsets. �

3.2. The tropical singular locus S of B. We now specify a codimension 2 singular locus S ⊂ B
of the affine structure using the charts Υτ introduced in (3.4). Given the chart Υτ that maps Λ∗τ,R
to intre(τ), we define the tropical singular locus S by requiring that

(3.6) Υ−1
τ (S ∩ intre(τ)) =

⋃
ρ∈Nτ ;

dimR(ρ)<dimR(τ)

(
(intre(ρ) + cτ )× {o}

)
,

where Nτ ⊂ Λ∗τ,R is the normal fan of the polytope τ , and {o} refers to the zero cone in Στ ⊂ Qτ,R.

Here cτ = log |svτ | is the element in Λ∗τ,R representing the linear map log |svτ | : Λτ,R → R, which

is independent of the vertex v ∈ τ . A subset of the form Sτ,ρ := (intre(ρ) + cτ ) × {o} in (3.6) is
called a stratum of S in intre(τ). The locus S is independent of the choice of the chart Υτ , because
transformations induced from different choices of the splitting Στ → τ−1Σv and the choice of the
generators {mi}i∈Bτ will fix Λ∗τ,R × {o}.

Lemma 3.2. For ω ⊂ τ and a stratum Sτ,ρ in intre(τ), the intersection of the closure Sτ,ρ in B with
intre(ω) is a union of strata in intre(ω).

Proof. We consider the map described in the above (3.5) and take a neighborhood W = W1 × Qω,R
of a point (x, o) in Λ∗ω,R × Qω,R for some small enough neighborhood W1 of x in Λ∗ω,R. By shrinking

W , if necessary, we may assume that W)1−ג ) = W1 × (a − intre(Kωτ
∨)) × Qτ,R, where a is some

element in −intre(Kωτ
∨) ⊂ (Λτ,R/Λω,R)∗. Write cτ = cτ,1 + cτ,2, where cτ,1, cτ,2 are the components

of cτ according to the choice of decomposition Λ∗τ,R = Λ∗ω,R × (Λτ,R/Λω,R)∗. Then the equality
cτ,1 + cωτ,1 = cω follows from the compatibility of open gluing data in Definition 2.8. Within the
open subset W)1−ג ), any stratum Sτ,ρ is of the form

(intre(ρ) + cτ,1)× (a− intre(Kωτ
∨))× {o}

for some ρ ∈ Nω (cτ,2 is absorbed by a), and hence we have W ∩ Sτ,ρ = intre(ρ)))ג + cτ,1) × (a −
intre(Kωτ

∨))× {o}). Therefore, intersection of Sτ,ρ with Λ∗ω,R in the open subset W ⊂ Λ∗ω,R × Qω,R
is given by ρ× {o}. �
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The tropical singular locus S is naturally equipped with a stratification, where a stratum is given
by Sτ,ρ for some cone ρ ⊂ Nτ of dimR(ρ) < dimR(τ) for some τ ∈ P[<n]. We use the notation S[k]

to denote the set of k-dimensional strata of S. The affine structure on
⋃
v∈P[0] Wv ∪

⋃
σ∈P[n] intre(σ)

introduced right after Definition 2.1 in §2.1 can be naturally extended to B \ S as in [25].

We may further define the essential singular locus Se to include only those strata contained in
S[n−2] with non-trivial monodromy around them. We observe that the affine structure can be further
extended to B \ Se. More explicitly, we have a projection

iτ = iτ,1 ⊕ · · · ⊕ iτ,p : Λ∗τ → Λ∗∆1(τ) ⊕ · · · ⊕ Λ∗∆p(τ),

in which Λ∗∆1(τ) ⊕ · · · ⊕ Λ∗∆p(τ) can be treated as a direct summand as in §2.2. So we can consider

the pull-back of the fan N∆1(τ)×· · ·×N∆p(τ) via the map iτ , and realize Nτ ⊂ Λ∗τ,R as a refinement

of this fan. Similarly we have ǐτ = ǐτ,1 ⊕ · · · ⊕ ǐτ,p : Q∗τ → Λ∗
∆̌1(τ)

⊕ · · · ⊕ Λ∗
∆̌p(τ)

, and we have the

fan N∆̌1(τ) × · · · ×N∆̌p(τ) in Q∗τ,R under pullback via ǐτ . Se ∩ intre(τ) will be described by replacing

ρ ∈ Nτ with the condition ρ ∈ i−1
τ (N∆1(τ) × · · · ×N∆p(τ)), with a stratum denoted by Se,τ,ρ. There

gives a stratification on Se.

Lemma 3.3. For ω ⊂ τ , with a strata Se,τ,ρ in intre(τ), the intersection of its closure Se,τ,ρ in B
with intre(ω) is a union of strata of Se in intre(ω).

Proof. We consider ω ⊂ τ , and take a change of coordinate map ג together with neighborhood W
as in proof of the previous Lemma 3.2. What we have to show is W ∩ Sτ,ρ = intre(ρ)))ג + cτ,1) ×
(a− intre(Kωτ

∨))× {o}) for some cone ρ ∈ i−1
τ (
∏p
i=1 N∆i(τ)).

Let ∆1(τ), . . . ,∆r(τ), . . . ,∆p(τ) be monodromy polytopes of τ , and ∆1(ω), . . . ,∆r(ω), . . . ,∆p′(ω)
be that of ω such that ∆j(ω) is the face of ∆j(τ) parallel to Λω for j = 1, . . . , r. Write Λ∆1(τ) ⊕
· · · ⊕ Λ∆p(τ) ⊕Aτ = Λτ , and Λ∆1(ω) ⊕ · · · ⊕ Λ∆p′ (ω) ⊕Aω = Λω be a direct sum decomposition. We

can further choose

Λ∆r+1(ω) ⊕ · · · ⊕ Λ∆p′ (ω) ⊕Aω = Aτ ,

in the other words, for every j = r + 1, . . . , p′, any f ∈ Rj ⊂ Pn−1(ω) in Definition 2.6 is not

containing τ . For every j = r + 1, . . . , p, and any f ∈ Rj ⊂ Pn−1(τ), the element mf
v1v2 is zero for

any two vertices v1, v2 of ω. We may identify

Λτ/Λω =
r⊕
j=1

(Λ∆j(τ)/Λ∆j(ω))⊕
p⊕

l=r+1

Λ∆l(τ).

As a result, any cone i−1
τ (
∏p
j=1 ρj) ∈ i−1

τ

(∏p
i=1 N∆i(τ)

)
of codimension great than 0 intersecting

W)1−ג ) will be a pull back of cone under the projection to Λ∗∆1(τ),R ⊕ · · · ⊕ Λ∗∆r(τ),R. Consider the

commutative diagram of projection maps

(3.7) Λ∗ω,R

pω

��

Λ∗τ,Rpω⊂τ
oo

pτ

��∏r
j=1 Λ∗∆j(ω),R

∏r
j=1 Λ∗∆j(τ),R,Πω⊂τ

oo

and we see in the open subset W)1−ג ), every cone of codimension greater than 0 coming from
pullback via pτ is a further pullback via Πω⊂τ ◦ pτ in the above diagram. As a consequence, it must
be of the form intre(ρ)))ג + cτ,1)× (a− intre(Kωτ

∨))× {o}) in W . �



18 CHAN, LEUNG, AND MA

3.2.1. Contraction of A to S. We would like to relate the amoeba A = µ(Z) with the tropical
singular locus S introduced above.

Assumption 3.4. We assume the existence of a surjective contraction map C : B → B which is
isotopic to the identity and satisfies the following conditions:

(1) The restriction C|C−1(B\S) : C−1(B \ S)→ B \ S is a homeomorphism.
(2) C maps A into the essential singular locus Se.
(3) For each τ ∈ P with 0 < dimR(τ) < n, we have a decomposition of τ ∩C−1(B\S) =

⋃
v∈τ [0] τv

into connected components τv’s, where each τv is contractible and is the unique component
containing the vertex v ∈ τ .

(4) For each τ ∈ P and each point x ∈ intre(τ) ∩ S, C−1(x) ⊂ intre(τ) is a connected compact
subset.

(5) For each τ ∈ P and each point x ∈ intre(τ) ∩ S, there exists a local base Bx around x such
that (C ◦ µ)−1(W ) ⊂ V (τ) is Stein for every W ∈ Bx, and for any U ⊃ C−1(x), we have
C−1(W ) ⊂ U for sufficiently small W ∈ Bx.

Similar contraction maps appear in [37, Rem. 2.4] (see also [39, 38]). When dimR(B) = 2,
we can take C = id because the amoeba A is just a collection of points. For dimR(B) = 3, the
amoeba A can possibly be of codimension 1 and we need to construct a contraction as shown
in Figure 1. If A ∩ intre(τ) 6= ∅, it is given by the intersection of the zero locus s−1

vτ (fvρ) with

Figure 1. Contraction map C

C∗ ∼= Vτ (τ) ⊂ V (τ). Takingm to be the primitive vector in Λτ starting at v that points into τ , we can
write s−1

vτ (fvρ) = 1+s−1
vτ (m)zm. Taking the log map log : C∗ → R, we see that log(A∩ intre(τ)) = cτ .

Therefore, for an edge τ ∈ P[1], we can define C to be the identity on τ .

On a codimension 1 cell ρ such that intre(ρ) ∩ A 6= ∅, we take the log map log : Specan(C[Λρ]) ∼=
(C∗)2 → Λ∗ρ,R

∼= R2 as shown in the Figure 2. We take a big enough polytope P (colored as purple)

such that A \ P is a disjoint union of legs. We contract the polytope P to the 0-dimensional strata
of Se. Each leg can be contracted to the tropical singular locus (colored as blue) along the normal
direction to the tropical singular locus. Once it is constructed for all ρ, we can then extend it
continuously to B so that it is a diffeomorphism of intre(σ) for every maximal cell σ.
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It is chosen such that the preimage C−1(x) for every point x ∈ intre(ρ) is a convex polytope in
R2. Therefore, given any open subset U ⊂ R2 containing C−1(x), we can find some convex open
neighborhood W1 ⊂ U of C−1(x) giving the corresponding Stein open subset log−1(W1) ⊂ (C∗)2.
By taking W = W1 ×W2 in the chart Λ∗ρ,R × Qρ,R as in the proof of Lemma 3.1, we have the open

subset W that satisfy condition (5) in Assumption 3.4.

Figure 2. Contraction at ρ

In general, we need to construct C|intre(τ) inductively for each τ ∈ P, such that the preimage

C−1(x) ⊂ intre(τ) is convex in the chart Λ∗τ,R
∼= intre(τ) and the codimension 1 amoeba A is

contracted to the codimension 2 tropical singular locus Se. The reason for introducing such a
contraction map is that we can modify the generalized moment map µ to one which is more closely
related with tropical geometry:

Definition 3.5. We call the composition ν := C ◦ µ : 0X → B the modified moment map.

One immediate consequence of property (4) in Assumption 3.4 is that we have Rν∗(F) = ν∗(F)
for any coherent sheaf F on 0X, thanks to Lemma 3.1 and Cartan’s Theorem B:

Theorem 3.6 (Cartan’s Theorem B [4]; see e.g. Ch. IX, Cor. 4.11 in [11]). For any coherent sheaf
F over a Stein space U , we have H>0(U,F) = 0.

3.2.2. Monodromy invariant differential forms on B. Outside of the essential singular locus Se, we
have a nice integral affine manifold B \Se, on which we can talk about the sheaf Ω∗ of (R-valued) de
Rham differential forms. But actually we can extend its definition to Se using monodromy invariant
differential forms.

We consider the inclusion ι : B0 := B \ Se → B and the natural exact sequence

(3.8) 0→ Z→ Aff → ι∗Λ
∗
B0
→ 0,

where Λ∗B0
denotes the sheaf of integral cotangent vectors on B0. For any τ ∈ P, the stalk Λ∗B0,x

at a point x ∈ intre(τ) ∩ Se can be described using the chart Υτ in (3.4). Using the description in
§3.2, we have x ∈ Se,τ,ρ = intre(ρ) × {o} for some ρ ∈ i−1

τ (N∆1(τ) × · · · × N∆p(τ)). Taking a vertex
v ∈ τ we can consider the monodromy transformations Tγ ’s around the strata Se,η,ρ’s that contain
x in their closures. We can idenfity the stalk ι∗(Λ

∗
B0

)x as the subset of T ∗v that is invariant under
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all such monodromy transformations. Since ρ ⊂ Λ∗τ,R is a cone, we have Λρ ⊂ Λ∗τ . Using the natural

projection map πvτ : T ∗v → Λ∗τ , we have the identification ι∗(Λ
∗
B0

)x ∼= π−1
vτ (Λρ). There is a direct

sum decomposition ι∗(Λ
∗
B0

)x = Λρ ⊕ Q∗τ , depending on a decomposition Tv = Λτ ⊕ Qτ . This gives
the map

(3.9) x : Ux → π−1
vτ (Λρ)

∗
R

in a sufficiently small neighborhood Ux, locally defined up to a translation in π−1
vτ (Λρ)

∗
R. We need

to describe the compatibility between the map associated to a point x ∈ Se,ω,ρ and that to a point

x̃ ∈ Se,τ,ρ̃ such that Se,ω,ρ ⊂ Se,τ,ρ̃.

This first case is when ω = τ . We let x̃ ∈ intre(ρ̃)×{o}∩Ux for some ρ ⊂ ρ̃. Then, after choosing
suitable translations in π−1

vτ (Λρ)
∗
R for the maps x and x̃, we have the following commutative diagram:

(3.10) Ux̃ ∩ Ux

��

x̃ //π−1
vτ (Λρ̃)

∗
R

p

��
Ux

x //π−1
vτ (Λρ)

∗
R.

The second case is when ω ( τ . Making use of the change ג of charts in equation (3.5), and the
description in the proof of Lemma 3.3, we write x̃ ∈ intre(ρ̃)×{o} for some cone ρ̃ = i−1

τ (
∏p
j=1 ρ̃j) ∈

i−1
τ

(∏p
j=1 Λ∗∆j(τ)

)
with positive codimension. In W)1−ג ), we may assume ρ̃ is the pullback of a

cone ρ̆ via Πω⊂τ ◦ pτ as in equation (3.7). Since Se,ω,ρ ⊂ Se,τ,ρ̃, we have ρ ⊂ p−1
ω (ρ̆) and hence

p−1
ω⊂τ (Λρ) ⊂ Λρ̃. Therefore, from pω⊂τ ◦ πvτ = πvω, we obtain π−1

vω (Λρ) ⊂ π−1
vτ (Λρ̃) inducing the map

p : π−1
vτ (Λρ̃)

∗
R → π−1

vω (Λρ)
∗
R. As a result, we still have the above commutative diagram (3.10) for a

point x̃ sufficiently close to x.

Definition 3.7. Given x ∈ Se as above, the stalk of Ω∗ at x is defined as Ω∗x := (x−1Ω∗)x, which
is equipped with the de Rham differential d. This defines the complex (Ω∗, d) (or simply Ω∗) of
monodromy invariant differential forms on B. A section α ∈ Ω∗(W ) is a collection of elements
αx ∈ Ω∗x, x ∈W such that each αx can be represented by x−1βx in a small neighborhood Ux ⊂ p−1(Ux)
for some smooth form βx on Ux, and satisfies the relation αx̃ = x̃−1(p∗βx) in Ω∗x̃ for every x̃ ∈ Ux.

