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In the present paper, we consider the discontinuous Galerkin (DG) methods for solving 
short pulse (SP) type equations. The short pulse equation has been shown to be completely 
integrable, which admits the loop-soliton, cuspon-soliton solutions as well as smooth-
soliton solutions. Through hodograph transformations, these nonclassical solutions can be 
profiled as the smooth solutions of the coupled dispersionless (CD) system or the sine-
Gordon equation. Therefore, DG methods can be developed for the CD system or the 
sine-Gordon equation to simulate the loop-soliton or cuspon-soliton solutions of the SP 
equation. The conservativeness or dissipation of the Hamiltonian or momentum for the 
semi-discrete DG schemes can be proved. Also we modify the above DG schemes and 
obtain an integration DG scheme. Theoretically the a-priori error estimates have been 
provided for the momentum conserved DG scheme and the integration DG scheme. We 
also propose the DG scheme and the integration DG scheme for the sine-Gordon equation, 
in case the SP equation can not be transformed to the CD system. All these DG schemes 
can be applied to the generalized or modified SP type equations. Numerical experiments 
are provided to illustrate the optimal order of accuracy and capability of these DG schemes.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we mainly study the classic short pulse (SP) equation derived by Schäfer and Wayne in [27]

uxt = u + 1

6
(u3)xx. (1.1)

The SP equation models the propagation of ultra-short light pulses in silica optical fibers. Here, u ∈ R is a real-valued 
function which represents the magnitude of the electric field. It is well-known that the cubic nonlinear Schrödinger (NLS) 
equation derived from the Maxwell’s equation can describe the propagation of pulse in optical fibers. Two preconditions 
of this derivation need to be satisfied: First, the response of the material attains a quasi-steady-state and second that the 
pulse width is as large as the oscillation of the carrier frequency. And now we can create very short pulses by the advanced 
technology and the pulse spectrum is not narrowly localized around the carrier frequency, that is, when the pulse is as 
short as a few cycles of the central frequency. Numerical experiments made in [8] show as the pulse shortens, the accuracy 
of the SP equation approximated to Maxwell’s equation increases, however, the NLS equation becomes inaccurate for the 
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ultra-short pulse. Therefore, we use SP equation to approximate the ultra-short light pulse. If the pulse is as short as only 
one cycle of its carrier frequency, then the modified short pulse equation in [30] is used to describe the propagation of pulse 
in optical fibers. Similar to the extension of coupled nonlinear Schrödinger equations from NLS equations, it is necessary 
to consider its two-component or multi-component generalizations for describing the effect of polarization or anisotropy 
[10,24,31]. For birefringent fibers, the authors in [11,14] also introduced some extensions of the SP equation to describe the 
propagation of ultra-short pulse. We will introduce these extensions specifically in Section 3.

Integrable discretizations of short pulse type equations have received considerable attention recently, especially the loop-
soliton, antiloop-soliton and cuspon-soliton solutions in [11,13,14,12,31]. The authors linked the short pulse type equations 
with the coupled dispersionless (CD) type systems or the sine-Gordon type equations through the hodograph transfor-
mations. The key of the discretization is an introduction of a nonuniform mesh, which plays a role of the hodograph 
transformations as in continuous case. In this paper, we aim at solving the loop-soliton, cupson-soliton solutions of the 
short pulse type equations as well as smooth-soliton solutions. Through the hodograph transformation (x, t) → (y, s) which 
was proposed in [28],{

∂
∂x = 1

ρ
∂
∂ y ,

∂
∂t = ∂

∂s + u2

2ρ
∂
∂ y ,

we can establish the link between the SP equation (1.1) and the CD system [19],

ρs + (
1

2
u2)y = 0, u ys = ρu.

There exists some short pulse type equations which are failed to be transformed into CD systems. Therefore, we consider 
an alternative approach by introducing a new variable z and define another hodograph transformation,{

∂
∂x = (cos z)−1 ∂

∂ y ,
∂
∂t = ∂

∂s + 1
2 z2

s (cos z)−1 ∂
∂ y ,

which connects the short pulse equation (1.1) with the sine-Gordon equation [30]

zys = sin z.

For the CD system or the sine-Gordon equation, we develop the discontinuous Galerkin (DG) schemes to obtain the 
high-order accuracy numerical solution uh(y, s) or zh(y, s). Consequently, a point-to-point profile uh(x, t) of loop-soliton, 
cuspon-soliton solutions of the SP equation can be obtained, which are shown by the numerical experiments in Section 4.

The DG method was first introduced in 1973 by Reed and Hill in [26] for solving steady state linear hyperbolic equations. 
The important ingredient of this method is the design of suitable inter-element boundary treatments (so called numerical 
fluxes) to obtain highly accurate and stable schemes in many situations. Within the DG framework, the method was ex-
tended to deal with derivatives of order higher than one, i.e. local discontinuous Galerkin (LDG) method. The first LDG 
method was introduced by Cockburn and Shu in [7] for solving convection-diffusion equation. Their work was motivated by 
the successful numerical experiments of Bassi and Rebay [2] for compressible Navier-Stokes equations. Later, Yan and Shu 
developed an LDG method for a general KdV type equation containing third order derivatives in [42], and they generalized 
the LDG method to PDEs with fourth and fifth spatial derivatives in [43]. Levy, Shu and Yan [21] developed LDG methods 
for nonlinear dispersive equations that have compactly supported traveling wave solutions, the so-called compactons. More 
recently, Xu and Shu further generalized the LDG method to solve a series of nonlinear wave equations [37–40,45]. We refer 
to the review paper [36] of LDG methods for high-order time-dependent partial differential equations.

Most recently, a series of schemes which called structure-preserving schemes have attracted considerable attention. 
For some integrable equations like KdV type equations [9,20,22,46], Zakharov system [34], Schrödinger-KdV system [35], 
Camassa-Holm equation [44], etc., the authors proposed various conservative numerical schemes to “preserve structure”. 
These conservative numerical schemes have some advantages over the dissipative ones, for example, the Hamiltonian con-
servativeness can help reduce the phase error along the long time evolution and have a more accurate approximation to 
exact solutions for KdV type equations [46]. The CD system and the generalized CD system are integrable, thus they have 
an infinite number of conserved quantities [18]. For the CD system, the following two invariants

H0 =
∫

ρu2 dy, H1 =
∫

ρ2 + u2
y dy,

are corresponding to the Hamiltonian E0, E1 of the SP equation [3,4] via the hodograph transformation,

E0 =
∫

u2 dx, E1 =
∫ √

1 + u2
x dx.

In this paper, we first construct E0 conserved DG scheme for the SP equation directly. For the loop-soliton and cuspon-
soliton solutions, the H0, H1 conserved DG schemes for CD system are developed respectively, to profile the singular 
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solutions of the SP equation. Also we modify the above DG schemes and propose an integration DG scheme which can 
numerically achieve the optimal convergence rates for ρ, u, and u y . Theoretically, we prove that the H1 conserved DG 
scheme has the optimal order of accuracy for ρ, u and u y in L2 norm. The integration DG scheme can be proved the opti-
mal order of accuracy for ρ, u y in L2 norm and the suboptimal order of accuracy for u in L∞ norm. All these DG schemes 
can be adopted to the generalized or modified SP type equations.

The rest of this paper is organized as follows. In Section 2, we develop the DG schemes for the SP equation directly, 
and via the hodograph transformations for the CD system and the sine-Gordon equation. Some notations for simplifying 
expressions are given in Section 2.1. In Section 2.2, we first propose the E0 conserved DG scheme for the SP equation. 
To simulate the loop-soliton or cuspon-soliton solutions of the SP equation, the H0, H1 conserved DG schemes and the 
integration DG scheme are constructed for the CD system which links the SP equation by the hodograph transformation. 
Meanwhile, the a priori error estimates for H1 conserved DG and integration DG schemes are also provided. Moreover, 
we develop two kinds of DG schemes for the sine-Gordon equation to introduce another resolution for the SP equation 
in Section 2.3. Section 3 is devoted to summarize the generalized short pulse equations and introduce the corresponding 
conserved quantities briefly. Several numerical experiments are listed in Section 4, including the propagation and interaction 
of loop-soliton, cuspon-solution, breather solution of the short pulse type equations. We also show the accuracy and the 
change of conserved quantities in Section 4. Finally, some concluding remarks are given in Section 5.

2. The discontinuous Galerkin discretization

In this section, we present the discontinuous Galerkin discretization for solving the short pulse type equations. In order 
to describe the methods, we first introduce some notations.

2.1. Notations

We denote the mesh Th on the spatial y by I j = [y j− 1
2
, y j+ 1

2
] for j = 1, . . . , N , with the cell center denoted by y j =

1
2 (y j− 1

2
+ y j+ 1

2
). The cell size is �y j = y j+ 1

2
− y j− 1

2
and h = max

1≤ j≤N
�y j . The mesh is regular in the sense that the ratio 

between the maximum and the minimum mesh sizes stays bounded during mesh refinements. The finite element space as 
the solution and test function space consists of piecewise polynomials

V k
h = {v : v|I j ∈ Pk(I j);1 ≤ j ≤ N},

where Pk(I j) denotes the set of polynomial of degree up to k defined on the cell I j . Notably, the functions in V k
h are 

allowed to be discontinuous across cell interfaces. The values of u at y j+ 1
2

are denoted by the u−
j+ 1

2
and u+

j+ 1
2

, from the 

left cell I j and the right cell I j+1 respectively. Additionally, the jump of u is defined as �u� = u+ − u− , the average of u as 
{ {u} } = 1

2 (u+ + u−). To simplify expressions, we adopt the round bracket and angle bracket for the L2 inner product on cell 
I j and its boundary

(u, v)I j =
∫
I j

uvdy,

< û, v >I j = û j+ 1
2

v−
j+ 1

2
− û j− 1

2
v+

j− 1
2
,

for one dimensional case.
For the spatial variable x, we denote the mesh T ′

h by I ′j = [x j− 1
2
, x j+ 1

2
] for j = 1, . . . , N . Similar to the notations on the 

mesh Th , we have x j, �x j , and h′ = max
1≤ j≤N

�x j . We assume that the mesh on the coordinate x is also regular. Without 

misunderstanding, we still use u−
j+ 1

2
and u+

j+ 1
2

denote the values of u at x j+ 1
2

, from the left cell I ′j and the right cell I ′j+1

respectively.

