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ABSTRACT. Let X be a compact toric Kéhler manifold with —Kx nef. Let L C X be a
regular fiber of the moment map of the Hamiltonian torus action on X. Fukaya-Oh-Ohta-
Ono [I3] defined open Gromov-Witten (GW) invariants of X as virtual counts of holomorphic
discs with Lagrangian boundary condition L. We prove a formula which equates such open
GW invariants with closed GW invariants of certain X-bundles over P! used to construct the
Seidel representations [31], 29] for X. We apply this formula and degeneration techniques to
explicitly calculate all these open GW invariants. This yields a formula for the disc potential
of X, an enumerative meaning of mirror maps, and a description of the inverse of the ring
isomorphism of Fukaya-Oh-Ohta-Ono [9].

1. INTRODUCTION

1.1. Statements of results. Let X be a complex n-dimensional compact toric manifold
equipped with a toric Kahler form w. X admits a Hamiltonian action by a complex torus
T ~ (C*)". Let L C X be a regular fiber of the associated moment map. We will call L a
Lagrangian torus fiber because it is a Lagrangian submanifold of X diffeomorphic to (S*)".
Let B € m(X, L) be a relative homotopy class represented by a disc bounded by L. In [13],
Fukaya-Oh-Ohta-Ono defined the genus 0 open Gromov-Witten (GW) invariant ni(f) € Q as
a virtual count of holomorphic discs in X bounded by L representing the class (; the precise
definition of ny(3) is reviewed in Definition [2.1] These invariants assemble to a generating
function W called the disc potential of X (see Definition [2.4).

The disc potential W plays a fundamental role in the Lagrangian Floer theory of X
(hence the superscript “LE”). It was used by Fukaya-Oh-Ohta-Ono [I3] 14, O] to detect
non-displaceable Lagrangian torus fibers in X. Indeed, the A, -algebra, which encodes all
symplectic information of a Lagrangian torus fiber, is determined by WF and its derivatives.
Furthermore, in an upcoming work, Abouzaid-Fukaya-Oh-Ohta-Ono show that the Fukaya
category of X is generated by Lagrangian torus fibers. So W completely determines the
Fukaya category of X. On the other hand, the potential W™ is also very important in the
study of mirror symmetry because it serves as the Landau-Ginzburg mirror of X and its
Jacobian ring determines the quantum cohomology of X [9].

Open GW invariants are in general very difficult to compute because the obstruction of the
corresponding moduli space can be highly non-trivial. For Fano toric manifolds where the
obstruction bundle is trivial, open GW invariants were computed by Cho-Oh [8]. The next
simplest non-trivial example, which is the Hirzebruch surface Fy, was computed by Auroux [2]
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using wall-crossing techniqueﬂ and by Fukaya-Oh-Ohta-Ono [15] using degenerations. Later,
under certain strong restrictions on the geometry of the toric manifolds, open GW invariants
were computed in [4, Bl 6] [7, 22| 23].

One main purpose of this paper is to compute the open GW invariants n, () for all compact
semi-Fano toric manifolds. By definition, a toric manifold X is semi-Fano if —Kx is nef,
ie. —Kx -C > 0 for every holomorphic curve C' C X. Let § € my(X, L) be a disc clasﬂ of
Maslov index 2 such that n(f) # 0. By the results of Cho-Oh [8] and Fukaya-Oh-Ohta-Ono
[13] (see also Lemma [2.3), the class 8 must be of the form 8 = 8 + a, where j; € m(X, L)
is the basic disc class associated to a toric prime divisor D; and o € HSY(X) C Ho(X,7Z)
is an effective curve class with Chern number ¢i(a) := —Kx - o = 0. Define the following
generating function (see Definition for more details):

alg) = Y, m(B+a)

acHg(X)\{0}
c1(a)=0

One of our main results is an explicit formula for the generating function d;(¢) which we
now explain. The toric mirror theorem of Givental [17] and Lian-Liu-Yau [26], as recalled in
Theorem [3.4] states that there is an equality

1(q,2) = J(4(q), ),
where I(g, z) is the combinatorially defined I-function of X (see Definition [3.1)), J(g, 2) is a

certain generating function of closed GW invariants of X called the J-function (see Equation
(3:2)), and ¢(g) is the mirror map in Definition [3.2] Our formula for &;(¢) reads as follows:

Theorem 1.1. Let X be a compact semi-Fano toric manifold. Then

14 6,(q) = exp(gi(d(q))),

where

; (=) PrD(—(Dy-d) = 1)!
11 () =
(1.1) ) Zd: LD, -d)

where the summation is over all effective curve classes d € H;ﬁ (X) satisfying

—Kx-d=0,D;-d<0and D,-d>0 forallp#1

and § = 4(q) is the inverse of the mirror map q = q(g).

The mirror map ¢ = ¢(¢) is combinatorially defined, and its inverse ¢ = ¢(q) can be
explicitly computed, at least recursively. So our formula provides an effective calculation for
all genus 0 open GW invariants. It may also be inverted to give a formula which expresses the
inverse mirror map ¢(¢) in terms of genus 0 open GW invariants (see Corollary , thereby
giving the inverse mirror map an enumerative meaning in terms of disc counting.

Our calculation of open GW invariants can also be neatly stated in terms of the disc
potential, giving the following open mirror theorem:

L Auroux [2] also computed the open GW invariants for the Hirzebruch surface F5 using the same method.
2By dimension reasons only classes 3 of Maslov index 2 can have non-zero n1(B). See Sectionfor details.
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Theorem 1.2. Let X be a compact semi-Fano toric manifold. Then
(1.2) WiE =Wy,

where WHY is the Hori-Vafa superpotential for X in a certain explicit choice of coordinates

of (C*)"; see Definition and Equation (3.3)).

While the disc potential WF is a relatively new object invented to describe the symplectic
geometry of X, the Hori-Vafa superpotential WHV has been studied extensively in the liter-
ature. Thus existing knowledge on W1V can be employed to understand the disc potential
WL better via Theorem In particular, since WV is written in terms of (inverse) mirror
maps which are known to be convergent, it follows that

Theorem 1.3. The coefficients of the disc potential W™ of a compact semi-Fano toric

manifold X are convergent power series in the Kdihler parameters ¢°°' (defined in terms of a
nef basis of H*(X)).

Furthermore, the mirror theorem [17, 26] induces an isomorphism
(1.3) QH*(X,w,) — JaC(va)

between the quantum cohomology of X and the Jacobian ring of the Hori-Vafa superpotential
when X is semi-Fano. Combining with Theorem [I.2], this gives another proof of the following

Corollary 1.4 (FOOQ’s isomorphism [9] for small quantum cohomology in semi-Fano caseED.
Let X be a compact semi-Fano toric manifold. Then there exists an isomorphism

(1.4) QH*(X,wy) — Jac(W™)

between the small quantum cohomology ring of X and the Jacobian ring of WqLF.

On the other hand, McDuff-Tolman [30] constructed a presentation of QH*(X,w,) using
Seidel representations (|31}, 29]) and showed that it is abstractly isomorphic to the Batyrev
presentation [3]. This was exploited by Fukaya-Oh-Ohta-Ono [9] in their proof of the injec-
tivity of the homomorphism but they did not specify the precise relations between (|1.4))
and Seidel elements. Using our results on open GW invariants, we deduce that:

Theorem 1.5. Suppose X is semi-Fano. Then the isomorphism (L.4) maps the (normalized)
Seidel elements S; € QH* (X, w,) (see Section[4) to the generators Zy, . .., Zy, of the Jacobian
ring JaC(WqLF), where Z; are monomials defined by Equation (2.2)).

We conjecture that Theorem which provides a highly non-trivial relation between open
Gromov-Witten invariants and Seidel representations, holds true for all toric manifolds; see
Conjecture [6.7] for the precise statement.

3Fukaya-Oh-Ohta-Ono [O] proved a ring isomorphism between the big quantum cohomology ring of any
compact toric manifold X and the Jacobian ring of its bulk-deformed potential function; our results give such
an isomorphism for the small quantum cohomology of a semi-Fano toric manifold X.
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1.2. Outline of methods. The closed GW theory for toric manifolds has been studied ex-
tensively, and various powerful computational tools such as virtual localization are available.
The situation is drastically different for open GW theory with respect to Lagrangian torus
fibers — the open GW invariants, which are defined using moduli spaces of stable discs that
could have very sophisticated structures, are very hard to compute in general, especially
because of the lack of localization techniques/]

In this paper we study the problem of computing open GW invariants via a geometric
approach which we outline as follows. As we mention above, for § € mo(X, L) of Maslov
index 2 with n;(8) # 0, a stable disc representing § must have its domain being the union
of a disc D and a collection of rational curves. Naively one may hope to “cap oftf” the disc
D by finding another disc D’ and gluing D and D’ together along their boundaries to form
a sphere. If this can be done, it is then natural to speculate that the open GW invariants
we want to compute are equal to certain closed GW invariants. This idea was first worked
out in [4] for toric manifolds of the form X = P(Ky @ Oy) where Y is a compact Fano toric
manifold; in that case the P!-bundle structure on X provides a way to find the needed disc
D'. The same idea was applied in subsequent works [22] 23], 6], 5l [7], and it gradually became
clear that in more general situations, we need to work with a target space different from X
in order to find the “capping-off” disc D’.

One novelty of this paper is the discovery that Seidel spaces are the correct spaces to use in
the case of semi-Fano toric manifolds. Given a toric manifold X, let D; be a toric prime divisor
and let v; be the primitive generator of the corresponding ray in the fan. Then —uv; defines
a C*-action on X. Let C* act on C?\ {0} by z - (u,v) := (zu, 2v), 2z € C*, (u,v) € C*\ {0}.
The Seidel space associated to the C*-action defined by —wv; is the quotient

E = (X x (C*\{0}))/C".

By construction, F; is also a toric manifold, and there is a natural map E; — P! giving
E; the structure of a fiber bundle over P! with fiber X. The toric data of E;, as well as
geometric information such as its Mori cone, can be explicitly described; see Section [

Recall that the disc classes which give non-zero open GW invariants are of the form S, + «,
where [, is the basic disc class associated to the toric prime divisor D; for some [, and
o € HS®(X) is an effective curve class with ¢;(a) = 0. We prove the following

Theorem 1.6 (See Theorem . Let X be a compact semi-Fano toric manifold defined by
a fan X, and L C X a Lagrangian torus fiber. Let P be the fan polytope of X, which is the
convex hull of minimal generators of rays in X. Then for minimal generators v, vy of rays
in X, we have

E; 0, reg

.
(1'5) nfl(ﬁl + a; Dk7 [pt]L) = <Dkl ) [pt]Ef>072,af+a ’

when v, € F(v) and o € HY=%(X) satisfies D; - o« = 0 whenever v; € F(v,), where F(v;)
is the manimal face of P containing vi; and n, (8 + o; Dy, [pt]L) = 0 otherwise.

4This is in sharp contrast with the situation for Aganagic-Vafa type Lagrangian submanifolds in toric
Calabi-Yau 3-folds, where the open GW invariants are practically defined by localization formulas and can
certainly be evaluated using them.
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The left-hand side of ([1.5]) is the open GW invariant defined in Definition , which roughly
speaking counts discs of classes 3+« meeting a fixed point in L at the boundary marked point
and meeting the divisor Dy, at the interior marked point. The invariant n{ (5 4+ «; D, [pt]L)

is related to the previous invariant ni(f; + «) via the divisor equation proved by Fukaya-Oh-
Ohta-Ono [14, Lemma 9.2] (see also Theorem [2.2)):

ny (B +a: D, [pt]e) = (D - (B + )i (B + ).
On the right-hand side of (|1.5) we have the two-point closed o, -regular GW invariant

E E; 0, reg
(1.6) (Dy", [pﬂEﬂonﬁlflJm
of the Seidel space £, , which is integration over a connected component of the moduli
M{f;’g_ +oé(DEf,pt) where o0, is represented by a holomorphic sphere; see Section 4 for the
notations.

The geometric idea behind the proof of is the following. If vy, & F(v;), then Dy -
(6 + a) = 0 (Proposition , and so n{, (8 + o; Dy, [pt]L) = 0. Now consider the more
difficult case v, € F(v;). A stable disc representing the class f§; + « is a union of a disc A in
X representing f; and a rational curve C' in X representing ov. We identify X with the fiber
of B — P! over 0 € P! and consider C as in E; . The key point is that the disc A in X

bounded by a Lagrangian torus fiber L of X can be identified with a disc Ain E;” bounded
by a Lagrangian torus fiber L of E;, and there exists a “capping-off” disc A’ in E;” which
can be glued together with A to form a rational curve representing a section o; of E;” — P,

This idea, which is illustrated in Figure 1, allows us to identify the relevant moduli spaces.
A further analysis on their Kuranishi structures yields the formula ([1.5]).

Remark 1.7. In this paper we consider open GW invariants defined using Kuranishi struc-
tures. However we would like to point out that the formula mn Theorem remains valid
whenever reasonable structures are put on the moduli spaces to define GW invariants. This is
because our “capping off 7 argument is geometric in nature and it identifies the deformation
and obstruction theories of the two moduli problems on the nose.

X E/

FIGURE 1. Relating disc invariants to GW invariants of the Seidel space. A
disc A in P! bounded by a torus fiber is ‘pushed’ into the associated Seidel
space and compactified to a sphere in the section class o, .
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Our formula ((1.5)) reduces the computation of open GW invariants to the computation of
the closed GW invariants (|1.6)). But since E; is not semi-Fano, and these invariants are some
more refined closed GW invariants of E; (see Definition [4.7)), computing (1.6) presents a

non-trivial challenge.

