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Abstract. In this note, we study the SYZ mirror construction for a toric

Calabi-Yau manifold using instanton corrections coming from Woodward’s

quasimap Floer theory [40] instead of Fukaya-Oh-Ohta-Ono’s Lagrangian Floer
theory [18, 19, 20, 21]. We show that the resulting SYZ mirror coincides with

the one written down via physical means [33, 30, 29] (as expected).

1. Introduction

The famous SYZ conjecture, proposed by Strominger, Yau and Zaslow [36] in
1996, claims that mirror symmetry can be explained as a duality between La-
grangian torus fibrations. This suggests a nice geometric construction of the mirror
for a given Calabi-Yau manifold X, namely, a mirror X̌ is given by the total space
of the fiberwise dual of a Lagrangian torus fibration ρ : X → B on X. However, this
construction cannot be right in general because usually a Lagrangian torus fibration
admits singular fibers (which account for instanton corrections that make mirror
symmetry interesting and powerful in applications to enumerative problems).

So we can only perform the duality over the smooth fibers. Since there is an
integral affine structure (with singularities) on the base B induced from ρ : X → B,
we have a natural complex structure J̌0 on the total space of the dual fibration. But
J̌0 is defined only on an open dense subset of the mirror (as we have removed the
singular fibers) and it cannot be extended any further due to nontrivial monodromy
of the integral affine structure around the discriminant locus. Here comes the most
important idea in the SYZ proposal [36]: one has to modify the mirror complex
structure (so-called semi-flat complex structure) by instanton corrections coming
from holomorphic disks in X with boundaries on smooth Lagrangian torus fibers
of ρ : X → B.

In terms of Lagrangian Floer theory, this means that the mirror X̌ should be
given as a moduli space of pairs (L,∇) consisting of a Lagrangian torus fiber L
and a flat U(1) connection ∇ on L, where the equivalence relation is given by
isomorphisms in the Fukaya A∞ category of X instead of just Hamiltonian iso-
topies [18, 2, 3, 1]. From this viewpoint, when the target manifold is a symplectic
quotient, one can as well try to construct the mirror as a moduli space of pairs
(L,∇) where the equivalence relation is now given by isomorphisms in Woodward’s
quasimap A∞ category [40]. Indeed the modified gluing given by the corresponding
wall-crossing formulas would still cancel the nontrivial monodromy of the semi-flat
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complex structure around the discriminant locus. We call the resulting mirror the
quasimap SYZ mirror for X.

In physical terms, such a mirror is precisely what one would get by applying
duality on gauged linear sigma models (GLSMs). Thus it is natural to expect
that the quasimap SYZ mirrors would coincide with the ones written down by
physicists [33, 30, 29], and it would differ from the original SYZ mirror by a mirror
transformation, or equivalently, the quantum Kirwan map [45, 41, 42, 43]. We are
going to see that this is indeed the case when X is a toric Calabi-Yau manifold.

2. Woodward’s quasimap Floer theory

Let G be a compact connected Lie group and g be its Lie algebra. Let (X̃, ω̃)

be a Hamiltonian G-manifold of real dimension 2m with moment map µ : X̃ → g∗.
We assume that (X̃, ω̃) is aspherical, meaning that

∫
S2 ϕ

∗ω̃ = 0 for any smooth

map ϕ : S2 → X̃. Suppose that G acts freely on the level set µ−1(0) so that the
symplectic quotient

X := X̃ �G = µ−1(0)/G

is a smooth symplectic manifold equipped with the reduced symplectic structure
ω := ω̃red; more generally, one can relax this condition a bit by assuming that the
action has finite stabilizers so that X is a symplectic orbifold.

Let L ⊂ X be an embedded compact Lagrangian submanifold. Then its preim-
age L̃ = µ−1(L) is a G-Lagrangian in X̃, i.e. an embedded G-invariant La-
grangian submanifold contained in µ−1(0). We equip L with a brane structure,
i.e. a G-equivariant spin structure and a flat U(1)-connection ∇ on L, where
the gauge equivalence class of ∇ is determined by its holonomy exp 2π〈b, ·〉 ∈
Hom(H1(L), U(1)) ∼= H1(L;R)/H1(L,Z).1

In [40] (see also [39]), Woodward developed a quasimap Floer theory as the zero-
area limit of Frauenfelder’s gauged Lagrangian Floer theory [16, 17]. The latter
theory counts pairs (A, u) consisting of a connection A ∈ Ω1(Σ, g) on an open

Riemann surface Σ and a map u : Σ→ X̃ satisfying the vortex equations

∂̄Au = 0, FA + u∗µVolε = 0,

and Lagrangian boundary conditions; here Volε = εVol0 is a multiple of a fixed
area form Vol0 on Σ. This can be regarded as an open-string counterpart of the
symplectic vortex equations [11, 22].

