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Abstract. In this paper, we consider the semi-implicit spectral deferred correction
(SDC) methods for hyperbolic systems of conservation laws with stiff relaxation terms.
The relaxation term is treated implicitly, and the convection terms are treated by ex-
plicit schemes. The SDC schemes proposed are asymptotic preserving (AP) in the zero
relaxation limit and can be constructed easily and systematically for any order of ac-
curacy. Weighted essentially non-oscillatory (WENO) schemes are adopted in spatial
discretization to achieve high order accuracy. After a description of the asymptotic pre-
serving property of the SDC schemes, several applications will be presented to demon-
strate the stiff accuracy and capability of the schemes.
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1 Introduction

In recent years, the research on the hyperbolic system with relaxation has become an ac-
tive field, due to its importance on physical problems [1, 10, 25]. For example, hyperbolic
systems with relaxation appear in shallow water, traffic flows, hydrodynamical models
for semiconductors and so on.

Hyperbolic systems with relaxation are described by stiff systems of differential equa-
tions in the form

∂tU+∇·F(U)=
1

ǫ
R(U), (1.1)

where U∈R
N ,F,R :RN →R

N and ǫ>0 is the stiffness or relaxation parameter. Especially,
in one space dimension the system has the form

∂tU+∂xF(U)=
1

ǫ
R(U). (1.2)
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The system is hyperbolic if the Jacobian matrix ∂U F(U) has only real eigenvalues and is
diagonalizable for every U.

The development of efficient numerical schemes for such systems is challenging,
since hyperbolic equations with small scales lead to various different asymptotic regimes,
where classical numerical approximations become prohibitively expensive. Fortunately,
asymptotic preserving (AP) schemes are efficient in these asymptotic regimes. This ap-
proach has its origin in capturing steady-state solution for neuron transport in the diffu-
sive regime [22, 23]. Since the 90s of last century, the AP schemes have been developed
for kinetic and hyperbolic equations and research on robust AP schemes has made great
progress [8, 13, 18–20]. The designing principle [20] of AP schemes is to preserve, at
the discrete level, the asymptotic limit that drives one (the microscopic) equation to its
asymptotic (macroscopic) equation. An AP scheme solves the microscopic equation, in-
stead of using a multiphysics approach that couples different physical laws at different
scales, making the computational methods efficient.

Recently developed splitting methods [20] and the implicit-explicit Runge-Kutta
(IMEX-RK) methods [28] belong to the AP schemes, which have been widely used for
such problems. Splitting methods are attractive because of their simplicity and robust-
ness. Strang splitting schemes provide second order accuracy if each step is at least sec-
ond order accurate [32]. For stiff problem, this property is maintained under fairly mild
assumptions [17]. However, Strang splitting applied to hyperbolic systems with relax-
ation reduces to first order accuracy when the problem becomes stiff. The reason is that
the kernel of the relaxation operator is nontrivial, which corresponds to a singular matrix
in the linear case, and therefore the assumptions in [17] are not satisfied. It is also diffi-
cult to obtain higher order accuracy even in non-stiff regimes. Fortunately, the implicit-
explicit Runge-Kutta schemes [8, 18, 28, 38] overcome this difficulty, providing basically
the same advantages of the splitting schemes, without the drawback of the order restric-
tion. In [28] up to the third order accurate IMEX-RK methods has been developed, which
are strong-stability-preserving (SSP) for the limiting system of conservation laws. The
SSP Runge-Kutta methods were originally referred to as the total variation diminishing
(TVD) Runge-Kutta methods, see [14, 15, 31]. At the same time, although the implicit-
explicit Runge-Kutta schemes can be constructed for any high order accuracy, the cor-
relation coefficient of high order accuracy is not very easy to obtain. Recently there is a
one-step space-time integration method [7] has been developed for the non-conservative
hyperbolic systems with stiff terms.

Furthermore, in this paper, we will present the AP schemes based on semi-implicit
spectral deferred correction (SDC) methods for hyperbolic systems of conservation laws
with stiff relaxation terms. The SDC methods are constructed by Dutt, Greengard and
Rokhlin [12]. They are the variants of the deferred correction (DC) methods [2], which ap-
ply the DC approach to the integral formulation of the error equation and adopt the spec-
tral collocation points in the quadrature rule. When the quadrature nodes are uniform,
the SDC method is called the integral deferred correction (InDC) method [11]. There are
various DC methods with different implementation strategies and applications, e.g. the
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Krylov DC method [16] and the SDC method for stochastic differential equations [33]
and fractional differential equations [26]. Here, we refer to [27, 36] to obtain the semi-
implicit SDC schemes based on Euler methods. The idea of the asymptotic preserving
SDC schemes is to treat the relaxation term implicitly and convection terms explicitly.
The advantage of the asymptotic preserving SDC methods is that they are a one step
method (namely, to derive value on time level n+1, one only need to start the algorithm
from the value of the solution at time level n) and can be constructed easily and system-
atically for any order of accuracy. Due to the stiffness of the problem, the time discretiza-
tion methods could suffer from the order reduction phenomenon. In [4, 6], this order
reduction phenomenon has been analyzed for InDC methods, based on the approach in
Runge-Kutta framework [5]. This technique can also be applied to SDC methods.

In order to construct high order and non-oscillating schemes for hyperbolic prob-
lems, we use WENO (weighted essentially non-oscillatory) [9, 30] schemes in space. As
is known to us, WENO schemes are high order accurate schemes designed for problems
with piecewise smooth solutions containing discontinuities and become quite successful
in application, especially for problems containing both shocks and complicated smooth
solution structures. The key idea lies at the approximation level, where a nonlinear adap-
tive procedure is used to automatically choose the locally smoothest stencil, hence avoid-
ing crossing discontinuities in the interpolation produce as much as possible. For specific
process we refer to [30].

The rest of paper is organized as follows. In Section 2, we introduce the general
structure of the semi-implicit SDC schemes, and prove the asymptotic property of semi-
implicit SDC schemes applied to hyperbolic systems with relaxation. In Section 3, we
describe the spatial discretization obtained by WENO schemes. In Section 4, to illustrate
the capability of the method, we provide some numerical experiments on the hyperbolic
equations with stiff relaxation terms. Finally, concluding remarks are given in Section 5.