Our calculation of uses several techniques. First of all, the Seidel space Fj is
semi-Fano. Gonzalez-Iritani [19] calculated the corresponding Seidel element S; using the
J-function of E; and applying the toric mirror theorem, and expressed it in terms of the
so-called Batyrev elements B, (see Proposition . We then write the divisor Dy in terms of
the Batyrev elements B; (see Proposition . Finally, a degeneration technique for closed
GW invariants, which was used to derive the composition law for Seidel representations, can

and deduce Theorem . The

be exploited to analyze the invariants <DkEl_ , [pt] Ef)fl; ’;i:jg
IRt}

details are given in Section [6]
Remark 1.8.

(1) Equation is a relation between open and closed GW invariants. An “open/closed
relation” of somewhat different flavor is present in open GW theory of toric Calabi- Yau
3-folds with respect to Aganagic-Vafa type Lagrangian branes; see [28, 24, 27, 25].

(2) During the preparation of this paper, we learnt of an independent work of Gonzdlez-
Iritani [18] in which an alternative approach to Theorem based on a conjectural
degeneration formula for open GW invariants is developed.

The rest of this paper is organized as follows. Section [2| contains a brief review of open GW
invariants of toric manifolds. In Section [3| we review the toric mirror theorem [I7, 26], Hori-
Vafa superpotentials, mirror maps, and related materials. In Section [] we recall some basic
materials on Seidel representations of toric manifolds. In Section [5|we prove the relation
between open and closed GW invariants. In Section [6] we calculate the closed GW invariants

which appear in (L.5)) and prove our main Theorems [1.1} [1.2] [1.3] [L.5]
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2. A BRIEF REVIEW ON OPEN GW INVARIANTS OF TORIC MANIFOLDS

This section gives a quick review on toric manifolds and their open GW invariants which
are the central objects to be studied in this paper. For a nice exposition of toric varieties, the
readers are referred to Fulton’s book [16]. The Lagrangian Floer theory we use in this paper
is developed by Fukaya-Oh-Ohta-Ono [111, 12} 13|, 14} 9].

We work with a projective toric n-fold X equipped with a toric Kahler form. Let N = Z"
be a lattice and let ¥ C N ®z R be the complete simplicial fan defining X. The minimal
generators of rays in ¥ are denoted by v; € N for j = 1,...,m. Each v; corresponds to a toric
prime divisor denoted by D; C X. There is an action on X by the torus T¢ = (N ®z C)/N
which preserves the Kahler structure, and the associated moment map which maps X to a
polytope in (N ®z R)*. Each regular fiber of the moment map is a Lagrangian submanifold
and it is a free orbit under the real torus T = (N ®z R)/N action. By abuse of notation we
also denote such a fiber by T, and call it a Lagrangian torus fiber. X is said to be semi-Fano
if —Kx is numerically effective, i.e. —Kx - C' > 0 for any holomorphic curve C'. We call
—Kx - C the Chern number of C' and denote it by ¢ (C).

Let X be a semi-Fano toric manifold equipped with a toric Kahler form. Our goal is to
compute the open GW invariants of X, which are rational numbers associated to disc classes
f € m(X,T) bounded by a Lagrangian torus fiber. To define open GW invariants, recall
that in the toric case the Maslov index of a disc class g is given by

p(B) =2y D;-p,
j=1

where D; - 3 is the intersection number of § with the toric divisor D;. By Cho-Oh [§],

holomorphic disc classes in m3(X, T) are generated by basic disc classes f5;, 7 = 1,...,m,
which are in one-one correspondence with the rays v; of the fan. Since p(5;) = 2 for all
j=1,...,m, every non-constant holomorphic disc has Maslov index at least 2.
For each disc class 5 € mo(X, T), Fukaya-Oh-Ohta-Ono [13] [14] defined the moduli space
M (B)

of stable discs with [ interior marked points and k£ boundary marked points representing (3,
which is oriented and compact. When [ = 0, we simply denote M (3) by M;"(3). Here
we use the superscript “op” to remind ourselves that it is the moduli space for defining open
GW invariants. Later we will use the superscript “cl” (which stands for “closed”) for the
moduli space of stable maps from rational curves.

The main difficulty in defining the invariants is the lack of transversality: the actual dimen-
sion of M, () in general is higher than its expected (real) dimension n + p(8) + k + 2 — 3.
To tackle this problem , Fukaya-Oh-Ohta-Ono analyzed the obstruction theory and used the
torus action on M (8) to construct a virtual fundamental chain [M(5)]vit, Which is a
Q-chain of dimension n + u(B) + k + 20 — 3 in X! x T*. In this paper we shall only need
the cases when k = 1 and [ is either 0 or 1. When [ = 0,k = 1 and u(8) = 2, as non-
constant stable discs bounded by T have Maslov indices at least 2, the moduli space M, (5)
has no codimension-one boundary and so [M;x(8)]vis is actually a cycle. (For a nice dis-
cussion of this, we refer the reader to [I, Section 3|). For | = 1,k = 1, we will consider
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M1 (B;C) := My 1(B) xx C, where C' C |J;_, D; is a proper toric cycle (i.e. an algebraic
cycle preserved by the torus action). Since the interior marked point is constrained to map
to C, it can never approach the boundary of the disc. Hence the moduli space does not have
codimension-one boundary and [Mj1(8; C)]vi is again a cycle.

Definition 2.1 (Open GW invariants [13,[14]). Let X be a compact semi-Fano toric manifold
and T a Lagrangian torus fiber of X. We denote by (-, -) the Poincaré pairing on H*(T).
The one-point open GW invariant associated to a disc class 5 € mo(X, T) is defined to be

m (B [ptlr) = m () := (M (B)lir , [ptlT) € Q.

For a proper toric cycle C C X (i.e. an algebraic cycle invariant under the torus action on
X contained in \Jj, D;) of real codimension codim(C') and a disc class B € m(X,T), let

Ml,l(ﬁé C) = M1,1(5) xx C

where the fiber product over X is defined by the evaluation map evy : My1(8) — X at the
interior marked point and the inclusion map C — X. The expected dimension of My1(8;C)
is n+ p(B) — codim(C'). The one-point open GW invariant of class 3 relative to C' is defined
to be

711,1(5; C, [Pt]T) = ([Mm(ﬁ; O)]vir‘m [pt]T> €Q
where the torus action on My 1(8;C) is used to construct the virtual cycle [Mi1(58; C)]virt-

Notice that by dimension counting, ni(8) # 0 (resp. n11(8;C,[ptlr) # 0) only when
wu(B) =2 (resp. u(B) = codim(C)). Thus when C' is a toric divisor, we only need to consider
those 8 with () = 2. We have the following analog of divisor equation in the open case:

Theorem 2.2 (See [14], Lemma 9.2). For a toric divisor D C X and a disc class § € mo(X,T)
with p(5) = 2, we have ny 1(B; D, [ptlt) = (D - B) n1(B), where D - 5 denotes the intersection
number between D and 3.

We can now define the disc potential. First we make the following choices. By relabeling
the generators {v;}72, of rays if necessary, we may assume that vy, ..., v, span a cone in the
fan ¥ so that {vy, ..., v,} gives a Z-basis of N. Denote the dual basis by {v;}7_, C M = N*.
Moreover, take the basis {W}")" of Ho(X) where

n

(2.1) Uy, = — Z (Vp Untk) Bp + Bugr € Ho(X), fork=1,...,m—n.
p=1
(Recall that the basic disc classes {;}72, form a basis of Hy(X,T).) Note that ¥ € Hy(X)
because 0¥, = — ZZZI (Vp, Untk) Vp + Ungk = —Unik + Upgx = 0. Since Dy, - ¥y = 0y, for
all k,7 =1,...,m — n, the dual basis of {U;}}"7" is given by [Dy11], ..., [Dn] € H*(X).
The basis { ¥ }7"-" defines flat coordinates on H?*(X,C)/2ni H*(X,Z) by sending

[n] € H*(X,C)/2xi H*(X,Z)

to qr([n]) = ¢¥*(n) = exp (f\I/k 77) for k = 1,...,m —n. Let Kx denote the Kahler cone
which consists of all Kahler classes on X. The complexified Kahler cone

K% = Kx @ (iH*(X,R)/27i H*(X, 7))
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is embedded as an open subset of H?(X,C)/2ri H*(X,Z) by taking w € K% to —w €
H*(X,C)/2mi H*(X,Z). Then (qz);"-" pull back to give a flat coordinate system on K.

Note that [Dy,11],...,[Dn] € H*(X) may not be nef (meaning their Poincaré pairings
algebraic curves may be negative). A theoretically better choice would be a nef basis of
H?(X). Taking its Poincaré dual basis gives another set of flat coordinates which we denote as
¢ on H*(X,C)/2mi H*(X,Z) = (C*)™~". Then the large radius limit is defined by ¢"** = 0.
Since in most situations we work in (C*)™™™ (except when we talk about convergence at
¢"" = 0), we may use the above more explicit coordinate system g.

The disc potential is defined by summing up the one-point open GW invariants for all
B € m(X,T) weighted by ¢°. By dimension reasons, only those 8 with Maslov index 2
contribute. Since X is a semi-Fano toric manifold, stable discs with Maslov index 2 must
be of the form B3; + a for some basic disc class 8; and a € HgT(X) with ¢;(a) = 0. Here
H$T(X) C Ho(X,Z) is the semi-group of effective curve classes of X. More precisely,

Lemma 2.3 ([8,13]). Let X be a semi-Fano toric manifold and T a Lagrangian torus fiber
of X. A stable disc in M}}(8) for k=1 and | = 0,1 where 8 € mao(X,T) with u(B) = 2 is
a union of a holomorphic disc component and a rational curve, which are attached to each
other at only one nodal interior point. The disc component represents the class [3; for some
j=1,....,m, and the rational curve has c; = 0. Thus the class of every stable disc is of the
form B; + « for some j=1,...,m and o € HSN(X) with ¢;(a) = 0.

Proof. For a toric manifold X, the classification result of Cho-Oh [§] says that a smooth
non-constant holomorphic disc bounded by a Lagrangian torus fiber has Maslov index at
least 2, and one with Maslov index equal to 2 must represent a basic disc class 3; for some
j=1,....,m. If X is semi-Fano, every holomorphic curve has non-negative Chern number.
Now a non-constant stable disc bounded by a Lagrangian torus fiber consists of at least one
holomorphic disc component and possibly several sphere components. Thus it has Maslov
index at least 2, and if it is of Maslov index 2, it must consist of only one disc component
which represents a basic disc class ;. Moreover, the sphere components all have Chern
number zero, and thus they are contained in the toric divisors (otherwise they are constant
and cannot be stable since there is only one interior marked point). But a holomorphic disc
in class §; intersect with Uy Dy at only one point. Thus it is only attached with one of the
sphere components, and by connectedness the sphere components form a rational curve whose
class is denoted as o which has ¢; = 0. O

By Cho-Oh [§], ny(B;) =1 for j =1,...,m. Hence the disc potential is of the form:

Definition 2.4 (Disc potential [13]). For a semi-Fano toric manifold X, the disc potential
of X is defined by

m

W= "(1+46)2,

=1

where

henl=1,...,n;
(2.9) Z :{ 2 when RN R

Gon?’ = Qo [Iy 2 whenl=n+1,...,m,
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0 = Z ni(B+a)g®, foralll=1,...,m

aeHZ1 = (X)\{0}

=T q,?”*’“ * and HS=(X) C H$®(X) denotes the semi-group of all effective curve
classes o with ci(a) = 0. We also call WY the Lagrangian Floer superpotential of X.

9; can also be expressed in terms of the flat coordinates ¢ defined using a nef basis
of H*(X). A priori each ¢; is only a formal power series in the formal Novikov variables
¢t ..., gt In this paper we will show that W is equal to the Hori-Vafa superpotential
via the inverse mirror map and it will follow that each ¢; is in fact a convergent power series.

In Floer-theoretic terms, WF is exactly the mg-term, which, for toric manifolds, governs
the whole Lagrangian Floer theory. All the higher A,-products my, k > 1 can be recovered
by taking the derivatives of mg, and it can be used to detect the non-displaceable Lagrangian
torus fibers. See [13| 14, O] for detailed discussions.

3. HORI-VAFA SUPERPOTENTIAL AND THE TORIC MIRROR THEOREM

We now come to the complex geometry (B-model) of mirrors of toric manifolds. The mirror
of a toric variety X is given by a Laurent polynomial WHV which is explicitly determined by
the fan of X [I7, 20]. It defines a singularity theory whose moduli has flat coordinates given
by the oscillatory integrals. These have explicit formulas and will be reviewed in this section.
We will then recall the celebrated mirror theorem for toric varieties [17, 26].