Woodward [40] observed that the zero-area limit ε → 0 of gauged Lagrangian
Floer theory defines a cohomology theory which gives an obstruction to displace-
ability of Lagrangian submanifolds in the symplectic quotient X that is much more
computable than the ordinary Lagrangian Floer cohomology [18]. This was applied
successfully to the displaceability problem for manifolds and even orbifolds, espe-
cially in the toric case [38]. We will not go into the details of Woodward’s theory
here; instead we refer the interested readers to the original papers [40, 39] for details
and to e.g. [44, Appendix A] for an overview. In the following we will only recall
the results we need.

1Strictly speaking, due to convergence issues, one should use Novikov coefficients Λ instead
of complex coefficients, but this technicality will be ignored in this note for simplicity in our

exposition and because convergence is not a problem in all our examples.
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Given a G-Lagrangian L̃ equipped with a brane structure b, Woodward con-
structed an A∞ algebra QA∞(L̃, b), called the quasimap A∞ algebra, using so-called
quasi-disks:2

Definition 2.1. Let L̃ be a G-Lagrangian in X̃ and J be a G-invariant compat-
ible almost complex structure on X̃. A holomorphic quasidisk for L = µ(L̃) is a

J-holomorphic map u : D → X̃ from the unit disk D ⊂ C (equipped with the stan-

dard complex structure) which maps the boundary ∂D to L̃. An isomorphism of

quasidisks uj : D → X̃, j = 0, 1 consists of a biholomorphism ϕ : D → D and an
element g ∈ G such that ϕ∗u1 = gu0.

The definition of quasidisk invariants in [40] does not involve Kuranishi struc-
tures, and thus is considerably simpler than that of open Gromov-Witten invariants
[18, 19, 20, 21]. The quasidisk invariants are also much easier to compute since there

are no sphere bubbling for quasidisks which are just holomorphic disks in X̃.

Proposition 2.2 (Proposition 3.7 in [40]). Let L̃ be a G-Lagrangian in X̃. Sup-

pose that J0 is a G-invariant compatible almost complex structure on X̃ (satisfying
a certain convexity condition [44, Condition (H3)]) such that every non-constant

stable J0-holomorphic disk in (X̃, L̃) is regular and has Maslov index at least 2.

Then the A∞ algebra QA∞(L̃, b) is weakly unobstructed, i.e. the central charge

m0(1) of QA∞(L̃, b) is a multiple of 1L ∈ H0(L;C) for any brane structure b on L
and is given by the following formula

mb0(1) =
∑

[u]:I(u)=2

q−
∫
D
u∗ω̃e2π〈b,∂u〉1L,

where I(u) is the Maslov index of u so that the sum is over isomorphism classes of
all Maslov index 2 quasidisks.

When QA∞(L̃, b) is weakly unobstructed, we call

WQF(L, b) :=
∑

[u]:I(u)=2

q−
∫
D
u∗ω̃e2π〈b,∂u〉

the quasimap Floer superpotential for (L, b). In this case, mb1 ◦mb1 = 0, so that the

quasimap Floer cohomology HQF (L̃, b) is well-defined. The cohomology vanishes
if L is displaceable but is non-vanishing if (L, b) is a critical point of the function
WQF, thus giving rise to an obstruction to the non-displaceability of L in X.

From now on, we will restrict ourselves to the toric case, and we shall recall
Woodward’s computation in this case. We take X̃ = Cm equipped with the stan-
dard symplectic structure ω0. Consider the diagonal action of Tm on Cm. Let
G ⊂ Tm be a subtorus with moment map µ : X̃ → g∗. We assume that G acts on
µ−1(0) freely so that the quotient

X = µ−1(0)/G

is a toric manifold, equipped with the residual action of T := Tm/G and moment
map

φ : X → t∗.