2.2. The short pulse equation

Recall the short pulse equation

uxt = u + 1

6
(u3)xx, x ∈ I ′ = [xL, xR ], (2.1)

where u(x, t) ∈ R is a real-valued function, t denotes the temporal coordinate and x is the spatial scale. Through the 
hodograph transformation, it can be converted into a coupled dispersionless (CD) system{

ρs + ( 1
2 u2)y = 0,

u ys = ρu,
(2.2)



4 Q. Zhang, Y. Xia / Journal of Computational Physics 399 (2019) 108928
where s denotes the temporal coordinate, and y is the spatial scale, y ∈ I = [yL, yR ]. The hodograph transformation (y, s) →
(x, t) is defined by{

∂
∂ y = ρ ∂

∂x ,

∂
∂s = ∂

∂t − u2

2
∂
∂x .

Subsequently, the parametric representation of the solution of the short pulse equation (2.1) is

u = u(y, s), x = x(y0, s) +
y∫

y0

ρ(ζ, s)dζ ,

where y0 is a real constant. Since the short pulse equation and the equivalent CD system are completely integrable, they 
have an infinite number of conservation laws. The first two invariants of the SP equation are described by

E0 =
∫

u2dx, E1 =
∫ √

1 + u2
x dx,

and the corresponding conservation laws for the CD system are

H0 =
∫

ρu2dy, H1 =
∫

ρ2 + u2
y dy.

2.2.1. E0 conserved scheme
To construct the discontinuous Galerkin method for the SP equation directly, we rewrite the SP equation (2.1) as a first 

order system:⎧⎪⎨⎪⎩
vt = u + ωx,

v = ux,

ω = ( 1
6 u3)x.

(2.3)

The local DG scheme for equations (2.3) is formulated as follows: Find uh, vh, ωh ∈ V k
h such that, for all test functions 

ϕ, φ, ψ ∈ V k
h and I ′j ∈ T ′

h⎧⎪⎪⎨⎪⎪⎩
((vh)t,ϕ)I ′j = (uh,ϕ)I ′j + < ω̂h,ϕ >I ′j −(ωh,ϕx)I ′j , (a)

(vh, φ)I ′j =< ûh, φ >I ′j −(uh, φx)I ′j , (b)

(ωh,ψ)I ′j =< ̂f (uh),ψ >I ′j −( f (uh),ψx)I ′j , (c)

(2.4)

where f (u) = 1
6 u3. The “hat” terms in the scheme are the so-called “numerical fluxes”, which are functions defined on the 

cell boundary from integration by parts and should be designed based on different guiding principles for different PDEs to 
ensure the stability and local solvability of the intermediate variables. To ensure the scheme is E0 conserved, the numerical 
fluxes we take are⎧⎪⎨⎪⎩

ω̂h = {{ωh}}, ûh = {{uh}},
̂f (u) =

{
� F (u)�

�u�
, �u� �= 0,

f ({{u}}), �u� = 0,

(2.5)

where F (u) = ∫ u f (τ )dτ . Numerically, E0 conserved DG scheme can achieve (k + 1)-th order of accuracy for even k, and 
k-th order of accuracy for odd k on uniform meshes. With nonuniform meshes, the E0 conserved DG scheme only have 
suboptimal order of accuracy regardless of the parity of the polynomial degrees k.

Proposition 2.1. (Energy conservation) The DG scheme (2.4) with the numerical fluxes (2.5) for the short pulse equation (2.1) satisfies 
the energy conservativeness

d

dt
E0(uh) = 0.

Proof. For the equation (2.4b), we take the time derivative and get

((vh)t, η)I ′ =< (̂uh)t, η >I ′ −((uh)t , ηx)I ′ . (2.6)

j j j
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Since (2.6), and (2.4a)-(2.4c) hold for any test functions in V k
h , we can choose

ϕ = (uh)t, η = −(uh)t, ψ = −uh,

and it follows that

((vh)t, (uh)t)I ′j = (uh, (uh)t)I ′j + < ω̂h, (uh)t >I ′j −(ωh, (uh)tx)I ′j , (2.7)

−((vh)t, (uh)t)I ′j = − < (̂uh)t, (uh)t >I ′j +((uh)t, (uh)tx)I ′j , (2.8)

−(ωh, uh)I ′j = − < ̂f (uh), (uh) >I ′j +( f (uh), (uh)x)I ′j . (2.9)

To eliminate extra terms, we take test functions ϕ = −ωh in (2.4a), η = ωh in (2.6), and then obtain

−((vh)t,ωh)I ′j = −(uh,ωh)I ′j − < ω̂h,ωh >I ′j +(ωh, (ωh)x)I ′j , (2.10)

((vh)t,ωh)I ′j =< (̂uh)t,ωh >I ′j −((uh)t, (ωh)x)I ′j . (2.11)

With these choices of test functions and summing up the five equations in (2.7)-(2.11), we get

(uh, (uh)t)I ′j + < ω̂h, (uh)t >I ′j −(ωh, (uh)tx)I ′j − < (̂uh)t, (uh)t >I ′j +((uh)t, (uh)tx)I ′j

+ < (̂uh)t,ωh >I ′j −((uh)t, (ωh)x)I ′j − < ̂f (uh), (uh) >I ′j +( f (uh), (uh)x)I ′j
− < ω̂h,ωh >I ′j +(ωh, (ωh)x)I ′j = 0.

(2.12)

Now the equation (2.12) can be rewritten into following form

(uh, (uh)t)I ′j + � j+ 1
2

− � j− 1
2

+ 
 j− 1
2

= 0, (2.13)

where the numerical entropy flux � is given by

� = ω̂h(u−
h )t − ω−

h (u−
h )t + 1

2
(u−

h )2
t − (̂uh)t(u−

h )t

+ (̂uh)tω
−
h − 1

2
(ω−

h )2 + ω̂hω
−
h − ̂f (uh)u−

h + F (u−
h ),

and the extra term 
 is


 = −ω̂h �(uh)t � − ̂(uh)t � wh � + � wh(uh)t � + ̂f (uh)�uh � − � F (uh)�

+ (̂(uh)t − {{(uh)t}})�(uh)t � + (−ω̂h + {{ωh}})�ωh � = 0,

which vanishes due to the choice of the conservative numerical fluxes (2.5). Summing up the cell entropy equalities (2.13)
with the periodic or homogeneous Dirichlet boundary conditions, it implies that

(uh, (uh)t)I ′ = 0.

Thus, the DG scheme (2.4) for the short pulse equation is E0 conserved. �
The E0 conserved scheme resolves the smooth solutions for the short pulse equation efficiently, as shown in Section 4. 

However, for the loop-soliton and cuspon-soliton solutions, this scheme can not be used because of the singularity of 
solutions. Therefore, we introduce the DG schemes via hodograph transformations in the following sections.

2.2.2. H0 conserved DG scheme
As we have mentioned, the short pulse equation can be converted into the coupled dispersionless (CD) system through 

the hodograph transformation. To construct the local discontinuous Galerkin numerical method for the CD system, we first 
rewrite (2.2) as a first order system⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρs + γy = 0,

ωs = ρu,

ω = u y,

γ = 1
2 u2.

Then we can formulate the LDG numerical method as follows: Find uh , ρh , ωh , γh ∈ V k such that
h
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
((ρh)s, φ)I j + < γ̂h, φ >I j −(γh, φy)I j = 0, (a)

((ωh)s,ϕ)I j = (ρhuh,ϕ)I j , (b)

(ωh,ψ)I j =< ûh,ψ >I j −(uh,ψy)I j , (c)

(γh, η)I j = ( 1
2 u2

h, η)I j (d)

(2.14)

for all test functions φ, ϕ , ψ , η ∈ V k
h and I j ∈ Th . To guarantee the conservativeness of H0, we adopt the central numerical 

fluxes

γ̂h = {{γh}}, ûh = {{uh}}. (2.15)

Here, the Dirichlet boundary condition is imposed. Numerically, on uniform meshes, we will see that the optimal (k + 1)-th
order of accuracy can be obtained for uh , ρh when k is even, however, the numerical solutions uh , ρh have k-th order of 
accuracy when k is odd. If we modify numerical fluxes as below:

γ̂h = {{γh}} − α�ρh � − β�γh �, ûh = {{uh}} + μ�uh �, (2.16)

then the scheme is dissipative on H0 with the appropriate parameters in Proposition 2.2 and the optimal order of accuracy 
can be achieved numerically for this H0 dissipative scheme.