3.1. Mirror theorems. The mirror complex moduli is defined as a certain neighborhood of
0 of (C*)™~™ (see Definition [3.3), whose coordinates are denoted as § = (qi, ..., Gm—n); Gk s
also denoted as ¢¥* for k = 1,...,m —n. We may also use a nef basis of H?(X) instead, and

the corresponding complex coordlnates are denoted as it

Definition 3.1 (/-function). The I-function of a toric manifold X is defined as

1 m—n
I%(q, 2) := exp (; > (log i) n+k> > 'L
k=1

deHS®(X)
where
I=1 Hs—foo(D + s2)
and ¢ = [[=" q,?"““ d
By doing a Laurent expansion around z = oo, we see that I; can be regarded as a

Sym*(HE(X, T))-valued function (or as an element of Sym*(H?*(X,T))((27"))), where H3(X, T) :=

H?*(X,T)®C. A basis of H?(X,T) is given by {D;}",, which is dual to the basis {3;}I", C
Ho(X,T). The canonical projection H?(X,T) — H?*(X) sends D, to its class [D;] for
Il = 1,...,m. Since {[D]},., forms a basis of H*(X,C), we may choose a splitting
H?*(X,C) — HZ(X,T) by taking the basic vector [D,yx] to D,y for k = 1,...,m — n.
In this way we can regard H?(X,C) as a subspace of HZ(X,T).
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Definition 3.2 (The mirror map). Let X be a semi-Fano toric manifold. The mirror map
is defined as the 1/z-coefficient of the I-function of X, which is an H?(X,C)-valued function
in g € (C*)™="™. More precisely, the 1/z-coefficient of EdeHSH(X) G%1, is of the form

—Zgl )D; € H(X,T)

where the functions g, in G € (C)™™™ I =1,...,m are given by . Then we can write

(log G ) [Dn+x] Z DD = Z log gk — 9"*(4))[Dn44],
k=1 I= k=1
where
g\pk = Z (Dl : \I]k> qgi-
1=1
Thus in terms of the coordinates (q)y—" of H*(X,C)/2ni H*(X,Z), the mirror map q(§) is
(3.1) () = G exp(—g"*(q))

fork=1,....m—n.

Each g; can also be expressed in terms of the flat coordinates ¢! defined by the dual of a
nef basis of H2(X). While a priori g;(¢*) is a formal power series in ¢"°* (or an element in
the Novikov ring), by the theory of hypergeometric series it is known that g;(¢"°") is indeed
convergent around ¢**f = 0. Moreover, the mirror map ¢"/(¢*f) is a local diffeomorphism,
and its inverse is denoted as ¢"*f(¢g"!).

Definition 3.3. The mirror complex moduli M™ is defined as the domain of convergence
of (gi(@H))m, around ¢ =0 in (C*)m",

The Kihler moduli is defined as the intersection of the complezified Kdihler cone KS with
the domain of convergence of the inverse mirror map ¢! (¢!). By abuse of notation we will
still denote the Kdhler moduli as K.

The most important result in closed-string mirror symmetry for toric manifolds is:

Theorem 3.4 (Toric mirror theorem [17,26]). Let X be a compact semi-Fano toric manifold.
Consider the J-function of X:

(3.2)  J(g,2) =exp < ; log qx) n+’f]> 1+ Z Z qd<1’ z aiaw>o,2,d¢a

@ deHsT(X)\{0}

where {py} is a homogeneous additive basis of H*(X) and {¢*} C H*(X) is its dual basis
with respect to the Poincaré pairing. We always use (---),xq to denote the genus g, degree d
descendent GW invariant of X with k insertions. Then

1(q,2) = J(4(q), 2)
where q(§) is the mirror map given in Definition[3.9
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In this paper, we are interested in open-string mirror symmetry. The Hori-Vafa superpoten-
tial (which plays a role analogous to that of the I-function in closed-string mirror symmetry)
is the central object for this purpose.

Definition 3.5. The Hori-Vafa superpotential of the toric manifold X is a holomorphic
function WHY © M™% (C*)™ — C* defined by
WqHV(zl, ceyZpn) =21+ 2 F Z Gpztmt*
k=1

where z'++ denotes the monomial T[]}, zl(vn““yl). It is pulled back to the Kihler moduli K

by substituting the inverse mirror map ¢y = Gr(q) (k =1,...,m—mn) in the above expression.

The Hori-Vafa potential may also be written as

(3.3) WiV (21, zm) = > (expgp(@)zp+ > a2 [ [ exp (vnsk» 1) 90(3)) -
p=1 k=1 p=1
via the coordinate change z, — (exp g,(¢))2p, p = 1,...,n. Such a coordinate change will be
necessary for the comparison with the disc potential.
The Hori-Vafa superpotential contains closed-string enumerative information of X:

Theorem 3.6 (Second form of the toric mirror theorem [17, 26]). Let X be a semi-Fano toric
manifold and w € K$ with coordinate q(—w) = q. Let WYY be its Hori-Vafa superpotential.
Then

QH*(X,w) = JaC(Wgag)
where ¢(q) is the inverse mirror map. Moreover, the isomorphism is given by sending the
generators [D, k] € QH*(X,w) to [LW;;’)} € Jac(Wy).

Jlog gy

3.2. Extended moduli. We have seen that I, is indeed Sym*(HZ (X, T))-valued. Thus it
is natural to extend the mirror map and the Hori-Vafa superpotential WV from HZ(X) to
H2(X,T). Extended moduli was introduced by Givental [17] (see also Iritani [21]).
Let
Qi =exp(—(, f)), forl=1,....,m,

be the flat coordinates on HZ(X,T)/27i H*(X, T). In terms of these coordinates, the canon-
ical projection

HZ(X,T)/2ri H*(X, T) — H*(X,C)/2ri H*(X,Z)
is given by ¢ = Q7"+ Q,x for kK = 1,...,m — n. Here Q7"+* denotes the monomial
I, Ql(fv"”“ ) The splitting

H*(X,C)/2mi H*(X,Z) — HZ(X,T)/2mi H*(X,T)
isgivenby @, =1forl=1,...,nand Q;=q forl=n-+1,...,m.
Definition 3.7 (Extended moduli). The extended Kéhler moduli K§ ¢ HZ(X, T)/27i H*(X,T)

is defined as the inverse image of the Kihler moduli K € H?(X,C)/2ni H*(X,Z) under the
canonical projection

HZ(X,T)/2ri H*(X,T) — H*(X,C)/2ri H*(X,Z).
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The extended mirror complex moduli M™" js the inverse image of M™ITC (C*)™™" under
the projection (C*)™ — (C*)™™" defined by sending (Q1, ..., Qm) € (C*)™ to (G1,- -, Gm—n) €
(C)m, G = Q7 Quyg for k=1,...,m —n. MSE can be regarded as a submanifold of
M™E by the splitting

Mmir SN Mmir
given by Q=1 forl=1,...,n and Qi = G fork=1,...,m —n.
Definition 3.8 (Extended superpoteytial and mirror map). The extension of Hori-Vafa po-
tential Wg{v from § € M™ to Q € M™" is defined as

m
ng(zl, N Z Q2"
1=1

where 2" denotes the monomial [,_, 2 ve) (and so z"" = z forl=1,...,n).

The extended mirror map from M™ to I@% is defined to be
Q(Q) = Qrexp(—g(d(Q)))

where G(Q) is the canonical projection G, = Q "+ Qi fork=1,...,m —n.
The extended inverse mirror map from I@% to M™" s defined to be
Q1(Q) = Quexp(gi(q(q(Q))))
where q(Q) is the canonical projection qr = Q" Qpniy for k=1,...,m—mn, and §(q) is the

INVETSE MATTOT Map.

The following proposition follows immediately from the above definitions:

Proposition 3.9. We have the following commutative diagram

~ mi —C
Mmlr - ]CX

Mmir . IC?(
and a similar one for the inverse mirror map and its extended version. As a consequence,

HV __ Vv _ HV
Wit = Waawn = Wai

where G(q) is the inverse mirror map, Q(q) is the restriction of the extended inverse mirror
map Q(Q) to the Kdhler moduli K€ > q, and §(Q) is the canonical projection.

Definition 3.10. An element A=Y " @D, € H:(X,T) induces a differential operator

m

Ag =) wdlogq,

=1
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which operates on functions on M™*; such an association is linear, i.e. (cA + B)y = CAQ +
l%Q for all ¢ € C. The element A projects to [A] € H*(X,C) which can be written as
Yo" ag[Dyk] in terms of the basis {[Dyix)} iy It induces the differential operator

m—-n

A=) aoga

k=1
which operates on functions on M™; similarly this association is linear.

Replacing Q by Q and ¢ by q, A induces the differential operator on the extended Kdihler
moduli K©:

AQ = Zdl&ong
=1
and the differential operator on the Kdhler moduli KC:

m—n
Aq = E akaloqu.
k=1

A good thing about the extension WHV is the following observation:

Proposition 3.11. If A, B € H2(X,T) project to the same element in H*(X,C) (meaning
that A and B are linearly equivalent), then

[AQWHV] = [BQWHV] € Jac(WgV),
In particular, restricting to the mirror moduli M™, one has
[(AgW™)())] = [AW™Y] € Jac(WMY).

Proof. For the first statement, it suffices to prove that if Y ", @, D; is linearly equivalent to
zero, then )" | @0, 5, W5" is in the Jacobian ideal of ng. Now

Q
m m
D e, WY = Qi
=1 =1

Since Y ", @;D; is linearly equivalent to zero, there exists v € M such that (v, v;) = @ for

all l =1,...,m. So the above expression is equal to
m . n a
E v § —WHV
— (v, 0) Q2 kzl(y’ Uk)@log zr 9

For the second statement, write A = »",", @ D; and its projection [A] = > """ ax[ Dy
Then A and > )" axDyir, € HE(X, T) projects to the same element in H*(X,C). Thus

m—-n

Z akaloanMWHV] € JaC(WgV).
k=1

[AgWHV] =

Take Q;=1forl=1,...,nand Qnip = qGp for k=1,...,m—n, sinceWgIV:WqHV, we get

[(AgW™)(@))] = [AW™] € Jac(W™).
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i

3.3. Batyrev elements. Theorem [3.6)gives a presentation of the quantum cohomology ring,
where the generators are given by the Batyrev elements introduced by Gonzalez-Iritani [19].

Definition 3.12 (Batyrev elements [19]). The Batyrev elements, which are H*(X, C)-valued

functions on M™, are defined as follows. Fork=1,...,m—n,
) 0logg,(q) qr
where q(§) is the mirror map. Forl=1,... n,

Bl = Z (Dl . ‘Ijk) Bn+k-
k=1

The Batyrev elements satisfy two sets of explicit relations [19]:

(1) Linear relations. It follows from the definition that {B;}, satisfies the same linear
relations as that satisfied by {D;}},, namely, for every v € M,

Z v, Ul Bl—O
=1

(2) Multiplicative relations. For every k =1,...,m —n,
(3.4) BP¥ s x BERV = g,

where BlD "¥% means By quantum-multiplies itself for D, - ¥, times. This relation is a
consequence of the toric mirror theorem (second form, see Theorem [3.6)).

Batyrev elements can also be lifted to M™:

Definition 3.13 (Extended Batyrev elements). Define the following HZ(X,T)-valued func-
tions on M™T:

1
_Zaog% D, I=1,....m
0log @,

Here Q(Q) is the extended mirror map given in Definition .

More conceptually, the extended Batyrev elements are push-forward of the vector fields

81 for [ =1,...,m via the extended mirror map M™ — IC , and Batyrev elements are

push forward of the vector fields 810 — for[=1,...,m—n via the mirror map M™" — K.
So by the commutative diagram of Proposition [3.9] we have

Proposition 3.14. [By|ym:] = B, forl=1,....m

It follows from the above discussions that Batyrev elements have a very simple form under
the isomorphism QH*(X, w,) = Jac(Wi})):
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Proposition 3.15. Under the isomorphism QH*(X,w,) = JaC(WHV) of Theorem |3.6], the
Batyrev elements By are mapped to z* for 1l =1,...,n, and §_,(q ) ”l forl=n+1,....m
FEquivalently, each By is mapped to (exp ¢,(G(q)))Z, for I = 1,...,m under QH*(X, Wq) ~
Jac(W;%;g), where Z; is defined by Equation ([2.2).

Proof. Associate D, € HZ(X,T) to the differential operator forp=1,...,m. Then

0
dlog Qp
Restrlctmg to M™ by Proposition

~ . . = m  OdlogQ I5)
B, is associated with B; = Zp:l mogd’ Tox T, = alo 5

3.14) B, projects to B, € H?*(X,C). By Proposition [3.11} [BZWHV(V( N = [BIWH e

Jac(W)). On the other hand, BWY (4(q)) = %g@ > Q" = (2", Thus [Bqu(q)]

2" forl=1,...,n and [L?n:cW;q | = @e(q)z"** for k =1,...,m —n. Under the coordinate
change (3.3)), z; changes to (exp gi(G(q)))z for il =1,...,n,and for L =n+1,...,m, §_n(q)z"
changes to

Gi-n(9) [T ((exp 95 (@(@)))2) " = 2" ai—n(exp g% (4())) [ [ (exp 9, (d(a)))

p=1 p=1
= qi—n(exp q:1(G(q

Q¢
/\
\_/
N—
S~—
N
=

4. SEIDEL REPRESENTATIONS FOR TORIC MANIFOLDS

In this section we review the construction and properties of the Seidel representation [31],
29], which is an action]of 7 (Ham(X,w)) on QH*(X,w), in the toric case. A key insight of this
paper is that open GW invariants of a semi-Fano toric manifold X are equal to some closed
GW invariants of certain manifolds related to X used to construct these representations, and
so we call them the Seidel spaces:

Definition 4.1. Let X be a manifold. Suppose that we have an action p: C* x X — X of
C* on X. The manifold

E =E,:= (X x (C*\ {0}))/C’
is called the Seidel space associated to the action p, where z € C* acts on the second factor
C%\ {0} > (u,v) by z - (u,v) = (2u,2v). The Seidel space E is an X -bundle over P! where
the bundle map (X x (C?\ {0}))/C* — P! is given by the projection to the second factor.

Let X be a toric n-fold defined by a fan X supported on the vector space N ®z R where
N is a lattice. Each lattice point v € N produces a C*-action on X, which can be written as
t-la+ibl=[a+ib+vlogt] for [a+ib] € N¢/(27iN) C X.