2In order to define the A∞ structure, one in fact needs to consider moduli spaces of holomorphic

treed quasidisks which are configurations consisting of gradient flow lines (after choosing a Morse

function and a Riemannian metric on L) and holomorphic disks in X̃ with boundary on L̃. But

for the purpose of this note, we only need to consider holomorphic quasidisks.
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The moment map image is given by a convex polyhedron

∆ := φ(X) = {x ∈ t∗ | `i(x) ≥ 0},
where for each i = 1, . . . ,m, `i(x) := 2π (〈x, vi〉 − λi) is the defining linear function
for a facet of ∆, the lattice vector vi ∈ N := Zn is the (inward) normal to the facet
and λi ∈ R is a constant. We will identify t with N ⊗Z R and t∗ with M ⊗Z R as
vector spaces, where M = N∨ = Hom(N,Z) is the dual lattice.

For each x ∈ Int(∆), the moment map fiber Lx := φ−1(x) ⊂ X is a Lagrangian

torus, whose preimage L̃x ⊂ Cm is a standard torus

L̃x = {(X1, . . . , Xm) ∈ Cm | |Xi|2 = `i(x)/2π for i = 1, . . . ,m}.
Let J0 be the standard complex structure on Cm. Then we have the following
results (as special cases of the main results in Cho-Oh [10]).

Proposition 2.3 (Proposition 6.1 and Corollary 6.2 in [40]). Any holomorphic

quasidisk in X̃ = Cm with boundary in L̃x is given by a Blaschke product

u(z) =

(√
`i(x)

2π

di∏
k=1

z − αi,k
1− αi,kz

)m
i=1

.

Also, every stable J0-holomorphic disk is regular.

Furthermore, all quasidisks have Maslov indices at least 2. Combining with
Proposition 2.2, we have

Proposition 2.4 (Corollary 6.4 in [40]). The quasimap A∞ algebra QA∞(L̃x, b) is

weakly unobstructed for any b ∈ H1(L̃x;C), and the quasimap Floer superpotential

WQF : H1(L̃x;C)/H1(L̃x;Z)→ C is given by

WQF(b) =

m∑
i=1

e2π〈b,vi〉q−`i(x).

The function WQF coincides with the Givental-Hori-Vafa superpotential [23, 30]
for the toric manifold X.

3. Quasimap SYZ construction

3.1. Toric Calabi-Yau manifolds and their physical mirrors. We now let X
be a toric Calabi-Yau manifold of complex dimension n; here by Calabi-Yau we
mean that the canonical line bundle KX is trivial. Recall that the lattice vectors
v1, . . . , vm ∈ N are in a one-to-one correspondence with the toric prime divisors
D1, . . . , Dm ⊂ X respectively, and the canonical divisor of X is given by −

∑m
i=1Di.

So X is Calabi-Yau if and only if there exists a lattice vector u ∈ M such that
〈u, vi〉 = 1 for i = 1, . . . ,m [14]. Alternatively, this is equivalent to the existence of
u ∈ M such that the corresponding character χu ∈ Hom(M ⊗Z C×,C×) defines a
holomorphic function on X with simple zeros exactly along each of the toric prime
divisors Di’s and non-vanishing elsewhere. Note that X is necessarily noncompact
in this case.

By choosing a suitable basis of N ∼= Zn, we may write

vi = (wi, 1) ∈ N = Zn−1 ⊕ Z,
where wi ∈ Zn−1 and wm = 0 ∈ Zn−1. We will also assume that X is semi-
projective, meaning that the natural map φ : X → Spec(H0(OX)) is projective;
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combinatorially this is equivalent to convexity of the support of the fan Σ of X [14,
p.332]. In this case, the toric Calabi-Yau manifold X is a crepant resolution of an
affine toric variety (defined by the cone |Σ|) with Gorenstein canonical singularities;
also, X can be presented as a symplectic quotient

X = µ−1(0)/G,

where G ⊂ Tm is a subtorus of dimension r := m− n.
An important class of examples of toric Calabi-Yau manifolds is given by total

spaces of the canonical line bundles KY over compact toric manifolds Y . For
example, the total space of KP1 = OP1(−2) is a toric Calabi-Yau surface whose fan
Σ has rays spanned by the lattice vectors

v1 = (1, 1), v2 = (0, 1), v2 = (−1, 1, 1), v3 = (−1, 1) ∈ N = Z2.