Proposition 2.2. (H0 conservation/dissipation) The semi-discrete DG numerical scheme (2.14), (2.15) can preserve quantity 
H0(ρh, uh) =

∫
I ρhu2

h dy spatially. The scheme (2.14) with (2.16) composes a dissipative DG scheme on H0 if the parameters in 
(2.16) satisfy the conditions

α = 0, β ≥ 0, μ ≥ 0 and β + μ �= 0.

Proof. First, we take time derivative of equation (2.14c), and the test functions are chosen as φ = γh, ϕ = −(uh)s, ψ =
(uh)s, η = −(ρh)s . Then we have

((ρh)s, γh)I j + < γ̂h, γh >I j −(γh, (γh)y)I j = 0, (2.17)

−((ωh)s, (uh)s)I j + (ρhuh, (uh)s)I j = 0, (2.18)

((ωh)s, (uh)s)I j − < ̂(uh)s, (uh)s >I j +((uh)s, (uh)sy)I j = 0, (2.19)

−(γh, (ρh)s)I j + (
1

2
u2

h, (ρh)s)I j = 0. (2.20)

Summing up all equalities (2.17)-(2.20), we obtain

(ρhuh, (uh)s)I j + (
1

2
u2

h, (ρh)s)I j +
< γ̂h, γh >I j −(γh, (γh)y)I j − < ̂(uh)s, (uh)s >I j +((uh)s, (uh)sy)I j = 0,

which can be written as

1

2

d

ds

∫
I j

ρhu2
hdy + � j+ 1

2
− � j− 1

2
+ 
 j− 1

2
= 0, (2.21)

where the numerical entropy fluxes are given by

� = γ̂hγ
−

h − 1

2
(γ −

h )2 − ̂(uh)s(uh)
−
s + 1

2
((uh)

−
s )2

and the extra term 
 is


 = (−γ̂h + {{γh}})�γh � + (̂(uh)s − {{(uh)s}})�(uh)s �.

Therefore the choices of γ̂h, ûh in (2.16) concern the conservativeness of the DG scheme. According to the parameters 
α, β, μ, we give two cases:

H0 conserved DG scheme α = β = μ = 0 : 
 = 0; (2.22)

H0 dissipative DG scheme α = 0, β = 1

2
,μ = 1

2
: 
 = 1

2
(�γ 2 � + �u2

s �) ≥ 0. (2.23)

Summing up the cell entropy equalities (2.21) and (2.22), (2.21) and (2.23), respectively, then we get
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1

2

d

ds

∫
I

ρhu2
h dy = 0, H0 conserved DG scheme,

1

2

d

ds

∫
I

ρhu2
h dy ≤ 0, H0 dissipative DG scheme. �

In the numerical test Example 4.2, it shows that the dissipative scheme with parameters (2.23) can achieve the optimal 
convergence rate for both u and ρ no matter k is odd or even. However, the order of accuracy for the H0 conserved DG 
scheme (2.22) is k-th for odd k, (k + 1)-th for even k on uniform meshes. With nonuniform meshes, the H0 conserved DG 
scheme is suboptimal order of accuracy regardless of the parity of the polynomial degrees. The choices of these parameters 
are not unique, but the above numerical fluxes in the dissipative scheme can minimize the stencil as in [46].

2.2.3. H1 conserved DG scheme
In this section, we construct another discontinuous Galerkin scheme which preserves the quantity H1 of the CD system 

(2.2) which links the Hamiltonian E1 of the short pulse equation through the hodograph transformation. First, we rewrite 
the CD system as a first order system⎧⎪⎨⎪⎩

ρs + uω = 0,

ws = ρu,

ω = u y .

(2.24)

Then the semi-discrete LDG numerical scheme can be constructed as: Find uh , ωh , ρh ∈ V k
h such that⎧⎪⎨⎪⎩

((ρh)s, φ)I j + (uhωh, φ)I j = 0, (a)

((ωh)s,ϕ)I j = (ρhuh,ϕ)I j , (b)

(ωh,ψ)I j =< ûh,ψy >I j −(uh,ψy)I j , (c)

(2.25)

for all test functions φ, ϕ , ψ ∈ V k
h and I j ∈ Th . The numerical flux is taken as ûh = u+

h . Numerically, the optimal (k + 1)-th
order of accuracy can be obtained for both uh , ρh .

Proposition 2.3. (H1 conservation) The semi-discrete DG numerical scheme (2.25) can preserve the quantity H1(ρh, ωh) = ∫
I (ρ

2
h +

ω2
h)dy spatially.

Proof. By taking the test functions φ = ρh, ϕ = ωh in (2.25), we obtain

((ρh)s,ρh)I j + (uhωh,ρh)I j = 0,

((wh)s,ωh)I j = (ρhuh,ωh)I j .

Summing up over all I j ∈ Th , it implies that

1

2

d

ds

∫
I

ρ2
h + ω2

h dy = 0. �

In what follows, we prepare to give the a priori error estimate for the H1 conserved DG scheme. The standard L2

projection of a function ζ with k + 1 continuous derivatives into space V k
h , is denoted by P , i.e., for each I j

(Pζ − ζ,φ)I j = 0, ∀φ ∈ Pk(I j),

and the special projections P± into V k
h satisfy, for each I j

(P+ζ − ζ,φ)I j = 0, ∀φ ∈ Pk−1(I j), and P+ζ(y+
j− 1

2
) = ζ(y j− 1

2
),

(P−ζ − ζ,φ)I j = 0, ∀φ ∈ Pk−1(I j), and P−ζ(y−
j+ 1

2
) = ζ(y j+ 1

2
).

For the projections mentioned above, it is easy to show [6] that∥∥ζ e
∥∥

L2(I) + h
1
2
∥∥ζ e

∥∥
L∞(I) + h

1
2
∥∥ζ e

∥∥
L2(∂ I) ≤ Chk+1, (2.26)

where ζ e = ζ −Pζ or ζ e = ζ −P±ζ , and the positive constant C only depends on ζ . There is an inverse inequality we will 
use in the subsequent proof. For ∀uh ∈ V k , there exists a positive constant σ (we call it the inverse constant), such that
h
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‖uh‖L2(∂ I) ≤ σh− 1
2 ‖uh‖L2(I) , (2.27)

where ‖uh‖L2(∂ I) =
√

N+1∑
j=1

((uh)−
j+ 1

2
)2 + ((uh)+

j− 1
2
)2.

First, we write the error equations of the H1 conserved DG scheme as follows:

((ρ − ρh)s,ϕ)I j = −(uω − uhωh,ϕ)I j , (2.28)

((ω − ωh)s, φ)I j = (ρu − ρhuh, φ)I j , (2.29)

(ω − ωh,ψ)I j =< û − uh,ψ >I j −(u − uh,ψy)I j , (2.30)

and denote

ηu = u −P+u, ξu = P+u − uh,

ηρ = ρ −Pρ, ξρ = Pρ − ρh,

ηω = ω −Pω, ξω = Pω − ωh.

(2.31)

To deal with the term ξu , we need to establish a relationship between ξu and ξω in following lemma.

Lemma 2.4. The ξu, ξω, ηω are defined in (2.31), then there exists a positive constant Cσ ,p independent of h but depending on inverse 
constant σ and Poincaré constant C p, such that∥∥ξu

∥∥
L2(I) ≤ Cσ ,p(

∥∥ξω
∥∥

L2(I) + ∥∥ηω
∥∥

L2(I)).

Proof. By Poincaré Friedrichs inequality in Chapter 10 of [5], we have∥∥ξu
∥∥

L2(I) ≤ C p

[∥∥ξu
y

∥∥
L2(I)

+ h− 1
2
∥∥�ξu �

∥∥
L2(∂ I)

]
where

∥∥ξu
y

∥∥
L2(I)

=
( ∑

I j∈Th

∫
I j

(ξu
y )2dy

) 1
2
,

∥∥�ξu �
∥∥

L2(∂ I) =
( N+1∑

j=1

�ξu �2
j− 1

2

) 1
2
.

The inequality (4.17) in [33] gives[∥∥ξu
y

∥∥
L2(I)

+ h− 1
2
∥∥�ξu �

∥∥
L2(∂ I)

]
≤ Cσ (

∥∥ξω
∥∥

L2(I) + ∥∥ηω
∥∥

L2(I)),

which implies that∥∥ξu
∥∥

L2(I) ≤ Cσ ,p(
∥∥ξω

∥∥
L2(I) + ∥∥ηω

∥∥
L2(I)). �

Theorem 2.5. It is assumed that the system (2.24) with the Dirichlet boundary condition has a smooth solution u, ρ, ω. Let uh, ρh, ωh

be the numerical solution of the semi-discrete DG scheme (2.25). And there exists that initial conditions u0
h, ω

0
h , ρ0

h satisfy the following 
approximation property∥∥∥u0 − u0

h

∥∥∥
L2(I)

+
∥∥∥ρ0 − ρ0

h

∥∥∥
L2(I)

+
∥∥∥ω0 − ω0

h

∥∥∥
L2(I)

≤ Chk+1.

Thereafter for regular partitions of I = (yL, yR), and the finite element space V k
h with k ≥ 0, there holds the following error estimate

‖u − uh‖L2(I) + ‖ω − ωh‖L2(I) + ‖ρ − ρh‖L2(I) ≤ Chk+1,

where the positive constant C depends on the final time T and the exact solutions.