In particular, the minimal generator v; € N of a ray of X% gives a C*-action and thus
defines a corresponding Seidel space F = Ej. It is a toric manifold of dimension n + 1 whose
fan $¥ has rays generated by vf = (0,v;) for [ =1,...,m, vf = (1,0) and v} = (-1, v;).

On the other hand, we may use the opposite direction —v; € N to generate a C*-action.
The corresponding Seidel space will be denoted by £~ = E;. It is also a toric manifold

"Here Ham(X,w) denotes the group of Hamiltonian diffeomorphisms of (X, w).
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of dimension n + 1 whose fan £ has rays generated by v = (0,v;) for | = 1,...,m,
vE" = (1,0) and vE " = (=1, —v;).

Since E~ is a toric manifold, mo(E~, TF ) is generated by the basic disc classes which are
denoted as b, [ = 0,1,...,m,o00 (while recall that basic disc classes in X are denoted as §; for
[ =1,...,m). Moreover, the toric prime divisors of £~ are denoted as Dy, D1, ..., Dy, Do
(while recall that toric prime divisors of X are denoted as D; for [ = 1,...,m). Viewing Seidel
spaces as X-bundles over P!, one has the following specific sections of the Seidel spaces:

Definition 4.2. Let X be a toric manifold, and let v; € N be the minimal generator of a
ray in the fan of X. Let E = Ej and E~ = Ej be the Seidel spaces associated to v; and
—v; respectively. Under the C*-action generated by either v; or —vj, there are finitely many
fized loci in X. One of them is D; C X, whose normal bundle is of rank one with weight
—1 with respect to vj (or weight 1 with respect to —v;). Each point p € D; gives a section
o=o0;:P' = E (resp. 0~ = o; P! — E~) whose value is constantly p € D; C X. It is
called the zero section of E (resp. E~).

There is another unique fixed locus S in X whose normal bundle has all weights positive
with respect to the C*-action of v; (or all negative with respect to —v;). Similarly each point

p € S gives a section oo : P! — E (resp. oL : P! — E~) whose value is constantly
p €S C X, and it is called an infinity section of E (resp. E~).

The various sections in the above definition are illustrated by Figure [2] below, which depicts
the Seidel spaces of P'. By abuse of notation their classes in Hy(F) and Hy(E™) are also

D T a

\"%
).
N Tos I

X E E-

FiGURE 2. This figure shows the Seidel spaces E and E~ associated to the two
different torus actions on P! and their sections corresponding to the fixed points
in P! under the action. In this simple case both E and E~ are the Hirzebruch
surface [y, while in general they are different manifolds.

denoted as 0, 04 and 07, o respectively. Notice that under the C*-action generated by v,
D; has negative weight (namely, —1); while under the C*-action generated by —uv;, the other
fixed locus S has negative weight. Then using Lemma 2.2 of Gonzélez-Iritani [19], all the
curve classes of E' (E~ resp.) are generated by o (0 resp.) and curve classes of X:

Proposition 4.3 (Lemma 2.2 of [19]). We have
H3"(B) = Zolo] + Hy"(X), H3"(E™) = Zxoloy] + H5" (X)),

where HSY(E), HS®(E™), and H$%(X) denote the Mori cones of effective curve classes of E,
E~, and X respectively.
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The section class 0~ € HST(E™) can also be written as 0~ = by + by, + b;, where we recall
that b, for [ =0,1,...,m, oo are the basic disc classes of E~. It is the most important curve
class to us as we shall see in the next section. By Proposition |4.3] it can also be written as

oo =0+ f

for some curve class f in X.

Definition 4.4 (Seidel element). Given a C*-action on X, let E be the corresponding Seidel
space. The Seidel element is

S—Z Z C] 01d¢a_qz Z 01o—+a¢aa

a dEHsec(E) a OtEHeH X)

where {p,} is a basis of H*(X) and {¢*} is the dual basis with respect to Poincaré pairing;
o € H*(E) denotes the push-forward of ¢, under the inclusion of X into E as a fiber; and
Hs*(E) :={o+a:aec HSN(X)} C HSE(E), where o is the section class of E corresponding
to the fized locus in X with all weights to be negative. The normalized Seidel element is

Z Z 01a+a¢a€QH*(X W)

a acHST(X)

Using degeneration arguments, Seidel [31I] (in monotone case) and McDuff [29] proved
that if p1, po are two commuting C*-actions and p3 = p; * po is the composition, then the
corresponding Seidel elements 57, So, S5 satisfy the relationﬁ

S = 51 * Sq,

(here % denotes the quantum multiplication) under the following assignment of relations
between Novikov variables of Ey, Fs, Fs.

The C*-actions py, p» define an X-bundle £ over P! x P*:
(4.1) B = (X x (C*\ {0}) x (C*\ {0}))/(C* x C*)
where (z1, z5) € C* x C* acts by
(21, 22) - (z, (w1, v1), (U2, v2)) := (p1(21, p2(22, 7)), (21u1, 2101), (22U, 20V2)).

E restricted to P! x {[0, 1]} is the Seidel space E; associated to py; E restricted to {[1, 0]} x P is
the Seidel space E5 associated to po; F restricted to the diagonal {(py, p2) € P! xP! : p; = py}
is the Seidel space F3 associated to the composition ps.

Effective curves classes in E are generated by those of F; and F,. In particular, o3, the
section class of F3 which corresponds to the fixed locus in X with negative weight under
the action of p3, when pushed forward to a curve class in E , is of the form d; + dy for some
d, € HS®(E,) and dy € HST(FE,). Then assign the relation

between the Novikov variables ¢%, ¢%, ¢°* of Fi, E, and Fj respectively. The Novikov
variables ¢“ of E;, where a € Heﬁ“(X)7 are set to equal for i« = 1,2,3. Thus once the

Indeed they proved this in a more general situation in which the Seidel elements are generated by loops
in 7 (Ham (X, w)). Then every element in 7 (Ham(X,w)) gives a Seidel element which acts on QH*(X) by
quantum multiplication, and they showed that it defines an action of 71 (Ham(X,w)) on QH*(X).
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Novikov variables of E; and FE, are fixed (with the requirement that ¢* are the same for all
a € HST(X)), those of E3 are automatically fixed. In other words, H5*(E3) can be identified
as (H5°(E:) @ H5*(E»))/Hy(X), where Hy(X) is embedded into H5*(E,) & H5*(E2) by
a— (a, —a).

Returning to our case that p; is the action generated by v; and p, is the action generated by
—vj, their composition is the trivial action. We write S; and S} for the two Seidel elements.
The Seidel element generated by the trivial action is simply ¢?°, where oy is a section of the
trivial bundle X x P! — P!. The above assignment of Novikov variables gives

aj+oj

" =q
Proposition 4.5. One has the following equality for Seidel elements:
Sj*S; = ¢t

where the Novikov variables are regarded as elements in the (completed) group ring of (H5*°(E1)®
H5*(E,))/ Ha(X).

For the purpose of computing open GW invariants, we need the following definition:

Definition 4.6. For a symplectic manifold Y, consider the moduli space Méf,kd(@l, oo, Pp)
which is defined as a fiber product of moduli space M?)/,k,d of stable maps to'Y with the cycles

Dy, ..., P inY by the evaluation maps. For an effective curve class dy, Let Mé/’,‘jodreg(@l, oo, @)
denote the union of those connected components which contain a stable map with a holomor-
phic sphere component representing do. (It can simply be an empty set, for instance, when

d — dy is not effective.) Then define (@1, .. .,<I>k>éi’,ffdreg to be the integration of 1 over the

virtual fundamental class associated to Méi’,ff’dreg (Dy,..., D).

Notice that the above definition of (P, ..., ®k>§=gfdreg depends on the actual cycles rather
than just the homology classes of ®1,...,®,.

From now on we denote by D¥" the push-forward of the toric prime divisor D C X to the
fiber Dy of E= — P! at 0 € PL. The fiber of E~ — P! at oo € P! is denoted as D,. We will

apply the above definition to the moduli space MY, 7" 8(D", pt) where o € HT=0(X),
-

It is the connected component of Mg, - +a(DE_,pt) which contains a rational curve with
one holomorphic sphere component representing ¢~. Then we have the
Definition 4.7 (o~ -regular GW invariants). (D¥", [pt]Ef)aE;f;:Zg is defined as integration
. E~ 07 re -
of 1 over the virtual fundamental class of MOQ,U,Mg(DE ,pt).
The following lemma, which will be useful later, says that every curve in ./\/ng; 7 8(DF pt),
where o € H;H’CFO(X ), has precisely one holomorphic sphere component representing o~ :

Lemma 4.8. Let pt be a point in the open toric orbit of E~. Fvery rational curve in the
moduli space /\/loéf;fzg(DE_,pt), where o € HSY=( X)), consists of the unique holomorphic
sphere component representing o~ passing through pt and DoND;, and some other components
supported in Dy representing o.
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Proof. MOE;;__ 8(D"", pt) contains a rational curve which consists of a holomorphic sphere C
representing o~ and some other components representing «. Since ¢;(«) = 0, the components
representing « never pass through the generic point pt in the open toric orbit. Thus C' has to
pass through pt. Moreover either the holomorphic sphere C' passes through D¥ C Dy, or the
components representing o pass through D¥” | which implies these components representing
a are contained in U™, Dy N'D; and hence C' intersects U™, Dy ND; (so that the whole curve
is connected). In both cases C intersects U] ;Do N Dy, implying that it intersects Dy N D;
since it represents o~ .

Such a curve C' in class o~ passing through both pt and Dy N D; is unique and not
deformable. Moreover, the nodal intersection between C' and C’ is not smoothable because
of the following. Suppose we can smooth out the nodal intersection. Then we obtain a
holomorphic sphere C' which passes through pt in the open toric orbit and represents o~ +«/,
where o/ # 0 € H"=%(X) since X is semi-Fano. The class [C] is a non-negative linear
combination of the basic disc classes £,’s. Now ¢;(C') = 3, and C'- Dy = C- Dy, = 1 (because
o Dy=a- Dy =0). This forces C~‘~Dj =1 and é~Dp:0 for all p # 0, 00, j. Thus C lies
in the class o~, and so o/ = 0, a contradiction.

Thus if we consider another curve in the connected component M(If ;;: J:zg(DE_ , pt) which
comes from a deformation of the curve C, it must have the same sphere component C. Thus
a rational curve in the moduli consists of C' union with a rational curve C’ representing «.
Since ¢ (o) = 0 and « is a fiber class, C" must be supported in U, D;, see Lemma[5.3) below.
The sphere C' intersects U™ ;D; at exactly one point in Dy. By connectedness of the rational

curve C’ must be supported in Dy. O

5. RELATING OPEN AND CLOSED INVARIANTS

Open GW invariants are difficult to compute in general because there are highly nontrivial
obstructions to the moduli problems and, in contrast to closed GW theory, localization and
degeneration formulas cannot be applied. In [4, 22], under some strong restrictions on the
geometry of the toric manifold X, it was shown that open GW invariants could be equated
with certain closed GW invariants of X (or certain toric compactifications of X when X is
non-compact). This gives an effective way to compute open GW invariants because closed
GW invariants can be computed by various techniques.

However, for an arbitrary toric manifold X, the geometric technique in [4, 22] fails, and
searching for spaces whose closed GW invariants correspond to open GW invariants of X
becomes much more difficult. An exciting discovery in this paper is that Seidel spaces asso-
ciated to X, which are one dimensional higher than X, are indeed what we need in order to
have such an open-closed comparison. Moreover it works for all semi-Fano toric manifolds:

Theorem 5.1. Let X be a semi-Fano toric manifold and 8 € (X, TX) a disc class of
Maslov index 2 bounded by a Lagrangian torus fiber TX C X. Then B must be of the form
B; + « for some basic disc class 8; of X (j=1,...,m) and a € H$"(X) with ¢;(a) = 0.

Let v; = 0B; € N be the minimal generator of the corresponding ray in the fan of X. Let
E~ = E; be the Seidel space corresponding to the C*-action generated by —v; = —05;, and
denote by T®™ a Lagrangian torus fiber of E=. Any class a € H*(X) can be pushed forward
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(via Poincaré duality) by the inclusion X — E~ of X as a fiber to give a class in H*(E™),
and it is denoted as a® .

Let v; be a minimal generator and denote the corresponding toric prime divisor by D = D;.
When v; & F(v;) or Dy -« # 0 for some v, & F(v;), where F(v;) is the minimal face of the
fan polytope containing v;, nfl(ﬁ; D, [pt]rx) = 0. Otherwise

m (8: D, [pth) = (Dl g, 7 %

where 0~ € Hy(E™) is the zero section class of E~ (see Definition [{.9), [pt]prx € H"(TX) is
a point class of T and [pt|p- € H*(E~) is a point class of E~. The o~ -regqular Gromov-
Witten invariant on the right-hand side is defined in Definition [{.7

Remark 5.2.

(1) As suggested by a referee, the equality in the above theorem should hold true for all
1, 7 and « because the regular GW invariant in the right hand side also vanishes if
v; ¢ F(v;) or Dy« # 0 for some v; ¢ F(v;), but the current statement suffices for
the purposes of this paper.

(2) In this paper we consider open GW invariants defined using Kuranishi structures.
However we would like to point out that the above formula in Theorem remains
valid whenever reasonable analytic structures are put on the moduli spaces to define
GW invariants. This is because the way we compare moduli spaces of stable discs and
maps, as detailed in the proofs of Propositions[5.10 and[5.13, is geometric in nature
and it identifies the deformation and obstruction theories of the two moduli problems
on the nose.