It follows from the definition that R→ Ω∗ is a resolution. We shall also prove the existence of a
partition of unity.

Lemma 3.8. Given any x ∈ B and a sufficiently small neighborhood U , there exists % ∈ Ω0(U) with
compact support in U such that 0 ≤ % ≤ 1 and % ≡ 1 near x. (Since Ω0 is a subsheaf of the sheaf C0

of continuous functions on B, we can talk about the value f(x) for f ∈ Ω0(W ) and x ∈W .)

Proof. If x /∈ Se, the statement is a standard fact. So we assume that x ∈ intre(τ) ∩ Se for some
τ ∈ P. As above, we an write x ∈ intre(ρ) × {o}. Furthermore, since ρ is a cone in the fan
i−1
τ (N∆1(τ)×· · ·×N∆p(τ)), Λ∗τ has Λ∗∆1(τ)⊕· · ·⊕Λ∗∆p(τ) as a direct summand, and the description of

ι∗(Λ
∗
B0

)x is compatible with the direct sum decomposition of Λ∗τ , we may further assume that p = 1
and τ = ∆1(τ) is a simplex.

If ρ is not the smallest cone (i.e. the one consisting of just the origin in Nτ ), we have a decom-
position Λ∗τ = Λρ ⊕ Qρ with natural projection p : Λ∗τ → Qρ. Then, locally near x, we can write the
normal fan Nτ as p−1(Σρ) for some normal fan Σρ ⊂ Qρ of a lower dimensional simplex. So we are
reduced to the case when ρ = {o} is the smallest cone in the fan Nτ .

Now we construct the function % near the origin o ∈ Nτ by induction on the dimension of the fan
Nτ When dimR(Nτ ) = 1, it is the fan of P1 with three cones R−, {o} and R+. One can construct the
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bump function which is equal to 1 near o and supported in a sufficiently small neighborhood of o.
For the induction step, we consider an n-dimensional fan Nτ . For any point x near but not equal to
o, we have x ∈ intre(ρ) for some ρ 6= {o}. Then we can decompose Nτ locally as Λρ ⊕ Qρ. Applying
the induction hypothesis to Qρ gives us a bump function %x compactly supported in any sufficiently
small neighborhood of x (for the Λρ directions, we do not need the induction hypothesis to get the
bump function). This produces a partition of unity {%i} outside o. Finally, letting % := 1 −

∑
i %i

and extending it continuously to the origin o gives the desired function. �

Lemma 3.8 produces a partition of unity for the complex (Ω∗, d) of monodromy invariant differ-
ential forms on B to satisfy the requirement in Condition 4.7 below. In particular, the cohomology
of (Ω∗(B), d) computes RΓ(B,R). Given a point x ∈ B \ Se, we take an element %x ∈ Ωn(B) which
is compactly supported in an arbitrary small neighborhood Ux ⊂ B \ Se, representing a non-zero
element in the cohomology Hn(Ω∗, d) = Hn(B,C) ∼= C.

4. Smoothing of maximally degenerate Calabi-Yau varieties via dgBV algebras

In this section, we review and refine the results in [5] concerning smoothing of the maximally

degenerate Calabi-Yau log variety 0X† over Ŝ† = Specan(R̂)† = Specan(C[[q]])† using the local
smoothing models V † → kV†’s specified in §2.4. In order to relate with tropical geometry on B, we
will choose V so that it is the pre-image ν−1(W ) of an open subset W in B.

4.1. Good covers and local smoothing data. Given τ ∈ P and a point x ∈ intre(τ) ⊂ B, we
take a sufficiently small open subset W ∈ Bx. We need to construct a local smoothing model on
V = ν−1(W ).

• If x /∈ S, then we can simply take the local smoothing V† introduced in (2.14) in §2.4.
• If x ∈ S, we assume that C−1(W ) ∩Aτi 6= ∅ for i = 1, . . . , r, and take ψx,i = ψi for 1 ≤ i ≤ r

and ψx,i = 0 otherwise accordingly. Then we can take Pτ,x introduced in (2.17) and the map

V = ν−1(W )→ Specan(C[Στ ⊕Zl]) described in §2.4. By shrinking W , if necessary, one can
show that it is an embedding using an argument similar to [24, Thm. 2.6].

Condition 4.1. An open cover {Wα}α of B is said to be good if

(1) for each Wα, there exists a unique τα ∈ P such that Wα ∈ Bx for some x ∈ intre(τ);
(2) Wαβ = Wα ∩Wβ 6= ∅ only when τα ⊂ τβ or τβ ⊂ τα, and if this is the case, we have either

intre(α) ∩Wαβ 6= ∅ or intre(β) ∩Wαβ 6= ∅.

Given a good cover {Wα}α of B, we have the corresponding Stein open cover V = {Vα}α of 0X

given by Vα := ν−1(Wα) for each α. For each V †α , the infinitesimal local smoothing model is given as a

log space V†α over Ŝ† (see (2.14)). Let kVα be the kth-order thickening over kS† = Specan(R/mk+1)†

and j : Vα \Z ↪→ Vα be the open inclusion. As in [5, §8], we obtain coherent sheaves of BV algebras
(and modules) over Vα from these local smoothing models. But for the purpose of this paper, we
would like to push forward these coherent sheaves to B and work on the open subsets Wα’s. This
leads to the following modification of [5, Def. 7.6] (see also [5, Def. 2.14 and 2.20]):

Definition 4.2. For each k ∈ Z≥0, we define

• the sheaf of kth-order polyvector fields to be kG∗α := ν∗j∗(
∧−∗ΘkV†α/ kS†

) (i.e. push-forward

of relative log polyvector fields on kV†α);
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• the kth-order log de Rham complex to be kK∗α := ν∗j∗(Ω
∗
kV†α/C

) (i.e. push-forward of log de

Rham differentials) equipped with the de Rham differential k∂α = ∂ which is naturally a dg
module over kΩ∗

S†
;

• the local log volume form ωα as a nowhere vanishing element in ν∗j∗(Ω
n
V†α/Ŝ†

) and the kth-

order volume form to be kωα = ωα (mod mk+1).

A natural filtration k
•K∗α is given by k

sK∗α := kΩ≥s
S†
∧ kK∗α[s] and taking wedge product defines the

natural sheaf isomorphism k
rσ
−1 : kΩr

S†
⊗kR (k0K∗α/ k1K∗α[−r]) → k

rK∗α/ k
r+1K∗α. We have the space

k
‖K∗α := k

0K∗α/ k1K∗α ∼= ν∗j∗(Ω
∗
kV†α/

kS†
) of relative log de Rham differentials.

There is a natural action vyϕ for v ∈ kG∗α and ϕ ∈ kK∗ given by contracting a logarithmic
holomorphic vector fields v with a logarithmic holomorphic form ϕ. We define the Lie derivative
via the formula (−1)|v|Lv := [∂, vy]. By contracting with kωα, we get a sheaf isomorphism y kωα :
kG∗α → k

‖K∗α, which defines the BV operator k∆α by k∆α(ϕ)y kω := k∂α(ϕy kω). We call it the BV

operator because it satisfies the BV identity

(4.1) (−1)|v|[v, w] := ∆(v ∧ w)−∆(v) ∧ w − (−1)|v|v ∧∆(w)

for v, w ∈ kG∗α if we put ∆ = k∆α. This gives kG∗α the structure of a sheaf of BV algebras.

4.2. An explicit description of the sheaf of log de Rham forms. Here we apply the calcula-
tions in [24, 14] to give an explicit description of the stalk kK∗α,x.

Let us consider K = ν−1(x) and the local model near K described in §4.1, with Pτ,x and Qτ,x as
in (2.17) and an embedding V → Specan(C[Qτ,x]). We may treat K ⊂ V as a compact subset of

Cl = Specan(C[Nl]) ↪→ Specan(C[Qτ,x]) via the identification Specan(C[Στ ⊕Nl]) ∼= Specan(C[Qτ,x]).
For each m ∈ Στ , we denote the corresponding element (m,ψx,0(m), . . . , ψx,l(m)) ∈ Pτ,x by m̂ to

avoid any confusion, and the corresponding function by zm̂ ∈ C[Pτ,x]. Similar to [14, Lem. 7.14],

the germ of holomorphic functions OkV,K near K in the space kV = Specan(C[Pτ,x/q
k+1]) can be

written as
(4.2)

OkV,K =

{ ∑
m∈Στ , 0≤i≤k

αm,iq
izm̂

∣∣∣αm,i ∈ OCl(U) for some neigh. U ⊃ K, sup
m∈Στ\{0}

log |αm,i|
d(m)

<∞

}
,

where d : Στ → N is a monoid morphism such that d−1(0) = 0, and it is equipped with the

product zm̂1 · zm̂2 := zm̂1+m̂2 (but note that ̂m1 +m2 6= m̂2 + m̂2 in general). Thus we have
kK0

α,x
∼= kG0

α,x
∼= OkV,K .

To describe differential forms, we consider the vector space E = Pτ,x,C, regarded as 1-forms on

Specan(C[P gp
τ,x]) ∼= (C∗)n+1. Write d log zp for p ∈ Pτ,x,C and set E1 := C〈d log ui〉li=1, as a subset

of E. For an element m ∈ Qτ,C, we have the corresponding 1-form d log zm̂ ∈ Pτ,x,C under the

association between m and zm̂. Let P be the power set of {1, . . . , l} and write uI =
∏
i∈I ui for

I ∈ P. A computation for sections of the sheaf j∗(Ω
r
kV†/C) from [24, Prop. 1.12] and [14, Lem. 7.14]

can then be rephrased as the following lemma.

Lemma 4.3 ([24, 14]). The germ of sections of j∗(Ω
∗
kV†/C)K near K is a subspace of OkV,K ⊗

∧∗ E
given by elements of the form

α =
∑
m∈Στ
0≤i≤k

∑
I

αm,i,Iq
izm̂uI ⊗ βm,I , βm,I ∈

∧∗
Em,I =

∧∗
(E1,m,I ⊕ E2,m,I ⊕ 〈d log q〉),
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where E1,m,I = 〈d log ui〉i∈I ⊂ E1 and the subspace E2,m,I ⊂ E is given as follows: we consider

the pullback of the product of normal fans
∏
i/∈I N∆̌i(τ) to Qτ,R and take E2,m,I = 〈d log zm̂

′〉 for

m′ ∈ σm,I , where σm,I is the smallest cone in
∏
i/∈I N∆̌i(τ) ⊂ Qτ,R containing m.

Here we can treat
∏
i/∈I N∆̌i(τ) ⊂ Qτ,R since

⊕
i Λ∆̌i(τ) is a direct summand of Q∗τ . A similar

description for j∗(Ω
∗
kV†/C†)K is simply given by quotienting out the direct summand 〈d log q〉 in the

above formula for α. In particular, if we restrict ourselves to the case k = 0, a general element α
can be written as

α =
∑
m∈Στ

∑
I

αm,Iz
m̂uI ⊗ βm,I , βm,I ∈

∧∗
Em,I =

∧∗
(E1,m,I ⊕ E2,m,I).

One can choose a nowhere vanishing element Ω = du1 · · · dul⊗ η ∈ u1 · · ·ul⊗∧lE1⊗∧n−dimR(τ)E2 ⊂
j∗(Ω

n
0V†/C†)K for some nonzero element η ∈ ∧n−dimR(τ)E2, which is well defined up to rescaling. Any

element in j∗(Ω
n
0V†/C†)K can be written as fΩ for some f =

∑
m∈Στ

fmz
m̂ ∈ O0V,K .

Recall that the subset K ⊂ Cl is intersecting the singular locus Zτ1 , . . . , Z
τ
r (as in §4.1), where ui

is the coordinate function of Cl with simple zeros along Zτi for i = 1, . . . , r. There is a change of
coordinates between a neighborhood of K in Cl and that of K in (C∗)l given by{

ui 7→ fv,i|(C∗)l if 1 ≤ i ≤ r;
ui 7→ zi if r < i ≤ l.

Under the map log : (C∗)l → Rl, we have K = log−1(C) for some connected compact subset C ⊂ Rl.
In the coordinates z1, . . . , zl, we find that d log z1 · · · d log zl ⊗ η can be written as fΩ near K for
some nowhere vanishing function f ∈ O0V,K .

Lemma 4.4. When K ∩ Z = ∅, i.e. r = 0 in the above discussion. The top cohomology group
Hn(j∗(Ω

n
0V†/C†)K , ∂) := j∗(Ω

n
0V†/C†)K/Im(∂) is isomorphic to C, which is generated by the element

d log z1 · · · d log zl ⊗ η.

Proof. Given a general element fΩ as above, first observe that we can write f = f0 + f+, where
f+ =

∑
m∈Στ\{0} fmz

m̂ and f0 ∈ OCl,K . Take a basis e1, . . . , es of Q∗τ,R, and also a partition I1, . . . , Is
of the lattice points in Στ \ {0} such that 〈ej ,m〉 6= 0 for m ∈ Ij . Letting

α = (−1)l
∑
j

∑
m∈Ij

fm
〈ej ,m〉

zm̂du1 · · · dul ⊗ ιejη,

we have ∂(α) = f+Ω. So we only need to consider elements of the form f0Ω. If f0Ω = ∂(α) for

some α, we may take α =
∑

j αjdu1 · · · d̂uj · · · dul ⊗ η for some αj ∈ OCl,K . Now this is equivalent

to f0du1 · · · dul = ∂
(∑

j αjdu1 · · · d̂uj · · · dul
)

as forms in Ωl
Cl,K . This reduces the problem to Cl.

Working in (C∗)l with coordinates zi’s, we can write

O(C∗)l,K =

∑
m∈Zl

amz
m
∣∣∣ ∑
m∈Zl

|am|e〈v,m〉 <∞, for all v ∈W , for some open W ⊃ C

 ,

using the fact thatK is multi-circular. By writing Ω∗
(C∗)l,K = O(C∗)l,K⊗

∧∗ F1 with F1 = 〈d log zi〉li=1,

we can see that any element can be represented as cd log z1 · · · d log zl in the quotient Ωl
(C∗)l,K/Im(∂),

for some constant c. �
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From this, we conclude that the top cohomology sheaf Hn(0
‖K∗, ∂) is isomorphic to the locally

constant sheaf C over B \ Se.

Lemma 4.5. Consider x ∈ Wα \ Se. For an element of the form ef (kωα) in k
‖Knα,x with f ∈

kG0
α,x
∼= OkVα,x satisfying f ∼= 0(mod m), there exist h(q) ∈ kR = C[q]/(qk+1) and v ∈ kG−1

α,x with

h, v ∼= 0(mod m) such that

(4.3) ef (kωα) = eheLv(kωα)

in k
‖Knα,x.