2 Asymptotic preserving spectral deferred correction methods

In this section, we introduce the semi-implicit spectral deferred correction (SDC) schemes
and prove the asymptotic property of the schemes.

2.1 Semi-implicit spectral deferred correction schemes

Our semi-implicit spectral deferred correction scheme consists of treating the relaxation
term implicitly and the convection terms explicitly. The process of applying to the system
(1.2) is as follows.

Rewrite (1.2) into integral form in the interval [tn,tn+1]:

U(tn+1)=U(tn)+
∫ tn+1

tn

−∂xF(τ,U(τ))+
1

ǫ
R(τ,U(τ))dτ. (2.1)
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Then divide the time interval [tn,tn+1] into P subintervals by choosing the points tn,m, for
m= 0,1,··· ,P, such that tn = tn,0 < tn,1 < ···< tn,m < ···< tn,P = tn+1. Let △tn,m = tn,m+1−
tn,m and Uk

n,m denotes the kth order approximation to U(tn,m). To avoid the instability
of approximation at equispaced nodes for high order accuracy, the points {tn,m}P

m=0 are
chosen to be Gauss-Lobatto nodes on [tn,tn+1]. We can also use the Gauss-Radau, Gauss
nodes, or Chebyshev nodes. Starting from Un, we give the algorithm based on the Gauss-
Lobatto nodes to calculate Un+1 as follows [36].

Compute the initial approximation: U1
n,0=Un.

For m=0,1,··· ,P−1,

U1
n,m+1=U1

n,m−△tn,m∂xF(tn,m,U1
n,m)+△tn,m

1

ǫ
R(tn,m+1,U1

n,m+1). (2.2)

Compute successive corrections:

For k=1,2,··· ,K,

Uk+1
n,0 =Un.

For m=0,1,··· ,P−1,

Uk+1
n,m+1=Uk+1

n,m − Im+1
m (∂xF(t,Uk))+

1

ǫ
Im+1
m (R(t,Uk))

−θ1∆tn,m(∂xF(tn,m,Uk+1
n,m )−∂xF(tn,m,Uk

n,m))

+θ2∆tn,m
1

ǫ
(R(tn,m+1,Uk+1

n,m+1)−R(tn,m+1,Uk
n,m+1)), (2.3)

where Im+1
m ( f (t,Uk)) is the integral of the P-th degree interpolating polynomial on the P+

1 points (tn,m, f (tn,m,Uk
n,m))

P
m=0 over the subinterval [tn,m,tn,m+1], which is the numerical

quadrature approximation of
∫ tn,m+1

tn,m

f (τ,U(τ))dτ. (2.4)

Finally we have Un+1=UK+1
n,P .

By the analysis of the local truncation error as in [36], this method is min(K+1,P+2)
order accurate for P≥ 2, and when P= 1 the method is min(K+1,P+1) order accurate.
These θ-terms do not affect the accuracy but the stability of the scheme. The scheme
is consistent with the classical SDC method in [27] when we choose θ1 = θ2 = 1. For
simplicity, we will use θ1 = 0,θ2 = 1 in this paper. Then, the method (2.2)-(2.3) will be
denoted by the SDCK

P method.

2.2 The asymptotic property of semi-implicit SDC schemes

We consider the asymptotic property of the semi-implicit SDC schemes. Before this, we
first consider the zero relaxation limit of the one-dimensional hyperbolic system (1.2).
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In [10] and [35], the relaxation operator R in (1.2) is endowed with an n×N matrix Q
with rank n<N such that

QR(U)=0, ∀U∈R
N. (2.5)

This yields n independent conserved quantities u=QU. In addition, we assume that each
such u determines a local equilibria of the equation R(U)=0 uniquely, i.e.

U=ε(u) such that R(ε(u))=0. (2.6)

The image of ε then constitutes the manifold of local equilibria of the relaxation operator
R.

Associated with Q, we obtain a system of n conservation laws which is satisfied by
every solution of (1.2)

∂t(QU)+∂x(QF(U))=0. (2.7)

If we take the local relaxation equilibria U = ε(u), the equation (2.7) will be the formal
limit of system (1.2) as ǫ→0,

∂tu+∂xG(u)=0, (2.8)

where G(u)=QF(ε(u)), and the solution u is the limit of QU.

Definition 2.1. The semi-implicit SDC method (2.2)-(2.3) for the system (1.2) is asymp-

totic preserving (AP), if in the limit ǫ→0 the scheme becomes a consistent discretization
of the limit equation (2.8).

Definition 2.2. The system (1.2) with the initial condition U0 is a no initial layer problem,
if the initial condition U0 is well prepared R(U0)=0. The system (1.2) is an initial layer

problem, if the initial condition is not well prepared R(U0) 6=0.

Next, we give a proof for asymptotic preserving of the semi-implicit SDC scheme
(2.2)-(2.3).

For the no initial layer problem:

R(U0)=0, (2.9)

let ǫ→0, and keep ∆x, ∆t fixed, (2.2) implies

R(tn,m+1,U1
n,m+1)=0, m=0,1,··· ,P−1. (2.10)

Substituting (2.9) and (2.10) into the Eq. (2.3) in order, we can get

R(tn,m+1,Uk+1
n,m+1)=0, k=1,2,··· ,K; m=0,1,··· ,P−1. (2.11)

For the initial layer problem (R(U0) 6= 0), we can also get (2.11) for the initial layer
problem by adopting the Gauss-Radau nodes in (2.3).

The time discretization in [8,18,28] has the correct initial layer behavior, since in each
time step it projects into the local equilibrium (R(Un)=0). Our SDC scheme (2.3) based on
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the Gauss-Lobatto nodes does not have such mechanism, because the Uk+1
n,0 =Un appears

in the every step of (2.3) and thus the numerical solution Uk+1
n,m+1 can not be projected into

the local equilibrium. If the initial layer is not resolved well (R(Un) 6=0), it will introduce
the initial disturbance and degrade the accuracy of the numerical results. This has been
demonstrated in [18] and also in our numerical test Example 4.1.