Another example is given by the total space of KP2 = OP2(−3), which is a toric
Calabi-Yau 3-fold whose fan Σ has rays spanned by the lattice vectors

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1,−1, 1), v4 = (0, 0, 1) ∈ N = Z3.

Mirror symmetry in this setting is known as local mirror symmetry because it
originated from an application of mirror symmetry techniques to Fano surfaces (e.g
P2) lying inside compact Calabi-Yau manifolds and could be derived via physical
arguments from mirror symmetry for compact Calabi-Yau hypersurfaces in toric
varieties by taking certain limits in the complexified Kähler and complex moduli
spaces [31].

The mirror of a toric Calabi-Yau manifold X is predicted to be a family of affine
hypersurfaces in C2 × (C×)n−1 [33, 9, 30, 29] explicitly written as

(3.1) X̌t =

{
(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 | uv =

m∑
i=1

Čiz
wi

}
,

where the coefficients Či ∈ C are constants (without loss of generality, we will set
Čm = 1) subject to the constraints

ta =

m∏
i=1

ČDi·γa
i , a = 1, . . . , r;

here t = (t1, . . . , tr) are coordinates on the mirror complex moduli M̌B := K∨ ⊗Z
C× ∼= (C×)r. X̌t is Calabi-Yau since

Ω̌t := Res

[
du ∧ dv ∧ d log z1 ∧ · · · ∧ d log zn−1

uv −
∑m
i=1 Čiz

wi

]
is a nowhere vanishing holomorphic volume form on X̌t.

The mirror of X = KP1 is given by

X̌t =

{
(u, v, z) ∈ C2 × C× | uv = 1 + z +

t

z

}
,

while the mirror of X = KP2 is given by

X̌t =

{
(u, v, z1, z2) ∈ C2 × (C×)2 | uv = 1 + z1 + z2 +

t

z1z2

}
;

here t is a coordinate on the mirror complex moduli M̌B
∼= C× in both examples.
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3.2. Constructing mirrors by SYZ. As we have mentioned in the introduction,
the SYZ proposal [36] suggests a way to construct a mirror (as a complex manifold)
for a given Calabi-Yau manifold X (regarded as a symplectic manifold), namely, by
fiberwise dualizing a Lagrangian torus fibration ρ : X → B on (X,ω). In general
this does not give the correct mirror due to the existence of singular fibers in ρ,
which prevent the natural semi-flat complex structure J̌0 on the total space of the
dual fibration from extending across the singular fibers; another way to formulate
this problem is to say that J̌0 has nontrivial monodromy around the discriminant
locus coming from nontrivial monodromy of the integral affine structure on the
smooth locus B0 ⊂ B.

In the original SYZ paper [36], it was suggested that the genuine complex struc-
ture should be given by a deformation of J̌0 by nontrivial instanton corrections
coming from holomorphic disk counting invariants. In the toric Calabi-Yau case,
such instanton corrections are given precisely by the genus 0 open Gromov-Witten
invariants. The key observation in this note is that, for the purpose of just can-
celling the nontrivial monodromy, one can as well use quasidisk invariants instead
of genus 0 open Gromov-Witten invariants. This leads to the mirror construction
described as follows.

We start with a Lagrangian torus fibration

ρ : X → B

on (X,ω). We assume that this fibration comes from the fiberwise quotient of a

fibration on X̃; more precisely, we assume that there exists a G-Lagrangian torus
fibration

ρ̃ : X̃ → B̃

on (X̃, ω̃) such that

• B sits inside B̃ as an affine submanifold, and
• ρ is given by the fiberwise quotient of the restriction of ρ̃ to µ−1(0) by G.

The quasimap SYZ mirror construction then proceeds as follows (mimicking the
ordinary SYZ mirror construction [2, 3, 1, 5, 4]):

Step 1 Over the smooth locus B0 := B \ (∂B ∪ Γ), the pre-image X0 := ρ−1(B0)
can be identified with the quotient T ∗B0/Λ

∨ by Duistermaat’s action-angle
coordinates [15].