Proof. To simplify notations in this proof, we will drop the subscript α. We prove the first statement
by induction on k. The initial case is trivial. Assuming that this has been done for the (k−1)st-order,
then, by taking an arbitrary lifting ṽ of v to the kth-order, we have

e−h+f+qkε(kω) = eLṽ(kω)

for some ε ∈ O0Vx . By Lemmas 4.4 and 4.6, we have ε 0ω = c 0ω+∂(γ) for some γ and some suitable

constant c. Letting θy(0ω) = γ and v̆ = ṽ + qkθ, we have

eLv̆(kω) = eLv(kω)− qk ∂(θy(0ω)) = e−h+f+cqk(kω).

By defining h̃(q) = h(q)− cqk in C[q]/(qk+1), we obtain the desired expression. �

Lemma 4.6. The volume element 0ω is non-zero in Hn(0
‖K∗, ∂)x for every x ∈ B.

Proof. We first consider the case when x ∈ intre(σ) for some maximal cell σ ∈ P[n]. The toric stratum
0Xσ associated to σ is equipped with the natural divisorial log structure induced from its boundary
divisor. Then the sheaf Ω∗0X†σ/C†

of log derivations for 0X† is isomorphic to
∧n Λσ ⊗Z O0Xσ

. By

[24, Lem. 3.12], we have 0ωx = c(µσ)ν−1(x) in ν∗(Ω
n
0X†σ/C†

)x ∼= 0
‖Knx, where µσ ∈

∧n Λσ,C is nowhere

vanishing and c is a non-zero constant c. Thus 0X|x is non-zero in the cohomology as the same is
true for µσ ∈ ν∗(Ωn

0X†σ/C†
)x.

Next we consider a general point x ∈ intre(τ). If the statement is not true, we will have 0ωx =
0∂(α) for some α ∈ 0

‖Kn−1
x . Then there is an open neighborhood U ⊃ C−1(x) such that this relation

continues to hold. As U ∩ intre(σ) 6= ∅, for those maximal cells σ which contain the point x, we
can take a nearby point y ∈ U ∩ intre(σ) and conclude that cµσ = 0∂(α) in ν∗(Ω

n
0X†σ/C†

)y. This

contradicts the previous case. �

4.3. A global pre-dgBV algebra from gluing. One approach for smoothing 0X is to look for

gluing morphisms kψαβ : kV†α|Vαβ →
kV†β|Vαβ between the local smoothing models which satisfy the

cocycle condition, from which one obtain a kth-order thickening kX over kS†. This was done by
Kontsevich-Soibelman [30] (in 2d) and Gross-Siebert [25] (in general dimensions) using consistent

scattering diagrams. If such gluing morphisms kψαβ’s are available, one can certainly glue the global

kth-order sheaves kG∗, kK∗ and the volume form kω.

In [5], we instead took suitable dg-resolutions kPV ∗,∗α := Ω∗(kG∗α)’s of the sheaves kG∗α’s (more
precisely, we used the Thom-Whitney resolution in [5, §3]) to construct gluings kgαβ : Ω∗(kG∗α)|Vαβ →
Ω∗(kG∗β)|Vαβ of sheaves which only preserve the Gerstenhaber algebra structure but not the differen-

tial. The key discovery in [5] was that, as the sheaves Ω∗(kG∗α)’s are soft, such a gluing problem could
be solved without any information from the complicated scattering diagrams. What we obtained is a
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pre-dgBV algebra2 kPV ∗,∗(X), in which the differential squares to zero only modulo m = (q). Using
well-known algebraic techniques [42, 27], we can solve the Maurer-Cartan equation and construct
the thickening kX. In this subsection, we will summarize the whole procedure, incorporating the
nice reformulation by Felten [13] in terms of deformations of Gerstenhaber algebras.

To begin with, we assume the following condition holds:

Condition 4.7. There is a sheaf (Ω∗, d) of unital differential graded algebras (abbrev. as dga) (over
R or C) over B, with degrees 0 ≤ ∗ ≤ L for some L, such that

• the natural inclusion R → Ω∗ (or C → Ω∗) of the locally constant sheaf (concentrated at
degree 0) gives a resolution, and
• for any open cover U = {Ui}i∈I , there is a partition of unity subordinate to U , i.e. we have

{ρi}i∈I with ρi ∈ Γ(Ui,Ω
0) and supp(ρi) ⊂ Ui such that {supp(ρi)}i is locally finite and∑

i ρi ≡ 1.

It is easy to construct such Ω∗ and there are many natural choices. For instance, if B is a
smooth manifold, then we can simply take the usual de Rham complex on B. In §3.2.2, the sheaf of
monodromy invariant differential forms we constructed using the (singular) integral affine structure
on B is another possible choice for Ω∗ (with degrees 0 ≤ ∗ ≤ n). Yet another variant, namely,
the sheaf of monodromy invariant tropical differential forms will be constructed in §5.1; this links
tropical geometry on B with smoothing of the maximally degenerate Calabi-Yau variety 0X.

Let us recall how to obtain a gluing of the dg resolutions of the sheaves kG∗α and kK∗α using any
possible choice of such an Ω∗.

Definition 4.8. We define kPV ∗,∗α = Ω∗(kG∗α) := Ω∗|Wα ⊗R
kG∗α, which gives a sheaf of dgBV

algebras over Wα. The dgBV structure (∧, ∂̄α,∆α) is defined componentwise by

(ϕ⊗ v) ∧ (ψ ⊗ w) := (−1)|v||ψ|(ϕ ∧ ψ)⊗ (v ∧ w),

∂̄α(ϕ⊗ v) := (dϕ)⊗ v, ∆α(ϕ⊗ v) := (−1)|ϕ|ϕ⊗ (∆v),

for ϕ,ψ ∈ Ω∗(U) and v, w ∈ kG∗α(U) for open subset U ⊂Wα.

Definition 4.9. We define kA∗,∗α = Ω∗(kK∗α) := Ω∗|Wα⊗R
kK∗α, which gives a sheaf of dgas over Wα

equipped with the natural filtration k
•A
∗,∗
α inherited from k

•K∗α. The structures (∧, ∂̄α, ∂α) are defined
componentwise by

(ϕ⊗ u) ∧ (ψ ⊗ w) := (−1)|v||ψ|(ϕ ∧ ψ)⊗ (u ∧ w),

∂̄α(ϕ⊗ u) := (dϕ)⊗ u, ∂α(ϕ⊗ u) = (−1)|ϕ|ϕ⊗ (∂u),

for ϕ,ψ ∈ Ω∗(U) and u,w ∈ kK∗α(U) for open subset U ⊂Wα.

There is an action of kPV α on kAα by contraction y defined by the formula

(ϕ⊗ v)y(ψ ⊗ w) := (−1)|v||ψ|(ϕ ∧ ψ)⊗ (vyw),

for ϕ,ψ ∈ Ω∗(U), v ∈ kG∗α(U) and w ∈ kK∗α(U) for open subset U ⊂ Wα. Note that the lo-

cal holomorphic volume form kωα ∈ k
‖A

n,0
α (Wα) satisfies ∂̄α(kωα) = 0, and we have the identity

k∂α(φy kωα) = k∆α(φ)y kωα of operators.

2This was originally called an almost dgBV algebra in [5], but we later found the name pre-dgBV algebra from [13]
more appropriate.
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The next step is to consider gluing of the local sheaves kPV α’s for higher orders k. Similar
constructions have been done in [5, 13] using the combinatorial Thom-Whitney resolution for the
sheaves kGα’s. We make suitable modifications of those arguments to fit into our current setting.

First, since kV†α|Vαβ and kV†β|Vαβ are divisorial deformations (in the sense of [24, Def. 2.7]) of the

intersection V †αβ := V †α ∩ V †β , we can use [24, Thm. 2.11] and the fact that Vαβ is Stein to obtain

an isomorphism kψαβ : kV†α|Vαβ →
kV†β|Vαβ of divisorial deformations which induces the gluing

morphism kψαβ : kG∗α|Wαβ
→ kG∗β|Wαβ

that in turn gives kψαβ : kPV α|Wαβ
→ kPV β|Wαβ

.

Definition 4.10. A kth-order Gerstenhaber deformation of 0PV is a collection of gluing morphisms
kgαβ : kPV α|Wαβ

→ kPV β|Wαβ
of the form kgαβ = e[ϑαβ ,·] ◦ kψαβ for some θαβ ∈ kPV −1,0

β (Wαβ)

with θαβ ≡ 0 (mod m), such that the cocycle condition kgγα ◦ kgβγ ◦ kgαβ = id is satisfied.

An isomorphism between two kth-order Gerstenhaber deformations {kgαβ}αβ and {kg′αβ}αβ is

a collection of automorphisms khα : kPV α → kPV α of the form khα = e[bα,·] for some bα ∈
kPV −1,0

α (Wα) with bα ≡ 0(mod m), such that kg′αβ ◦
khα = khβ ◦ kgαβ.

A slight modification of [13, Lem. 6.6], with essentially the same proof, gives the following:

Proposition 4.11. Given a kth-order Gerstenhaber deformation {kgαβ}αβ, the obstruction to the

existence of a lifting to a (k+ 1)st-order deformation {k+1gαβ}αβ lies in the Čech cohomology (with
respect to the cover W := {Wα}α)

Ȟ2(W, 0PV −1,0)⊗ (mk+1/mk).

The isomorphism classs of (k + 1)st-order liftings are in

Ȟ1(W, 0PV −1,0)⊗ (mk+1/mk).

Fixing a (k + 1)st-order lifting {k+1gαβ}αβ, the automorphisms fixing {kgαβ}αβ are in

Ȟ0(W, 0PV −1,0)⊗ (mk+1/mk).

Since Ωi satisfies Condition 4.7, we have Ȟ>0(W, 0PV −1,0) = 0. In particular, we always have
a set of compatible Gerstenhaber deformations g = (kg)k∈N where kg = {kgαβ}αβ and any two of

them are equivalent. Fixing such a set g, we obtain a set {kPV }k∈N of Gerstenhaber algebras which
is compatible, in the sense that there are natural identifications k+1PV ⊗k+1R

kR = kPV .

We can also glue the local sheaves kA∗α’s of dgas using g. First we can define kψαβ : kK∗α|Wαβ
→

kK∗β|Wαβ
using kψαβ : kV†α|Vαβ →

kV†β|Vαβ . For each fixed k we can write kgαβ = e[ϑαβ ,·] ◦ kψαβ as

before. Then

(4.4) kg := e
Lϑαβ ◦ kψαβ : kA∗α|Wαβ

→ kA∗β|Wαβ

preserves the dga structure (∧, ∂α) and the filtration on k
•A∗α’s. As a result, we obtain a set of

compatible sheaves {(kA∗,∧, ∂)}k∈N of dgas. The contraction action y is also compatible with the
gluing construction so we have a natural action y of kPV ∗ on kA∗.

Next, we glue the operators ∂̄α’s and ∆α’s.

Definition 4.12. A kth-order predifferential ∂̄ on kPV ∗is a degree 1 operator given by a collection

of elements ηα ∈ kPV −1,1
α (Wα) such that ηα ≡ 0 (mod m) and

kgβα ◦ (∂̄β + [ηβ, ·]) ◦ kgαβ = (∂̄α + [ηα, ·]).
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Two predifferentials ∂̄ and ∂̄′ are equivalent if there is a Gerstenhaber automorphism (for the de-
formation kg) h : kPV ∗ → kPV ∗ such that h−1 ◦ ∂̄ ◦ h = ∂̄′.

Notice that we only have ∂̄2 ≡ 0 (mod m), which is why we call it a predifferential. Using
the argument in [5, Thm. 3.34] or [13, Lem. 8.1], we can always lift any kth-order predifferential
k
∂̄ to a (k + 1)st-order predifferential, and any two such liftings differ by a global element d ∈

0PV −1,1 ⊗mk+1/mk. We fix a set ∂̄ := {k∂̄}k∈N of such compatible predifferentials. For each k,

the action of
k
∂̄ on kA∗ is given by gluing of the action of ∂̄α +Lηα on kA∗α. On the other hand, the

elements

(4.5) lα := ∂̄α(ηα) +
1

2
[ηα, ηα] ∈ kPV −1,2

α (Wα)

glue to give a global element l ∈ kPV −1,2(B), and for different k’s, these elements are compatible.
Computation shows that ∂̄2 = [l, ·] on kPV ∗ and ∂̄2 = Ll on kA∗.

To glue the operators ∆α, we need to glue the local volume elements kωα’s to a global kω. We
consider an element of the form efαy · kωα, where fα ∈ kPV 0,0(Wα) satisfies fα ≡ 0 (mod m). Given

a kth-order global volume element efαy · kωα, we take a lifting ef̃αy · k+1ωα such that

k+1gαβ
(
ef̃αy · k+1ωα

)
= e(̃fβ−oαβ)y · k+1ωβ,

for some element oαβ ∈ 0PV 0,0(Wβ)⊗mk+1/mk. By construction, {oαβ}αβ gives a Čech 1-cycle in
0PV 0,0 which is exact. So there exist uα’s such that uβ|Wαβ

− uα|Wαβ
= oαβ, and we can modify f̃α

as f̃α + uα, which gives the desired (k + 1)st-order volume element. Inductively, we can construct
compatible elements kω ∈ k

‖An,0(B), k ∈ N. Any two such volume elements kω and kω′ differ by
kω = efy · kω′, where f ∈ kPV 0,0(B) is some global element. Notice that kω is not holomorphic
unless mod m.

Using the volume element ω (we omit the dependence on k if there is no confusion), we may now
define the global BV operator ∆ by

(4.6) (∆ϕ)y ω = ∂(ϕy ω),

which can locally be written as k∆α + [fα, ·]. We have ∆2 = 0. The local elements

(4.7) nα := k∆α(ηα) + ∂̄α(fα) + [ηα, fα]

glue to give a global element n ∈ kPV 0,1(B) which satisfies [∂̄,∆] = [n, ·]. Also, the elements l and
n satisfies the relation ∂̄(n) + ∆(l) = 0 by a local calculation.

In summary, we obtain pre-dgBV algebras (kPV , ∂̄,∆,∧) and pre-dgas (kA, ∂̄, ∂,∧) with a natural

contraction action y of
k
∂̄ on kA∗, and also volume elements ω. We set PV := lim←−k

kPV , A :=

lim←−k
kA, and define a total de Rham operator d : A∗ → A∗+1 by

(4.8) d := ∂̄ + ∂ + ly,

which preserves the filtration •A∗. Using the contraction ωy : PV ∗ → ‖A∗+n to pull back the

operator, we obtain the operator d = ∂̄ + ∆ + (l + n)∧ acting on PV ∗. Direct computation shows
that d2 = 0, and indeed it plays the role of the de Rham differential on a smooth manifold. Readers
may consult [5, §4.2] for the computations and more details.