The statement that a stable disc class of Maslov index 2 bounded by TX is of the form
B; + « was proved by Cho-Oh [§] and Fukaya-Oh-Ohta-Ono [13], and it is recalled in Lemma
. We also need the following lemma about curves in the Seidel space E~ representing a:

Lemma 5.3. Assume the setting as in Theorem . Let C' C E~ be a rational curve
representing a fiber class (i.e. a class in HST(X)) of E= — P! with ¢;(C) < 1. Then
C C Ulril ‘Dl.

Proof. Since C represents a fiber class, its image under £~ — P! can only be a point, which
means C' belongs to a fiber of E~ — P!, which is identified as X. Note that the Chern
number of C'in X is the same as that of C'in E~. Since X is semi-Fano, every component of
C' has non-negative Chern number. But ¢;(C) < 1. Thus each component of C' has ¢; < 1.
Let C' C C be a component. Then —Kx - C” is either 0 or 1. Suppose —Kx - C’ = 0. It is
impossible to have D; - C' = 0 for all ¢ since this means [C'] = 0. So there exists an ¢ such
that D; - C! < 0, which implies that C’ C D;. Suppose —Kx - C' = 1. It is possible that
D; - C" < 0 for some i, which implies C’ C D;. The other possibility is that D, - C' = 1 for
some ¢ and D; - C' = 0 for j # . This is impossible since it violates linear relations. We
thus conclude that every component of C' lies in a toric divisor of X. Under the inclusion
X — E- asafiber, D, C D, forall l =1,...,m. Thus C C |2, D. O

Now consider the easier case v; € F(v;) or Dy - o # 0 for some v; & F(v;) of Theorem [5.1]
We will use the following lemma.
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Lemma 5.4 (Lemma 4.5 of [19]). Let o be a cone in X. Suppose that d € Hy(X) satisfies
c1(d) =0 and D;-d > 0 for all i such that v; & o. Then d is effective and D;-d =0 for all i
such that v; & F(o), where F(o) denotes the minimal face of the fan polytope containing the
primitive generators in o.

The following consequence will be useful later.

Corollary 5.5. exp(g;(G(q))) only involves Novikov variables ¢ with c¢i(d) = 0 and D;-d =0
whenever v; & F(v;).

Proof. By definition g;(§) is a summation over curve classes d with ¢;(d) = 0 and D;-d > 0 for
alli # j. By Lemma5.4] D;-d = 0 whenever v; € F(v;). Hence g;(§) involves ¢ where D;-d =
0 whenever v; ¢ F(v;). For such d, the mirror map log ¢¢ = log ¢¢ — > ser (o) (Did)gi(q) also
involves only ¢¢ with D; - d’ = 0 whenever v; € F(v;) (because F(v;) C F(v;) if v; € F(vy)).
Such d’s satisfying ¢;(d) = 0 and D; - d = 0 whenever v; € F(v;) form a subcone of the Mori

cone. Then the inverse mirror map ¢%(q) only depends on ¢¢ with ¢;(d) = 0 and D; -d = 0
whenever v; € F(v;). O

Proposition 5.6. A connected rational curve C' in X with ¢,(C) = 0 which has a sphere
component intersecting the open toric orbit of D; (as a toric manifold itself) must be contained

in Ui:vieF(Uj) D;, and D; - [C] = 0 whenever v; ¢ F(v;).

Proof. All sphere components of C' lie in toric divisors of X since ¢;(C') = 0. Let C; be a
holomorphic sphere component of C' lying in D; which intersects the open toric orbit of D;.
It satisfies D;-Cy < 0 and D;-C; > 0 for all ¢ # j. By Lemma applied to the cone R>qv;,
we have D; - C; =0, and so Cy N D; =, for all v; & F(v;).

Now consider another sphere component Cy of C' contained in some D;, which intersects
C at a nodal point p lying in D;, N D;. Then v;, € F(v;). Consider the minimal toric strata
containing p, which is dual to a certain cone o in the fan containing v;, and v;. Since p does
not lie in D; for any v; ¢ F'(v;), o is contained in F'(v;). Consider a toric prime divisor D with
D -C5 < 0. Then p € Cy C D, and hence the minimal toric strata containing p is a subset
of D. Thus D must correspond to a primitive generator in . This proves D; - Cy > 0 for all
v; ¢ 0. By Lemma [5.4] applied to the cone o, we have D, - Cy = 0 for all v; & F (o) = F(v;).
Inductively all sphere components of C' are contained in Umi €F(v;) D;. U

Since ng'y (85 + a; Dy, [pt]L) = (D; - (8 + a))n1(B; + a) (Theorem , we obtain

Corollary 5.7. n{,(8; + a; Dy, [pt]r) = 0 if v & F(vj) or Dy~ # 0 for some vy & F(v;).
Moreover the generating function ) q®ni(8;+a) has only Novikov variables ¢* with D;-ov = 0
whenever v; & F(v;).

Proof. Let B; + o be represented by a union of basic disc D representing ; and a rational
curve C' representing «, where D and C intersect at a node. Then C has a sphere component
intersecting the open toric orbit of D;, and hence by Proposition D; - a = 0 for all
v; & F(v;). So ny(8; + «) # 0 only when D; - v = 0 for all v; ¢ F(v;). Moreover ni,(3; +
a; Dy, [pt]r) = (D;- (Bj+a))ni(B; +a) = 0if v; & F(v;) or D;-av # 0 for some v; & F(v;). O
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The above proves Theorem in the case v; € F(v;). The rest of this section is devoted
to proving Theorem in the case v; € F(v;) and D; - o = 0 for all v; € F(v;). The proof
is divided into two main steps. First, we equate the open GW invariant n,,(5; D, [pt]rx)
of X to a certain open GW invariant of £~ = E; (Theorem . Then we show that this

open GW invariant of £~ is equal to the closed GW invariant (DF" | [pt]g-), 78 of BT

(Theorem [5.11)). Here D¥~ € H*(E~) is the push-forward of D € H?(X) under the inclusion
X < E~ of X as a fiber. Since D is a divisor of X, D¥" is of complex codimension 2 in E~.

5.1. First step. The precise statement of the first main step is the following;:
Theorem 5.8. Assume the notations as in Theorem [5.1. Then
11 (B; + a; D, [ptlex) = 7y (bo +b; + a; DF, [pt]ps-)

where we recall that by (1 = 0,1,...,m,00) are the basic disc classes of E~ (see Section .
Moreover [pt]ps- € H™™(TE") denotes the point class of the Lagrangian torus fiber of E~.

Recall that nfl (B +a; D, [pt]rx) = ([Mff’l(ﬁj + a; D)lyirt [pt]Tx) € Q, and by definition
of Poincaré pairing, this is the same as

vpx M (8; + a; D) € H(pt, Q) = Q.
where tpx : {pt} — T is an inclusion of a point to TX. Similarly
an (bo + b; + a; DY, [pt] pe- ) = Lo M (bo + b + DF Vi € H(pt,Q) = Q

where (- : {pt} <= TF  is an inclusion of a point to T# . We denote the images of tpx
and vpp- to be ptpx and ptpp- respectively.

By Lemma , a stable disc in M7”(3; D) has only one disc component. Thus it never
splits into the union of two stable discs. Hence M3" (5; D) has no codimension-one boundary.
The following key lemma shows that M3 (by + b; + o; D7) also has this property, whose
proof requires a more careful analysis of the stable discs since by + b; has Maslov index 4
(which is not the minimal Maslov index of T#" ) and £~ may not be semi-Fano:

Lemma 5.9. Assume the above settings. A stable disc in M35 (by + b; + o; DF™) consists
of a holomorphic disc component and a rational curve, which meet at only one nodal point.
The disc component belongs to the class by +0b; for some 5 =1,...,m, and the rational curve
belongs to a.. In particular, MS" (by + b; + «;; D¥ ™) has no codimension-one boundary.

Proof. Consider a stable disc ¢ in ./\/lcl’p1 (bo+bj+a; DF7). Tt consists of several disc components
and sphere components. Notice that (by +b; + a, D) = 0, where (-, -) denotes the pairing
between Ho(E~, T ) and H?*(E~, T¥"). Since every holomorphic disc bounded by T#™ and
every holomorphic sphere in £~ has non-negative intersection with D, this implies that
each sphere component of ¢ has intersection number 0 with D,,. So every sphere component
of ¢ is in a fiber class as otherwise it would have positive intersection number with D,. In
particular each sphere component of ¢ has non-negative Chern number and is contained in a
fiber of E= — P!. Together with the fact that ¢ has Maslov index pu(bo) + u(b;) +2¢1 () = 4,
this implies that each disc component has at most Maslov index 4.
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Suppose a disc component of ¢ has Maslov index 4. Then all the sphere components have
Chern number zero. Since every non-constant holomorphic disc has Maslov index at least 2,
the other disc components of ¢ must be constant, and they are mapped to T . On the other
hand the interior marked point p'™ of ¢ has to be mapped to D¥", which sits inside the fiber
Dy and is disjoint from T*". Hence p™ cannot be located in the constant disc components.
But then at least one of the constant disc components does not have 3 special points, making
¢ unstable. This shows that ¢ has only one disc component which has Maslov index 4.

Then we prove that the disc component is attached with the holomorphic spheres at only
one interior nodal point. Holomorphic discs bounded by a Lagrangian torus fiber have been
classified by Cho-Oh [§]. In particular if a holomorphic disc of Maslov index 4 passes through
DFE™ for any [, it intersects with the union of toric divisors at only one single interior point.
On the other hand, by Lemma [5.3} all the sphere components are mapped to the union of the
toric divisors Dy, [ = 1,...,m. Thus the disc component must passes through one DF” and
is attached with the holomorphic spheres at only one interior nodal point. This implies that
¢ is the union of a holomorphic disc and a rational curve joint at a single nodal point. The
disc component belongs to by + b; for some [ and the rational curve component belongs to a
certain class p. Then by + b + p = by + b; + a as disc classes, which forces [ = j and p = .
Hence the holomorphic disc represents by + b;, and the rational curve must represent o.

Now suppose otherwise that every disc component of ¢ has Maslov index less than 4. Then
¢ must have a disc component of Maslov index 2. Then the other disc components have
Maslov index at most two, and the sphere components have Chern number at most one.
Moreover the sphere components belong to some fiber classes. By Lemma [5.3], each of them
is contained in D; for some [ = 1,...,m.

A holomorphic disc of Maslov index at most two does not pass through D¥” . Thus the
interior marked point p™ of ¢ must be located in a sphere component. But ¢(p™) € DE”
which is contained in the fiber at 0. This implies that this sphere component is contained
in Dy N D, for some | = 1,...,m. However, a holomorphic disc of Maslov index at most
two does not pass through Dy N D;, and so none of the disc components is connected to this
sphere component. We thus conclude that this situation cannot occur.

We have now proved that ¢ has only one disc component. This implies that it never
splits into two stable discs, meaning that disc bubbling never occurs. Thus the moduli space
11(bo + bj + a; DP7) has no codimension-one boundary. O

Now both M (8;+a; D) and M3 (by+b;+a; DF ) have no codimension-one boundaries.
By [11, Lemma A1.43], we have
nfl(ﬁj +a; D, [pt]TX) = Ler [M(l)pl(ﬁj + a; D)]virt
= [Mﬁ(ﬂj + a; D, ptpx ) Jvire € H*P(D x {ptpx},Q) = Q,
and
niy (bo + bj 4+ o; DF | [ptlpe-) = vhp [M15 (bo 4 b + o3 D7 )ving
(5.1) = M (bo + bj + a; D ptope ) vine
€ H*P(D®" x {ptps-},Q) = Q,
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where
ML (B + o Di,ptopx) = (M7 (B; + ) xx D) Xpx {ptypx}
= M (B + ) X xxrx (Di X {ptpx})
and
M (bo + bj + o DF  ptops-) = ( (o 4 bj + @) xp- Df") X {ptps-}
= Mcl)ﬁ(bo +bj+a) Xg  pe- (Din X {ptps-1}).

The fiber products appeared above use the evaluation maps evy : M (B8; + a) = X,
evy : M (B 4+ a) = TX, evl - M (B; +a) = E-, evf : M (B; +a) = TP | and the
inclusion maps D; < X, {ptrx} = T, DF — E~, {ptype-} — TF .

Thus, in order to prove n{fl (B; + a; D, [pt]rx) = nf{ (bo + b; + a; DF | [pt]pe- ), it suffices
to show the following

Proposition 5.10. Fiz a point ptrx € TX and a point ptps- € TH . Then we have
(5.2) (B + a3 D, ptpx ) = MY (bo + bj + a3 D, ptps- )

as Kuranishi spaces.

Proof. We divide the proof into three parts.
(A) Virtual dimensions. First of all, both sides have virtual dimension zero:

dim M (B; + ) = pu(B;) + 2c1(a) +24+1+n—-3=2+n.

Requiring the interior marked point to pass through D cuts down the dimension by 2; requir-
ing the boundary marked point to pass through ptpx further cuts down the dimension by n.
Thus the virtual dimension of the LHS of ([5.2) is zero. For the RHS of (/5.2)),

dim M5 (bo + b; + ) = pu(bo) + p(bj) +2c1(a) +2+ 1+ (n+1) =3 =5+n.

Requiring the interior marked point to pass through D¥” cuts down the dimension by 4;
requiring the boundary marked point to pass through ptrz- further cuts down the dimension
by n 4 1. Thus the virtual dimension of the RHS of (j5.2) is also zero.

(B) Spaces. In what follows the domain interior marked point of a stable disc is always
denoted as p™, and the domain boundary marked point is always denoted as pP.

