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Abstract
In this paper,wedevelopdiscontinuousGalerkinmethods for theOstrovsky–Vakhnenko (OV)
equation, which yields the shock solutions and singular soliton solutions, such as peakon,
cuspon and loop solitons. The OV equation has also been shown to have a bi-Hamiltonian
structure. We directly develop the energy stable or Hamiltonian conservative discontinuous
Galerkin schemes for the OV equation. Error estimates for the two energy stable schemes
are also proved. For some singular solutions, including cuspon and loop soliton solutions,
the hodograph transformation is adopted to transform the OV equation or the generalized
OV system to the coupled dispersionless (CD) system. Subsequently, two discontinuous
Galerkin schemes are constructed for the transformed CD system. Numerical experiments
are provided to demonstrate the accuracy and capability of the proposed schemes, including
shock solution and, peakon, cuspon and loop soliton solutions.

Keywords Discontinuous Galerkin method · Ostrovsky–Vakhnenko equation · Energy
stable · Hamiltonian conservative · Hodograph transformation · Coupled dispersionless
system

1 Introduction

In this paper, we study the initial-value problem of the Ostrovsky–Vakhnenko (OV) equation

{
(ut + uux )x + γ u = 0, x ∈ I = [a, b], t ∈ [0, T ],
u0(x) = u(x, 0),

(1.1)
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where the initial datum u0 satisfy the condition
∫
I u0dx = 0 which guarantee the well-

posedness of the OV equation [13]. This equation can be viewed as a particular limit of the
generalized Korteweg–de Vries (KdV) equation

(ut + uux + βuxxx )x + γ u = 0. (1.2)

Here, γ is a real constant which concerns the effect of background rotation by Coriolis
force in small-amplitude long waves on a shallow fluid [13]. It generalizes the Korteweg–de
Vries equation by the additional term γ u. Although it has the same nonlinear term of the
KdV equation, the dispersive terms are different. When β = 0, the Eq. (1.2) degenerates
to (1.1) without high-frequency dispersion term. It can be viewed as a canonical asymptotic
equation for nonlinear waves that are non-dispersive as their wavelength tends to zero [13].
The Eq. (1.1) is deduced by considering two asymptotic expansions of the shallow water
equations, first with respect to the rotation frequency, and then with respect to the amplitude
of the waves [13]. Vakhnenko uses (1.1) to describe the short-wave perturbations in a relaxing
medium [28], and it also be used to model sound waves in a bubbly liquid. The Ostrovsky–
Vakhnenko equation has two properties that appear to be generic,

• Travelling waves that exist only up to a maximum limiting amplitude,
• Limiting waves that have corners, i.e., a slope discontinuity.

The Eq. (1.1) is known under different names in some literatures, such as the reduced Ostro-
vsky equation, the Ostrovsky–Hunter equation, the short-wave equation and the Vakhnenko
equation, in this paper, we call (1.1) as Ostrovsky–Vakhnenko equation.

Many mathematical properties of the OV equation have been studied recently, some well-
posedness results in energy space can be found in [11,16,30]. About convergence results
of solutions in the limit, γ → 0 or β → 0, we refer the readers to [17–19]. In a series
of papers [21,28,29], the integrability of OV equation was established by deriving explicit
solutions. Some exact solutions including periodic solution, and solitary traveling wave solu-
tion are investigated in [13,22,23]. Besides the classical smooth solution, in [12,13,20], the
authors have discussed the condition for wave breaking (shock solution). Also, continuous
solutions with discontinuous slope are solved numerically, i.e. peakon solution, by a finite
difference scheme based on the Engquist–Osher scheme [7,25], and cuspon solution (contin-
uous solution with infinite discontinuous derivative) through the hodograph transformation
[8,9]. Meanwhile, a multiple-value solution so called loop soliton solution is also defined in
[8,9] via the hodograph transformation.

In this paper, we investigate the Hamiltonian H and E (we also called it energy),

E =
∫
I
u2dx, H =

∫
I
−1

6
u3 + 1

2
(∂−1u)2dx, (1.3)

which is confirmed in [2]. The development of our numerical schemes are based on these two
conservative quantities. As the conservative methods for KdV equation [3,14,43], Zakharov
system [37], Schrödinger–KdV system [38], short pulse equation [44], etc., various con-
servative numerical schemes are proposed to “preserve structure”. Usually, the structure
preserving schemes can help reduce the phase error along the long time evolution. For exam-
ple in [3,14,43], compared with dissipative schemes, the energy conservative or Hamiltonian
conservative numerical schemes for the KdV equation have less phase errors or amplitude
damping for long time approximations, especially in the low resolution cases.