Definition 4.13. We let PV (resp. kPV ) be the sheaf of (resp. kth-order) smooth relative polyvec-
tor fields over S†, and A (resp. kA) be the sheaf of (resp. kth-order) smooth forms over S†.
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4.4. Smoothing by solving the Maurer-Cartan equation. With the sheaf PV ∗,∗ of pre-dgBV
algebras defined, we can now consider the extended Maurer-Cartan equation

(4.9) (∂̄ + t∆)ϕ+
1

2
[ϕ,ϕ] + l + tn = 0

for ϕ = lim←−k
kϕ ∈ lim←−k

kPV 0(B)[[t]]. Setting t = 0 gives the (classical) Maurer-Cartan equation

(4.10) ∂̄(ϕ) +
1

2
[ϕ,ϕ] + l

for ϕ ∈ PV 0(B). To inductively solve these equations, we need two conditions, namely the holo-
morphic Poincaré Lemma and the Hodge-to-de Rham degeneracy.

We begin with the holomorphic Poincaré Lemma, which is a local condition on the sheaves kK∗α’s.

We consider the complex (kK∗α[u], ∂̃α), where

∂̃α(
l∑

s=0

νsu
s) :=

∑
s

(∂ανs)u
s + sd log(q) ∧ νsus−1.

There is a natural exact sequence of stalks

(4.11) 0 //kK∗α,x //kK∗α,x[u]
k̃,0[ //0

‖K∗α,x //0,

where k̃,0[(
∑l

s=0 νsu
s) := k,0[(ν0) as elements in 0

‖K∗α,x.

Condition 4.14. We say that the holomorphic Poincaré Lemma holds if at every point x, the

complex (kK∗α,x, ∂̃α) is acyclic.

The holomorphic Poincaré Lemma for our setting was proved in [24, proof of Thm. 4.1], but
a gap was subsequently pointed out by Felten-Filip-Ruddat in [14], who used a different strategy
to close the gap and give a correct proof in [14, Thm. 1.10]. From this condition, we can deduce

that the cohomology sheaf H∗(k‖K∗α,
k∂α) is free over kR = C[q]/(qk+1) (cf. [28, Lem. 4.1]), and the

cohomology H∗(k‖A∗,d) is free over kR (see [28] and [5, §4.3.2]).

The Hodge-to-de Rham degeneracy is a global Hodge-theoretic condition on 0X†. We consider
the dgBV algebra 0PV ∗(B)[[t]] equipped with the operator ∂̄ + t∆.

Condition 4.15. We say that the Hodge-to-de Rham degeneracy holds for 0X† if H∗(0PV ∗(B)[[t]], ∂̄+
t∆) is a free C[[t]] module.

Under the assumption tht (B,P) is strongly simple (Definition 2.7), this condition for the maxi-
mally degenerate Calabi-Yau scheme 0X† was proved in [24, Thm. 3.26]. This was later generalized
to the case when (B,P) is only simple (instead of strongly simple)3 and further to toroidal crossing
spaces in Felten-Filip-Ruddat [14] using different methods.

For the purpose of this paper, we restrict ourselves to the case that kϕ = kφ + t(kf) for kφ ∈
kPV −1,1(B) and kf ∈ kPV 0,0(B). The equation (4.9) can be decomposed according to orders in t

as the Maurer-Cartan equation (4.10) for kφ and the equation

(4.12) ∂̄(kf) + [kφ, kf ] + ∆(kφ) + n = 0.

As in classical deformation theory, kφ can be interpreted as deforming the complex structure to the

kth-order and e
kf (kω) is a holomorphic volume form which comes along.

3The subtle difference between the log Hodge group and the affine Hodge group when (B,P) is just simple, instead
of strongly simple, was studied in details by Ruddat in his thesis [36].
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Theorem 4.16. Suppose that both Conditions 4.14 and 4.15 hold. Then for any kth-order solution
kϕ = kφ + t(kf) to the extended Maurer-Cartan equation (4.9), there exists a solution k+1ϕ =
k+1φ + t(k+1f) lifting kϕ to the (k + 1)st-order. The same statement holds for the Maurer-Cartan

equation (4.10) if we restrict to kφ ∈ kPV −1,1(B).

Proof. The first statement follows from [5, Thm. 5.6] and [5, Lem. 5.12]: Starting with a kth-

order solution kϕ = kφ + t(kf) for (4.9), using [5, Thm. 5.6] one can always lift it to a general
k+1ϕ ∈ k+1PV 0(B)[[t]]. The argument in [5, Lem. 5.12] shows that we can choose k+1ϕ such that

the component of k+1ϕ|t=0 in k+1PV 0,0(B) is zero. As a result, the component of k+1φ+ t(k+1f) in
k+1PV −1,1(B)⊗ t(k+1PV 0,0(B)) is again a solution to (4.9).

For the second statement, we argue that, given kφ, there always exists kf ∈ kPV 0,0(B) such that
kφ+ t(kf) is a solution to (4.9). We need to solve the equation (4.12) by induction on the order k.
The initial case is trivial by taking 0f = 0. Suppose the equation can be solved for j−1f . Then we

take an arbitrary lifting
j
f̃ to the jth-order. We can define an element o ∈ 0PV 0,0(B) by

qjo = ∂̄(
j
f̃) + [jφ,

j
f̃ ] + ∆(jφ) + n,

which satisfies ∂̄(o) = 0. Therefore, the class [o] lies in the cohomologyH1(0PV 0,∗, ∂̄) ∼= H1(0X,O) ∼=
H1(B,C), where the last equivalence is from [23, Prop. 2.37]. By our assumption in §2, we have

H1(B,C) = 0, and hence we can find an element f̆ such that ∂̄(f̆) = o. Letting kf =
k
f̃+qj f̆ proves

the induction step. Now applying the first statement, we can lift the solution kϕ := kφ + t(kf) to
k+1ϕ = k+1φ+ t(k+1f) which satisfies equation (4.9), and hence k+1φ will solve (4.10). �

From Theorem 4.16, we obtain a solution φ ∈ PV −1,1(B) to the Maurer-Cartan equation (4.10),

from which we obtain consistent and compatible gluings kΦαβ : kV†α|Vαβ →
kV†β|Vαβ satisfying the

cocycle condition, and hence a smoothing of 0X; see [5, §5.3].

4.4.1. Normalized volume form. For later purpose, we need to further normalize the holomorphic
volume Ω := ef ω by adding a suitable power series h(q) ∈ (q) ⊂ C[[q]] to f so that the condition
that

∫
T e

f ω = 1, where T is a nearby n-torus in the smoothing, is satisfied.

We define the kth-order Hodge bundle over Specan(C[q]/qk+1) by the cohomology kH := Hn(k‖A∗,d),

which is equipped with a Gauss-Manin connection k∇, where k∇ ∂
∂ log q

is the connecting homomor-

phism of the long exact sequence associated to

(4.13) 0→ k
‖A
∗ ⊗ 〈d log q〉 → kA∗ → k

‖A
∗ → 0.

Write Ĥ = lim←−k
kH. Restricting to the 0th-order, we have N = 0∇ ∂

∂ log q
, which is a nilpotent

operator acting on 0H = Hn(0
‖A∗) ∼= Hn(X, j∗Ω

∗
X†/C†), where X = 0X. In particular, we have

H2n(k‖A∗) ∼= H2n(0
‖A∗)⊗ C[q]/qk+1 since the connection ∇ acts trivially.

Since Hn(B,C) ∼= C, we fix a non-zero generator and choose a representative % ∈ Ωn(B). Then

the element % ⊗ 1 ∈ k
‖An(B) (which may simply be written as %) represents a section [%] in Ĥ. A

direct computation shows that ∇[%] = 0, i.e. it is a flat section to all orders. The pairing with the
0th-order volume form 0ω gives a non-zero element [0ω ∧ %] in H2n(0

‖A∗).

Definition 4.17. We say the volume form Ω = ef ω is normalized if [Ω ∧ %] is flat under ∇.

In the other words, we can write [Ω∧%] = [0ω∧%] under the identification H2n(k‖A∗) ∼= H2n(0
‖A∗)⊗

C[q]/qk+1. By modifying f to f + h(q), this can always be achieved.
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5. From smoothing of Calabi-Yau varieties to tropical geometry

5.1. Tropical differential forms. To tropicalize the pre-dgBV algebra PV ∗,∗, we need to replace
the Thom-Whitney resolution used in [5] by a geometric resolution. To do so, we first need to recall
some background materials from our previous works [6, §4.2.3] and [7, §3.2].

Let U be an open subset of MR, and consider Ωk
}(U) := Γ(U × R>0,

∧
k T∨U), where } is a

coordinate of R>0. Let Wk
−∞(U) ⊂ Ωk

}(U) be the set of k-forms α such that, for each q ∈ U , there

exists a neighborhood q ∈ V ⊂ U and constants Dj,V , cV such that ‖∇jα‖L∞(V ) ≤ Dj,V e
−cV /} for all

j ≥ 0; here ∇j denotes an operator of the form ∇ ∂
∂xl1

· · · ∇ ∂
∂xlj

with respect to an affine coordinate

system x = (x1, . . . , xn) (note that this is not the Gauss-Manin connection in the previous section).
Similarly, let Wk

∞(U) ⊂ Ωk
}(U) be the set of k-forms α such that, for each q ∈ U , there exists a

neighborhood q ∈ V ⊂ U and constants Dj,V and Nj,V ∈ Z>0 such that ‖∇jα‖L∞(V ) ≤ Dj,V }−Nj,V
for all j ≥ 0. The assignment U 7→ Wk

−∞(U) (resp. U 7→ Wk
∞(U)) defines a sheaf Wk

−∞ (resp. Wk
∞)

on MR ([6, Defs. 4.15 & 4.16]). Note that Wk
−∞ and Wk

∞ are closed under the wedge product, ∇ ∂
∂x

and the de Rham differential d. Since Wk
−∞ is a dg ideal of Wk

∞, the quotient W∗∞/W∗−∞ is a sheaf
of dgas when equipped with the de Rham differential.

Now suppose U is convex. By a tropical polyhedral subset of U , we mean a connected convex
subset which is defined by finitely many affine equations or inequalities over Q.

Definition 5.1 ([6], Def. 4.19). A k-form α ∈ Wk
∞(U) is said to have asymptotic support on a

closed codimension k tropical polyhedral subset P ⊂ U with weight s, denoted as α ∈ WP,s(U), if
the following conditions are satisfied:

(1) For any p ∈ U \ P , there is a neighborhood p ∈ V ⊂ U \ P such that α|V ∈ Wk
−∞(V ).

(2) There exists a neighborhood WP ⊂ U of P such that α = h(x, })νP + η on WP , where

νP ∈
∧kNR is the unique affine k-form which is normal to P , h(x, }) ∈ C∞(WP ×R>0) and

η ∈ Wk
−∞(WP ).

(3) For any p ∈ P , there exists a convex neighborhood p ∈ V ⊂ U equipped with an affine coordi-
nate system x = (x1, . . . , xn) such that x′ := (x1, . . . , xk) parametrizes codimension k affine
linear subspaces of V parallel to P , with x′ = 0 corresponding to the subspace containing
P . With the foliation {(PV,x′)}x′∈NV , where PV,x′ = {(x1, . . . , xn) ∈ V | (x1, . . . , xk) = x′}
and NV is the normal bundle of V , we require that, for all j ∈ Z≥0 and multi-indices
β = (β1, . . . , βk) ∈ Zk≥0, the estimate∫

x′
(x′)β

(
sup
PV,x′
|∇j(ιν∨Pα)|

)
νP ≤ Dj,V,β}−

j+s−|β|−k
2

holds for some constant Dj,V,β and s ∈ Z, where |β| =
∑

l βl and ν∨P = ∂
∂x1
∧ · · · ∧ ∂

∂xk
.

Observe that ∇ ∂
∂xl

WP,s(U) ⊂ WP,s+1(U) and (x′)βWP,s(U) ⊂ WP,s−|β|(U). It follows that

(x′)β∇ ∂
∂xl1

· · · ∇ ∂
∂xlj

WP,s(U) ⊂ WP,s+j−|β|(U).

The weight s defines a filtration of Wk
∞ (we drop the U dependence from the notation whenever it

is clear from the context):4

Wk
−∞ ⊂ · · · ⊂ WP,−1 ⊂ WP,0 ⊂ WP,1 ⊂ · · · ⊂ Wk

∞ ⊂ Ωk
}(U).

4Note that k is equal to the codimension of P ⊂ U .



SMOOTHING, SCATTERING, AND A CONJECTURE OF FUKAYA 31

This filtration, which keeps track of the polynomial order of } for k-forms with asymptotic support
on P , provides a convenient tool to express and prove results in asymptotic analysis.

Definition 5.2 ([7], Def. 3.10). A differential k-form α is in W̃k
s (U) if there exist polyhedral subsets

P1, . . . , Pl ⊂ U of codimension k such that α ∈
∑l

j=1WPj ,s(U). If, moreover, dα ∈ W̃k+1
s+1 (U), then

we write α ∈ Wk
s (U). For every s ∈ Z, let W∗s (U) =

⊕
kWk

s+k(U).

We say that closed tropical polyhedral subsets P1, P2 ⊂ U of codimension k1, k2 intersect transver-
sally if the affine subspaces of codimension k1 and k2 which contain P1 and P2, respectively, intersect
transversally. This definition applies also when ∂Pi 6= ∅.

Lemma 5.3 ([7, Lem. 3.11]). (1) Let P1, P2, P ⊂ U be closed tropical polyhedral subsets of codi-
mension k1, k2 and k1 + k2, respectively, such that P contains P1 ∩ P2 and is normal to
νP1 ∧ νP2. Then WP1,s(U)∧WP2,r(U) ⊂ WP,r+s(U) if P1 and P2 intersect transversally and

WP1,s(U) ∧WP2,r(U) ⊂ Wk1+k2
−∞ (U) otherwise.

(2) We haveWk1
s1 (U)∧Wk2

s2 (U) ⊂ Wk1+k2
s1+s2 (U). In particular,W∗0 (U) ⊂ W∗∞(U) is a dg subalgebra

and W∗−1(U) ⊂ W∗0 (U) is a dg ideal.

Definition 5.4. We let W∗s be the sheafification of the presheaf defined by the assignment U 7→
W∗s (U). We call the quotient sheaf A∗ :=W∗0/W∗−1 the sheaf of tropical differential forms, which is
a sheaf of dgas on MR with structures (∧, d).

From [7, Lem. 3.6], we learn that R → A∗ is a resolution. Furthermore, given any point x ∈ U
and a sufficiently small neighborhood x ∈ W ⊂ U , we can show that there exists f ∈ W0

0 (W )
with compact support in W and satisfying f ≡ 1 near x (using an argument similar to the proof of
Lemma 3.8). Therefore, A∗ has a partition of unity subordinate to a given open cover. Replacing
the sheaf of de Rham differential forms on Λ∗ρ1,R⊕Qτ,R by the sheaf A∗ of tropical differential forms,
we can construct a particular complex Ω∗ on the integral tropical manifold B, which dictates the
tropical geometry of B.

Definition 5.5. Given a point x as in §3.2.2 (with a chart as in equation (3.9)), the stalk of A∗

at x is defined as A∗x := (x−1A∗)x. This defines the complex (A∗, d) (or simply A∗) of tropical
differential forms on B. A section α ∈ A∗(W ) is a collection of elements αx ∈ A∗x, x ∈ W such
that each αx can be represented by x−1βx in a small neighborhood Ux ⊂ p−1(Ux) for some tropical
differential form βx on Ux, and satisfies the relation αx̃ = x̃−1(p∗βx) in A∗x̃ for every x̃ ∈ Ux.