Fortunately, it is easy for SDC schemes in our paper to overcome this burden with
high order accuracy. We can replace the Gauss-Lobatto nodes with the Gauss-Radau
nodes on [tn,tn+1] when we deal with Im+1

m (F(t,Uk)) and Im+1
m (R(t,Uk)) in (2.3) or just

use Gauss-Radau quadrature on the very first interval [t0,t1]. The relation (2.11) can be
obtained again by the similar procedure as in the no initial layer problem.

Then, by multiplying Eqs. (2.2) and (2.3) by the matrix Q as in the case of the contin-
uous system and making use of the relation of QR(U)=0,∀U, we can obtain

u1
n,m+1=u1

n,m−△tQ∂xF(tn,m,U1
n,m), (2.12)

and

uk+1
n,m+1=uk+1

n,m − Im+1
m (Q∂xF(t,Uk))−θ1∆tn,m(Q∂xF(tn,m,Uk+1

n,m )−Q∂xF(tn,m,Uk
n,m)), (2.13)

where
uk

n,m=QUk
n,m, m=0,1,··· ,P; k=1,2,··· ,K.

Using (2.9), (2.10), (2.11) and (2.6), we can obtain

Uk
n,m=ε(uk

n,m), k=1,2,··· ,K; m=0,1,··· ,P.

If we substitute this expression in (2.12) and (2.13), this will become

u1
n,m+1=u1

n,m−△t∂xG(tn,m,u1
n,m), m=0,1,··· ,P−1. (2.14)

and

uk+1
n,m+1=uk+1

n,m − Im+1
m (∂xG(t,uk))−θ1∆tn,m(∂xG(tn,m,Uk+1

n,m )−∂xG(tn,m,Uk
n,m)),

k=1,2,··· ,K; m=0,1,··· ,P−1, (2.15)

where G(u)=QF(ε(u)). Obviously, the scheme (2.14)-(2.15) is the consistent explicit SDC
discretization of the limit equation (2.8), which proves that the semi-implicit SDC scheme
(2.2)-(2.3) is asymptotic preserving.

Theorem 2.1. In the limit ǫ→0, the semi-implicit SDC scheme (2.2)-(2.3) applied to the system
(1.2) becomes the explicit SDC scheme (2.14)-(2.15) applied to the system (2.8).

Following [4, 6] for InDC methods, the semi-implicit SDC methods can also be refor-
mulated as the implicit-explicit Runge-Kutta (IMEX-RK) methods. Then the approach for
the IMEX-RK methods in [3, 5] can be adopted to analyze the stiff accuracy and asymp-
totic property of the semi-implicit SDC methods.
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We review the classical concepts of IMEX-RK methods and reformulate the semi-
implicit SDC methods as IMEX-RK methods whose Butcher tableau is explicitly con-
structed. We consider an s-stage IMEX-RK method with a double tableau in the usual
Butcher notation,

c̃ Ã

b̃T

c A

bT

where Ã=(ãij) is an s×s matrix for an explicit scheme, with ãij =0 for j≥ i and A=(aij)
is an s×s matrix for an implicit scheme. For the implicit part of the methods, usually
a diagonally implicit scheme is adopted for the function R, i.e. aij = 0, for j> i, by con-
sidering the simplicity and efficiency in solving the algebraic equations corresponding
to the discretization of the implicit part. The vectors c=(c̃1,··· , c̃s)T, b=(b̃1,··· ,b̃s)T, and
c=(c1,··· ,cs)T, b=(b1,··· ,bs)T complete the characterization of the scheme.

The following definition will be useful to characterize properties of an IMEX-RK
method in the sequel [3].

Definition 2.3. An IMEX-RK scheme is globally stiffly accurate (GSA) if bT = eT
s A, and

b̃T = eT
s Ã, with es =(0,··· ,0,1)T, and cs = c̃s = 1, i.e. the numerical solution is identical to

the last internal stage value of the solution.

Next, we show that a semi-implicit SDC method can be rewritten as an IMEX-RK one.
We present the double Butcher tableau for a semi-implicit SDC method with two loops
of correction step as an example. It takes the form

0 0 0T 0T 0T

c C 0T O O

c w0 W O O

c w0 O W O

0 wp0 0T
b̃

T
1 0T

0 0 0T 0T 0T

c 0T
C O O

c w0 W−θC θC O

c w0 O W−θC θC

0 wp0 0T
b

T
1 b

T
2

, (2.16)

where 0 is a zero vector, c depends on the p+1 Gauss-Lobatto or p Gauss-Radau nodes,
and the matrix C is the nonsingular lower triangular matrix of size p×p used in the
prediction step. The matrix (w0,W) has the size p×(p+1) which is based on the cor-
responding quadrature rules and w0 is its first column. For Gauss-Lobatto nodes the
matrix (w0,W) is dense, and for Gauss-Radau nodes the p×p matrix W is dense and w0

is a vector of zeros. The wp0, b̃
T
1 , b

T
1 , and b

T
2 are taken so that they are the last rows of the

matrices Ã and A in the double Butcher tableau. Furthermore, we emphasize that these
schemes are GSA. Following the similar arguments in [6] for InDC methods, we can also
obtain that the semi-implicit SDC methods are asymptotic preserving.

For example, in the following we show the double Butcher tableaus for the SDC2
2
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method based on Gauss-Lobatto points:

0 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0

1 1/2 1/2 0 0 0 0 0
1/2 5/24 8/24 −1/24 0 0 0 0

1 1/6 2/3 1/6 0 0 0 0
1/2 5/24 0 0 8/24 −1/24 0 0

1 1/6 0 0 2/3 1/6 0 0
1/6 0 0 2/3 1/6 0 0

0 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0 0

1 0 1/2 1/2 0 0 0 0
1/2 5/24 −1/6 −1/24 1/2 0 0 0

1 1/6 1/6 −1/3 1/2 1/2 0 0
1/2 5/24 0 0 −1/6 −1/24 1/2 0

1 1/6 0 0 1/6 −1/3 1/2 1/2
1/6 0 0 1/6 −1/3 1/2 1/2

and based on Gauss-Radau points:

0 0 0 0 0 0 0 0
1/3 1/3 0 0 0 0 0 0

1 1/3 2/3 0 0 0 0 0
1/3 0 5/12 −1/12 0 0 0 0

1 0 3/4 1/4 0 0 0 0
1/3 0 0 0 5/12 −1/12 0 0

1 0 0 0 3/4 1/4 0 0
0 0 0 3/4 1/4 0 0

0 0 0 0 0 0 0 0
1/3 0 1/3 0 0 0 0 0

1 0 1/3 2/3 0 0 0 0
1/3 0 1/12 −1/12 1/3 0 0 0

1 0 1/12 −5/12 2/3 2/3 0 0
1/3 0 0 0 1/12 −1/12 1/3 0

1 0 0 0 1/12 −5/12 2/3 2/3
0 0 0 1/12 −5/12 2/3 2/3

From the double Butcher tableaus, the SDC2
2 methods based on Gauss-Lobatto points

and Gauss-Radau points are GSA according to Definition 2.3. Therefore they are asymp-
totic preserving according to the analysis in [6].

Remark 2.1. On the one hand, the IMEX-RK schemes are relatively inexpensive compar-
ing with the semi-implicit SDC methods to achieve the same order of accuracy. On the
other hand, the semi-implicit SDC schemes can be constructed easily and systematically
for any order of accuracy. In [28], up to the third order accurate asymptotic preserv-
ing IMEX-RK schemes are given. The SDC methods provide an alternative approach to
construct the asymptotic preserving schemes.

3 Weighted essentially non-oscillatory schemes

In this section, we introduce the procedure of the WENO reconstruction and finite differ-
ence WENO schemes in general. Here, we use the one-dimensional scalar equation (3.1)
as an example

ut+ f (u)x =
1

ǫ
r(u). (3.1)

Given a grid
a= x 1

2
< x 3

2
< ···< xN− 1

2
< xN+ 1

2
=b,

we define the cells, cell centers and cell sizes by

Ij=[xj− 1
2
,xj+ 1

2
], xj=

1

2
(xj− 1

2
+xj+ 1

2
), ∆xj = xj+ 1

2
−xj− 1

2
, j=1,2,··· ,N,

and the cell average ῡ(xj,t)=
1

∆xj

∫

Ij
υ(x,t)dx.
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3.1 WENO reconstruction

The key idea of the WENO reconstruction is to use the cell averages {ῡj, j= i−r,··· ,i+r}
in the stencil S={Ii−r,··· , Ii+r} to obtain the high order approximation of the point values
υi+ 1

2
.

Next, we show the procedure of WENO reconstruction to obtain υ−
i+ 1

2

and υ+
i+ 1

2

in the

stencil S.
Given the cell averages of a function υ(x):

ῡ(xj,t)=
1

∆xj

∫

Ij

υ(x,t)dx, j=1,2,··· ,N,

find a r-th order accurate Lagrange form of the approximation of υ based on the stencil
Sj ={Ii−r+j,··· , Ii+j} such that

∫

Il

pj(x)dx= ῡl , l= i−r+ j,··· ,i+ j. (3.2)

We can obtain
pj(x)=u(x)+O(△xr+1), ∀x∈ Ii. (3.3)

Then

u−
i+ 1

2

=
r

∑
j=0

ω−
j pj(xi+ 1

2
), (3.4)

u+
i− 1

2

=
r

∑
j=0

ω+
j pj(xi− 1

2
), (3.5)

where ω±
j is a nonlinear weight.

Similarly, we can obtain the (2r+1)th order accurate reconstruction polynomial p(x)
based on the stencil S such that

p(x)=u(x)+O(△x2r+1), ∀x∈ Ii. (3.6)

There are linear weights {dj(xi+
1
2)}

r
j=0 and {dj(xi−

1
2)}

r
j=0 such that

p(xi+ 1
2
)=

r

∑
j=0

dj(xi+ 1
2
)pj(xi+ 1

2
), (3.7)

p(xi− 1
2
)=

r

∑
j=0

dj(xi− 1
2
)pj(xi− 1

2
), (3.8)

and the linear weights also satisfy

r

∑
j=0

dj(xi± 1
2
)=1.
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The nonlinear weight can be defined as

ω±
j =

α±
j

∑
r
s=0α±

s
, j=0,··· ,r, (3.9)

where

α±
j =

dj(xi± 1
2
)

(β j+ε)2
.

Here ε is introduced to avoid the denominator to become 0, and we set ε= 10−6 in this
paper. β j is the so-called ”smooth indicators” of the stencil Sj. As defined in [30],

β j =
r

∑
l=1

∆x2l−1
∫ x

i+ 1
2

x
i− 1

2

( dl

dxl
pj(x)

)2
dx. (3.10)

Some other development of the nonlinear weights can be found in [9].
Finally, we get the approximations to the function υ(x) at the cell boundaries υi+ 1

2
.

3.2 Finite difference method

Next, we introduce the finite difference method based on the WENO reconstruction for
one-dimensional scalar equation (3.1).

For simplicity, we assume that the grid is uniform (∆xj=h,∀j) and use a conservative
scheme to approximate Eq. (3.1):

(ui)t=−
1

h
( f̂i+ 1

2
− f̂i− 1

2
)+

1

ǫ
r(ui), (3.11)

where ui is the approximation of u(xi) and the numerical flux f̂i+ 1
2

is obtained by WENO

reconstruction.
To apply the WENO reconstruction in the finite difference scheme, we write the dif-

ferential operator in the conservation form

vx(xj)=
v̂j+ 1

2
− v̂j− 1

2

h
, (3.12)

where the flux v̂ is defined by the sliding average operator

v(x)=
1

h

∫ x+ h
2

x− h
2

v̂(ξ)dξ. (3.13)

Thus, v(xj) is the cell average of function v̂ on the interval [xj−
h
2 ,xj+

h
2 ]. Therefore, v̂±

j+ 1
2

can be obtained by the same WENO reconstruction from the cell average of v̂ on [xj−
h
2 ,xj+

h
2 ] (i.e. v(xj)) as in the finite volume method.

The reconstruction procedure is as follows:
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1. We use the simplest smooth Lax-Friedrichs splitting, which is defined as the fol-
lowing.