Proof. We rewrite the error equation (2.28), (2.29) as

((ξρ + ηρ)s,ϕ)I j = (−uω + uhωh,ϕ)I j

= (−ω(ξu + ηu) − uh(ξ
ω + ηω),ϕ)I j ,

((ξω + ηω)s, φ)I j = (ρu − ρhuh, φ)I j

= (ρ(ξu + ηu) + u (ξρ + ηρ),φ) .
I j h I j
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Taking the test functions ϕ = ξρ, φ = ξω , we have

(ξ
ρ
s , ξρ)I j =(−η

ρ
s , ξρ)I j − (ω(ξu + ηu) + uh(ξ

ω + ηω), ξρ)I j ,

(ξω
s , ξω)I j =(−ηω

s , ξω)I j + (ρ(ξu + ηu) + uh(ξ
ρ + ηρ), ξω)I j .

Summing up over all interval I j and omitting the subscript I , we obtain

(ξ
ρ
s , ξρ) + (ξω

s , ξω) = (−η
ρ
s − ω(ξu + ηu) − uhη

ω, ξρ) + (−ηω
s + ρ(ξu + ηu) + ηρuh, ξ

ω)

= (−η
ρ
s −Pω(ξu + ηu) − uηω, ξρ) + (−ηω

s +Pρ(ξu + ηu) + uηρ, ξω)

= (A, ξρ) + (B, ξω) − (Pωξu, ξρ) + (Pρξu, ξω).

By the Cauchy-Schwarz and arithmetic-geometric mean inequalities, the equation becomes

d

dt
(
∥∥ξω

∥∥2
L2(I) + ∥∥ξρ

∥∥2
L2(I)) ≤ K + 1

2
(1 + Cω,ρ)(

∥∥ξω
∥∥2

L2(I) + ∥∥ξρ
∥∥2

L2(I)) + Cω,ρ

∥∥ξu
∥∥2

L2(I)
(2.32)

where

A = −η
ρ
s −Pωηu − uηω, B = −ηω

s +Pρηu + uηρ,

K = 1

2
(‖A‖2

L2(I) + ‖B‖2
L2(I)), Cω,ρ = max(cρ, cω).

Here, we need to interpret the constants we mentioned above. We denote by C∗ all positive constants independent of h, 
which depends on the subscript ∗.

Using Lemma 2.4 in the above inequality (2.32), we get

d

dt
(
∥∥ξω

∥∥2
L2(I) + ∥∥ξρ

∥∥2
L2(I)) ≤ K̃ + ˜Cσ ,ω,ρ(

∥∥ξω
∥∥2

L2(I) + ∥∥ξρ
∥∥2

L2(I)),

where

K̃ = 1

2
(‖A‖2

L2(I) + ‖B‖2
L2(I)) + Cσ ,ω,ρ

∥∥ηω
∥∥2

L2(I) ,
˜Cσ ,ω,ρ = 1

2
(1 + Cω,ρ + Cσ ,ω,ρ).

By the Gronwall’s inequality, we have∥∥ξω
∥∥2

L2(I) + ∥∥ξρ
∥∥2

L2(I) ≤ Ch2k+2.

Lemma 2.4 also implies that∥∥ξu
∥∥2

L2(I) ≤ Ch2k+2.

Then Theorem 2.5 follows by the triangle inequality and the interpolating property. �
2.2.4. Integration DG scheme

Instead of the scheme (2.25c) to solve uh from ωh , we can also integrate the equation u y = ω directly referring to [41]. 
We give an integration DG scheme defined as follows: Find uh ∈ V k+1

h , ρh, ωh ∈ V k
h , such that, for all test functions φ, ϕ ∈ V k

h
and I j ∈ Th⎧⎪⎪⎨⎪⎪⎩

((ρh)s, φ)I j + (uhωh, φ)I j = 0,

((ωh)s,ϕ)I j = (ρhuh,ϕ)I j ,

uh(y, s) |I j = uh(y j+ 1
2
, s) − ∫ y

j+ 1
2

y ωh(ξ, s) dξ,

(2.33)

with the Dirichlet boundary condition uh(yN+ 1
2
, s) = u(yR , s). Here, uh is no longer in V k

h space but in V k+1
h space and 

continuous. Numerically, this scheme can obtain the optimal order of accuracy, i.e. (k + 2)-th order for uh , and (k + 1)-th
order for ρh .

Remark 2.1. It is notable that our integration DG scheme (2.33) is based on the H1 conserved DG scheme (2.25). Actually, 
following the H0 conserved DG scheme (2.14), we have another integration DG scheme: Find uh ∈ V k+1

h , ρh , ωh , γh ∈ V k
h

such that
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((ρh)s, φ)I j + < γ̂h, φ >I j −(γh, φy)I j = 0, (a)

((ωh)s,ϕ)I j = (ρhuh,ϕ)I j , (b)

(γh, η)I j = ( 1
2 u2

h, η)I j , (c)

uh(y, s) |I j = uh(y j+ 1
2
, s) − ∫ y

j+ 1
2

y ωh(ξ, s) dξ, (d)

(2.34)

for all test functions φ, ϕ , η ∈ V k
h and I j ∈ Th . The only difference between those two integration DG schemes is the 

L2 projection (2.34c). Numerically, there is little difference on accuracy and conserved quantities H0, H1. In the following 
sections, the integration DG scheme we mention refers to the numerical scheme (2.33).

To prove the error estimate of this integration scheme, we introduce the following lemma to build the relationship 
between ξu and ξω .

Lemma 2.6. In this lemma, u, ω is the exact solution of CD system (2.24) with the Dirichlet boundary, ω is the derivative of u with 
respect to y. The numerical solutions uh, ωh of the integration DG scheme (2.33) for CD system satisfy (uh)y = ωh, and ξu, ξω, ηu, ηω

are defined in (2.31), then we have the following relationship:∥∥ξu
y

∥∥
L2(I)

+ h− 1
2
∥∥�ξu �

∥∥
L2(I) ≤ Cσ (

∥∥ξω
∥∥

L2(I) + ∥∥ηω
∥∥

L2(I) + h−1
∥∥ηu

∥∥
L2(I)) (2.35)

where the positive constant Cσ depends on the inverse constant σ .

Proof. First we write the error equation

ξu
y + ηu

y = ξω + ηω. (2.36)

Here we take a test function φ as follows:

φ(y)I j = ξu
y (y) − (ξu

y )−
j+ 1

2
Lk+1(ζ )

where Lk is the standard Legendre polynomial of degree k − 1 in [−1, 1], ζ = 2(y − y j)/h j . We have Lk(1) = 1 and Lk

is orthogonal to any polynomials with degree at most k − 1. Therefore we obtain some relevant properties φ−
j+ 1

2
= 0, 

(ξu
y , φ)I j = (ξu

y , ξu
y )I j . Then we multiply the error equation (2.36) by test function φ(y) and integrate it over I j , which 

follows that

(ξu
y , φ)I j + (ηu

y, φ)I j = (ξω,φ)I j + (ηω,φ)I j ,

(ξu
y , ξu

y )I j + (ηu)−
j+ 1

2
φ−

j+ 1
2

− (ηu)+
j− 1

2
φ+

j− 1
2

− (ηu, φy)I j = (ξω,φ)I j + (ηω,φ)I j ,

(ξu
y , ξu

y )I j = (ξω,φ)I j + (ηω,φ)I j .

Since ‖Lk(ζ )‖L2(I j)
≤ Ch

1
2
j , we use Cauchy-Schwarz inequality and the inverse property (2.27), and obtain

∥∥ξu
y

∥∥2
L2(I j)

≤ (
∥∥ξu

y

∥∥
L2(I j)

+
∣∣∣∣(ξu

y )−
j+ 1

2

∣∣∣∣‖Lk(ζ )‖L2(I j)
)(

∥∥ξω
∥∥2

L2(I j)
+ ∥∥ηω

∥∥2
L2(I j)

)

≤ Cσ

∥∥ξu
y

∥∥
L2(I j)

(
∥∥ξω

∥∥2
L2(I j)

+ ∥∥ηω
∥∥2

L2(I j)
). (2.37)

Hence we arrive at∥∥ξu
y

∥∥
L2(I j)

≤ Cσ (
∥∥ξω

∥∥2
L2(I j)

+ ∥∥ηω
∥∥2

L2(I j)
).

Next, for the boundary term �ξu � j− 1
2

, the deduction process is as follows:

�ξu � j− 1
2

= �P+u − uh � j− 1
2

= �P+u� j− 1
2

= �P+u − u� j− 1
2

= �ηu � j− 1
2
.

Here the equalities hold due to the continuity of u and uh . Taking account of the projection error (2.26), we have∥∥�ξu �
∥∥

L2(I j)
= ∥∥�ηu �

∥∥
L2(I j)

≤ Ch− 1
2
∥∥ηu

∥∥
L2(I j)

Finally, by summing over all cells I j it follows the result (2.35) �
Next, we imitate Theorem 2.5 and give the error estimate for the integration DG scheme (2.33).
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Theorem 2.7. It is assumed that the system (2.24) with the Dirichlet boundary condition has a smooth solution u, ρ, ω. Let uh, ρh, ωh

be the numerical solution of the semi-discrete DG scheme (2.33). And there exists that initial conditions u0
h, ω

0
h , ρ0

h satisfy the following 
approximation property∥∥∥u0 − u0

h

∥∥∥
L∞(I)

+
∥∥∥ρ0 − ρ0

h

∥∥∥
L2(I)

+
∥∥∥ω0 − ω0

h

∥∥∥
L2(I)

≤ Chk+1.