Now we construct a bijection between the left-hand side and the right-hand side of .
In the following we fix a local toric chart x = (1, ..., Xx»n) of X which covers the open orbit
of D; C X, and such that x;(D;) = 0. Without loss of generality, we may take TX to be
the fiber |y;| = 1 for all [, and ptpx to be x;(ptpx) = 1 for all [. Correspondingly we have
the local chart (x,w) of E~ around the fiber w = 0 € P!. Without loss of generality we take
T to be the fiber | x| = |w| = 1, and ptpe- to be x;(ptps-) = w(ptpe-) = 1 for all L.

First consider the easier case a = 0. By Lemma a stable disc in the LHS is a holo-
morphic disc u in class 8;. The domain is a closed unit disc A C C. By using automorphism
we may take p'™ = 0 and pP% = 1. In the above chosen local coordinates of X, u has the

expression
. Z — ao . .
u(z) = (e“)1 el ... >ele")

1—|—0702’
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for some oy € A and 0, € R for k = 1,...,n. u passes through D = D; only when i = j.
Thus the left-hand side is simply an empty set when ¢ # j. When i = j, u(0) € D; forces
ap = 0, and requiring u(1) = ptp, = (1,...,1) fixes 6 = 0 for all k = 1,...,n. Thus the
left-hand side is the empty set when 7 # j, and is a singleton when 7 = j.

On the other side, by Lemma [5.9]) a stable disc in the RHS is a holomorphic disc v in class

bo+ b;j. Such discs are also classified by Cho-Oh [§]. Again we use the domain automorphism
to fix pPY =1 and p™ = 0. Then the disc is of the form

. Z—al . Z—O{2 . .
wov(z) = e — yov(z)=(e® —= elf% . el
14+ oz 1+ anz

where g, a; € A and 6; € R. v never hits D when ¢ # j. When i = j, v(0) € D} forces
w=x1 =0whenz=0. Thenoy =, =0. Alsov(1) = ptpp- meansw =x; =+ =x, =1
when 2z = 1, which implies 6y = --- = 6,, = 1. Thus the moduli space in the RHS is empty
when ¢ # j, and is a singleton when ¢ = j. This verifies that the LHS matches with the RHS.

Now consider the case a # 0. Let ¢ be a stable disc bounded by T in the LHS of .
We associate ¢ with a stable disc bounded by T# " in the RHS of as follows. By Lemma
, ¢ is a holomorphic disc in class 3; attached with a rational curve in class « at an interior
nodal point. Let us identify the domain disc component with the closed unit disc A C C,
denote the domain of the rational curve by C, and denote ¢a := ¢|a, dc := ¢|c. The nodal
point corresponds to a point p*°? € C and a point in A. By using automorphism of A we
may assume this point to be 0 and p"¥ = 1. Then @A (0) = ¢c(p™°?). In the chosen local

coordinates x, we have
. Z — Q{O . .
oa(z) = (e‘91 e‘92,...,e‘9">

1+07(]Z’
for some ag € A0, e Rforl=1,...,n.

Since ¢¢ has Chern number zero, ¢(C) C |J; D;, and in particular ¢a(0) = ¢c(p™°?) €
\U; Di- But ¢ does not hit any toric divisors except D;. Thus ¢ (0) € D;, and 0 € A is the
only point which is mapped to J; D; under ¢a. This forces ap = 0 in the above expression
of ¢a. Moreover ¢pp maps z = 1 to ptox = (1,...,1), and this forces 6; = 0y = --- =6, = 0.
As a result, o = (2,1,...,1). On the other hand ¢(p™) € D;. Suppose p™* lies on the
disc component. Since p™ has to be different from the nodal point, p™ # 0. But then
oa(p™) & U, Dy, and so p™ is not mapped to D;, a contradiction. Thus p™ has to be
located in the rational curve C.

We associate to ¢ an element ¢¥~ in the RHS which has the same domain and marked points
PP pitt as ¢ (the domain is A attached with C at z = 0). ¢¥ | A is defined to be (¢a(2), 2)
written in terms of the above chosen local coordinates (y,w) of E~, and ¢F |¢ := (¢¢,0).
Notice that ¢¥ |A(0) = (¢a(0),0) = (dc(p™9),0) = ¢¥ |c(p™?), and so ¢¥ is well-defined.
Moreover since gc(p'™) € Dy, ¥ (p™) = (¢c(p™),0) € DF . Also " (p"¥) = (¢a(1),1) =
ptpe-. This verifies that ¢¥ is an element in the RHS.

Now we prove that every element in the RHS of (5.2)) comes from an element from the LHS
of in the way we described above. By Lemm, a stable disc ¢¥  in by + b; + o must

be a holomorphic disc representing by + b; attached with a rational curve of Chern number
zero representing a. As above, the domain disc component is identified with the unit disc
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A C C, and the domain rational curve is denoted by C. The nodal point corresponds to a
point p"°¢ € C' and a point in A. By using automorphism of A we may assume this point to
be 0 and p*® = 1. Then ¢% (0) = ¢E~ (p*°4). Using Cho-Oh’s classification of holomorphic
discs [8], in the chosen local coordinates (w, x), X is of the form

z —

B~ i6 B~ g, © X ie 10,
w o Px (z):e‘°1+aoz, X © Ox (z):<e‘11_dlz,e‘2,...,e‘ )

Suppose p'™ lies in the disc component. Then ¢ (p'™*) € DE. This happens only when
i =74, a9 = a; = 0. In such case ¢§ hits the union of toric divisors of £~ only at one
point z = p'™. Now @& represents the fiber class @ with ¢;(a) = 0, and so by Lemma
oF (C) c U, Di. In particular ¢X ™ (0) = ¢& (p*°?) € U2, Di. This forces p™ to coincide
with the nodal point, a contradiction. Thus p™ must lie in the rational curve C'.

The image of ¢Z lies in a fiber of £~ — P!. But since ¢& (p™) € DF which lies in
Dy (the fiber at zero), this forces ¢& to lie in Dy. Then @& is of the form (0, ¢¢) in the
local coordinates (w, x). Together with ¢# (C) C |J,~, D, this means ¢ (C) c U, DF .
Then ¢& (0) = ¢& (p™°?) € U,_, DF , which happens only when ay = a; = 0. Moreover
oK (1) =(1,...,1),andso fy = --- = 0, = 1. Thus ¢¥ = (2, pa(2)) in the local coordinates
(w,x), where ¢a(z) = (2,1,...,1). Thus ¢ comes from the stable disc ¢ in X, which is a
union of ¢ and ¢c.

(C) Kuranishi Structures. Now we compare the Kuranishi structures on the both sides of
(5.2). Let us have a brief reasoning on why they should have the same Kuranishi structures.
On both sides the disc components are regular, and so the obstructions merely come from the
rational curve components in class . For the curve component of ¢ | since it is free to move
from fiber to fiber of £~ — P!, the obstruction comes from the directions along X, and this is
identical with the corresponding curve component of ¢. Now consider the deformations. Due
to the boundary point condition, the disc components on both sides cannot be deformed. For
the curve component of ¥, the interior point condition that it has to pass through D" kills
the deformations in the direction transverse to fibers. Thus ¢¥ has the same deformations
as ¢. Therefore the corresponding stable discs on both sides have the same deformations and
obstructions, and hence the moduli have the same Kuranishi structures. In what follows, we
write down and equate the deformations and obstructions explicitly on both sides.

A Kuranishi structure on MY (8; + «; D; ptpx) assigns a Kuranishi chart
(%p» 8(:137 Fop7 7vbopy Sop)
around each ¢ € M{"(8; + o; D; ptpx ) which is constructed as follows. Let
Dy : WP (Dom(6), 6" (TX), T) = WP (Dom(6), u*(TX) @ A%)
be the linearized Cauchy-Riemann operator at ¢. (Here Dom(¢) is the domain of ¢.)
(1) [op is the automorphism group of ¢, that is, the group of all elements
g € Aut(Dom(¢), p™*, p"®)

such that ¢ o g = ¢. By stability of ¢, Iy, is a finite group. (Note that by definition,
g(plnt) — plnt7 g(pbdy) — pbdy.>
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The so-called obstruction space €, is the cokernel of the linearized Cauchy-Riemann
operator D0, which is finite dimensional since D40 is Fredholm. For the purpose of
the next step of construction, it is identified (in a non-canonical way) with a subspace
of W(Dom(¢), ¢*(TX) @ A%) as follows. Denote by A and S, ..., S; the disc and
sphere components of Dom(¢) respectively. Take non-empty open subsets Wy, C A
and W; C S; fori =1,...,l. Then by unique continuation theorem there exists finite
dimensional subspaces &; C C5°(W;, ¢*(TX) ® A™) such that

Im(Dy0) @ €, = W*(Dom(¢), ¢"(TX) ® A™)
and € is invariant under I, where

&= B BE .

Vop 1s taken to be (a neighborhood of 0 of) the space of first order deformations ¢ of
¢ which satisfies the linearized Cauchy-Riemann equation modulo elements in €.

(Dyd) - ®=0 mod &
Such deformations may come from deformations of the map or deformations of com-
plex structures of the domain. More precisely,
¥ ma dom
V;)P = V;)p P X V;)p
where V3 is defined in the following way. Let V7 . be the kernel of the linear map

[D,3] : WH»(Dowm(), ¢*(TX), T) = WOP(Dom(g), 6" (TX) & A1) /&
Notice that Aut(Dom(¢), p'™, p"¥¥) may not be finite since the domain of ¢ may not

be stable, and it acts on V.. Thus its Lie algebra g is contained in V,, ., and
we take ViieP C Vo o such that Vi .= VieP @ g.

Vaom js a neighborhood of zero in the space of deformations of the domain ratio-
nal curve C'. Such deformations consists of two types: one is deformations of each
stable component (in this genus 0 case, it means movements of special points in each
component), and another one is smoothing of nodes between components. That is,

dom n mth

V;)po — ‘/ch) t % ‘/osp t
where ViP™ is a neighborhood of zero in the space of deformations of components of
C, and Vosgnth is a neighborhood of zero in the space of smoothing of the nodes (each

node contributes to a one-dimensional family of smoothings). Each deformation in
Vo%"m gives A U C, where A is a disc with one boundary marked point, and C' is a

rational curve with one interior marked point, such that A and C intersect at a nodal
point. AU C serves as the domain of the deformed map .
Sop  Vop — 8gp is a transversal I',p-equivariant perturbed zero-section of the trivial

bundle £, x V,p over V,p. By [13], this can be chosen to be T-equivariant.

There exists a continuous family of smooth maps pg’ : (D,0D) — (X, T) over Vip > @
such that it solves the inhomogeneous Cauchy-Riemann equation: dpg = Sop(P). Set

Vop := {® € Vi : evo(pg’) = ptpx;evy(py) € D}

where evy is the evaluation map at pP®¥. Then set sop 1= Sop|vs, -
Yop is a map from s_1(0)/T'p onto a neighborhood of [¢] € MY (8; + a; D; ptpx).
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Now comes the key: in Item (2) of the above construction, since the disc component of
¢ is unobstructed (that is, the linearlized Cauchy-Riemann operator localized to the disc
component is surjective), &, = 0 so that €7 is of the form

€ =0BE @ DBE.

The analogous statement is also true for the corresponding stable disc ¢¥ € 11 (bo +b; +

a; DF™; ptpg- ). With this observation, we argue in the following that (Vop, € ops Lops Yops Sop)

can be identified as a Kuranishi chart (Vog, E(jp’E , Ff;, fp, sf;) around the corresponding stable
disc ¥ bounded by T¥ C E~.

(1) ¢ and ¢¥ have the same automorphism group, that is, 'y, = Ffp. This is because the
disc component have only one boundary marked point and one interior nodal point
and thus has no automorphism, and any automorphism on the rational-curve part of
¢ will give an automorphism on the rational-curve part of ¥, and vice versa.

(2) The disc component of ¢¥  is unobstructed. For the rational curve component C
which is mapped into Dy = X, notice that there is a splitting T'E|p, = T(Dy) & N Dy
and so WOP(C, (¢¥ |c)*(TE) @ A%) is equal to

WPP(C, (6" |o)"(TDo) ® A™) & WOP(C, (6" |c)"(NDy) ® A™)

where the first summand is equal to W% (C, (¢)*TX ® A%).
Since the curve component is free to move in the direction of the normal bundle
NDy, we have

Im(D 9) D WO (C, (¢¥ |c) (NDg) ® A%Y).

e
Hence
m(Dyp-0) ® (0@ E; @ --- @ &) = WP (Dom(¢" ), (9" ) (TX) @ A™).

Thus we may take E:F = 0B E7 @ --- @ &/

- i _ .

(3) VOEp, 35;, p@E’f’p are defined in the same way as above. The subspace V' of those

E~op

B~

. . .. . ~ .o - E- ~ . .

lies in Dy is isomorphic to V,,, and restrictions of 52 and P to V' gives choices
0 op» op PE

of 5,, and p°P respectively. Moreover,

deformations ®F € Vog such that the image of the curve component under p

VE = {2 eVE: evo(p§;L°p) = ptTE—;eV+(p§;’_Op) e D¥}

lies in V. Thus VE =V, and sZ, = 85lv = Sop. Then 1)y, can be identified as a
map 1, which maps (s7)~'(0)/T'} onto a neighborhood of [¢* ] € MY (bo + b; +
o; D7 ptops- ).

In conclusion, a Kuranishi neighborhood of ¢ can be identified with a Kuranishi neighborhood

of ¥ . Thus the Kuranishi structures on M (3; D, ptpx) and that on MY (by + b; +
o; D" ptpg-) are identical. This completes the proof of the proposition. O
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5.2. Second step. Now we come to the second main step, which is the following theorem:

Theorem 5.11. Assume the notations as in Theorem v; € F(vj) and D;-a = 0 whenever
v & F(vj). Then

HEI (bO + bj + Q; l)E_7 [pt]TE—> — <DE_, [pt]E_>E_,cr_ reg.