Definition 3.1. The Lax-Friedrichs splitting is defined by

f±(u)=
1

2
( f (u)±αu),

where α is taken as α=max
u

| f ′(u)| over the relevant range of u.

2. Let v̄i = f+(ui), then use the WENO reconstruction to obtain v−
i+ 1

2

for all i and take

the positive numerical flux as
f̂+
i+ 1

2

=v−
i+ 1

2

;

3. Let v̄i = f−(ui), then use the WENO reconstruction to obtain v+
i+ 1

2

for all i and take

the negative numerical flux as
f̂−
i+ 1

2

=v+
i+ 1

2

;

4. We get the numerical flux
f̂i+ 1

2
= f̂+

i+ 1
2

+ f̂−
i+ 1

2

.

A detailed account of the high order WENO finite difference schemes can be found in
[30].

The WENO finite difference method used for the scalar equation can be extended to
systems with the parameter α computed from the spectral radius of the Jacobian matrix.
For schemes applied to the system with discontinuous solutions, better results are usually
obtained if one uses the characteristic variables rather than the conservative variables in
the reconstruction step. Although the finite difference method can be used only with
uniform or smoothly varying mesh, the source term is evaluated pointwisely and does
not couple the neighboring cells. In the finite volume method the source term couples the
cell averages of different cells to achieve the high order accuracy, thus making the finite
volume method expensive for high order schemes solving the stiff source term implicitly.
We will use the finite difference method in the following numerical experiments.

4 Numerical tests

In this section, we apply the asymptotic preserving SDC and finite difference WENO
schemes to the hyperbolic systems of conservation laws with stiff relaxation terms and
investigate the convergence rate and the zero relaxation limit behavior of the schemes nu-
merically. In all the computations, we use the fifth order finite difference WENO schemes
with the Lax-Friedrichs splitting and conservative variables in spatial discretization. Of
course, the sharpness of the resolution of the numerical result can be improved using a
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less dissipative flux. Without statement, the SDC methods based on the Gauss-Radau
nodes are adopted. In all applications, uniform grids are used.

Example 4.1. We show an accuracy test for the Broadwell equations of rarefied gas dy-
namics [8, 18, 24, 28]. This kinetic model is characterized by a hyperbolic system with
relaxation of the form (1.2)

ρt+mx =0,

mt+zx =0,

zt+mx =
1

2ǫ
(ρ2+m2−2ρz),

(4.1)

where ǫ represents the mean free path of particles. The conserved quantities are the
density ρ and the momentum m. The local relaxation equilibria of the system is given by
the Euler equations of fluid dynamics

∂tρ+∂x(ρυ)=0,

∂t(ρυ)+∂x

(ρ+ρυ2

2

)

=0,
(4.2)

where υ= m
ρ with z= ρ2+m2

2ρ in the limit ǫ→0.

We consider a periodic smooth solution with initial data as in [8, 24, 28] given by

ρ(x,0)=1+aρ sin
2πx

L
,

υ(x,0)=1/2+aυ sin
2πx

L
,

z(x,0)= az
ρ(x,0)2+m(x,0)2

2ρ(x,0)
,

with the parameters

aρ =0.3, aυ =0.1, az =1.0 (no initial layer) and az =0.2 (initial layer), L=20.

The accuracy tables of the asymptotic preserving SDC and IMEX-RK methods are given
in Tables 1, 2, 3 and Tables 4, 5 respectively for the initial data without and with the
initial layer at time t = 30. The fifth order SDC method and the third order IMEX-RK
scheme [28] have been adopted with the CFL number ∆t/∆x=0.5. Since no analytic
solution is available, the convergence rate is computed from the error according to the
formula

orderi =
log(errori/errori+1)

log(∆xi/∆xi+1)
,

where errori is the error obtained by comparing the solutions on the different grid size
∆xi and ∆xi+1.
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Table 1: Accuracy test of the SDC method based on the Gauss-Radau nodes for Example 4.1 without the initial
layer.

Grid points
ǫ=1 ǫ=10−3 ǫ=10−6

L2 error order L2 error order L2 error order

20-40 0.0040 – 0.010 – 0.010 –

40-80 1.20E-04 5.09 5.86E-04 4.10 5.88E-04 4.10

80-160 2.90E-06 5.37 2.62E-05 4.48 2.66E-05 4.47

160-320 6.59E-08 5.46 8.19E-07 5.00 8.43E-07 4.98

320-640 1.44E-09 5.52 1.77E-08 5.53 1.84E-08 5.52

640-1280 3.04E-11 5.56 4.65E-09 5.25 2.85E-10 6.01

Table 2: Accuracy test of the SDC method based on the Gauss-Radau nodes for Example 4.1 with the initial
layer.

Grid points
ǫ=1 ǫ=10−3 ǫ=10−6

L2 error order L2 error order L2 error order

20-40 0.0040 – 0.010 – 0.010 –

40-80 1.16E-04 5.12 5.86E-04 4.10 5.88E-04 4.10

80-160 2.79E-06 5.38 2.63E-05 4.48 2.66E-05 4.47

160-320 6.32E-08 5.46 2.05E-06 3.68 8.43E-07 4.98

320-640 1.38E-09 5.52 4.25E-07 2.27 1.84E-08 5.52

640-1280 2.90E-11 5.57 1.85E-07 1.20 2.89E-10 5.99

Apparently, both SDC and IMEX-RK schemes tested for the no initial layer problem
have the prescribed order of accuracy for different ǫ in Tables 1 and 4. For the initial
layer problem, the asymptotic preserving schemes tested have the prescribed order of
accuracy both in the non-stiff and in the stiff limit, but with some degradation of accuracy
at intermediate regimes ǫ=10−3 in Tables 2 and 5. However, the SDC scheme based on
the Gauss-Lobatto nodes is not asymptotic preserving for the initial layer problem and
has degradation of the accuracy both in intermediate regimes and in the stiff limit in
Table 3, which shows the advantage of asymptotic schemes for stiff problems.

Next, we also test the shock capturing property of the scheme for the following two
Riemann problems [8]

ρl =2, ml =1, zl =1, x<0.2,

ρr =1, mr =0.13962, zr =1, x>0.2,
(4.3)

and

ρl =1, ml =0, zl =1, x<0,

ρr =0.2, mr =0, zr =1, x>0.
(4.4)
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Table 3: Accuracy test of the SDC method based on the Gauss-Lobatto nodes for Example 4.1 with the initial
layer.