Thereafter for a regular partitions of I = (yL, yR), and the finite element spaces V k
h and V k+1

h with k ≥ 0, there holds the following 
error estimates

‖u − uh‖L∞(I) + ‖ω − ωh‖L2(I) + ‖ρ − ρh‖L2(I) ≤ Chk+1

where the positive constant C depends on the final time T and the exact solutions.

Proof. First, we write the error equations of the integration DG scheme (2.33) as follows:⎧⎪⎨⎪⎩
((ρ − ρh)s,ϕ)I j = −(uω − uhωh,ϕ)I j , (a)

((ω − ωh)s, φ)I j = (ρu − ρhuh, φ)I j , (b)

(u − uh)(y) = (u − uh)(y j+ 1
2
) − ∫ y j+ 1

2
y (ω − ωh)(ζ ) dζ. (c)

(2.38)

Then the process of this proof is similar to the proof of Theorem 2.5. We can adopt the proof of Theorem 2.5 until estimate 
(2.32). The relationship between ξu and ξ w for the integration DG scheme which has been provided in Lemma 2.6 guaran-
tees that the proof can be continued. Under this circumstance, u ∈ V k+1

h and 
∥∥ηu

∥∥ < Chk+2. So we still have the same result 
as Theorem 2.5,∥∥ξω

∥∥2
L2(I) + ∥∥ξρ

∥∥2
L2(I) ≤ Ch2k+2.

Then followed by the triangle inequality and the interpolating property, there holds

‖ω − ωh‖L2(I) + ‖ρ − ρh‖L2(I) ≤ Chk+1.

Here, we can obtain the L∞ error estimate for uh . For ∀y ∈ [yL, yR ], we apply Cauchy-Schwarz inequality on error equation 
(2.38c), and the following estimate holds

|(u − uh)(y)| =
∣∣∣∣∣∣(u − uh)(yR) +

yR∫
y

(ω − ωh)(ξ)dξ

∣∣∣∣∣∣ ≤ C ‖ω − ωh‖L2(I) . (2.39)

The boundary term vanishes in (2.39) due to the boundary condition u(yR , s) = uh(yN+ 1
2
, s). Thus we arrive at ‖u − uh‖L∞ ≤

Chk+1. �
2.3. The sine-Gordon equation

There exists some short pulse type equations which are failed to be transformed into the corresponding CD systems to 
solve, e.g., some examples in Section 3. In this section, we can adopt an alternative approach by linking the short pulse 
equation (2.1) with the sine-Gordon equation.

First, we consider the sine-Gordon equation

zys = sin z, z ∈R, (2.40)

where s denotes the temporal coordinate, y is the spatial scale and y ∈ I = [yL, yR ]. The hodograph transformation between 
the short pulse equation and the sine-Gordon equation is as follows:{

∂
∂ y = cos z ∂

∂x ,

∂
∂s = ∂

∂t − (zs)
2

2
∂
∂x .

The parametric representation of the solution of the short pulse equation (2.1) is

u = zs(y, s), x = x(y0, s) +
y∫

y0

cos z dy.

The sine-Gordon equation has a conserved quantity H2 = ∫
I z2

y dy which can be preserved discretely in the following DG 
scheme.
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2.3.1. DG scheme for sine-Gordon equation
In this subsection, we develop the DG scheme for the sine-Gordon equation (2.40). We divide the sine-Gordon equation 

into these first-order equations⎧⎪⎨⎪⎩
ωs = η,

η = sin z,

ω = zy .

The semi-discrete DG numerical method for sine-Gordon equation is defined as follows: Find zh, ηh, ωh ∈ V k
h , such that, for 

all test functions ϕ , φ, ψ ∈ V k
h and I j ∈ Th⎧⎪⎨⎪⎩

((ωh)s,ϕ)I j = (ηh,ϕ)I j ,

(ηh, φ)I j = (sin zh, φ)I j ,

(ωh,ψ)I j =< ẑh,ψ >I j −(zh,ψy)I j ,

(2.41)

where the numerical flux is ẑh = z+
h . Numerically, this scheme can achieve the optimal order of accuracy for zh .

To maintain the quantity H2 conserved, we can also choose a special numerical flux ẑh

ẑh =
{

�zhηh �−�cos zh �
�ηh �

, �ηh � �= 0,

zh. �ηh � = 0,

which makes this scheme H2 conservative. But in the actual computation, this conservative scheme will increase the com-
plexity for solving a nonlinear system. For the convenience of the simulation, we adopt the numerical flux ẑh = z+

h for the 
DG scheme (2.41) in our numerical tests. Here, the Dirichlet boundary condition is adopted for variable z. For the case of 
periodic boundary condition, the detailed discussion is provided in [32].

2.3.2. Integration DG scheme for sine-Gordon equation
We can also solve ω = zy by integration directly as the scheme (2.33) in Section 2.2.4. The semi-discrete integration 

DG numerical scheme for sine-Gordon equation (2.40) is formulated as: Find zh ∈ V k+1
h , ηh, ωh ∈ V k

h , such that, for all test 
functions ϕ , φ ∈ V k

h and I j ∈ Th ,⎧⎪⎪⎨⎪⎪⎩
((ωh)s,ϕ)I j = (ηh,ϕ)I j , (a)

(ηh, φ)I j = (sin zh, φ)I j , (b)

zh(y, s) |I j = zh(y j+ 1
2
, s) − ∫ y

j+ 1
2

y ωh(ξ, s) dξ, (c)

(2.42)

with the Dirichlet boundary condition zh(yN+ 1
2
, s) = z(yR , s). Similarly, this scheme can achieve the optimal (k +2)-th order 

of accuracy for zh numerically.
Since u = zs , when we obtain zh in each time level, un

h can be computed by a fourth order approximation

un
h = 2zn+1

h + 3zn
h − 6zn−1

h + zn−2
h

6�s
.

Here, we just give one of approximation methods to get uh by zh as an example, and this discretization method is not 
unique.

3. Extensions to other cases

In this section, we consider some generalized short pulse type equations. Similar numerical schemes including H0, 
H1 conserved DG schemes and integration DG scheme in Section 2.2 for the corresponding CD systems, DG scheme and 
integration DG scheme in Section 2.3 for sine-Gordon type equations can be also adopted to solve these generalized short 
pulse type equations via hodograph transformations. For simplicity, we just introduce these generalized equations and the 
conservative quantities considered in the numerical schemes.

3.1. The coupled short pulse equation

The short pulse equation can be generalized to the coupled short pulse equations

uxt = u + 1
2 (uvux)x,

vxt = v + 1 (uv vx)x,

}
u, v ∈R, (3.1)
2
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Table 3.1
The conserved quantities H0, H1 for three generalized CD systems.

Coupled CD (3.2) Complex CD (3.4) Coupled CD in complex form (3.6)

H0
∫

ρuvdy
∫

ρ |u|2 dy
∫

ρ(|u|2 + |v|2) dy

H1
∫

ρ2 + u y v ydy
∫

ρ2 + ∣∣u y
∣∣2

dy
∫

ρ2 + ∣∣u y
∣∣2 + ∣∣v y

∣∣2
dy

which can be converted into a coupled CD system

ρs + 1

2
(uv)y = 0, u ys = ρu, v ys = ρv, (3.2)

proposed by Konno and Kakuhata in [19]. For the coupled short pulse equation (3.1), we set u, v ∈ C and v = u∗ which 
denotes the complex conjugate of u. Then we have complex short pulse equation derived from [14]

uxt = u + 1

2
(|u|2 ux)x, u ∈C, (3.3)

which is related to the complex CD system

ρs + 1

2
|u|2y = 0, u ys = ρu, u∗

ys = ρu∗. (3.4)

According to the real-valued case, we also give the complex form of the coupled short pulse equation,

uxt = u + 1
2 ((|u|2 + |v|2)ux)x,

vxt = v + 1
2 ((|v|2 + |u|2)vx)x,

}
u, v ∈C. (3.5)

Through the corresponding hodograph transformation, it can be transformed into

ρs + 1

2
(|u|2)y + 1

2
(|v|2)y = 0, usy = ρu, vsy = ρv. (3.6)

Similar to the short pulse equation (2.1), the corresponding H0, H1 conserved DG schemes and integration DG scheme 
can be constructed to solve above three short pulse type equations (3.1), (3.3), (3.5), respectively. Here, we list the conserved 
quantities H0, H1 in Table 3.1.

3.2. The modified short pulse equation

For nonlinear wave equation

uxt = u + au2uxx + buu2
x ,

if its coefficient ratio a/b equals 1 instead of 1
2 , then we obtain the modified short pulse equation after rescaling the 

variable u,

uxt = u + 1

2
u(u2)xx, u ∈R. (3.7)

It can be converted to a modified CD system [25]

ρs + (u2)y = 0, u ys = (2ρ − 1)u, (3.8)

for which we can build H0, H1 conserved and integration DG schemes.
Next, some generalized modified short pulse equation will be introduced. It is worth to mention that there is one type 

generalized modified short pulse equation in Section 3.2.2, which can not be transformed into the CD system but only the 
sine-Gordon equations through the hodograph transformation.

3.2.1. The generalized modified short pulse systems
The modified short pulse equation

uxt = u + 1
2 v(u2)xx,

vxt = v + 1
2 u(v2)xx,

}
u, v ∈R, (3.9)

connects with the coupled modified CD system

ρs + (uv)y = 0, u ys = (2ρ − 1)u, v ys = (2ρ − 1)v. (3.10)
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Table 3.2
The conserved quantities H0, H1 for three generalized MCD systems.