0,2,0- 4«
By Equation (j5.1]),
nf; (bo+bj+a; DF [Dt]pe-) = [M (bo+bj+a; DEi,ptTEf Veirs € H(DF™ x{ptpe-},Q) =Q

and

<DE7> [pt]E*>0E72if:_iZg = [Mgtg;jefa(DEi7pt)]virt € HO(Pty @) = Q

is the o~ -regular closed GW invariants given in Definition In order to prove the equality
between open and closed invariants in Theorem [5.11], it suffices to exhibit an isomorphism
between the Kuranishi structures:

Proposition 5.12. Assume the condition in Theorem m Fiz a point pt € TE" C E~.
Then

(5.3) (Do + by + o; D7 ptyp- ) = MGy " (D pt).

as Kuranishi spaces.

The proof is very similar to that of Proposition [5.10; we first prove that the two sides are
equal as sets, and then compare the Kuranishi charts and show that they can be chosen to
be the same.

First, let us consider the case a = 0 and 7 # j. We have seen in the proof of Proposition
that the LHS of (5.3)) is the empty set when o = 0 and ¢ # j. For the right-hand side,
we have the following lemma:

Lemma 5.13. For i # j, the moduli space ./\/lgl”;;feg(fo,pt) is empty. In particular we
have
E— E~,0 reg __
(D; ,pt>0,270_ =0.

Proof. By Lemma a rational curve in Mg{;;eg (DE™ pt) is a holomorphic sphere repre-
senting o~ passing through pt in the open toric orbit. Such a sphere is unique and intersect
Dy at only one point which lies in Df . It never intersects D™ for i # j. Hence the moduli
space is empty. Il

By the above lemma, when a = 0 and ¢ # 7, both sides are the empty set, and we have
ni’y (bo +by; DF ™, [ptlpe-) = (D, [Pt]E*X]iz,’; =0

Proof of Proposition [5.12| when « # 0 or i = j. First we construct a bijection between
the two sides of ((5.3]).

For a stable disc in M (bg+b;+a) X 5 e (D x {pt}), we denote the domain interior
marked point by p™ and the domain boundary marked point by p"®. For a rational curve
in /\/lgl’é‘j;_rji X g-xg- (DF™ x {pt}), we denote by py the marked point mapped to DF ", and
p1 the marked point mapped to pt.

int
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By relabeling {D,;};*, if necessary, we assume j = 1. Let us fix a local toric chart x =
(X15---,xn) of X which covers the open orbit of D; C X, and such that x;|p, = 0 (by
relabeling { D, } if necessary). Correspondingly we have the local chart (x,w) of E~ around
the fiber w = 0 € P!. Without loss of generality we take T¥~ to be the fiber |y;| = |w| =1
for all I, and pt € T¥ to be x;(pt) = w(pt) =1 for all [.

Consider the case when o = 0 and i = j. We have seen in the proof of Proposition [5.10] that
the LHS of is a singleton when i = j. When i = j, it is the disc w = z, x = (2,1,...,1)
on A3 z.

On the RHS of , by Lemma the element is the unique holomorphic sphere p
representing o~ passing through pt and DjEf. Since D, - 0~ = 1, there is a unique point
Poo € P! with p(ps) € Doo. By composing with an automorphism of P!, we may assume
po =0, p; = 1 and ps, = co. Consider y;op,wop: Pt - Pl forli=1,...,n. Since D;-0~ =0
except when [ = 0, j,00, x; o p are constants for [ = 2,...,n. Thus y,0p = x;0p(p1) =1

for I =2,...,n. Moreover x; o p(z) and w o p(z) have only one zero at 0 and one pole at oo,
and so they are equal to cz for some ¢ € C. But p(p;) = pt implies x; o p(p1) = 1, and this
forces ¢ = 1. Thus p is (w, x) = (2,(2,1,...,1)). The curve is regular and so the obstruction

is trivial. This proves that for the case when i = 7 and a = 0, we have the following

Lemma 5.14. The moduli space Mgléag,reg(Df_,pt) is a singleton, and we have

(pt, DETYE womres

In particular there is a bijection between the LHS and RHS of (j5.3]).

Now consider the case when o # 0. Let ¢0Ep_ be a stable disc in the LHS. From the proof of

Proposition , f; is a holomorphic disc representing by +b; attached with a rational curve
C representing o at exactly one nodal point, where the interior marked point p™ is located
in C, and the map gbfr;m on the disc component A 3 z is given by (w, x) = (z,(z,1,...,1)).
Such a map from A to E~ analytically extends to a map ¢qpi : P' — E~, where co € P!
is mapped to w = oo and x; = 1 for [ = 2,...,n, which is the point pt € D,,. Then ¢ p
attached with the same rational curve C, with marked points py = p'™ in the rational curve

and p; = 0o € Dom(¢ p1), is an element in the moduli on the RHS. This gives a map from
the LHS to the RHS of (5.3).

Now we show that this map is invertible. By Lemma , an element in Mf)l’;;fji (DF" pt)

is the unique holomorphic sphere pp1 : P! — E~ representing o~ passing through pt and
Df_ union with a rational curve po : C' — E~ representing o. By the above argument,
(w,x) o ppr(2) = (2,(2,1,...,1)) where pp1(0) is the nodal point. Then by restricting pp: to
A C P!, we obtain a stable disc in the LHS. This gives the inverse of the above map.

The comparison of Kuranishi structures is very similar to the proof of Proposition [5.10] and
thus omitted (cf. [4, 22]).

6. COMPUTING CLOSED INVARIANTS BY SEIDEL REPRESENTATIONS

In this section we prove Theorems [1.2] [I.3] [1.5] as promised in the introduction.
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6.1. Calculations. We have equated the open GW invariants appearing in the disc potential
of X with certain two-point closed GW invariants in the Seidel spaces E}" associated to X.
Computing these closed GW invariants is challenging. Firstly, these closed GW invariants are
more refined closed GW invariants, namely o~ -regular GW invariants as defined in Definition
. Also, because the infinity section class o € HSH(E; ) may have c,(oy) <0, Ej is not
semi-Fano. This is because the C*-action induced by —v; can have a fixed locus whose normal
bundle has total weights less than —2. Thus, many tools such as the mirror theorem do not

apply to our setting.

Our computation of open GW invariants involves a number of techniques. Observe that
the Seidel space E; associated to v; is always semi-Fano because every fixed locus in X has
total weights not less than —2 (the fixed locus D, has weight —1 which is already minimum),
see [19, Lemma 3.2]. In this case the mirror theorem for E; is much easier to handle. In
particular, the normalized Seidel element S? corresponding to FE; has been computed by
Gonzalez-Iritani [19] and can be explicitly expressed in terms of the Batyrev element B;:

Proposition 6.1 ([19], Theorem 3.13 and Lemma 3.17 and [I§], Remark 4.18).

B;(4(q)) = exp(g;(d(4)))S; (q) = D; ng

where

Z (=)W (D;, d)(—(D; - d) — 1)!qu
d Hp;éz(DP ) d)' ’
where the summation is over all effective curve classes d € Hzeﬁ(X) satisfying —Kx - d = 0,

D;-d<0and D,-d>0 for all p # 1.

9i5(q) =

By Theorem , the open invariants are equal to the closed invariants (i, D;, [pt]) OJQ :7+r§g,
where v; € F(v;) and o € H{"=°(X) is such that D; - a = 0 for v; ¢ F(v;). To compute

them it is useful to express D; in terms of the Seidel elements .S;’s.

Proposition 6.2. For everyi, {B;}U{B, : g # 0} is a linearly independent set in H*(X, Q).

Proof. Tt can be seen from the fan polytope of X. Since X is semi-Fano, the generators v; of
rays lie on the boundary of the fan polytope, and those v; with g; # 0 are not the vertices of
the fan polytope by [19, Proposition 4.3]. Since the number of vertices is at least n + 1, the
number of v;’s with ¢g; # 0 is no more than m —n — 1. Moreover the only relations among the
By’s (regarded as elements in a vector space) are the linear relations, and all of them involve
elements outside {B; : g; # 0}. Thus {B; : g, # 0} is linearly independent. Every linear
relation involves more than two vertices, and hence there is no linear relation involving only
Bi and Bl’S with g 7é 0. Ul

Proposition 6.3. We have

ZD 91(3(0))) By

as divisors (whefre Bl 's are the extended Batyrev elements in Definition . Thus [D;] =
Bi+> " 1(D a1(q(q))) By as elements in QH*(X).
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Proof. This follows directly from the definition of the extended mirror map log QQ) =
log @) — ¢:(G(Q)) and definition of the extended Batyrev elements as push forward of the
basis { Dy, ..., Dy} C H*(X,T) via the differential of the extended mirror map. O

By Propositions , the (normalized) Seidel elements can be taken to be the divisorﬂ
Sy = exp(—gi(G(q)))Bi. Then by Proposition , we have

D; = exp(gi(q SO—FZ D - 91(G(q))) exp(a:(4(q))) Sy

as divisors. Then
(6.1)

i ,O’J reg

<L*D“ [pt]>0 2,05 +a

= exp(g:(4(4))) (252, [pt]), o 2 (Di- (@) exp(an(d(@))) (1S [pt]>0;;,fj§g.
=1
Proposition 6.4. We have
(6.2) > Sy, [Pt]>0§ :,UJ:jg = 0ij.

Proof. The idea is to use the degeneration family, which is the key to derive the composition
law Sy, o, = Sy, #5_,; of Seidel representation and restrict it to those connected components

of the moduli which contribute to (¢.S7, [pt]) 0. ’2 U 7: We use the degeneration due to McDuff

[29]; degenerations for Seidel representations were also extensively studied in [10, Section 29].

Consider the degeneration family of £, ,; to a union of £,, and £, along X (see Equation
(4.1))). It gives a degeneration formula as follows. By the construction of McDuff [29, Sections
2.3.2 and 4.3.3|, there is a family F of moduli spaces over the disc whose generic fiber is

Evru, . Evi E_,.
./\/1040110 ., and whose fiber at zero is Fo = U 40 —oito; +a My, Xx Mg, Let pt be a
generic pomt chosen such that in the degeneratlon pt lies in the open toric orbit of F_, . Let

Xo, X, X. be fibers of E, _, — P! for 0, 2,2 € P! (which are isomorphic to X) such that
in the degeneration, Xy, X, C E,, are the fibers of E,, — P! at 0,00 € P! and X, C E_,, is
a fiber of £_,, — P! at a generic point. Taking the fiber product With Xo, X., X, and the

generic point pt we get a family F(pt) whose generic fiber is ./\/l (Xo, X., X., pt)

07470 +U +a
and whose fiber at zero is
E?)Z'

E_,.
Fo(pt) = U M073751(X0,Xz) Xx MO,3,S]2(XZ/7pt)'

s1t+s2= 0'1+O' +a

"These were defined to be the lifts of Seidel elements in [I8].
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Let {®;} be a basis of H*(X) and {®'} be the dual basis with respect to the Poincaré
pairing. Then the degeneration formula in [29, Sections 2.3.2 and 4.3.3] gives

E”z —v EUZ —v;

<[pt]>0,1,a,ia ta (Xo, Xz, Xo, [pt]>04ol+a +a
E., v B, E_,.
= Z (Xo, Xz, L*(I)l>0,3,sl (X, 1P’ 5 [Pt]>o,3,sjg = Z <L*(I)l>o,1,sl<b*q)la [pt]>0,2,sjg7
s1t+s2=0i+0; ta s1t+s2=0i+0; +a

l l

where the first and last equality follows from the divisor equation (a section class intersects
a fiber class once). The left-hand side is one of the terms of (S,,_,, , [pt]), while the right-
hand side are terms appearing in (SUZ, * 8y, [pt]). The degeneration formula is the main
ingredient in deriving the composition law S,, ., = Sy, * S_, .

Each fiber of F(pt) is compact and has finitely many connected components. We denote
by Fo(pt)?s " the union of those connected components of Fy(pt) which contain a rational
curve with a sphere component in E_,, representing o,

Evl ,0. reg

Fo(pt)?r & = U M 3, (Xo, X2) X x M03 o

s1+s2=0i+0; +a

(Xz’ ) pt)

By,

) Ey, J O'J re,
= U (M073,81(X0’Xz) ><E'uZ ‘DOO’L> XE vj M03 g(XZl7pt)‘

51+32:0'i+0';+01

The virtual cycle of the above expression is (locally) the zeroes of (sq, s2) (modding out finite
automorphisms), where s, s are multi-sections of the first and second factors respectively.

The zeroes of s; give the virtual cycle [MOE?{S (X0, X, DEvi)]virt of the first factor, which is a
(X.,pt). Then the

,0. reg

cycle in Pl @ , fiber product with the second factor /\/lo 30y
zeroes of sy gives the Vlrtual cycle

o re 505 Te Ey; Ey,;
[.F()(pt) J g]Virt = Z |:M03 7 g(L*[MO,Zi,sl (XO7X7&7‘DOO )]Virt,XZ’apt)

_ virt
s1+82=0;+0; +a

We take F(pt)™® C F(pt) to be union of those connected components whose fibers at zero are

Bu; v veg (X0, X, X/, pt) is a union of those

components of ]-O(pt)" "€ A generic fiber M, 4o o

04, 1+0' +o
component passing through pt representing a section class s. This restricted degeneration
family gives

components of ./\/l (X0, X,, X./, pt) which contain a rational curve with one sphere

10 Teg

Evlfv ,reg E“i Evi
<X07X27XZ'7pt> = Z <L*{M073751 (X07X27DOO )]virtuXZ 7pt>0352 9

0,4 crl—l—a +a
81+82=U¢+Uj’+a

where the left-hand side is by definition the integration of 1 over the virtual fundamental

Evlfv ,reg
000 +al K0 Xz Kot PE).