Step 2 Define the semi-flat mirror X̌0 as TB0/Λ, which is not the correct mir-
ror because the natural semi-flat complex structure J̌0 on X̌0 cannot be
extended further to any (partial) compactification of X̌0 due to nontrivial
monodromy of the integral affine structure on B0 around the discriminant
locus Γ.

Step 3 Obtain the correct and (partially) compactified mirror X̌ ⊃ X̌0 by modify-
ing the gluing of complex charts in X̌0 using the wall-crossing formulas for
the counting of quasi-disks bounded by fibers of ρ (or more correctly, their
lifts as fibers of ρ̃).

In the case of the usual SYZ construction where one uses Lagrangian Floer
theory, such a procedure was first pioneered by Auroux [2, 3] where he treated the
first nontrivial example of toric Calabi-Yau manifolds, namely, for X = Cn. His
results were later generalized to all (semi-projective) toric Calabi-Yau manifolds in
[5] and orbifolds in [4], and also certain blowups of toric varieties in [1].
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The SYZ mirror constructed in this way can be rigorously defined as a mod-
uli space of objects in the Fukaya A∞ category; see [1, Appendix A] for a nice
and detailed explanation. We expect that the quasimap SYZ mirror has a similar
interpretation using Woodward’s quasimap A∞ category.

3.3. The Gross fibration. Here we recall the construction of the Gross fibration
on a toric Calabi-Yau manifold X.3

To begin with, recall that the lattice vector u ∈ M ⊂ t∗, which defines the
hyperplane containing all the ray generators vi’s, corresponds to a holomorphic
function χu : X → C with simple zeros along each toric prime divisor Di ⊂ X. We
equip X with a toric Kähler structure ω and consider the action by the subtorus
T0 ⊂ T ∼= Tn which preserves χu, or equivalently, the subtorus whose action
preserves the canonical holomorphic volume form Ω on X. Let ρ0 : X → Rn−1 be
the corresponding moment map which is given by composing the T -moment map
with the projection along the ray in t∗ spanned by u.

Proposition 3.1 (Goldstein [24], Gross [26]). For any nonzero constant ε ∈ C×,
the map defined by

ρ := (ρ0, |χu − ε|) : X → B := Rn−1 × R≥0,

is a special Lagrangian torus fibration, where the fibers are special with respect to
the meromorphic volume form

Ωε :=
Ω

χu − ε
.

We call ρ the Gross fibration, which is non-toric in the sense that its fibers are
not invariant under the T -action. Its discriminant locus can be explicitly described,
namely, a fiber of ρ is singular if and only if either

• it intersects nontrivially with (and hence is contained inside) the hypersur-
face Dε ⊂ X defined by χu = ε, in which case the fiber is mapped to a
point on the boundary ∂B = Rn−1 × {0}, or
• it contains a point where the T0-action is not free, i.e. when at least two

of the homogeneous coordinates on X vanish, in which case the fiber is
mapped to the image Γ of the codimension 2 subvariety⋃

i 6=j

Di ∩Dj

under ρ.

We regard B as a (tropical) affine manifold with boundary ∂B and singularities Γ.
Note that Γ is a real codimension 2 subset in B.

By definition, the wall(s) in the base of a Lagrangian torus fibration is the loci
of smooth fibers which bound nonconstant Maslov index 0 holomorphic disks in X.
For the Gross fibration on a toric Calabi-Yau manifold, there is a unique wall given
by the hyperplane

H := Rn−1 × {|ε|} ⊂ B,

3Such fibrations were in fact first independently constructed by Gross [26] and Goldstein [24],

but we prefer the term “Gross fibration” because Gross did a detailed analysis of the discriminant
loci of the fibrations and constructed such fibrations mainly for the purpose of understanding SYZ

mirror symmetry.
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|ε|

B−

B+

Figure 1. The base of the Gross fibration for X = KP2

which is parallel to the boundary ∂B. The wall H contains the discriminant locus
Γ as a tropical hypersurface, and it divides the base B into two chambers:

B+ := Rn−1 × (|ε|,+∞), B− := Rn−1 × (0, |ε|)
The Lagrangian torus fibers over B+ and B− behave differently in a Floer-theoretic
sense, and this leads to nontrivial wall-crossing formulas which were used to con-
struct the SYZ mirror for X [2, 3, 1, 5, 4].