MCD (3.8) Complex MCD (3.10) Defocusing complex MCD (3.12)

H0
∫
(2ρ − 1)u2dy

∫
(2ρ − 1)uv dy

∫
(2ρ − 1) |u|2 dy

H1
∫

ρ2 + u2
y dy

∫
ρ2 + u y v ydy

∫
ρ2 + ∣∣u y

∣∣2
dy

When u, v ∈C and v = u∗ in (3.9), the focusing and defocusing type of complex modified short pulse equation mentioned 
in [31,15,16] are

uxt = u ± 1

2
u∗(u2)xx, u ∈ C, (3.11)

and the corresponding CD system is

ρs ± |u|2y = 0, u ys = (2ρ − 1)u, u∗
ys = (2ρ − 1)u∗. (3.12)

Similarly, we can develop the corresponding H0, H1 conserved DG schemes and integration DG scheme to solve the modified 
short pulse type equations (3.7), (3.9), (3.11) via the hodograph transformations. The conserved quantities H0, H1 are 
contained in Table 3.2.

3.2.2. Sine-Gordon type equations
The modified short pulse equation (3.7) is linked with the sine-Gordon equation

zys = sin z cos z

which is equivalent to zys = 1
2 sin 2z. Similarly, we can develop DG schemes for the sine-Gordon equation to solve the 

modified short pulse equation as in Section 2.3.
We consider another integrable generalization of the modified short pulse equation, so called the novel coupled short 

pulse equation proposed by Feng in [11]

uxt = u + 1
6 (u3)xx + 1

2 v2uxx,

vxt = v + 1
6 (v3)xx + 1

2 u2 vxx,

}
u, v ∈R, (3.13)

which is failed to be transformed to the CD system. But it can be transformed to the following two-component sine-Gordon 
system

zys = sin z, z̃ ys = sin z̃, (3.14)

by the hodograph transformation{
∂
∂ y = 1

2 (cos z + cos z̃) ∂
∂x ,

∂
∂s = ∂

∂t − u2+v2

2
∂
∂x .

(3.15)

Therefore, we develop the DG and integration DG schemes for this coupled system (3.14) as we did for the sine-Gordon 
equation in Section 2.3.

4. Numerical experiments

In this section we will provide several numerical experiments to illustrate the accuracy and capability of the DG methods. 
Time discretization is the fourth order explicit Runge-Kutta method in [17]. This time discretization method may not ensure 
the conservativeness of fully discretization schemes. However, we will not address the issue of time discretization con-
servativeness in this paper. In the numerical experiments based on hodograph transformations subsequently, the Dirichlet 
boundary condition is imposed, while for the periodic boundary condition, we recommend the readers referring to [32,47]s. 
In order not to repeat, we always choose one of H0, H1 conserved and integration DG schemes to profile the numerical 
solution in the subsequent numerical experiments.

4.1. Solve the short pulse equation directly

Example 4.1. In this example, smooth solutions with periodic boundary condition for the short pulse equation (2.1) are used 
to test the E0 conserved DG method in Section 2.2.1. We list one of the exact solutions derived in [23], which is given by 
the exact solution of the sine-Gordon equation (2.40) in the coordinate (y, s) and need to be transformed to the coordinate 
(x, t) in the following test,
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Table 4.3
Example 4.1, the solution (4.1) of the short pulse equation (2.1): E0 conserved DG scheme with uniform meshes in computa-
tional domain [0, T p], at time T = 1. The parameters κ = 0.65, a = 1.3, x0 = η0 = d = 0.

N P 1 P 2

‖u − uh‖L2 Order ‖u − uh‖L∞ Order ‖u − uh‖L2 Order ‖u − uh‖L∞ Order

40 2.05E−02 – 9.17E−02 – 2.10E−05 – 1.12E−04 –
80 1.09E−02 0.91 5.18E−02 0.82 2.30E−06 3.19 1.22E−05 3.19
160 5.49E−03 0.99 2.90E−02 0.84 2.41E−07 3.26 1.40E−06 3.13
320 2.76E−03 0.99 1.54E−02 0.91 3.19E−08 2.92 1.90E−07 2.88

Table 4.4
Example 4.1, the solution (4.1) of the short pulse equation (2.1): E0 conserved DG scheme with nonuniform meshes 
(2dx, dx, 2dx, dx . . .) in computational domain [0, T p], at time T = 1. The parameters κ = 0.65, a = 1.3, x0 = η0 = d = 0.

N P 1 P 2

‖u − uh‖L2 Order ‖u − uh‖L∞ Order ‖u − uh‖L2 Order ‖u − uh‖L∞ Order

40 2.24E−02 – 9.57E−02 – 3.21E−04 – 1.51E−03 –
80 1.18E−02 0.93 5.44E−02 0.82 5.37E−05 2.58 2.69E−04 2.49
160 6.07E−03 0.95 3.05E−02 0.83 1.28E−05 2.07 9.35E−05 1.53
320 3.05E−03 0.99 1.67E−02 0.87 3.04E−06 2.08 2.08E−05 2.17

Fig. 4.1. Example 4.1, periodic solution (4.1) of the short pulse equation (2.1): E0 conserved DG scheme with computational domain [−1.5T p, 1.5T p ] and 
N = 160 cells, P 2 elements at time T = 0, 1. The parameters κ = 0.65, a = 1.3, x0 = η0 = d = 0.⎧⎪⎨⎪⎩

u(y, s) = 2κ
a cn(η,κ),

x(y, s) = x0 + 1
a2 (1 − 2κ2)s + 1

a (−η + 2E(η,κ)) + d,

η = ay − s
a + η0,

(4.1)

where cn(η, κ) is Jacobi’s cn function. The period is computed by T p = 4
a |−K (κ) + 2E(κ)|, where K (κ) and E(κ) are the 

complete elliptic integrals of the first and second kinds, respectively [1].
The L2 and L∞ errors and the convergence rates with uniform and nonuniform meshes are contained in Table 4.3

and 4.4 respectively. On uniform meshes, for even k, we see the optimal order of accuracy, while for odd k, we can only 
have suboptimal order of accuracy. However, only suboptimal order of accuracy can be achieved on nonuniform meshes 
regardless of the parity of the polynomial degrees. Fig. 4.1 illustrates a typical periodic solution at T = 1 with the parameters 
κ = 0.65, a = 1.3, x0 = η0 = d = 0. This solution represents a periodic wavetrain traveling to the right with a constant 
velocity V = 0.0917.

4.2. Solve the short pulse type equations by transforming it to the CD systems

Example 4.2. This example is devoted to solve some loop-soliton solutions of the short pulse equation (2.1) by linking with 
CD system. We list the general determinant form of solution of the short pulse equation:
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Table 4.5
Example 4.2, 1-soliton solution of the CD system (2.2): uniform meshes in the computational domain [−10, 10], P 2 elements, 
at time T = 10. The parameters p1 = 1.0, α1 = 4.0.

N ‖u − uh‖L2 Order ‖u − uh‖L∞ Order ‖ρ − ρh‖L2 Order ‖ρ − ρh‖L∞ Order

40 1.17E−02 – 8.00E−02 – 1.84E−02 – 2.30E−01 –
H0 80 3.97E−04 4.88 2.37E−03 5.08 6.68E−04 4.78 1.07E−02 4.43
Dissipative 160 4.92E−05 3.01 2.78E−04 3.09 7.75E−05 3.11 1.17E−03 3.19
DG scheme 320 6.85E−06 2.85 3.85E−05 2.85 1.03E−05 2.91 1.50E−04 2.97

40 7.92E−03 – 3.79E−02 – 6.59E−04 – 7.83E−03 –
H0 80 8.46E−05 6.55 6.17E−04 5.94 5.70E−05 3.53 9.23E−04 3.08
Conserved 160 1.04E−05 3.03 7.61E−05 3.02 7.45E−06 2.93 1.25E−04 2.89
DG scheme 320 1.32E−06 2.98 9.60E−06 2.99 9.42E−07 2.98 1.56E−05 3.00

40 1.03E−02 – 4.67E−02 – 3.27E−04 – 3.97E−03 –
H1 80 9.88E−05 6.70 6.97E−04 6.07 3.41E−05 3.26 5.81E−04 2.77
Conserved 160 1.16E−05 3.09 8.26E−05 3.08 4.23E−06 3.01 7.94E−05 2.87
DG scheme 320 1.43E−06 3.02 1.02E−05 3.01 5.29E−07 3.00 1.01E−05 2.97

40 1.77E−05 – 1.94E−04 – 2.32E−04 – 2.80E−03 –
Integration 80 9.16E−07 4.27 1.75E−05 3.48 2.92E−05 2.99 4.59E−04 2.61
DG scheme 160 5.41E−08 4.08 1.17E−06 3.90 3.70E−06 2.98 6.07E−05 2.92

320 3.33E−09 4.02 7.45E−08 3.98 4.65E−07 2.99 7.72E−06 2.98

Table 4.6
Example 4.2, 1-soliton solution of the CD system (2.2): nonuniform meshes (2dx, dx, 2dx, dx . . .) in the computational domain 
[−10, 10], P 2 elements, at time T = 1. The parameters p1 = 1.0, α1 = 4.0.