Notice that the definition of A∗ requires the projection map p in equation (3.10) to be affine,
while that of Ω∗ in §3.2.2 does not. But like Ω∗, A∗ satisfies Condition 4.7 and can be used for the
purpose of gluing the sheaf PV ∗ of dgBV algebras in §4.3. In the rest of this section, we shall use
the notations PV ∗, TL∗ and A∗ to denote the complexes of sheaves constructed using A∗.

5.2. The semi-flat dgBV algebra and its comparison with the pre-dgBV algebra PV ∗,∗.
In this section, we define a twisting of the semi-flat dgBV algebra by the slab functions (or initial
wall-crossing factors) in §2.4, and compare it with the dgBV algebra we constructed in §4.3 using
gluing of local smoothing models. The main result is Lemma 5.8, which an important step in the
proof of our main result.

We start by recalling some notations from §2.4. For each vertex v, we fix a representative
ϕv : Uv → R of ϕ ∈ H0(B,MPLP) and define the cone Cv and the monoid Pv. There is a monoid
homomorphism ρ−1Pv → ρ−1Σv coming from the natural projection Tv ⊕ Z → Tv; in this section,
we write m̄ for the element in ρ−1Σv corresponding to m ∈ ρ−1Pv under the natural projection. We
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consider V(τ)v := Spec(C[τ−1Pv]) for some τ containing v, and write zm for the function correspond-
ing to m ∈ τ−1Pv. The element % together with the corresponding function z% determine a family
Spec(C[τ−1Pv]) → C, whose central fiber is given by Spec(C[τ−1Σv]). V(τ)v = Spec(C[τ−1Pv]) is
equipped with the divisorial log structure induced by Spec(C[τ−1Σv]), which is log smooth. We

write V(τ)†v if we need to emphasize the log structure.

Since B is orientable, we can choose a nowhere vanishing integral element µ ∈ Γ(B \Se,
∧n TB,Z).

We fix a local representative µv ∈
∧n Tv for every vertex v and µσ ∈

∧n Λσ for every maximal cell
σ. Writing µv = m1 ∧ · · · ∧mn, we have the corresponding relative volume form µv = d log zm1 ∧
· · · ∧ d log zmn in Ωn

V(τ)†v/C†
. Now the relative log polyvector fields can be written as∧−l

Θ
V(τ)†v/C†

=
⊕

m∈τ−1Pv

zm∂n1 ∧ · · · ∧ ∂nl .

The volume form µv defines a BV operator via (∆α) a µv := ∂(α a µv), which is given explicitly by

∆(zm∂n1 ∧ · · · ∧ ∂nl) =
l∑

j=1

(−1)j−1〈m,nj〉zm∂n1 ∧ · · · ∂̂nj · · · ∧ ∂nl .

A Schouten–Nijenhuis–type bracket is given by extending the following formulas skew-symmetrically:

[zm1∂n1 , z
m2∂n2 ] = zm1+m2∂〈m̄1,n2〉n1−〈m̄2,n1〉n2

,

[zm, ∂n] = 〈m̄, n〉zm.

This gives
∧−∗Θ

V(τ)†v/C†
a structure of BV algebras.

5.2.1. Construction of the semi-flat sheaves. For each k ∈ N, we shall define a sheaf kG∗sf (resp. kK∗sf)

of kth-order semi-flat log vector fields (resp. semi-flat log de Rham forms) over the semi-flat locus
W0 ⊂ B, which is an open dense subset defined by

W0 :=
⋃

σ∈P[n]

intre(σ) ∪
⋃

τ∈P[n−1]
0

intre(τ) ∪
⋃

τ∈P[n−1]
1

(
intre(τ) \ (S ∩ intre(τ))

)
,

where P
[n−1]
0 consists of τ such that intre(τ) ∩ Se = ∅ and P

[n−1]
1 of τ that intersects with Se. These

sheaves will not depend on the slab functions fvρ’s.

For σ ∈ P[n], recall that we have V (σ) = Specan(C[σ−1Σv]) for some v ∈ σ[0]. Because σ−1Σv =
Λσ,R = Tv,R, we have Specan(C[σ−1Σv]) = Λ∗σ,C/Λ

∗
σ, which is isomorphic to (C∗)n. The local kth-

order thickening kV(σ)† := Specan(C[σ−1Pv/q
k+1]) ∼= (C∗)n × Specan(C[q]/qk+1) is obtained by

identifying σ−1Pv as Λσ × N. Choosing a different vertex v′, we can use the parallel transport
Tv ∼= Tv′ from v to v′ within intre(σ) and the difference ϕv|σ −ϕv′ |σ between two affine functions to
identify the monoids σ−1Pv ∼= σ−1Pv′ . We take

kG∗sf|intre(σ) := ν∗

(∧−∗
ΘkV(σ)†/ kS†

)
∼= ν∗(OkV(σ)†)⊗R

∧−∗
Λ∗σ,R.

Next we need to glue sheaves kG∗sf|intre(σ)’s along neighborhoods of codimension 1 cells ρ’s. For

each codimension 1 cell ρ, we fix a primitive normal ďρ to ρ and label the two adjacent maximal

cells σ+ and σ− so that ďρ is pointing into σ+. There are two situations to consider.

The simpler case is when Se ∩ intre(ρ) = ∅, where the monodromy is trivial. In this case, we have
V (ρ) = Specan(C[ρ−1Σv]), with the gluing V (σ±) ↪→ V (ρ) as described below Definition 2.8.We take
the kth-order thickening given by kV(ρ)† := Specan(C[ρ−1Pv/q

k+1])†, equipped with the divisorial
log structure induced by V (ρ). Then we extend the open gluing data sρσ± : Λσ± → C∗ to sρσ± :
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Λσ± ⊕ Z→ C∗ so that sρσ±(0, 1) = 1, which acts as an automorphism of Specan(C[σ−1Σv]). In this

way we can extend the gluing V (σ±) ↪→ V (ρ) to Specan(C[σ−1
± Pv/q

k+1])→ Specan(C[ρ−1Pv/q
k+1])

by twisting with the ring homomorphism induced by zm → sρσ±(m)−1zm. On a sufficiently small
neighborhood Wρ of intre(ρ), we take

kG∗sf|Wρ := ν∗

(∧−∗
ΘkV(ρ)†/ kS†

)∣∣∣
Wρ

.

Choosing a different vertex v′, we may use parallel transport to identify the fans ρ−1Σv
∼= ρ−1Σv′ ,

and further use the difference ϕv|Wρ − ϕv′ |Wρ to identify the monoids ρ−1Pv ∼= ρ−1Pv′ . One can

check that the sheaf kG∗sf|Wρ is well-defined.

The more complicated case is when Se ∩ intre(ρ) 6= ∅, where the monodromy is non-trivial. We
write intre(ρ) \ S =

⋃
v intre(ρ)v, where intre(ρ)v is the unique component which contains the vertex

v in its closure. We fix one v, the corresponding intre(ρ)v, and a sufficiently small open subset
Wρ,v of intre(ρ)v. We assume that the neighborhood Wv,ρ of intre(ρ)v intersects neither Wv′,ρ′

nor Wρ′ for any possible v′ and ρ′. Then we consider the scheme-theoretic embedding V (ρ) =

Specan(C[ρ−1Σv])→ Specan(C[ρ−1Pv]) given by zm 7→ zm̄ for any m ∈ ρ−1Pv. We denote by kV(ρ)†v
the kth-order thickening of V (ρ)|ν−1(Wρ,v) inside Specan(C[ρ−1Pv]) and equip it with the divisorial

log structure which is log smooth over kS† (note that it is different from the local model kV(ρ)†

introduced earlier in §4 because the latter depends on the slab functions fv,ρ, as we can see explicitly
in §5.2.2, while the former doesn’t). We take

kG∗sf|Wv,ρ :=
∧−∗

ΘkV(ρ)†v/
kS†

.

The gluing with nearby maximal cells σ± on the overlap intre(σ±)∩Wv,ρ is given by parallel trans-

port through the vertex v to relate the monoids σ−1
± Pv and ρ−1Pv constructed from Pv, and twisting

the map Specan(C[σ−1
± Pv])→ Specan(C[ρ−1Pv]) with the open gluing data zm 7→ s−1

ρσ±(m)zm, using
previous lifting of sρσ± to Λσ± ⊕ Z. There is a commutative diagram of holomorphic maps

V (σ±)|D //

��

kV(σ±)†|D

��
V (ρ)|D //kV(ρ)†|D

,

where D = ν−1(Wρ,v ∩ intre(σ±)) and the vertical arrow on the right-hand-side respects the log
structures. The induced isomorphism

ν∗

(∧−∗
ΘkV(ρ)†v/

kS†

)
∼= ν∗

(∧−∗
ΘkV(σ±)†v/

kS†

)
of sheaves on the overlap Wρ,v ∩ intre(σ±) then gives the desired gluing for defining the sheaf kG∗sf on
W0. Note that the cocycle condition is trivial here as there is no triple intersection of any three open
subsets from intre(σ), Wρ and Wv,ρ. However, monodromy around the singular locus Se ∩ intre(ρ)

acts non-trivially on the semi-flat sheaf kG∗sf.

Similarly, we can define the sheaf kK∗sf of semi-flat log de Rham forms, together with a relative

volume form kω0 ∈ k
‖K

n
sf(W0) obtained from gluing the local µv’s specified by the element µ as

described in the beginning of §5.2.

It would be useful to write down elements of the sheaf kG∗sf more explicitly. For instance, fixing
a point x ∈ intre(ρ)v, we may write

(5.1) kG∗sf,x = ν∗(OkV(ρ)v
)x ⊗R

∧−∗
T ∗v,R,
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and use ∂n to stand for the semi-flat holomorphic vector field associated to an element n ∈ T ∗v,R.

It is equipped with the BV algebra structure inherited from Specan(C[ρ−1Pv])
† (as described in the

beginning of §5.2), which agrees with the one induced from the volume form kω0. This allows us to
define the sheaf of semi-flat tropical vertex Lie algebras as

(5.2) kh := Ker(∆)|kG−1
sf

[−1].

Remark 5.6. This sheaf can actually be extended over the non-essential singular locus S\Se because
the monodromy around that locus acts trivially, but this is not necessary for our later discussion.

5.2.2. Explicit gluing away from codimension 2. When we define the sheaves kG∗α’s in §4.1, the open
subset Wα is taken to be a sufficiently small neighborhood of x ∈ intre(τ) for some τ ∈ P. In fact,
we can choose one of these open subsets to be the large open dense subset W0. In this subsection,
we give a construction of the sheaves kG∗0 and kK∗0 over W0 using an explicit gluing of the underlying
complex analytic space.

Over intre(σ) for σ ∈ P[n] or Wρ for ρ ∈ P[n−1] with Se ∩ intre(ρ) = ∅, we have kG∗0 = kG∗sf,

which was just constructed in §5.2.1. The only difference is when we consider ρ ∈ P[n−1] such that
Se∩ intre(ρ) 6= ∅. The log structure of V (ρ)† is prescribed by the slab functions s−1

v,ρ(fv,ρ)’s, which are

functions on the torus Specan(C[Λρ]) ∼= (C∗)n−1. Each of these can be pulled back via the natural
projection Specan(C[ρ−1Σv])→ Specan(C[Λρ]) to give a function on Specan(C[ρ−1Σv]). In this case,

we may fix the log chart V (ρ)†|ν−1(Wρ,v) → Specan(C[ρ−1Pv])
† given by the equation

zm 7→

{
zm̄ if 〈ďρ, m̄〉 ≥ 0 ,

zm̄
(
s−1
vρ (fv,ρ)

)〈ďρ,m̄〉 if 〈ďρ, m̄〉 ≤ 0 .

Write kV(ρ)†v for the corresponding kth-order thickening in Specan(C[ρ−1Pv]), which gives a local
model for smoothing V (ρ)|ν−1(Wρ,v) (as in §4). We take

kG∗0|Wρ,v := ν∗

(∧−∗
ΘkV(ρ)†v/

kS†

)
.

We have to specify the gluing on the overlap Wρ,v ∩ intre(σ±) with the adjacent maximal cells σ±.

This is given by first using parallel transport through v to relate the monoids σ−1
± Pv and ρ−1Pv as

in the semi-flat case, and then an embedding Specan(C[σ−1
± Pv/q

k+1])→ Specan(C[ρ−1Pv/q
k+1]) via

the formula

(5.3) zm 7→

{
s−1
ρσ+

(m)zm for σ+ ,

s−1
ρσ−(m)zm

(
s−1
vσ−(fv,ρ)

)〈ďρ,m̄〉 for σ− ,

where svσ± , sρσ± are treated as maps Λσ±⊕Z→ C∗ as before. Observe that there is a commutative
diagram of log morphisms

V (σ±)†|D //

��

kV(σ±)†|D

��
V (ρ)†|D //kV(ρ)†|D

,

where D = ν−1(Wρ,v ∩ intre(σ±)). The induced isomorphism

ν∗

(∧−∗
ΘkV(ρ)†v/

kS†

)
∼= ν∗

(∧−∗
ΘkV(σ±)†v/

kS†

)
of sheaves on the overlap D then provides the gluing for defining the sheaf kG∗0 on W0. Hence,

we obtain a sheaf kG∗0 of BV algebras where the BV structure is inherited from the local models
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Specan(C[σ−1Pv]) and Specan(C[ρ−1Pv]). Similarly, we can define the sheaf kK∗0 of log de Rham

forms over W0, together with a relative volume form kω0 ∈ k
‖Kn0 (W0) by gluing the local µv’s.

5.2.3. Relation between the semi-flat dgBV algebra and the log structure. The difference between kG∗0
and kG∗sf is that the monodromy along any path γ in intre(σ±) ∪ intre(ρ), where ρ = σ+ ∩ σ−, acts

non-trivially on kG∗sf (the semi-flat sheaf) but trivially on kG∗0 (the corrected sheaf). This is in line
with the philosophy that monodromy is being cancelled by the slab functions or initial wall-crossing
factors fv,ρ’s. Hence, we should be able to relate the sheaves kG∗0 and kG∗sf by adding back the initial
wall-crossing factors fv,ρ’s. To do so, we resolve these sheaves by the complex A∗ introduced in §5.1.
Also, over the open subset Wv,ρ, we consider the element

(5.4) φv,ρ := −δv,ρ ⊗ log(s−1
vρ (fv,ρ))∂ďρ ,

where δv,ρ is a 1-form with asymptotic support in intre(ρ)v and whose integral over any curve
transversal to intre(ρ)v going from σ− to σ+ is asymptotically 1 (see [6, Eq. 4.3]).

Definition 5.7. The sheaf of semi-flat polyvector fields is defined as kPV∗,∗sf := A∗|W0 ⊗R
kG∗sf,

which is equipped with a BV operator ∆, a wedge product ∧ (and hence a Lie bracket [·, ·]) and the
operator

∂̄ := ∂̄0 + [φin] = ∂̄0 +
∑
v,ρ

[φv,ρ, ·],

where ∂̄0 = d⊗ 1 and φin :=
∑

v,ρ φv,ρ. We also define the sheaf of semi-flat log de Rham forms as
kA∗,∗sf := A∗|W0 ⊗R

kK∗sf, equipped with ∂, ∧,

∂̄ := ∂̄0 +
∑
v,ρ

Lφv,ρ ,

and a contraction action y by elements in kPV∗sf.