Grid points
ǫ=1 ǫ=10−3 ǫ=10−6

L2 error order L2 error order L2 error order

20-40 0.0040 – 0.010 – 0.010 –

40-80 1.16E-04 5.11 6.03E-04 4.10 6.05E-04 4.07

80-160 2.79E-06 5.38 3.73E-05 4.07 3.63E-05 4.06

160-320 6.32E-08 5.46 8.76E-06 4.01 7.80E-06 2.18

320-640 1.38E-09 5.52 1.55E-06 2.10 2.80E-06 1.52

640-1280 2.90E-11 5.57 2.60E-07 2.49 9.87E-07 1.50

Table 4: Accuracy test of the IMEX-RK for Example 4.1 without the initial layer.

Grid points
ǫ=1 ǫ=10−3 ǫ=10−6

L2 error order L2 error order L2 error order

20-40 0.0180 – 0.042 – 0.042 –

40-80 7.93E-04 4.63 0.0037 3.52 0.0037 3.52

80-160 3.05E-05 5.22 2.28E-04 4.10 2.35E-04 3.98

160-320 1.43E-06 4.83 1.10E-05 4.37 1.11E-05 4.40

320-640 1.02E-07 3.71 1.31E-06 3.06 4.10E-07 4.76

640-1280 1.05E-08 3.20 1.86E-07 2.82 2.31E-08 4.15

1280-2560 1.24E-09 3.05 2.13E-08 3.13 1.92E-09 3.59

Table 5: Accuracy test of the IMEX-RK method for Example 4.1 with the initial layer.

Grid points
ǫ=1 ǫ=10−3 ǫ=10−6

L2 error order L2 error order L2 error order

20-40 0.0178 – 0.040 – 0.040 –

40-80 7.68E-04 4.53 0.0037 3.52 0.0037 3.51

80-160 2.98E-05 4.69 2.28E-04 4.01 2.34E-04 3.98

160-320 1.43E-06 4.38 1.18E-05 4.27 1.10E-05 4.40

320-640 1.07E-07 3.75 2.27E-06 2.38 4.10E-07 4.76

640-1280 1.12E-08 3.26 6.49E-07 1.81 2.31E-08 4.14

1280-2560 1.33E-09 3.07 1.44E-07 2.16 1.96E-09 3.56

The third order (SDC2
2) and fifth order (SDC4

3) SDC schemes have been used with the
fifth order WENO finite difference method. The CFL number is ∆t/∆x=0.5.

From Fig. 1 and Fig. 2, we can see that the third and fifth order SDC schemes give the
accurate description of the solution in all different regimes expectedly, even though the
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Figure 1: Numerical solution of the Broadwell equations with initial data (4.3) for ρ(◦), m(∗) and z(+) at
time t=0.5. Left column the third order SDC scheme, right column the fifth order SDC scheme. From top to
bottom, ǫ=1.0, 0.02, 10−8.

coarse meshes do not resolve the small scales. Also the shock formation in the fluid limit
is well captured without spurious oscillations. We refer to [8, 18, 24, 28] for a comparison
with the present results.
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Figure 2: Numerical solution of the Broadwell equations with initial data (4.4) for ρ(◦), m(∗) and z(+) at time

t=0.25 for ǫ=10−8. Left column the third order SDC scheme, right column the fifth order SDC scheme.

Example 4.2. We consider the shallow water flow:

∂th+∂x(hυ)=0,

∂t(hυ)+∂x

(

h+
1

2
h2
)

=
h

ǫ

(h

2
−υ

)

.
(4.5)

with initial data

h=1+0.2sin(8πx), hυ=
h2

2
, (4.6)

and periodic boundary conditions in [0,1]. h is the water height with respect to the bottom
and hυ is the flux. The zero relaxation limit of this model is given by the inviscid Burgers
equation. In Fig. 3 we show the solution at t=0.5 in the stiff regime ǫ=10−8 and ǫ=10−12

respectively. We observe that both the third and fifth order SDC schemes work well in
the stiff limit, and the dissipation due to the dissipative Lax-Friedrichs flux becomes less
relevant with the high order accurate scheme. We refer to [18, 28] for a comparison with
the present results.

Example 4.3. We consider the traffic flow:

∂tρ+∂x(ρυ)=0,

∂t(ρω)+∂x(υρω)=A
ρ

ǫ
(V(ρ)−υ),

(4.7)

with initial data centering at x=0 with left and right states

ρL =0.05, υL =0.05, ρR =0.05, υR =0.5. (4.8)

Here ω= υ+P(ρ) with P(ρ) given by some function describing the anticipation of road
conditions in front of the drivers, and V(ρ) describes the dependence of the velocity with
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Figure 3: Numerical solution of the shallow water model with initial data (4.6) for h(◦), hυ(∗) at time t=0.5.

Left column the third order SDC scheme for ǫ=10−8, right column the fifth order SDC scheme for ǫ=10−12.

respect to the density for an equilibrium situation. The parameter ǫ is the relaxation time
and A>0 is a positive constant. A typical choice for the function P(ρ) is given by

P(ρ)=

{ cυ
γ (

ρ
ρm
)γ, γ>0,

cγ ln( ρ
ρm
), γ=0,

where ρm is a given maximal density and cυ is a constant with dimension of velocity. In
our numerical simulation we assume A= 1 and an equilibrium velocity V(ρ) fitting to
the experimental data in [1]

V(ρ)=υm
π/2+arctan(α(ρ/ρm−β)/(ρ/ρm−1))

π/2+arctan(αβ)
,

with α=1, β=0.22 and υm a maximal speed. We consider γ=0 and assume cυ=2 to fulfill
the characteristic condition. All quantities are normalized so that υm =1 and ρm =1.

The numerical solution at t=1 for ǫ=0.2 is given in Fig. 4. It shows that both the third
and fifth order SDC schemes resolve the shock clearly in the stiff limit. However, in the
third order SDC scheme, the shock is slightly smeared out compared with the fifth order
SDC case. See [1, 28] for a comparison.