Since the Seidel element S; = >~ ¢* [M?{sl( oEovi>]virt =2, 1" [M§§f51(X0, X, ®Evl>]virt
is a divisor in X (where the last equality is by divisor equation since Xy, X, are divisors in

class associated to M
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E, and s; - Xg = 51 - X, = 1), only s; with ¢;(s1) = 1 contributes. But E,, is semi-Fano
and so any section class (which is o; + « for some «) has ¢; > 1. Thus s; = 0; + a1 where
a; < « has ¢;(ag) = 0. Moreover ¢i(a) = 0 by dimension counting on the left-hand side.
Then sy = 0 + ay for some «; satisfying c1(a) =0 and oy + g = .

Now summing over a gives

Eyj—vjreg ag 5205 Teg
(6.3) Zq (Xo, Xo Xty 107 = D7 0™ 057, X, D) 07
0427
By Lemma and its proof, every rational curve in ./\/l 0.3, j::iareg(L*Dl, X/, pt) is a union of

a holomorphic sphere representing 0~ and a rational curve supported in Dy representing a.
Such a rational curve intersects X,/ at exactly one point (we take 2’ such that X,  # Dy C
7’0 10 reg E_, ,a reg

E_,,), and hence ./\/lo3 o 4o (tsDy, X1, pt) = ./\/l02 o toz (t+Dy, pt). So the right-hand side
of (6.3)) is exactly the quantlty we want to compute, namely,

0o reg
o vj 95
Zq L*S’pt 0,2,0; +a ’

Now consider the left-hand side of . The moduli space contains a rational curve with a
sphere component passing through pt representing a section class s. Moreover, by dimension
counting, the invariant is non-zero only when ¢ (o; + o; + a) = 2. Since X is semi-Fano,
the sphere component representing s which does not lie in any toric divisor and intersect
each toric divisor transversely has ¢; < 2. On the other hand, Since s is a section class,
it intersects Dy and D, once. Suppose ¢ # j. In order to have the balancing condition
> icio..moo} (Di"s) vE = 0, the sphere component must intersect some divisors other than

Dy and D, (because vf + vfo ( —v;,0) # 0). This implies s has ¢; > 2, a contradiction.

Thus the left-hand side of is simply zero when i # j. When i = j, E, _,, is the

trivial bundle X x P!, and o; + oj_ is the constant section P* — X x P'. Thus the invariant
Evi_vv,reg

<X07 XZ7 XZ’? pt>0,470ii0'47+a

is 9;;. This proves (6.2)). O

is one when o = 0, and zero otherwise. Hence the left-hand side

We are now ready to prove our main theorem:

Theorem 6.5 (=Theorem [1.1). Forall j =1,...,m,

exp(g;(d() = Y. ¢"m(B;+a)=1+3(q).

acHS1=(X)

Proof. The idea is to use Theorem to identify open GW invariants of X with some closed
GW invariants of the Seidel spaces, and then use (6.1]) to compute these closed invariants.
For the left-hand side of the formula we want to deduce, by Corollary exp(g;(4(q)))
only involves Novikov variables ¢® with a € Hy"“=°(X) satisfying D; - o = 0 for v; ¢ F(v;).
For the right-hand side, by Corollary , Y0 @“m(B; + «) also has only Novikov variables
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¢ with D; - o = 0 whenever v; ¢ F(v;). Thus if v; & F(v;), then

D;- exp(g;(d(q) (Zq ni(B; + ) =0.

In the following we prove that the above equality also holds in the case when v; € F(v;).

Taking ) ¢*- on both sides of Equation (6.1)) and applying Proposition to the right-
hand side, we have

~

Zq LDy, [pt] 05: :e di; exp(gi(d(q))) + (Ds - g;(4(q))) exp(g;(d(q)))
Combining with Theorem [5.1], we have
exp(g;(d(@)) (655 + Di- g;(d() = > ¢"nua(B; +a; Di, [pt]x).
acHS1=(X)
Thus
Di- (Qiexp(g;(d(a) = Y. Qig"ma(B;+; Dy, [pt]x)

acHS (X))

=D;- Z Q" (B + «)

acHS = (X)

where we recall that @, is a coordinate on the extended Kahler moduli I@% and D; - Qj = 0i;
(Section [3.2)), and the last equality follows from Theorem (the divisor equation). This
proves that the above equality holds for all D;, and the theorem follows. O

6.2. Corollaries. We now describe some consequences of Theorem [6.5]

Proof of Theorem [1.3. This follows from Theorem and the fact that the hypergeometric
series ¢;(¢"") and the inverse mirror map ¢"*(¢"") are convergent. O

Corollary 6.6. The inverse mirror map ¢(q) of a compact semi-Fano toric manifold X is
written in terms of the generating functions d&; of open GW invariants as

n

[T+ 0@ = (1 -+ ) TJ0 + 60) e

p=1

Proof. By (3.1), we have

m

Gx(q) = axexp(g™(4(0))) = a [ [ (exp au(di(q))) "

and thus the equality follows from Theorem Also, Uy, = Bk — Z;Zl (Untk , Vp) Bp, and
so D, -V =— (psg, vp) forp=1,... ,nand D4, - ¥ =6, for r=1,...,m —n. O
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Proof of Theorem[1.9. Recall that the Hori-Vafa potential va is written as (3.3)):

n n

W;{V(Z’h ey ) = Z(exp 9p(q))zp + Z Gzt H exp (gp(q))(”"+k )
k=1

Then by Theorem [6.5 and Corollary [6.6] we have
Wit = (14 0,(a)zp + D a2+ (1 + 6ura(q)) = W™
p=1 k=1

U

Proof of Theorem[1.5. By Theorem since WLF and WHY are equal, QH* (X, w,) 5
Jac(WqLF) is the same as QH*(X,w,) — Jac(W;ag). By Proposition [3.15, each Batyrev
element B; is mapped to (exp¢;)Z; for [ = 1,...,m. Since B, = (exp ¢;)S; by Proposition
, it follows that S} is mapped to Z; for [ =1,...,m. Il

We conjecture that Theorem holds true for any compact toric manifold:

Conjecture 6.7. Let X be a compact toric manifold, not necessarily semi-Fano. Then the
isomorphism (L.4) maps the normalized Seidel elements S € QH*(X,w,) to the genemtorfﬂ
Zy of the Jacobian ring JaC(WqLF), where Z; are monomials defined by Equation (2.2)).

Example 6.8. Consider the semi-Fano toric surface X whose moment map image is shown
in Figure @ The disc potential WqLF and generating functions 6;(q) of X were computed in
[B]. The key result is that ni(B) = 1 when B is an admissible disc class, and ny(5) = 0
otherwise. Admissibility is a combinatoric condition which is easy to check, and the readers
are referred to [B] for the detailed definitions and results.

FIGURE 3. An example of semi-Fano toric surface (X3 in [5, Appendix A]).

The generating functions corresponding to Dy, Dy, D3 are

01(¢) = @1 + 192 + 19245,
52(q) = @2 + NGz + G203 + 116203 + ©1G5G3,
03(q) = g3 + @243 + 16243

8When X is not even semi-Fano, I/VqLF is in general a Laurent series, instead of a Laurent polynomial, over
the Novikov ring. Nevertheless we can still define the monomials Z; by Equation (2.2)).
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respectively, where q;’s are the Kdahler parameters of D;’s for i = 1,2,3. FEach term in the
above generation functions corresponds to an admissible disc class.

On the other hand, the mirror map s given by
¢ = ¢ exp (201(G1, G2, G3) — 92(Gu, G, G3)) ;
@2 = Gaexp (= g1(Gu, G2, Gs) + 292(G1, G2, Gs) — 93(Ga, G2, Gs) )
a3 = gsexp (— 92(q, G, @3) + 293(G1, o, G3))
where

b ec —1)2%(2a —b—1
S i (=1)™( )!

Nhls g, l(a—2b+ ¢)!(b—2¢)! .

91(G1, G2, G3) =
(a,b,c)

2b—a—c
vavbvc ) (2b_a_c_1)'
92(d1, oy G5) = Y G345 ale!(b —2a)!(b — 2¢)!

(a,b,c)

1)20 b(2c_b_ 1)
~a ~b ~c
93(d1, G2, @s) = ) 414545 ua_25+c) (b 2a)!

(a,b,c)

where the summations are over all (a,b,c) € Z* such that the term before each factorial sign
is mon-negative. By Theorem we have 1+ 0;(q(¢)) = expgi(q) for i = 1,2,3. This
produces non-trivial identities between hypergeometric series, and hence a closed formula for
the inverse mirror map G(q):

= - I+ a2+ @192 + 243 + 14293 + Q1QSCI3.
(14 a1 + @192 + 19293)?
3 ' 1+ aq +a1q2 + (162q3) (1 + g3 + 2G5 + 01G23)
(1+ g2+ q1¢2 + ¢203 + 0192q3 + 019393)*
I+ ¢+ q@1q2 + 293 + 19293 + 91612(13
(14 g3 + 203 + q19293)?

43 =q3 -

6.3. Equivalence of results. In fact the statements in Corollary [6.6]and Theorems[1.2 [6.5]
and are all equivalent to each other. We have seen that Theorem implies Corollary
which then implies Theorem [1.2 [1.2] Conversely, suppose that we have Theorem [1.2] i.e. the
formula W = WHV holds. Then we have

g [J+0(@)” " = Gile), k=1,....,m—n.
=1

(this is Corollary [6.6). On the other hand, McDuff-Tolman [30, Proposition 5.2] show that
the normalized Seidel elements S7(q) satisfy the multiplicative relations:

15" =q*
=1



OPEN GW, MIRROR MAPS, AND SEIDEL REPRESENTATIONS FOR TORIC 39

for any d € Hy(X,Z). Together with the multiplicative relations (3.4)) satisfied by the Batyrev
elements and Proposition (6.1, we obtain

(64) [T+ @) =TT exp (gu(aa)) ™

=1 =1
for any d € Ho(X,Z). To see that this implies Theorem , we need the followinﬂ
Lemma 6.9. If g;(§) vanishes, then so does 6,(q).

Proof. Suppose that 6; # 0. Then there exists v € Hy(X) represented by a rational curve
with Chern number zero such that ng 4, 7# 0. The class « is represented by a tree C' of
raional curves in X. Let C” be the irreducible component of C' which intersects with the disk
representing ;. Let d = [C'] € Hy(X). Then the Chern number of d is also zero since X is
semi-Fano. Furthermore, D; - d < 0 because the invariance of ng,,, under deformation of the
Lagrangian torus fiber L implies that C’ is contained inside the toric divisor D;. We claim
that D; -d > 0 for all j # . When n = 2, this is obvious. When n > 3, D; -d < 0 for
some other j # [ implies that the curve C” is contained inside the codimension two subvariety
D; N D;. However, the intersection of C’ with the disk representing /; cannot be inside
D; N Dj since §; has Maslov index 2. So we conclude that D; -d > 0 for all j # [. Thus
d = [C'] € Hy(X) satisfies the properties that

—Kx-d=0,D;-d<0and Dj-d>0 for all j #1,

which contributes to a term of ¢;(¢), and hence g;(§) # 0 (distinct d leads to distinct ¢¢, and
hence they do not cancel each other). U

Now consider 4(q) := log (e™9(1+§,(¢))), | = 1,...,m. By [19, Proposition 4.3], g,
vanishes if and only if v; is a vertex of the fan polytope of X, and any convex polytope with
nonempty interior in R"” has at least n 4+ 1 vertices, so at least n + 1 of the functions g
are vanishing (cf. [I9, Corollary 4.6]). Thus the above lemma implies that at least n + 1
of the functions A; are vanishing. Without loss of generality, assume that gy,...,gs (with
s < m —n — 1) are the non-vanishing functions so that A; = 0 for [ > s. Taking logarithms
on both sides of we have the following equality for any d € Ho(X, Z):

S

(6.5) > (Di-d) Aifq) =0.

=1

For [ = 1,...,s (when v; is not a vertex of the fan polytope), recall that F(v;) is the
minimal face of the fan polytope of X containing v;. Then F'(v;) is the convex hull of
primitive generators v,,, ..., v, which are vertices of the fan polytope of X. So there exist
integers ay,...,ag, b > 0 such that ajv,, + ... + ayv,, — by = 0. This primitive relation
corresponds to a class d; € Ho(X,Z) such that D;-d; = —b; <0, Dy, -d; = a; and D, -d; =0
when r is none of [, py,...,px. (cf. proof of [19, Theorem 1.2].) Then the Equation for
the class d = d; is simply given by

—blAl = 0,
whence 4; =0 for [ =1,...,s. This proves Theorem [6.5]

9This lemma is obviously a consequence of Theorem but here we need to prove it without assuming
Theorem [6.5
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We have seen that Theorem implies Theorem [I.2] which in turn implies Theorem [L.5]

If we assume Theorem , i.e. the isomorphism maps Sy to Z; for [ = 1,...,m, then
the elements B, € QH*(X,w,) defined by B; := (1 + §)S7 satisfy the conditions (i), (ii)
and (iii) of [19, Theorem 1.2], which states that these conditions completely characterize the
Batyrev elements, so that we have B, = B, in QH*(X,w,). Theorem then follows from
Proposition [6.1} Hence Theorem [I.5]is also equivalent to Theorem [6.5]
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