For example, the base B of the Gross fibration on X = KP2 is an upper half space
in R3, and the discriminant locus is a graph which is contained in a hyperplane H
parallel to the boundary ∂B, as described in Figure 1.

For our purpose, a simple but key observation is that the Gross fibration satisfies
all the assumptions in the previous subsection. Indeed, it is not hard to see that ρ
is nothing but the fiberwise quotient of the Harvey-Lawson fibration on Cm [28]:

ρ̃ : Cm → B̃ := Rm−1 × R≥0,
(X1, . . . , Xm) 7→

(
|X1|2 − |Xm|2, . . . , |Xm−1|2 − |Xm|2, |X1X2 · · ·Xm − ε|

)
.

(3.2)

Lemma 3.2. The Gross fibration ρ : X → B is given by the fiberwise quotient of
ρ̃|µ−1(0) by the r-dimensional subtorus G ⊂ Tm.

Proof. This follows by noting that the preimage of a fiber of the T -moment map is
a standard torus in Cm, and that the holomorphic function χu : X → C is lifted to
the monomial X1X2 · · ·Xm : Cm → C. �

The embedding of affine manifolds B ↪→ B̃ can be explicitly seen as follows.
Recall that there is an exact sequence

0→ g→ Rm → t→ 0.

Dualizing, we have
0→ t∗ → (Rm)

∗ → g∗ → 0,



QUASIMAP SYZ FOR TORIC CY 9

|ε|

B−

B+

Figure 2. The base of the Gross fibration forKP1 contained inside
the base of the Harvey-Lawson fibration for C3

where the first map

t∗ ↪→ (Rm)
∗

is defined by

x 7→ (`1(x), . . . , `m(x)) .

Let t0 be the Lie algebra of the subtorus T0 ⊂ T which preserves the holomorphic
volume form Ω on X, and let R0 denote the Lie algebra of the subtorus (Tm)0 ⊂ Tm
which preserves the holomorphic volume form dX1 ∧ · · · ∧ dXm on Cm. Then the
above map induces an embedding

t∗0 ↪→ R∗0

which in turn defines the embedding

(3.3) B ↪→ B̃.

From this we can see that the fiberwise quotient respects the wall and chamber
structures, namely, fibers over the wall H (resp. the chambers B+ and B−) in the
base of the Gross fibration are exactly quotients by G of fibers over the wall H
(resp. the chambers B+ and B−) in the base of the Harvey-Lawson fibration.

For instance, we may consider X = KP1 = C3 �S1. The embedding (3.3) in this
example is shown in Figure 2.

3.4. Wall-crossing for quasidisk invariants and the SYZ mirror. Just as in
the case of Lagrangian Floer theory [2, 3, 1, 5, 4], when fibers of ρ̃ over different
chambers of B are identified by a wall-crossing gluing map, the quasimap Floer
superpotentials are identified. This is precisely how we compute the instanton
corrections and construct the SYZ mirror.
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We consider the number of Maslov index 2 stable quasidisks for the Lagrangian
fibers of ρ. Geometrically, Maslov index 2 means that the stable quasidisks intersect
with the hypersurface D̃ε, which is defined as the zero set of X1X2 · · ·Xm − ε, in
Cm at only one point with multiplicity one. As one moves from one chamber
to the other by crossing the wall H, the number of Maslov index 2 quasidisks
bounded by the corresponding Lagrangian torus fiber jumps, exhibiting a wall-
crossing phenomenon.

Lemma 3.3. For any Lagrangian torus fiber L̃ over the chambers B+ and B−,

every non-constant stable holomorphic disk in (X̃, L̃) has positive Maslov index
and is regular under the standard complex structure J0.

Proof. Fibers over B+ are Hamiltonian isotopic to moment map fibers which are
standard tori in Cm, so this follows from [40, Corollary 6.2] which in turn fol-
lows from Cho-Oh’s classification results [10] and an induction argument as in [19,
Theorem 11.1] (see also [40, Corollary 6.2]).

Fibers over B− are Hamiltonian isotopic to the Chekanov tori [3] in Cm, so we
can apply the classification in [3] or [5, Lemma 4.31] which says that there is a
unique quasidisk, and then apply induction again for proving the regularity for
stable disks, just as in [40, Corollary 6.2]. �

Proposition 3.4. The central charge m0(1) of the quasimap A∞ algebra is given
by

mb0(1) =

{ ∑m
i=1 Čiv

−1zwi if L is over B+,
u if L is over B−.