Example 4.4. We consider the continuum equations of Euler type for a granular gas:

ρt+(ρu)x =0,

(ρu)t+(ρu2+P)x =ρg,
(1

2
ρu2+

3

2
ρT

)

t
+
(1

2
ρu3+

3

2
uρT+Pu

)

x
=−

(1−e2)

ǫ
G(ρ)T3/2+ρgu,

(4.9)

where e is the coefficient of restitution, g is the acceleration due to gravity, ǫ is a relaxation
time, P is the pressure given by

P=ρT(1+2(1+e)G(ρ))
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Figure 4: Numerical solution of the traffic model with initial data (4.8) for ρ(◦), ρυ(∗) at time t=1 for ǫ=0.2.
Left column the third order SDC scheme, right column the fifth order SDC scheme.

and G(ρ) is the statistical correlation function. We assume [28, 29]

G(ρ)=υ
(

1−
( υ

υM

)
4
3 υM

)−1
,

where υ=σ3ρπ/6 is the volume fraction, σ is the diameter of a particle, and υM=0.64994
is 3D random closed-packed constant.

The initial data is given by [28, 29]

ρ=34.37746770, υ=18, P=1589.2685472, (4.10)

which corresponds to a supersonic flow at Mach number Ma=7. The zero-flux boundary
condition has been used on the bottom (right) boundary, whereas on the top (left) the
ingoing flow is characterized by (4.10). The values of the restitution coefficient and the
particle diameter have been taken e=0.97 and σ=0.1. Fig. 5 shows the solutions at t=0.2
with ǫ=0.01.

We can see that both the third and fifth order SDC schemes provide a good resolution
of the shock that propagates backward after the particle impact with the bottom. Note
that the third order method provides excessive smearing of the layer at the right bound-
ary. However, due to the use of conservative variables, we can observe the presence of
small spurious oscillation in the pressure profile. We refer to [28, 29] for a comparison of
the present results with previous ones.

Example 4.5. We consider the relaxation system for the 1-D Euler equations for gas dy-
namics:

∂

∂t
U+

∂

∂x
V=0,

∂

∂t
V+A

∂

∂x
U=−

1

ǫ
(V−F(U)).

(4.11)
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Figure 5: Numerical solution of the hydrodynamical model of a granular gas with the initial data (4.10). Left
column the third order SDC scheme, right column the fifth order SDC scheme. From top to bottom, volume
fraction υ, momentum ρu, and pressure P.

where U = (ρ,ρu,E), F(U) = (ρu,ρu2+P,(E+P)u). For simplicity, we assume that the
matrix A has the special form A=α2 I and α should be bigger than the spectral radius of
F′(U). The equation of state for a polytropic gas is given by

P=(γ−1)
(

E−
1

2
ρu2

)

. (4.12)
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Table 6: Accuracy order of the fifth order SDC for the 1-D linear wave at time t=2 with ǫ=10−12.

N L2 error order L∞ error order

20 1.60E-03 – 4.43E-03 –

40 4.00E-05 5.32 1.88E-04 4.62

80 8.86E-07 5.49 6.30E-06 4.90

160 1.85E-08 5.51 2.00E-07 4.98

320 4.29E-10 5.51 6.19E-09 5.01

640 9.47E-12 5.50 1.96E-10 4.98

1280 2.11E-13 5.50 6.13E-12 5.00

We carry out the following standard 1-D tests with γ=1.4 and ǫ=10−12.

(a). We show an accuracy test for the linear wave with the exact solution

U(x,t)=







ρ(x,t)=1+0.5sin(π(x−t)),

u(x,t)=1,

P(x,t)=1.

The computational domain is taken as [−1,1] with periodic boundary conditions. This
example is often used in the literature to test the accuracy of schemes. From Table 6 we
see that the SDC4

3 method can achieve the fifth order accuracy.
(b). The shock tube problem is a standard problem for testing codes for shock calcu-

lations. The setup is a Riemann type initial data

{

U(x,0)=UL, 0≤ x<0.5,

U(x,0)=UR, 0.5≤ x≤1.
(4.13)

The standard test case is the Sod’s problem

(ρL,uL,PL)=(1,0,2.5); (ρR,uR,PR)=(0.125,0,0.4275). (4.14)

In Fig. 6, we display the results of the third and fifth order SDC schemes. Both
schemes perform reasonably well for these shock tube problem, which resolve the shock
clearly. We refer to [21] for a comparison. It can be seen that, for the relaxation system for
1-D Euler equations of gas dynamic (4.11), the asymptotic preserving SDC schemes can
achieve the desired order of accuracy for smooth functions and also work well without
spurious oscillations near discontinuities for piecewise smooth functions.

Example 4.6. We consider the relaxation system for the 2-D Euler equations for gas dy-
namics:

∂

∂t
U+

∂

∂x
V+

∂

∂y
W=0,
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Figure 6: The Sod shock tube problem at t= 0.1644 on a N = 200 zones. Left column the third order SDC
scheme, right column the fifth order SDC scheme for ǫ= 10−12. From top to bottom, density ρ, velocity u,
pressure P.
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Table 7: Accuracy order of the fifth order SDC schemes for the 2-D linear wave on the uniform N×N grids at
time t=2 with ǫ=10−12.

N
WENO Linear Weights

L2 error order L2 error order

20 5.00E-03 – 7.34E-04 –

40 1.67E-04 4.91 2.28E-05 5.01

80 5.10E-06 5.02 7.06E-07 5.01

160 1.57E-07 5.02 2.20E-08 5.00

320 4.94E-09 5.00 7.52E-10 4.87

where U = (ρ,ρu,ρv,E), F(U) = (ρu,ρu2+P,ρuv,(E+P)u), G(U) = (ρv,ρuv,ρv2+P,(E+
P)v). For simplicity, we assume that the matrices A and B have the special form A=α2 I,
B=β2 I and α and β are based on the spectral radius of F′(U) and G′(U) respectively. The
equation of state for a polytropic gas is given by

P=(γ−1)
(

E−
1

2
ρ(u2+v2)

)

, (4.16)

with γ=1.4. We carry out the following standard 2-D tests for ǫ=10−12.
(a). We show an accuracy test for the 2-D linear wave with the exact solution

U(x,y,t)=















ρ(x,y,t)=1+0.5sin(π(x+y−2t)),

v(x,y,t)=1,

w(x,y,t)=1,

P(x,y,t)=1.