N ‖u − uh‖L2 Order ‖u − uh‖L∞ Order ‖ρ − ρh‖L2 Order ‖ρ − ρh‖L∞ Order

40 9.14E−04 – 4.84E−03 – 1.48E−03 – 2.05E−02 –
H0 80 1.14E−04 3.01 1.51E−03 1.68 4.17E−04 1.83 5.79E−03 1.83
Conserved 160 2.77E−05 2.04 3.65E−04 2.05 1.06E−04 1.97 1.53E−03 1.92
DG scheme 320 6.88E−06 2.01 9.14E−05 2.00 2.68E−05 1.99 4.08E−04 1.91

40 2.85E−04 – 4.98E−03 – 5.94E−04 – 7.86E−03 –
H1 80 3.43E−05 3.05 6.53E−04 2.93 7.00E−05 3.08 1.05E−03 2.90
Conserved 160 4.30E−06 3.00 8.63E−05 2.92 8.86E−06 2.98 1.41E−04 2.91
DG scheme 320 5.38E−07 3.00 1.09E−05 2.98 1.11E−06 2.99 1.79E−05 2.97{

u = g
f ,

x = x(y0, s) + ∫ y
y0

ρ(ζ, s)dζ = y − 2(ln f )s, t = s,
(4.2)

f =
∣∣∣∣ AI I
−I B I

∣∣∣∣ , g =
∣∣∣∣∣∣

AI I eT

−I B I 0T

0 −αT 0

∣∣∣∣∣∣
where AI , B I , I ∈ Rm×m , m is integer denoting the number of soliton, and I is an identity matrix, 0, e, α ∈ Rm are 
m-component row vectors whose elements are defined, respectively, by

aij = 1

2( 1
pi

+ 1
p j

)
eξi+ξ j , bij = αiα j

2( 1
pi

+ 1
p j

)
,

e = (eξ1 , eξ2 , . . . , eξm ), α = (α1,α2, . . . ,αm),with ξi = pi y + s

pi
+ yi0, i = 1,2, . . . ,m.

(4.3)

We fix the constant of integration in x by choosing y0 = yL , and pi , αi , yi0 ∈C are constants.
The L2, L∞ error order of 1-soliton solution for CD system are calculated numerically and reported in Table 4.5. We 

compare four kinds of DG schemes at time T = 10 with uniform meshes in [−10, 10]. The H0 dissipative DG numerical 
scheme with α = 0.1, β = 0, μ = 0.5 in (2.16) can reach the optimal (k + 1)-th order of accuracy for u and ρ , so can H1
conserved DG scheme. And the integration DG scheme has the optimal (k + 2)-th order of accuracy for u. Notably, the H0
conserved DG scheme can only reach the optimal error order when k is even, but the suboptimal k-th order of accuracy 
when k is odd.

Referring to [9], we provide the convergence rate on nonuniform meshes in Table 4.6. Similarly, for the H0 conserved DG 
scheme, nonuniform meshes cause the suboptimal order of accuracy on variable u, ρ for all k. However, due to the choice 
of numerical flux in (2.25), the H1 conserved DG scheme can achieve the optimal order of accuracy on variable u, ρ with 
nonuniform meshes regardless of the parity of k.

For the same order of accuracy, we notice that H0 dissipative DG scheme is less accurate than other three schemes. 
For variable ρ , H1 conserved DG scheme is more accurate than H0 conserved DG scheme, and there is little difference for 
variable u. In these four schemes, the integration DG scheme is most accurate one.
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Table 4.7
Example 4.2, the time evolution of conserved quantities for 1-soliton solution for the CD system (2.2), with computational 
domain [−20, 20] and N = 160 cells at time T = 10.

Pk H0 conserved DG scheme H1 conserved DG scheme Integration DG scheme

�H0 �H1 �H0 �H1 �H0 �H1

P 2 1.96E−06 2.96E−06 1.94E−06 1.23E−07 4.38E−07 1.24E−07
P 3 1.51E−07 1.16E−08 4.92E−08 2.18E−08 7.61E−08 5.88E−08

Fig. 4.2. Example 4.2, two-loop-soliton solution of the short pulse equation (2.1): H0 conserved DG scheme with N = 160 cells, P 2 elements. The parameters 
α1 = e−2, α2 = e−8, p1 = 0.9, p2 = 0.5.

The changes of quantity H0 and H1 with time are contained in Table 4.7. The quantities �H0, �H1 are defined as

�H0 =
N+1∑
j=1

∣∣∣∣∣∣∣
(∫

I j

ρhu2
h

∣∣∣
t=T

dy −
∫
I j

ρ0u2
0 dy

)∣∣∣∣∣∣∣ ,

�H1 =
N+1∑
j=1

∣∣∣∣∣∣∣
(∫

I j

ρ2
h + ω2

h

∣∣∣
t=T

dy −
∫
I j

ρ2
0 + ω2

0 dy
)∣∣∣∣∣∣∣ ,

where ρ0, u0, ω0 are the initial conditions. Even though the fully discrete schemes may not be conservative, the two con-
served quantities change slightly. To reduce the fluctuation of H0 and H1, we can increase the accuracy of temporal and 
spatial discretizations.
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Fig. 4.3. Example 4.2, loop-antiloop-soliton solution of the short pulse equation (2.1): H1 conserved DG scheme with N = 160 cells, P 2 elements. The 
parameters α1 = e−2, α2 = −e−8, p1 = 0.9, p2 = 0.5.

Next we show the capability of these DG schemes to simulate the singular soliton solutions. For the 2-soliton solution 
of the corresponding CD system, according to the choice of parameters, the solutions of the short pulse equation (2.1) can 
be divided into three classes: two-loop-soliton solution in Fig. 4.2, loop-antiloop-soliton solution in Fig. 4.3, two smooth-
soliton solution (so called breather solution) in Fig. 4.4. The DG schemes conduct accurate approximations for these soliton 
solutions.

Example 4.3. In this example, we consider the complex short pulse equation

uxt = u + 1

2
(|u|2 ux)x, u ∈C (4.4)

which is linked with the complex CD system (3.4). The exact solution can be also expressed as the determinant form (4.2), 
the elements of AI and B I are distinct from Example 4.2 in (4.3):

aij = 1

2( 1
pi

+ 1
p∗

j
)

eξi+ξ∗
j , bij = α∗

i α j

2( 1
p∗

i
+ 1

p j
)
.

with ξi = pi y + s

pi
+ yi0, ξ∗

i = p∗
i y + s

p∗
i

+ y∗
i0, i = 1,2, . . . ,m,

where ∗ denotes the complex conjugate, and pi , αi , yi0 ∈ C are constants. The shape of solution depends on the choice 
of parameters pi, i = 1, 2, . . . , m. For 2-soliton solution, if p1 = p2 ∈C, then it degenerates to 1-soliton solution. Otherwise, 
it has two solitons. We first take the parameters as p1 = 0.5 + i, p2 = 0.8 + 2i, i.e. two smooth-soliton, so called breather 
solution. We plot the moduli |u| and |uh| at T = 0, 25, 35, 60 in Fig. 4.5. The computational domain is [−50, 50] with 
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Fig. 4.4. Example 4.2, breather solution of the short pulse equation (2.1): Integration DG scheme with N = 160 cells, P 2 elements. The parameters α1 =
e−8(1 + i), α2 = e−8(1 − i), p1 = 0.4 + 0.44i, p2 = 0.4 − 0.44i.

Table 4.8
Example 4.3, the time evolution of conserved quantities for breather solution of the complex CD system (3.4), with the com-
putational domain [−50, 50] and N = 320 cells at time T = 10. The parameters α1 = e−6, α2 = e4, p1 = 0.5 + i, p2 = 0.8 + 2i.

Pk H0 conserved DG scheme H1 conserved DG scheme Integration DG scheme

�H0 �H1 �H0 �H1 �H0 �H1

P 1 2.43E−02 1.67E−01 1.28E−02 9.15E−08 2.05E−04 3.25e09
P 2 3.56E−06 1.63E−06 3.70E−06 3.29E−09 5.64E−07 7.68E−10
P 3 1.04E−07 2.19E−07 6.98E−08 7.70E−10 1.28E−09 9.93E−12

uniform meshes N = 320. In Fig. 4.6, an interaction of loop-soliton and cuspon-soliton is shown in domain [−20, 20] and 
parameters p1 = 0.9 + 0.5i, p2 = 2.0 + 2i. We can see clearly that the moving soliton interaction is resolved very well 
comparing with [12].

Similar to the short pulse equation (2.1), the conserved quantities H0, H1 of the complex CD system (3.4) are contained 
in Table 4.8. Increasing the degree k of piecewise polynomial space can reduce the change of conserved quantities. The 
fluctuations of �H0, �H1 for integration DG scheme is the most slight among these three DG methods.

Example 4.4. The complex form of coupled short pulse equations

uxt = u + 1
2 ((|u|2 + |v|2)ux)x,

vxt = v + 1
2 ((|v|2 + |u|2)vx)x,

}
u, v ∈ C (4.5)

is integrable and admits N-soliton solution. The corresponding CD system (3.6) with the exact solutions was developed in 
[14]. Here, we perform the simulation of 2-smooth-soliton solution at time T = 0, 25, 45, 65, in which the collision is elastic 
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Fig. 4.5. Example 4.3, breather solution for the complex short pulse equation (4.4): H1 conserved DG scheme with N = 320 cells, P 2 elements. The 
parameters α1 = e−6, α2 = e4, p1 = 0.5 + i, p2 = 0.8 + 2i.

as shown in Fig. 4.7. Compared with the results in [14], all DG schemes resolve the collision well. Hence, we only show the 
result of H0 conserved DG scheme in Fig. 4.7.