Proof. The lifts of fibers over B+ of Clifford type and they are Hamiltonian isotopic
to standard tori in Cm, so they bound as many disks as a standard torus in Cm. In
this case, the formula follows from the classification results of Cho-Oh [10, Theorem
5.2] and their area formula [10, Theorem 8.1] which gives e2π〈b,vi〉q−`i(x) = Čiv

−1zwi

for i = 1, . . . ,m. For fibers over B−, their lifts are of Chekanov type, so they bound
only one (family of) disks as shown in [3, Example 3.3.1] or [5, Lemma 4.31]. �

The resulting wall-crossing formula:

u = v−1
m∑
i=1

Čiz
wi

is exactly what we need in order to get the correct mirror. More precisely, we
modify the gluing between the complex charts X̌+ = TB+/Λ and X̌− = TB−/Λ
using the wall-crossing formula. This cancels the nontrivial monodromy of the
complex structure around the discriminant locus Γ ⊂ B and produces the following
quasimap SYZ mirror:

Theorem 3.5. The quasimap SYZ mirror for the toric Calabi-Yau manifold X is
given by the family of affine hypersurfaces

(3.4) X̌q =

{
(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 | uv =

m∑
i=1

Čiz
wi

}
,

where the coefficients Či ∈ C are constants (with Čm = 1) subject to the constraints

qa =

m∏
i=1

CDi·γa
i , a = 1, . . . , r;
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here zw denotes the monomial zw
1

1 . . . zw
n−1

n−1 for w = (w1, . . . , wn−1) ∈ Zn−1, qd

denotes exp
(
−
∫
d
ωC
)

which can be expressed in terms of the complexified Kähler
parameters q1, . . . , qr, and β1, . . . , βm ∈ π2(X,L) are the basic disk classes as before.

Notice that the quasimap SYZ mirror family (3.4) is entirely written in terms of
symplectic-geometric information such as complexified Kähler parameters and qua-
sidisk invariants of X, and it coincides with the mirror (3.1) predicted by physical
arguments [33, 9, 29].

Remark 3.6. Strictly speaking, this is the SYZ mirror for the complement of a
hypersurface Dε (zero set of the function χu − ε) in X only; the SYZ mirror of X
itself should be given by the Landau-Ginzburg model (X̌,W ) where the superpotential
is the function W := u.

Remark 3.7. As in [40, 38], all the computations of quasidisk invariants and
constructions above can be generalized (in a straightforward way) to toric Calabi-
Yau orbifolds.

On the other hand, the SYZ mirror for Cm with respect to the Harvey-Lawson
fibration (3.2) is given by

(Cm)∨ =
{

(u, v, Z1, . . . , Zm−1) ∈ C2 × (C×)m−1 | uv = 1 + Z1 + · · ·+ Zm−1
}
.

Notice that X̌q embeds into (Cm)∨ by

u = u, v = v, Zi = Čiz
wi for i = 1, . . . ,m− 1

via the embedding (3.3); this is mirror to the fact that X is a quotient of Cm, very
much like the case of compact toric manifolds as shown in [7, 8].

Example 3.8. The SYZ mirror of X = KP2 is given by

(3.5) X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 | uv = 1 + z1 + z2 +

q

z1z2

}
,

where q is the Kähler parameter which measures the symplectic area of a projective
line contained inside the zero section of KP2 over P2. It embeds into the SYZ mirror
of C4:

(C4)∨ =
{

(u, v, Z1, . . . , Z3) ∈ C2 × (C×)3 | uv = 1 + Z1 + Z2 + Z3

}
as the hypersurface defined by Z1Z2Z3 = q.

4. Discussions

4.1. To deform the semi-flat complex structure J̌0 on the mirror X̌0 so that it
can be extended across the singular fibers, we only need to cancel its nontrivial
monodromy around the discriminant locus Γ. But this condition is not sufficient to
uniquely determine the genus 0 open Gromov-Witten invariants; indeed we are ex-
ploiting this flexibility in order to use quasidisk invariants instead of open Gromov-
Witten invariants to implement the SYZ mirror construction.