It can be easily checked that ∂̄2 = [∂̄,∆] = 0, so we have a sheaf of dgBV algebras. We write
kPV ∗,∗0 := A∗|W0 ⊗R

kG∗0, which is equipped with the operators ∂̄0 = d⊗ 1, ∆ and ∧. The following
important lemma is a comparison between the two sheaves of dgBV algebras.

Lemma 5.8. There exists a set of compatible isomorphisms

Φ : kPV ∗,∗0 → kPV∗,∗sf , k ∈ N

of sheaves of dgBV algebras such that Φ ◦ ∂̄0 = ∂̄ ◦ Φ for each k ∈ N.

There also exists a set of compatible isomorphisms

Φ : kA∗,∗0 → kA∗,∗sf , k ∈ N

of sheaves of dgas preserving the contraction action y and such that Φ ◦ ∂̄0 = ∂̄ ◦ Φ for each k ∈ N.
Furthermore, the relative volume form kω0 is identified via Φ.

Proof. Outside those intre(ρ) such that Se ∩ intre(ρ) 6= ∅, the two sheaves are identical. So we will
take a component intre(ρ)v of intre(ρ) \ S and compare the sheaves on a neighborhood Wv,ρ.

We fix a point x ∈ intre(ρ)v and describe the map Φ at the stalks of the two sheaves. First, the
preimageK := ν−1(x) ∼= Λ∗ρ,R/Λ

∗
ρ can be identified as an (n−1)-dimensional torus in Specan(C[Λρ]) ∼=

(C∗)n−1. We have an identification ρ−1Σv
∼= Σρ × Λρ, and we choose the unique primitive element

mρ in Σρ in the ray corresponding to σ+. As analytic spaces, we may write Specan(C[Σρ]) = {uv =
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0} ⊂ C2 where u = zmρ and v = z−mρ , and Specan(C[ρ−1Σv]) = (C∗)n−1 × {uv = 0}. The germ
OV (ρ),K of analytic functions can be written as

OV (ρ),K =

{
a0 +

∞∑
i=1

aiu
i +

−∞∑
i=−1

aiv
−i | ai ∈ O(C∗)n−1(U) for neigh. U ⊃ K, sup

i 6=0

log |ai|
|i|

<∞

}
.

Using the embedding V (ρ)|ν−1(Wv,ρ) → kV(ρ)†v in §5.2.2, we can write

kG0
0,x = OkV(ρ)v ,K

=
k∑
j=0

(a0,j +

∞∑
i=1

ai,ju
i +

−∞∑
i=−1

ai,jv
−i)qj | ai,j ∈ O(C∗)n−1(U) for neigh. U ⊃ K, sup

i 6=0

log |ai,j |
|i|

<∞

 ,

with the relation uv = qls−1
vρ (fv,ρ) (here l is the change of slopes for ϕv across ρ). For the elements

(mρ, ϕv(mρ)) and (−mρ, ϕv(−mρ)) in ρ−1Pv, we have the identities

z(mρ,ϕv(mρ)) = u, z−(−mρ,ϕv(−mρ)) = s−1
vρ (fv,ρ)

−1v,

describing the embedding kV(ρ)†v ↪→ Specan(C[ρ−1Pv])
†. For polyvector fields, we can write kG∗0,x =

kG0
0,x ⊗R

∧−∗ T ∗v,R. The BV operator is described by the relations ∆(∂n) = 0, [∂n1 , ∂n2 ] = 0, and

(5.5)


[zm, ∂n] = ∆(zm∂n) = 〈m,n〉zm for m̄ ∈ Λρ, n ∈ T ∗v,R;

[u, ∂n] = ∆(u∂n) = 〈mρ, n〉u for n ∈ T ∗v,R;

[v, ∂n] = ∆(v∂n) = 〈−mρ, n〉v + ∂n(log s−1
vρ (fv,ρ))v for n ∈ T ∗v,R.

Similarly we can write down the stalk for kG∗sf,x = kG∗sf,x ⊗R
∧−∗ T ∗v,R. As a module over

O(C∗)n−1,K ⊗C C[q]/(qk+1), we have kG∗sf,x = kG0
0,x, while the ring structure is determined by the

relation uv = ql. The embedding kV(ρ)†v ↪→ Specan(C[ρ−1Pv])
† is given by

z(mρ,ϕv(mρ)) = u, z−(−mρ,ϕv(−mρ)) = v.

The formula for the BV operator is the same as above, except that now we have [v, ∂n] = ∆(v∂n) =
〈−mρ, n〉v for the last equation in (5.5).

To relate these two sheaves, we recall the situation in [6, §4], where we considered a scattering
diagram consisting of only one wall. Using the argument there, we can find a set of compatible
elements {θ ∈ kPV0,−1

sf (Wv,ρ)}k∈N, such that eθ ∗ ∂̄0 = ∂̄ and ∆(θ) = 0. Explicitly, θ is a step-
function-like element of the form

θ =

{
log(s−1

vρ (fv,ρ))∂ďρ on intre(σ+) ∩Wv,ρ,

0 on intre(σ−) ∩Wv,ρ.

We also let θ0 := log(s−1
vρ (fv,ρ))∂ďρ , as an element defined on the whole Wv,ρ. Now we define the map

Φx : kPV ∗,∗0,x →
kPV∗,∗sf,x at the stalks by writing kPV ∗0,x = Ax ⊗R

kG0
0,x ⊗R

∧−∗ T ∗v,R (and similarly

for kPV∗sf,x), and extending the formulas

Φx(α) = α for α ∈ Ax,

Φx(f) = e[θ,·]f = f for f ∈ O(C∗)n−1,K ,

Φx(u) = e[θ−θ0,·]u,

Φx(v) = e[θ,·]v,

Φx(∂n) = e[θ−θ0,·]∂n for n ∈ T ∗v,R
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using the tensor product ⊗R and also skew-symmetrically in ∂n’s.

To see that Φ is the desired isomorphism, we check all the required relations by computations:

• First of all, since e[θ,·] ◦ ∂̄0 ◦ e−[θ,·] = ∂̄, we have

∂̄Φx(u) = e[θ,·]∂̄0(e−[θ0,·]u) = 0;

similarly, we have ∂̄(Φx(v)) = 0 = ∂̄(Φx(∂n)). Hence, Φx ◦ ∂̄ = ∂̄0 ◦ Φx.

• Next, we have e−[θ0,·]u = s−1
vρ (fv,ρ)u and hence

Φx(u)Φx(v) = e[θ,·](s−1
vρ (fv,ρ)u)e[θ,·]v = s−1

vρ (fv,ρ)e
[θ,·](uv) = qls−1

vρ (fv,ρ) = Φx(uv),

i.e. the map Φx preserves the product structure.
• From the fact that ∆(θ) = 0 = ∆(θ0), we see that e[θ−θ0,·] commutes with ∆, and hence

∆(Φx(∂n)) = e[θ−θ0,·] ∆(∂n) = 0. We also have [Φx(∂n1), Φx(∂n2)] = e[θ−θ0,·][∂n1 , ∂n2 ] = 0.
• Again because ∆(θ) = 0 = ∆(θ0), we have

∆(Φx(u)Φx(∂n)) = ∆(e[θ−θ0,·]u∂n) = e[θ−θ0,·](∆(u∂n)
)

= 〈mρ, n〉e[θ−θ0,·](u) = 〈mρ, n〉Φx(u).

• Finally, we have

∆(Φx(v)Φx(∂n)) = ∆
(
e[θ−θ0,·]((e[θ0,·]v)∂n)

)
= e[θ−θ0,·](∆(s−1

vρ (fv,ρ)v∂n)
)

= e[θ−θ0,·](〈−mρ, n〉s−1
vρ (fv,ρ)v + ∂n(s−1

vρ (fv,ρ))v
)

= 〈−mρ, n〉(e[θ,·]v) + ∂n
(

log s−1
vρ (fv,ρ)

)
(e[θ,·]v)

= 〈−mρ, n〉Φx(v) + ∂n
(

log s−1
vρ (fv,ρ)

)
Φx(v).

We conclude that Φx : kPV ∗,∗0,x →
kPV∗,∗sf,x is an isomorphism of dgBV algebras.

We also need to check that the map Φx agrees with the isomorphism kPV ∗,∗0 |C →
kPV∗,∗sf |C in-

duced simply by the identity kG∗0|C ∼= kG∗sf|C, where C = W0 \
⋃

Se∩intre(ρ) 6=∅ intre(ρ). For this pur-

pose, we consider two nearby maximal cells σ± such that σ+ ∩ σ− = ρ. So we have kV(σ±) =
Specan(C[σ−1

± Pv]/q
k+1), and the gluing of kG∗0 over Wv,ρ ∩ σ+ is given by first using the parallel

transport through v, and then the formula

(5.6)


zm 7→ s−1

ρσ+
(m)zm for m ∈ Λρ,

u 7→ s−1
ρσ+

(mρ)z
mρ ,

v 7→ qls−1
vσ+

(fv,ρ)s
−1
ρσ+

(−mρ)z
−mρ .

The gluing for kG∗sf differs only by the last equation in (5.6), namely, it is replaced by v 7→
qls−1

ρσ+
(−mρ)z

−mρ . Because we have

Φx(v) =

{
s−1
vρ (fv,ρ)v on Ux ∩ intre(σ+),

v on Ux ∩ intre(σ−)

on some sufficiently small neighborhood Ux of x, we see that Φx(v) 7→ qls−1
vσ+

(fv,ρ)s
−1
ρσ+

(−mρ)z
−mρ

under the gluing map of kG∗sf on Ux ∩ intre(σ+). This shows the compatibility of Φx with the gluing

of kG∗0 and kG∗sf over Ux ∩ intre(σ+). Similar arguments apply for Ux ∩ intre(σ−).

The proof for Φ : kA∗0 → kA∗sf, which is similar, will be omitted. The volume form is preserved
under Φ because we have ∆(θ) = 0 = ∆(θ0). This completes the proof of the lemma. �
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5.2.4. A global sheaf of dgLas from gluing of the semi-flat sheaves. We shall apply the procedure
described in §4.3 to the semi-flat sheaves to glue a global sheaf of dgLas. First of all, we choose an
open cover {Wα}α∈I satisfying Condition 4.1, together with a decomposition I = I1 t I2 such that
W1 = {Wα}α∈I1 is a cover of the semi-flat part W0, andW2 = {Wα}α∈I2 is a cover of a neighborhood
of
(⋃

τ∈P[n−2] τ
)
∪
(⋃

ρ∩Se 6=∅ S ∩ intre(ρ)
)
.

For each Wα, we have a compatible set of local sheaves kG∗α of BV algebras, local sheaves kK∗α
of dgas, and relative volume elements kωα, k ∈ N (as in §4.1). We can further demand that, over
the semi-flat locus W0, we have kG∗α = kG∗0|Wα , kK∗α = kK∗0|Wα and kωα = kω0|Wα , and hence
kPV ∗α = kPV ∗0|Wα and kA∗α = kA∗0|Wα for α ∈ I1.

Using the construction in §4.3, we obtain a Gerstenhaber deformation kgαβ = e[θαβ ,·] ◦ kψαβ
specified by θαβ ∈ kPV 0

β(Wαβ), which gives rise to sets of compatible global sheaves kPV ∗ and
kA∗, k ∈ N. Restricting to the semi-flat part, we get two Gensterharber deformations kPV ∗0 and
kPV ∗|W0 , which must be equivalent as Ȟ>0(W1,

0TL0|W0) = 0. Therefore we have a set of compat-

ible isomorphisms locally given by hα = e[bα,·] : kPV ∗0|Wα → kPV ∗0|Wα for some bα ∈ kTL0
0(Wα),

for each k ∈ N, and they fit into the following commutative diagram

kPV ∗0|Wαβ

id //

hα
��

kPV ∗0|Wαβ

hβ
��

kPV ∗0|Wαβ

kgαβ //kPV ∗0|Wαβ
.

Since the pre-differential on kPV ∗|W0 obtained from the construction in §4.3 is of the form ∂̄α+[ηα, ·]
for some ηα ∈ kPV −1,1

0 (Wα), pulling back via hα gives a global element η ∈ kPV −1,1
0 (W0) such that

h−1
α ◦ (∂̄α + [ηα, ·]) ◦ hα = ∂̄0 + [η, ·].

Theorem 4.16 gives a Maurer-Cartan solution φ ∈ kPV −1,1(B) such that (∂̄ + [φ, ·])2 = 0, together
with a holomorphic volume form ef ω, compatible for each k. We denote the pullback of φ under

hα’s to kPV −1,1
0 (W0) as φ0, and that of volume form to k

‖A
n,0
0 (W0) as eg ω0, satisfying

(∂̄0 + Lη+φ0)eg ω0 = 0.

Lemma 5.9. If the holomorphic volume form is normalized in the sense of Definition 4.17, then
we can find a set of compatible V ∈ kPV −1,0

0 (W0), k ∈ N, such that

e−LV ω0 = eg ω0.

Proof. We shall construct V by induction on k as in the proof of Lemma 4.5. Namely, suppose V
is constructed for (k − 1)st-order, then we shall lift it to the kth-order. We prove the existence of

a lifting Vx ∈ kPV −1,0
0,x at every stalk x ∈ W0 and use partition of unity to glue a global lifting V.

First, we can always find a gauge equivalent θ ∈ kPV −1,0
0,x such that

e−[θ,·] ◦ ∂̄0 ◦ e[θ,·] = ∂̄0 + [η + φ0, ·].
So we have ∂̄0(eLθeg ω0) = 0, which implies that eLθeg ω0 ∈ k

‖Kn0,x. We can write eLθeg ω0 = eh ω0

in the stalk at x for some germ h ∈ kG0
0,x of holomorphic functions. Applying Lemma 4.5, we can

further choose θ so that h = h(q) ∈ (q) ⊂ C[q]/qk+1. In a sufficiently small neighborhood Ux, we find
an element %x ∈ An(Ux) as in Definition 4.17. The fact that the volume form is normalized forces

eh(q)[ω0 ∧ %x] to be constant with respect to the Gauss-Manin connection k∇. Tracing through the
exact sequence (4.13) on Ux, we can lift ω0 to kKn0 (Ux), which is closed under ∂. As a consequence,

we have k∇ ∂
∂ log q

[ω0 ∧ %x] = 0, and hence we conclude that h(q) = 0.
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Now we have to solve for a lifting Vx such that eLθe−LVx ω0 = ω0 up to the kth-order. This is
equivalent to solving for a lifting u satisfying eLu ω0 = ω0 for the kth-order once the (k − 1)st-order
is given. Take an arbitrary lifting ũ to the kth-order, and making use of the formula in [5, Lem.
2.8], we have

eLũ ω0 = exp

( ∞∑
s=0

δsũ
(s+ 1)!