Example 4.5. In this example, we give a 1-cuspon-soliton solution for the coupled modified short pulse equation

uxt = u + 1

2
v(u2)xx, vxt = v + 1

2
u(v2)xx, u, v ∈R (4.6)

in the form of{
u = g1

f , v = g2
f ,

x = y − (ln f )s, t = s.

The τ -functions f , g1, g2 are

f = 1 + a1b1 p2
1

4
e2ξ1 , g1 = a1eξ1 , g2 = b1eξ1 ,

ξ1 = p1 y + s

p1
+ ξ10,

where a1, b1, p1, ξ10 are real constants. The numerical solution uh simulated by H1 conserved DG scheme is shown in 
Fig. 4.8. The other two schemes, the H0 conserved scheme and the integration DG scheme perform very similar to the H1
conserved DG scheme. The solution vh is also a cuspon-soliton solution whose shape is just like uh .
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Fig. 4.6. Example 4.3, loop-cuspon-soliton solution for the complex short pulse equation (4.4): H1 conserved DG scheme with N = 320 cells, P 2 elements. 
The parameters α1 = e−6, α2 = e4, p1 = 0.9 + 0.5i, p2 = 2.0 + 2i.

Example 4.6. In this example, we consider the complex modified short pulse equation of defocusing type

uxt = u − 1

2
u∗(u2)xx, u ∈C, (4.7)

and its corresponding CD system (3.12) has solution:{
u = 1

2
g
f ei(κ y+γ s),

x = −κγ y + 1
4 s − (ln f )s,

where

f = 1 + eξ , g = 1 + eξ−2iϕ,

ξ = β y + ωs, ω = − sinϕ, β = −κ sinϕ

cosϕ − γ
.

In Fig. 4.9, we can resolve the dark cuspon-soliton solution as well as the breather solution. Our numerical schemes are also 
applied for the bright soliton solutions of the focusing type short pulse equation [15,16] with zero or nonzero boundary, we 
just omit the duplicate numerical tests.

4.3. Solve the short pulse type equations by transforming it to the sine-Gordon equations

Example 4.7. In this example, we test the DG schemes for the sine-Gordon equation

zys = sin z, (4.8)
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Fig. 4.7. Example 4.4, two smooth-soliton solution of the coupled short pulse equation in complex form (4.5): H0 conserved DG scheme with N = 320 cells, 
P 2 elements.

Fig. 4.8. Example 4.5, 1-cuspon-soliton solution u of the coupled modified short pulse equation (4.6): H1 conserved DG scheme with N = 160 cells, P 2

elements. The parameters p1 = 1.0, a1 = 0.5, b1 = 1.0.

with the 1-soliton solution:

z(y, s) = 4 arctan(exp(y + s)). (4.9)

In Table 4.9, we give the errors and convergence rates of two DG schemes. The DG scheme (2.41) can reach optimal (k +1)-th
order of accuracy. And the integration DG scheme (2.42) can also achieve the optimal order of accuracy, which is (k + 2)-th
order for uh .
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Fig. 4.9. Example 4.6, two types solution of the defocusing complex modified short pulse equation (4.7): H0 conserved DG scheme with N = 160 cells, P 2

elements, at time T = 1. The parameters κ = 1.0, ϕ = 2
3 π .

Table 4.9
Example 4.7, 1-soliton solution (4.9) of the sine-Gordon equation (4.8): The computational domain [−5, 5], at time T = 1.

N DG scheme (2.41) Integration DG scheme (2.42)

‖z − zh‖L2 Order ‖z − zh‖L∞ Order ‖z − zh‖L2 Order ‖z − zh‖L∞ Order

P 1 40 1.95E−03 – 2.56E−02 – 1.53E−04 – 1.65E−03 –
80 4.90E−04 1.99 7.17E−03 1.83 1.94E−05 2.99 2.28E−04 2.85
160 1.23E−04 2.00 1.84E−03 1.96 2.43E−06 3.00 2.98E−05 2.94
320 3.07E−05 2.00 4.64E−04 1.99 3.04E−07 3.00 3.78E−06 2.98

P 2 40 1.41E−04 3.21 1.32E−03 3.09 7.91E−06 4.22 7.96E−05 4.15
80 1.77E−05 2.99 1.84E−04 2.84 4.99E−07 3.99 5.61E−06 3.83
160 2.22E−06 3.00 2.37E−05 2.96 3.13E−08 4.00 3.62E−07 3.95
320 2.77E−07 3.00 2.99E−06 2.99 1.96E−09 4.00 2.28E−08 3.99

Table 4.10
Example 4.7, the time evolution of conserved quantity H2 for 1-soliton solution (4.9) for the sine-
Gordon equation (4.8), with the computational domain [−30, 30] and N = 320 cells at time T = 10.

�H2 DG scheme (2.41) Integration DG scheme (2.42)

P 1 6.39E−03 6.85E−07
P 2 7.12E−06 4.93E−10
P 3 7.75E−09 4.90E−10

We define

�H2 =
N+1∑
j=1

(∫
I j

ω2
h

∣∣∣
t=T

dy −
∫
I j

ω2
0 dy

)
where ωh is defined in (2.41c). Compared with DG scheme (2.41), the fluctuation of H2 in integration DG scheme is very 
slight, as shown in Table 4.10.

In [29], two-loops-soliton, loop-antiloop-soliton and breather solutions can be found for the short pulse equation (2.1). 
We use these solutions to validate our numerical schemes. We plot figures of the antiloop-loop and breather solutions 
for the short pulse equation (2.1) in Fig. 4.10, 4.11. For those two cases, the initial data of the sine-Gordon equation is 
required to be continuous. Thus we can get the temporal and spatial derivatives zs, zy of z. The initial condition for the 
two-loop-soliton solution is discontinuous, therefore, we give the initial derivatives piecewisely. The integration DG scheme 
obtains the accurate solution as shown in Fig. 4.12. These three kinds of solutions can be resolved well compared with the 
exact solutions in [29].

Example 4.8. We consider the novel coupled short pulse system

uxt = u + 1
6 (u3)xx + 1

2 v2uxx,

vxt = v + 1 (v3)xx + 1 u2 vxx,

}
u, v ∈R (4.10)
6 2
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Fig. 4.10. Example 4.7, antiloop-loop-soliton solution of the short pulse equation (2.1): Integration DG scheme with N = 160 cells, P 2 elements.

Fig. 4.11. Example 4.7, breather solution of the short pulse equation (2.1): DG scheme (2.41) with N = 160 cells, P 2 elements at time T = 1.

Fig. 4.12. Example 4.7, two-loop-soliton solution of the short pulse equation (2.1): Integration DG scheme with N = 160 cells, P 2 elements.

which can only be converted into the sine-Gordon system (3.14) with exact solution

z = 2i ln
f ∗

f
, z̃ = 2i ln

g∗

g
.

Linking with the hodograph transformation (3.15), we obtain the solution of this novel coupled short pulse system (4.10)⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = 1

2 (z + z̃)s = i
(

ln(
f ∗ g∗

f g )
)

s
,

v = 1
2 (z − z̃)s = i

(
ln(

f ∗ g
f g∗ )

)
s
,

x = y − 2(ln( f f ∗gg∗)) , t = s.
s
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Fig. 4.13. Example 4.8, loop-breather-soliton interaction u of the novel coupled short pulse system (4.10): Integration DG scheme with N = 160 cells, P 2

elements.

Fig. 4.14. Example 4.8, breather-cuspon-soliton interaction v of the novel coupled short pulse system (4.10): Integration DG scheme with N = 160 cells, P 2

elements.

The form of τ functions f , g are listed in [11]. We consider the solution like 3-soliton solution which is a combination of 
1-loop-soliton and 2-breather solution. In Fig. 4.13 and 4.14, the process of interaction is displayed by the integration DG 
scheme, which resolve the collision efficiently.

5. Conclusion

In this paper, we developed DG methods for short pulse type equations. First, we directly proposed the E0 conserved DG 
scheme for the short pulse equation for solving smooth solutions. Thereafter for nonclassical solutions such as loop-soliton, 
cuspon-soliton solutions, we introduced the DG schemes based on the hodograph transformations, which link the short 
pulse equation with the CD system or the sine-Gordon equation. For the CD system, we constructed the H0 and H1 con-
served DG schemes, in addition to solving singular solutions, which can preserve the corresponding conserved quantities. 
Additionally, an integration DG scheme was proposed. Theoretically, we proved the a priori error estimates for the H1 con-
served scheme and the integration DG scheme. More precisely, the optimal order of accuracy in L2 norm can be proved for 
the H1 conserved DG scheme. For the integration DG scheme, the optimal order of accuracy in L2 norm for two variables 
can be obtained, but suboptimal order of accuracy in L∞ norm for the other one. Numerically, on uniform meshes, both 
the H1 conserved scheme and the integration DG scheme can achieve the optimal convergence rates in our numerical tests, 
however, the order of accuracy for the H0 conserved DG scheme is optimal for the even order piecewise polynomial space 
and suboptimal in the odd order case. Nonuniform meshes will cause suboptimal order of accuracy for E0, H0 conserved DG 
scheme regardless of the parity of the polynomial degrees. For the sine-Gordon equation, we also proposed two effective 
DG schemes to solve it in case there is no transformation linking the short pulse equation with the CD system. These DG 
schemes can be adopted to the relevant generalized short pulse type equations, which have been shown in our numerical 
tests. Finally, several numerical examples in different circumstances were shown to illustrate the accuracy and capability of 
these DG schemes.
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