The computational domain is taken as [−1,1]×[−1,1] with periodic boundary conditions.
In Table 7, we show the accuracy order of the fifth order SDC schemes with WENO
and linear weights reconstruction respectively on the uniform N×N grids at time t= 2.
Clearly, both schemes achieve the desired fifth order accuracy for this case.

(b). 2-D Vortex Evolution. This example is a truly nonlinear problem. We test the
accuracy of the fifth order SDC scheme. For comparison we also list the results of the
fifth order SDC scheme coupled with the fifth order linear finite difference scheme.

The setup of the problem is as follows. The mean flow is ρ= 1, P= 1, (u,v)= (1,1),
and the computational domain is [0,10]×[0,10]. We add, to the mean flow, an isentropic
vortex, which corresponds to perturbations in (u,v) and the temperature T=P/ρ and no
perturbation in the entropy S=P/ργ:

(δu,δv)=
ε

2π
e0.5(1−r2)(−ȳ, x̄), δT=−

(γ−1)ε2

8γπ2
e1−r2

, δS=0,

where (x̄,ȳ)= (x−5,y−5), r2 = x̄2+ ȳ2, and the vortex strength ε= 5. Periodic boundary
condition is used, which has little effect on the solution since the vortex is close to con-
stant at the boundary. It is clear that the exact solution is just the passive convection of
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Table 8: Accuracy order of the fifth order SDC schemes for the vortex evolution on the uniform N×N grids at
time t=0.2 with ǫ=10−12.

N
WENO Linear Weights

L2 error order L2 error order

20 9.06E-03 – 6.18E-03 –

40 6.86E-04 3.72 2.898E-04 4.42

80 5.24E-05 3.71 9.93E-06 4.86

160 1.96E-06 4.74 3.18E-07 4.97

320 4.34E-08 5.49 9.99E-09 4.99

640 6.20E-10 6.13 3.12E-10 5.00

1280 1.18E-11 5.71 9.97E-12 4.97

the vortex with the mean velocity. The errors at times t=0.2 are calculated by the finite
difference schemes with different weights. As expected, we observe that both weights of
finite difference schemes obtain the fifth order accuracy from Table 8.

(c). Double Mach Reflection. This is a standard test case for high resolution schemes.
The computational domain for this problem is [0,4]×[0,1]. The reflective wall lies at
bottom of the computational domain starting from x = 1

6 . Initially a right-moving 10

shock is positioned at x= 1
6 ,y=0 and makes a 60◦ angle with the x-axis. For the bottom

boundary, the exact postshock condition is imposed for the part from x = 0 to x = 1/6
and a reflective boundary condition is used for the rest. At the top boundary of our
computational domain, the flow values are set to describe the exact motion of the 10
shock. See [34, 37] for a detailed description of this problem. The numerical results are
shown in Fig. 7. The shock location and the profile are clearly resolved. Comparing with
the results in [37], there are some small oscillations behind the shocks due to the adoption
of the relaxation form and the simple relaxation matrices A and B.

(d). A Mach 3 Wind Tunnel With a Step. This problem has been proven to be a useful
test for a large number of methods, which has been carefully examined in Woodward and
Colella [34] and later by many others. The test begins with uniform Mach 3 flow in a wind
tunnel containing a step. The wind tunnel is 1 length unit wide and 3 length units long.
The step is 0.2 length units high and located at 0.6 length units from the left-hand end of
the tunnel. The tunnel is assumed to have an infinite width in the direction orthogonal to
the plane of the computation. At the left is a inflow boundary condition, while the right
is a outflow boundary condition. Initially the wind tunnel is filled with a gamma-law
gas, with γ=1.4, which everywhere has density 1.4, pressure 1.0, and velocity 3. Along
the walls of the tunnel reflecting boundary condition are applied. We apply an additional
boundary condition near the corner of the step. In the first row of the zones above the
step we will reset the first four zones starting just to the right of the corner of the step; in
the row above we will reset the first two zones. In this zones we reset the density so that
the entropy has the same value as in the zone just to the left and below the corner of the
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AP-SDC5-WENO, ǫ=10-12, t=0.2,  ∆ x = ∆ y = 1/240
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Figure 7: The double Mach reflection at t=0.2 by the fifth order SDC scheme for ǫ = 10−12. The mesh is
rectangular with ∆x=∆y= 1

240 . In the plot 30 equi-distributed contours are shown.

AP-SDC5-WENO, ǫ=10-12, t=4,  ∆ x = ∆ y =1/240
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Figure 8: A Mach 3 wind tunnel with a step at t=4 by the fifth order SDC scheme for ǫ=10−12. The mesh is
rectangular with ∆x=∆y= 1

240 . The plot shows 30 contours from 0.1 to 6.6.

step. We also reset the magnitudes of the velocities, not their directions, so that the sum
of enthalpy and kinetic energy per unit mass has the same value as in the same zone used
to set the entropy. This condition is based on the assumption of a nearly steady flow in
the region near the corner. The time evolution, up to time 4, of density distribution in the
wind tunnel is displayed in Fig. 8. We can observe that the fifth order SDC scheme can
resolve the shock clearly in the stiff limit. Comparing with the results in [37], there are
still some small oscillations behind the shocks due to the relaxation form and the simple
choice of relaxation matrices.
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5 Conclusions

We have explored the asymptotic preserving spectral deferred correction (SDC) time dis-
cretization for solving hyperbolic systems with stiff relaxation terms. The asymptotic
preserving SDC schemes can be constructed easily and systematically to achieve both
the asymptotic preserving property and arbitrary high order of accuracy. Coupled with
weighted essentially non-oscillatory (WENO) finite difference methods in space, numer-
ical experiments are performed to verify that the high order asymptotic preserving SDC-
WENO schemes are efficient and shock capturing for the relaxation problems. As an
alternative approach to the IMEX Runge-Kutta or InDC methods, the AP-SDC scheme
could find more applications, e.g., in kinetic equations.
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