∆(ũ)

)
ω0,

where δũ = −[ũ, ·]. From eLũ ω0 = ω0 (mod mk), we use induction on the order j to prove that
∆(ũ) = 0 up to order (k − 1). Therefore we can write ∆(ũ) = qk ∆(ŭ) (mod mk) for some ŭ ∈
0PV −1,0

0,x , using the fact that the cohomology sheaf under ∆ is free over kR = C[q]/(qk+1) (see the

discussion right after Condition 4.14). Setting u = ũ− qkŭ will then solve the equation. �

The element V obtained Lemma 5.9 can be used to conjugate the operator ∂̄ + [φ, ·] and get φ0

satisfying

e−[V,·] ◦ (∂̄0 + [φ0, ·]) ◦ e[V,·] = ∂̄ + [φ, ·].
The volume form ω0 is holomorphic under the operator ∂̄0 +[φ0, ·]. From equation (4.12), we observe

that ∆(φ0) = 0. Furthermore, the image of φ0 under the isomorphism Φ : kPV ∗0 → kPV∗sf in Lemma

5.8 gives φs ∈ kPV1
sf(W0), and an operator of the form

(5.7) ∂̄0 + [φin + φs, ·] = ∂̄0 +
∑
v,ρ

[φv,ρ, ·] + [φs, ·],

where φin =
∑

v,ρ φv,ρ, that acts on kPV∗sf. Equipping with this operator, the semi-flat sheaf kPV∗sf
can be glued to the sheaves kPV ∗α’s for α ∈ I2, preserving all the operators. More explicitly, on each
overlap W0α := W0 ∩Wα, we have

(5.8) kg0α : kPV∗sf|W0α → kPV ∗|W0α

defined by kgαβ◦kg0α|Wαβ
= hβ◦e−[V,·]◦Φ−1|Wαβ

for β ∈ I1, which sends the operator ∂̄0+[φin+φs, ·]
to ∂̄α + [ηα, ·].

Definition 5.10. We call kTL∗sf := Ker(∆)[−1] ⊂ kPV∗sf[−1], equipped with the structure of a dgLa

using ∂̄0 and [·, ·] inherited from kPV∗sf, the sheaf of semi-flat tropical vertex Lie algebras (abbrev.

as sf-TVL).

Note that kTL∗sf
∼= A|W0⊗R

kh. Also, we have ∆(φs) = 0 since ∆(φ0) = 0, and a direct computation

shows that ∆(φin) = 0. Thus φin, φs ∈ kTL1
sf(W0), and the operator ∂̄0 + [φin + φs, ·] preserves the

sub-dgLa kTL∗sf.

From the description of the sheaf A∗, we can see that locally on U ⊂ W0, φs is supported on
finitely many codimension 1 polyhedral subsets, called walls or slabs, which are constituents of a
scattering diagram. This is why we use the subscript ‘s’ in φs because it stands for ‘scattering’.

5.3. Consistent scattering diagrams from Maurer-Cartan solutions.

5.3.1. Scattering diagrams. In this subsection, we recall the notion of scattering diagrams introduced
by Kontsevich-Soibelman [30] and Gross-Siebert [25], and make modifications to suit our needs. We

begin with the notion of walls from [25, §2]. Let Ŝ =
(⋃

τ∈P[n−2] τ
)
∪
(⋃

ρ∩Se 6=∅ S ∩ intre(ρ)
)

be

equipped with a polyhedral decomposition induced from P and S. For the exposition below, we will
always fix k > 0 and consider all these structures modulo mk+1 = (qk+1).



40 CHAN, LEUNG, AND MA

Definition 5.11. A wall w is an (n − 1)-dimensional tropical polyhedral subset of σw \ (w ∩ Ŝ)

for some maximal cell σw ∈ P[n] such that w ∩ intre(σw) 6= ∅, together with the choice of a prim-

itive normal ďw and a section Θw of the tropical vertex group exp(q · kh) in a sufficiently small
neighborhood of w, called the wall-crossing factor associated to the wall w.

We also need the notion of slabs, the only difference with walls being that these are subsets of
codimension one strata ρ intersecting Se.

Definition 5.12. A slab b is an (n−1)-dimensional tropical polyhedral subset of intre(ρ)\(intre(ρ)∩
S) for some (n− 1)-cell ρb ∈ P[n−1] such that ρb ∩ Se 6= ∅, together with a chosen normal ďρ and a

section Θb of exp(q · kh) in a neighborhood of b. The wall-crossing factor associated to b is given by

Θb := Θv,ρ ◦Θb,

where v is the unique vertex such that intre(ρ)v contains b and

Θv,ρ = exp([log(s−1
vρ (fv,ρ))∂ďρ , ·])

(cf. equation (5.4)).

Remark 5.13. In the above definition, a slab is not allowed to intersect the singular locus S. This is
different from the situation in [25, §2]. However, in our definition of consistent scattering diagrams,
we will require consistency around each stratum of Se.

Definition 5.14. A (kth-order) scattering diagram is a locally finite countable collection D =
{(wi,Θi)}i∈N of walls or slabs in the semi-flat locus W0.5

Given a scattering diagram D, we can define its support as |D| :=
⋃
i∈N wi. There is an induced

polyhedral decomposition on |D| such that its (n− 1)-cells are closed subsets of some wall or slab,

and all intersections of walls or slabs are lying in the union of the (n − 2)-cells. We write |D|[i]
for the collection of all the i-cells in this polyhedral decomposition. We may assume, after further
subdividing the walls or slabs in D if necessary, that every wall or slab is an (n− 2)-cell in |D|. We
call an (n− 2)-cell j in |D| a joint, and a connected component of W0 \ |D| a chamber.

Given a wall or slab, we shall make sense of wall crossing in terms of jumping of holomorphic
functions across it. Instead of formulating the definition in terms of path-ordered products of
elements in the tropical vertex group as in [25], we will express it in terms of the action by the

tropical vertex group on the local sections of kG0
sf. There is no harm in doing so since we have the

inclusion kG−1
sf ↪→ Der(kG0

sf,
kG0

sf), i.e. a relative vector field is determined by its action on functions.

In this regard, we would like to define the (kth-order) wall-crossing sheaf kOD on the open set

W0(D) := W0 \
⋃

j∈|D|[n−2]

j,

which captures the jumping of holomorphic functions described by the wall-crossing factor when
crossing a wall. We first consider the sheaf kG0

sf of holomorphic functions over the subset W0 \ |D|,
and let

kOD|W0\|D| :=
kG0

sf|W0\|D|.

To extend it through the walls/slabs, we will specify the analyic continuation through intre(w) for

each w ∈ |D|[n−1]. Given a wall/slab w with two adjacent chambers C+, C− and ďw pointing into
C+, and a point x ∈ intre(w) with the germ Θw,x of wall-crossing factors near x, we let

kOD,x := kG0
sf,x,

5Recall that our notion of scattering diagrams is a little bit more relaxed than the usual one defined in [30, 25], as
explained in Remark 1.2.
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but with a different gluing to nearby chambers C±: in a sufficiently small neighborhood Ux of x, the
gluing of a local section f ∈ kOD,x is given by

(5.9) f |Ux∩C± :=

{
Θw,x(f)|Ux∩C+ on Ux ∩ C+,

f |Ux∩C− on Ux ∩ C−.

In this way, the sheaf kOD|W0\|D| extends to W0(D).

Now we can formulate consistency of a scattering diagram D in terms of the behaviour of the sheaf
kOD over the joints j’s and (n − 2)-dimensional strata of Ŝ. More precisely, we consider the push-

forward i∗(
kOD) along the embedding i : W0(D)→ B, and its stalk at x ∈ intre(j) and x ∈ intre(τ) for

strata τ ⊂ Ŝ. Similar to above, we can define the (lth-order) sheaf lOD by using lG0
sf and considering

equation (5.9) modulo (q)l+1. There is a natural restriction map k,l[ : i∗(
kOD) → i∗(

lOD). Taking

tensor product, we have k,l[ : i∗(
kOD)⊗kR

lR→ i∗(
lOD), where kR = C[q]/(qk+1).

The proof of the following lemma will be given in Appendix §A.

Lemma 5.15. We have ι∗(
0G0|W0) = 0G0, where ι : W0 → B is the inclusion. Moreover, for any

scattering diagram D, we have i∗(
0G0|W0(D)) = 0G0, where i : W0(D)→ B is the inclusion.

Lemma 5.16. The 0th-order sheaf i∗(
0OD) is isomorphic to the sheaf 0G0.

Proof. In view of Lemma 5.15, we only have to show that the two sheaves are isomorphic on the
open subset W0(D). Since we work modulo (q), only the wall-crossing factor Θv,ρ associated to a

slab matters. So we take a point x ∈ intre(b) ⊂ intre(ρ)v for some vertex v, and compare 0OD,x with
0G0

x = 0G0
sf,x. From the proof of Lemma 5.8, we have

0G0
x = 0G0

sf,x = OkV(ρ)v ,K

=

{
a0,j +

∞∑
i=1

aiu
i +

−∞∑
i=−1

aiv
−i | ai ∈ O(C∗)n−1(U) for some neigh. U ⊃ K, sup

i 6=0

log |ai|
|i|

<∞

}
,

with the relation uv = 0. The gluings with nearby maximal cells σ± of both 0G0 and 0G0
sf are simply

given by the parallel transport through v and the formulas

σ+ :


zm 7→ s−1

ρσ+
(m)zm for m ∈ Λρ,

u 7→ s−1
ρσ+

(mρ)z
mρ ,

v 7→ 0,

σ− :


zm 7→ s−1

ρσ−(m)zm for m ∈ Λρ,

u 7→ 0,

v 7→ s−1
ρσ−(−mρ)z

−mρ

in the proof of Lemma 5.8.

Now for the wall-crossing sheaf 0OD,x
∼= 0G0

sf,x, the wall-crossing factor Θv,ρ can only acts on the

coordinate functions u, v as 〈m, ďρ〉 = 0 for m ∈ Λρ. The gluing of u to the nearby maximal cells
obeying wall crossing is given by

u|Ux∩σ± :=

{
u|Ux∩σ+ on Ux ∩ σ+,

Θ−1
v,ρ,x(u)|Ux∩σ− = 0 on Ux ∩ σ−,

in a sufficiently small neighborhood Ux of x. The reason that we have Θ−1
v,ρ,x(u)|Ux∩σ− = 0 on Ux∩σ−

is simply because we have u 7→ 0 in the gluing of 0G0
sf. For the same reason, we see that the gluing

of v agrees with that of 0G0 and 0G0
sf. �

Definition 5.17. A (kth-order) scattering diagram D is said to be consistent if there is an isomor-

phism i∗(
kOD)|Wα

∼= kG0
α as sheaves of C[q]/(qk+1)-algebras on each open subset Wα.
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The above consistency condition would imply that k,l[ : i∗(
kOD) → i∗(

lOD) is surjective for any

l < k and hence i∗(
kOD) is a sheaf of free C[q]/(qk+1)-module on B. We will see that i∗(

kOD) agrees
with the push-forward of the sheaf of holomorphic functions on a (kth-order) thickening kX of the
central fiber 0X under the modified moment map ν.

Let us elaborate a bit on the relation between this definition of consistency and that in [25].
Assuming we have a consistent scattering diagram in the sense of [25], then we obtain a kth-order
thickening kX of 0X which is locally modeled on the thickening kVα’s by [24, Cor. 2.18]. Pushing
forward via ν, we obtain a sheaf of algebras over C[q]/(qk+1) lifting 0G0, which is locally isomorphic
to the kG0

α’s. This consequence is exactly what we use to formulate our definition of consistency.

Lemma 5.18. Suppose we have W ⊂Wα∩Wβ such that V = ν−1(W ) is Stein, and an isomorphism

h : kG0
β|W →

kG0
α|W of sheaves of C[q]/(qk+1)-algebras which is the identity modulo (q). Then there

is a unique isomorphism ψ : kVα|V → kVβ|V of analytic spaces inducing h.

Proof. From the description in §2.4, we can embed both families kVα, kVβ over Specan(C[q]/(qk+1))

as closed analytic subshemes of CN+1 = CN×Cq and CL+1 = CL×Cq respectively, where projection

to the second factor defines the family over C[q]/(qk+1). Let Jα and Jβ be the corresponding
ideal sheaves, which can be generated by finitely many elements. We can take Stein open subsets
Uα ⊆ CN+1 and Uβ ⊆ CL+1 such that their intersections with the subschemes give kVα|V and
kVβ|V respectively. By taking global sections of the sheaves over W , we obtain the isomorphism
h : OkVβ (V ) → OkVα(V ). Using the fact that Uα is Stein, we can lift h(zi)’s, where zi’s are

restrictions of coordinate functions to kVβ|V ⊂ Uβ, to holomorphic functions on Uα. In this way, h

can be lifted as a holomorphic map ψ : Uα → Uβ. Restricting to kVα|V , we see that the image lies

in kVβ|V , and hence we obtain the isomorphism ψ. The uniqueness follows from the fact the ψ is
determined by ψ∗(zi) = h(zi). �

Given a consistent scattering diagram D (in the sense of Definition 5.17), the sheaf i∗(
kOD) can

be treated as a gluing of the local sheaves kG0
α’s. Then from Lemma 5.18, we obtain a gluing of the

local models kVα’s yielding a thickening kX of 0X. This justifies Definition 5.17.

5.3.2. Consistent scattering diagrams from Maurer-Cartan solutions. We are finally ready to demon-
strate how to construct a consistent scattering diagram D(φ) in the sense of Definition 5.17 from a
Maurer-Cartan solution ϕ = φ+ tf obtained in Theorem 4.16. As in §5.2.4, we will fix a kth-order
Maurer-Cartan solution φ and define its scattered part as φs ∈ kTL1

sf(W0). From this, we want to

construct a kth-order scattering diagram D(φ).

We take an open cover {Ui}i by pre-compact convex open subsets of W0, such that locally on Ui,
φin + φs can be written as a finite sum

(φin + φs)|Ui =
∑
j

αij ⊗ vij ,

where αi ∈ A1(Ui) has asymptotic support on a codimension 1 polyhedral subset Pij ⊂ Ui, and

vij ∈ kh(Ui). We take a partition of unity {%i}i subordinate to the cover {Ui}i such that supp(%i)
has asymptotic support on a compact subset Ci of Ui. As a result, we can write

(5.10) φin + φs =
∑
i

∑
j

(%iαij)⊗ vij

such that each (%iαij) has asymptotic support on compact codimension 1 subset Ci ∩Pij ⊂ Ui. The
subset

⋃
ij Ci ∩ Pij will be the support |D| of our scattering diagram D = D(φ).
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We may equip |D| :=
⋃
ij Ci ∩ Pij with a polyhedral decomposition such that all the boundaries

and mutual intersections of Ci∩Pij ’s are contained in (n−2)-dimensional strata of |D|. So, for each
(n− 1)-dimensional cell τ , if intre(τ) ∩ (Ci ∩ Pij) 6= ∅ for some i, j, then we must have τ ⊂ Ci ∩ Pij .
Let I(τ) := {(i, j) | τ ⊂ Ci ∩Pij}, which is a finite set of indices. We will equip the (n− 1)-cells τ ’s
of |D| with the structure of walls or slabs.