If one imposes further the normalization condition proposed by Gross-Siebert in
their program [27], which is equivalently to asking that the mirror be written in
canonical coordinates [34], then the instanton corrections are uniquely determined
and can be shown to be precisely given by genus 0 open Gromov-Witten invariants
[32]. This leads to the following question: could one give a geometric explanation
for why the open Gromov-Witten potentials satisfy the normalization condition?
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Fukaya-Oh-Ohta-Ono [21] was able to obtain a Frobenius manifold structure on
the total cohomology of a compact toric manifold using bulk-deformed genus 0 open
Gromov-Witten invariants, and they proved that this is isomorphic to the B-model
Frobenius manifold coming from Saito’s theory of singularities [35]. It is natural
to ask if the Frobenius structure on the total cohomology is more or less unique.
If this is the case, then an analogous construction in the case of toric Calabi-Yau
manifolds would give an answer to the above question.

4.2. In [6, 4], it was proved that the so-called SYZ map, which is defined in terms of
generating functions of genus 0 open Gromov-Witten invariants, coincides with the
inverse of the toric mirror map for any semi-projective toric Calabi-Yau manifold.
The analogue of the SYZ map in the quasimap setting would just be the identity
map t(q) = q. This is expected because the quasimap SYZ mirror is identical to
the physical mirror, which differs from the usual SYZ mirror by a mirror map. We
believe that there is a family of SYZ mirrors (and hence a family of SYZ maps)
interpolating between the quasimap SYZ mirror and Lagrangian Floer SYZ mirror,
which can be described as follows.

What we need is an open-string version of the (genus 0) moduli spaces con-
structed by Venugopalan in [37]. Her theory is a symplectic version of the theory of
stable quasimaps due to Ciocan-Fontanine, Kim and Maulik [13]. More precisely,
Venugopalan considers the space of finite energy vortices defined on Riemann sur-
faces obtained from nodal curves with infinite cylinders in the places of nodal and
marked points. She showed that this space can be compactified by stable vortices
which incorporate both breaking of cylinders and sphere bubbling in the fibers,
and she proved that the compactified space is homeomorphic to the corresponding
moduli space of stable quasimaps defined in [13].

It is natural to expect that the SYZ construction can still be implemented using
an open-string analogue of Venugopalan’s invariants (in genus 0) in place of Fukaya-
Oh-Ohta-Ono’s genus 0 open Gromov-Witten invariants. This would produce a
family of SYZ mirrors X̌ε and define an ε-SYZ map.

Conjecture 4.1. The ε-SYZ map coincides with the inverse of the ε-mirror map.

Here, the ε-mirror map should be given by the 1/z-coefficient of the H2(X)-part
of the function I − Jεsm, where Jεsm is the small ε-J-function defined in [12] using
the moduli space of genus 0 stable quasimaps. In general, Jεsm is a truncation of
the classical I-function. When ε = 0, J0

sm = I is the I-function itself so that the
ε-mirror map is nothing but the identity map. When ε → ∞, the ε-mirror map is
the usual mirror map, and the above conjecture reduces to the open mirror theorem
established in [6, 4].

Remark 4.2. Note that we are not proposing to use the open-string analogue of
gauged Gromov-Witten theory, i.e. counting of solutions of the symplectic vortex
equations [11, 22] (for a survey on this theory and its applications, see e.g. [25])
because there is no wall-crossing in gauged Gromov-Witten theory as the parameter
ε moves and all the information is captured by the quantum Kirwan map [45, 41,
42, 43]. In contrast, there is nontrivial wall-crossing phenomenon in the quasimap
theory of Ciocan-Fontanine, Kim and Maulik [13] as ε moves, and this is what we
need if we want to have a nontrivial interpolation between the two extreme SYZ
mirrors. In fact it is not known how the above two theories are related to each
other.
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14 KWOKWAI CHAN

17. , The Arnold-Givental conjecture and moment Floer homology, Int. Math. Res. Not.

(2004), no. 42, 2179–2269. MR 2076142

18. K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory: anomaly
and obstruction., AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical

Society, Providence, RI, 2009.

19. , Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010),
no. 1, 23–174. MR 2573826 (2011d:53220)

20. , Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta

Math. (N.S.) 17 (2011), no. 3, 609–711. MR 2827178
21. , Lagrangian Floer theory and mirror symmetry on compact toric manifolds,
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