We first consider the case of a wall. Take τ ∈ |D|[n−1] such that τ ∩ intre(ρ) = ∅ for those ρ with
ρ ∩ Se 6= ∅. We let w = τ , choose a primitive normal ďw of τ , and give the labels C± to the two
adjacent chambers C± so that ďw is pointing into C+. In a sufficiently small neighborhood Uτ of
intre(τ), we may write

φs|Uτ =
∑

(i,j)∈I(τ)

(%iαij)⊗ vij ,

where each (%iαij) has asymptotic support on intre(τ). Since locally on Uτ any Maurer-Cartan

solution is gauge equivalent to 0, there exists an element θτ ∈ A0(Uτ )⊗ q · kh(Uτ ) such that

e[θτ ,·] ◦ ∂̄0 ◦ e−[θτ ,·] = ∂̄0 + [φs, ·].
Such an element can be constructed inductively using the procedure in [31, §3.4.3], and can be
chosen to be of the form

(5.11) θτ |Uτ∩C± =

{
θτ,0|Uτ∩C+ on Uτ ∩ C+,

0 on Uτ ∩ C−,

for some θτ,0 ∈ q · kh(Uτ ).From this we obtain the wall-crossing factor

(5.12) Θw := e[θτ,0,·].

Remark 5.19. Here we need to apply the procedure in [31, §3.4.3], which is a generalization of that
in [6], because of the potential non-commutativity: [vij , vij′ ] 6= 0 for j 6= j′.

For the case where τ ⊂ intre(ρ)v for some ρ with ρ ∩ Se 6= ∅, we will define a slab. We take Uτ
and I(τ) as above, and let the slab b = τ . The primitive normal ďρ is the one we chose earlier for
each ρ. Again we work in a small neighborhood Uτ of intre(τ) with two adjacent chambers C±. As
in the proof of Lemma 5.8, we can find a step-function-like element θv,ρ of the form

θv,ρ =

{
log(s−1

vρ (fv,ρ))∂ďρ on Uτ ∩ C+,

0 on Uτ ∩ C+

to solve the equation e[θv,ρ,·] ◦ ∂̄0 ◦ e−[θv,ρ,·] = ∂̄0 + [φin, ·] on Uτ . In other words,

Ψ := e−[θv,ρ,·] : (kTL∗sf|Uτ , ∂̄)→ (kTL∗sf|Uτ , ∂̄0)

is an isomorphism of sheaves of dgLas. Computations using the formula in [5, Lem. 2.5] then gives
the identity

Ψ−1(∂̄0 + [Ψ(φs), ·]) ◦ Ψ = ∂̄0 + [φin + φs, ·].
Once again, we can find an element θτ such that

e[θτ ,·] ◦ ∂̄0 ◦ e−[θτ ,·] = ∂̄0 + [Ψ(φs), ·],
and hence a corresponding element θτ,0 ∈ q · kh(Uτ ) of the form (5.11). From this we get

(5.13) Θb := e[θτ,0,·]

and hence the wall-crossing factor Θb := Θv,ρ ◦Θb associated to the slab b.

Next we would like to argue that consistency of the scattering diagram D follows from the fact
that φ is a Maurer-Cartan solution. First of all, on the global sheaf kPV ∗,∗ over B, we have the
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operator ∂̄φ := ∂̄ + [φ, ·] which satisfies [∆, ∂̄φ] = 0 and ∂̄2
φ = 0. This allows us to define the sheaf of

kth-order holomorphic functions as

kOφ := Ker(∂̄φ) ⊂ kPV 0,0,

for each k ∈ N. It is a sequence of sheaves of commutative C[q]/(qk+1)-algebras over B, equipped

with a natural map k,l[ : kOφ → lOφ for l < k that is induced from the maps for kPV ∗. By

construction, we see that 0Oφ ∼= 0G0 ∼= ν∗(O0X).

We claim that the maps k,l[’s are surjective. To prove this, we fix a point x ∈ B and take an open
chart Wα containing x in the cover of B we chose at the beginning of §5.2.4. There is an isomorphism
Φα : kPV ∗|Wα

∼= kPV ∗α identifying the differential ∂̄ with ∂̄α + [ηα, ·] by our construction. Write
φα = Φα(φ) and notice that ∂̄α + [ηα +φα, ·] squares to zero, which means that ηα +φα is a solution
to the Maurer-Cartan equation for kPV ∗α(Wα). We apply the same trick as above to the local open

subset Wα, namely, any Maurer-Cartan solution lying in kPV −1,1
α (Wα) is gauge equivalent to the

trivial one, so there exists θα ∈ kPV −1,0
α (Wα) such that

e[θα,·] ◦ ∂̄α ◦ e−[θα,·] = ∂̄α + [ηα + φα, ·].

As a result, the map e−[θα,·] ◦Φα : (kPV ∗,∗|Wα , ∂̄+ [φ, ·]) ∼= (kPV ∗,∗α , ∂̄α) is an isomorphism of dgLas,
sending kOφ isomorphically onto kG0

α.

We shall now prove the consistency of the scattering diagram D = D(φ) by identifying the

associated wall-crossing sheaf kOD with the sheaf kOφ|W0(D) of kth-order holomorphic functions.

Theorem 5.20. There is an isomorphism Φ : kOφ|W0(D) → kOD of sheaves of C[q]/(qk+1)-algebras
on W0(D). Furthermore, the scattering diagram D = D(φ) associated to the Maurer-Cartan solution
φ is consistent in the sense of Definition 5.17.

Proof. To prove the first statement, we first notice that there is a natural isomorphism kOφ|W0\|D|
∼=

kOD|W0\|D|, so we only need to consider those points x ∈ intre(τ) where τ is either a wall or

a slab. Since W0(D) ⊂ W0, we will work on the semi-flat locus W0 and use the model kPV∗,∗sf

which is equipped with the operator ∂̄0 + [φin + φs, ·]. Via the isomorphism Φ : (kPV ∗,∗0 , ∂̄φ) →
(kPV∗,∗sf , ∂̄0 + [φin + φs, ·]) from Lemma 5.8, we may treat kOφ|W0 = Ker(∂̄φ) ⊂ kPV0,0

sf . We fix a
point x ∈ W0(D) ∩ |D| and consider the stalk at x for both sheaves. In the above construction of
walls and slabs from the Maurer-Cartan solution φ, we first take a sufficiently small open subset
Ux and then find a gauge equivalence of the form Ψ = e[θτ ,·] in the case of a wall, and of the form
Ψ = e[θv,ρ,·] ◦ e[θτ ,·] in the case of a slab. We have Ψ ◦ ∂̄0 ◦ Ψ−1 = ∂̄0 + [φin + φs, ·] by construction,

so this further induces an isomorphism Ψ : kG0
sf|Ux →

kOφ|Ux of C[q]/(qk+1)-algebras.

It remains to see how the stalk Ψ : kG0
sf,x →

kOφ,x is glued to nearby chambers C±. Let Ψ := e[θτ,0,·]

as in (5.12) in the case of a wall and Ψ := Θv,ρ ◦ e[θτ,0,·] as in (5.13) in the case of a slab. Then the

restriction of an element f ∈ kG0
sf,x to a nearby chamber is given by

f =

{
Ψ(f) on Ux ∩ C+,

f on Ux ∩ C+

in a sufficiently small neighborhood Ux. This agrees with the description of the wall-crossing sheaf
kOD,x in equation (5.9). Hence we obtain an isomorphism kOφ|W0(D)

∼= kOD.

To prove the second statement, we first apply pushing forward via i : W0(D) → B to the first

statement to get the isomorphism i∗(
kOφ|W0(D)) ∼= i∗(

kOD). Now, by the discussion right before

this proof, we may identify kOφ with kG0
α locally. But the sheaf kG0

α, which is isomorphic to the
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restriction of 0G0⊗CC[q]/(qk+1) toWα as sheaf of C[q]/(qk+1)-module, satisfies the Hartogs extension
property from W0(D) ∩Wα to Wα by Lemma 5.15. So we have i∗(

kOφ|W0(D)) ∼= kOφ. Hence, we

have i∗(
kOD)|Wα

∼= (kOφ)|Wα
∼= kG0

α, from which follows the consistency of the diagram D. �

Remark 5.21. From the above proof, we actually have a correspondence between step function like
elements in the gauge group and elements in the tropical vertex group as follows. We fix a generic
point x in a joint j, and consider a neighborhood of x of the form Ux×Dx, where Ux is a neighborhood
of x in intre(j) and Dx is a disc in the normal direction of j. We pick a compact annulus Ax ⊂ Dx

surrounding x, intersecting finitely many walls/slabs. We let τ1, . . . , τs be the walls/slabs in anti-
clockwise direction. For each τi, we take an open subset Wi just containing the wall τi such that
Wi \ τi = Wi,+ ∪Wi,−. Figure 3 illustrates the situation.

Figure 3.

As in the proof of Theorem 5.20, there is a gauge transformation Ψi : (kPV∗sf|Wi
, ∂̄0)→ (kPV∗sf|Wi

, ∂̄0+

[φin + φs, ·]) on each Wi, where Ψi = e[θv,ρ,·] ◦ e[θτ ,·] for a slab and Ψi = e[θτ ,·] for a wall. These are
step function like elements in the gauge group satisfying

Ψi =

{
Θi on Wi,+,

id on Wi,−,,

where Θi is the wall crossing factor associated to τi. On the overlap Wi,+ = Wi ∩Wi+1 (if i = s,
i+ 1 = 1), there is a commutative diagram

(kPV∗sf|Wi,+
, ∂̄0)

Θi //

Ψi
��

(kPV∗sf|Wi,+
, ∂̄0)

Ψi+1

��
(kPV∗sf|Wi,+

, ∂̄0 + [φin + φs, ·])
id //(kPV∗sf|Wi,+

, ∂̄0 + [φin + φs, ·])

allowing us to understand the wall crossing factor Θi as the gluing between (kPV∗sf|Wi
, ∂̄0) and

(kPV∗sf|Wi+1
, ∂̄0) over Wi,+.

Notice that the Maurer-Cartan element φ is global. On a small neighborhood Wα containing
Ux ×Dx, we have the sheaf (kPV ∗α, ∂̄φ) on Wα, and there is an isomorphism e[θα,·] : (kPV ∗α, ∂̄α) ∼=
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(kPV ∗α, ∂̄φ). Composing with the isomorphism (kPV ∗α|Wi
, ∂̄φ) ∼= (kPV∗sf|Wi

, ∂̄0 +[φin +φs, ·]), we have
a commutative diagram of isomorphisms

(kPV∗sf|Wi,+
, ∂̄0)

Ψi,0 //

))

(kPV∗sf|Wi,+
, ∂̄0)

uu
(kPV ∗α|Wi,+

, ∂̄α)

.

It is a Čech-type cocycle condition between the sheaves kPV∗sf|Wi
’s and kPV ∗α, which can be understood

as the original consistency condition defined using path-ordered products in [30, 25]. In particular,
taking a local holomorphic function in kG0

α(Wα) and restricting it to Ux × Ax, we obtain elements

in kG0
sf(Wi) that jump across the walls according to the wall crossing factors Θi’s.

Appendix A. The Hartogs extension property

The following lemma is an application of the Hartogs extension theorem [35].

Lemma A.1. Consider the analytic space (C∗)k × Specan(C[Στ ]) for some τ and an open subset
of the form U × V , where U ⊂ (C∗)k and V is a neighborhood of the origin o ∈ Specan(C[Στ ]).
Let W := V \

(⋃
ω Vω

)
, where dimR(ω) + 2 ≤ dimR(Στ ) (i.e. W is the complement of complex

codimension 2 orbits in V ). Then the restriction O(U × V )→ O(U ×W ) is a ring isomorphism.

Proof. We first consider the case where dimR(Στ ) ≥ 2 and W = V \ {0}. We can further assume
that Στ consists of just one cone σ, because the holomorphic functions on V are those on V ∩σ that
agree on the overlaps. So we can write

O(U ×W ) =

{ ∑
m∈Λσ

amz
m | am ∈ O(C∗)k(U)

}
,

i.e. as Laurent series converging in W . We may further assume that W is a sufficiently small
Stein open subset. Take f =

∑
m∈Λσ

amz
m ∈ O(U ×W ). We have the corresponding holomorphic

function
∑

m∈Λσ
am(u)zm on W for each point u ∈ U , which can be extended to V using the Hartogs

extension theorem [35] because {0} is a compact subset of V such that W is connected. Therefore,
we have am(u) = 0 for m /∈ σ∩Λσ for each u, and hence f =

∑
σ∩Λσ

amz
m is an element in O(U×V ).

For the general case, we use induction on the codimension of ω to show that any holomorphic
function can be extended through Vω\

⋃
τ Vτ with dimR(τ) < dimR(ω). Taking a point x ∈ Vω\

⋃
τ Vτ ,

a neighborhood of x can be written as (C∗)l×Specan(C[Σω]), and by induction hypothesis, we know
that holomorphic functions can already be extended through (C∗)l × {0}. We conclude that any
holomorphic function can be extended through Vω \

⋃
τ Vτ . �

We will make use of the following version of the Hartogs extension theorem, which can be found
in e.g. [26, p. 58], to handle extension within codimension 1 cells ρ’s and maximal cells σ’s.

Theorem A.2 (Hartogs extension theorem, see e.g. [26]). Let U ⊂ Cn be a domain with n ≥ 2,
and A ⊂ U such that U \ A is still a domain. Suppose π(U) \ π(A) is a non-empty open subset,
and π−1(π(x)) ∩A is compact for every x ∈ A, where π : Cn → Cn−1 is projection along one of the
coordinate direction. Then the natural restriction O(U)→ O(U \A) is an isomorphism.

Proof of Lemma 5.15. To prove the first statement, we apply Lemma A.1. So we only need to show
that, for ρ ∈ P[n−1], a holomorphic function f in Ux \ S ⊂ V (ρ) can be extended uniquely to Ux,
where Ux is some neighborhood of x ∈ intre(ρ) ∩ S. Writing V (ρ) = (C∗)n−1 × Specan(C[Σρ]), we
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may simply prove that this is the case with Σρ consisting of a single ray σ as in the proof of Lemma
A.1. Thus we can assume that V (ρ) = (C∗)n−1 × C, and the open subset Ux = U × V for some
connected U . We observe that extension of holomorphic functions from (U \ S) × V to U × V can
be done by covering the former open subset with Hartogs’ figures.

To prove the second statement, we need to further consider extension through intre(j) for a joint j.
For those joints lying in some codimension 1 stratum ρ, the argument is similar to the above. So we
assume that σj = σ is a maximal cell. We take a point x ∈ intre(j) and work in a sufficiently small
neighborhood U of x. In this case, we may find a codimension 1 rational hyperplane ω containing
j, together with the lattice embedding Λω ↪→ Λσ inducing a projection π : (C∗)n → (C∗)n−1 along
one of the coordinate direction. Letting A = ν−1(A∩U) and applying Theorem A.2, we obtain the
extensions for holomorphic functions in U . �
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