The discontinuous Galerkin (DG) method was first introduced in 1973 by Reed and Hill
in [24] for solving steady state linear hyperbolic equations. The important ingredient of this
method is the design of suitable inter-element boundary treatments (so called numerical

123



Journal of Scientific Computing            (2020) 82:24 Page 3 of 26    24 

fluxes) to obtain highly accurate and stable schemes in several situations. Within the DG
framework, the method was extended to deal with derivatives of order higher than one,
i.e., local discontinuous Galerkin (LDG) method. The first LDG method was introduced by
Cockburn andShu in [6] for solving convection–diffusion equation. Theirworkwasmotivated
by the successful numerical experiments of Bassi and Rebay [1] for compressible Navier–
Stokes equations. Later, Yan and Shu developed an LDG method for a general KdV type
equation containing third order derivatives in [39], and they generalized the LDG method
to PDEs with fourth and fifth spatial derivatives in [40]. Levy et al. [15] developed LDG
methods for nonlinear dispersive equations that have compactly supported traveling wave
solutions, the so-called compactons. More recently, Xu and Shu further generalized the LDG
method to solve a series of nonlinear wave equations [31–34,42]. We refer to the review
paper [36] of LDG methods for high-order time-dependent partial differential equations.

In this paper, we adopt the DG method as a spatial discretization to construct high order
accurate numerical schemes for the OV equation. For general solutions, the energy stable
schemes based on energy E that contain the non-integration scheme and the integration DG
scheme are developed. The energy stable schemes work for the smooth, peakon and shock
solutions.On the other hand, theHamiltonian conservativeDGschemecanhandle the smooth,
peakon solutions and preserve the Hamiltonian H . Correspondingly, integration method will
bring aHamiltonian integrationDG scheme. In the implementation of the progress, compared
with the non-integration DGmethod, the integration one avoids solving linear system at each
time level so that it reduces the complexity of programs. For the time discretization, we
use the so called total variation diminishing (TVD) or strong stability preserving (SSP)
explicit Runge–Kutta methods in [10,26]. For some singular soliton solutions, we utilize the
hodograph transformation to transform the OV equation to a coupled dispersionless (CD)
type system, and then establish the DG scheme for the transformed CD system.

The paper is organized as follows. In Sect. 2, we directly construct two energy stable,
Hamiltonian conservative and Hamiltonian integration DG schemes for the OV equation. We
provide proofs of L2 stability and Hamiltonian conservation, respectively. Suboptimal error
estimates of the two energy stable schemes are also proved in this section. For some singular
soliton solutions, including loop and cuspon solitons, we transform the OV equation to the
CD system via the hodograph transformation in Sect. 3. Subsequently, two DG schemes are
constructed for theCDsystem toobtain the numerical solutions for theOVequation indirectly.
Some numerical experiments are presented in Sect. 4 to show the results of approximation.
This paper is concluded in Sect. 5.

2 The DGMethods for the Ostrovsky–Vakhnenko Equation

2.1 Notations

We denote the mesh Th by I j = [x j− 1
2
, x j+ 1

2
] for j = 1, . . . , N , where x 1

2
= a, xN+ 1

2
= b

with the cell center denoted by x j = 1
2 (x j− 1

2
+ x j+ 1

2
). The cell size is �x j = x j+ 1

2
− x j− 1

2
and h = max1≤ j≤N �x j . The finite element space as the solution and test function space
consists of piecewise polynomials

V k
h = {v : v|I j ∈ Pk(I j ); 1 ≤ j ≤ N },

where Pk(I j ) denotes the set of polynomial of degree up to k defined on the cell I j . Notably,
the functions in V k

h are allowed to be discontinuous across cell interfaces. The values of
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u at x j+ 1
2
are denoted by u−

j+ 1
2
and u+

j+ 1
2
, from the left cell I j and the right cell I j+1,

respectively. Additionally, the jump of u is defined as [[u]] = u+ − u−, the average of u as
{{u}} = 1

2 (u
+ + u−).

After the hodograph transformation, the spatial variable change into y from x . We denote
the mesh T ′

h by I ′
j = [y j− 1

2
, y j+ 1

2
] for j = 1, . . . , N . As the same definition on variable

x , we have y j ,�y j , h′ = max1≤ j≤N �y j . To simplify expressions, we adopt the round
bracket and angle bracket for the L2 inner product and boundary term on cell I j

(u, v)I j =
∫
I j
uvdy,

< û, v >I j = û j+ 1
2
v−
j+ 1

2
− û j− 1

2
v+
j− 1

2
(2.1)

for one dimensional case.

2.2 The Energy Stable DG Schemes

In this section, we develop two DG schemes with energy stability, for smooth solutions,
suboptimal order of accuracy (k+ 1

2 )-th is proved for these two DG schemes. To distinguish
other DG schemes in this paper, we name them the energy stable non-integration scheme and
energy stable integration scheme for the OV equation.

Before the numerical scheme, we need to illustrate that the equation we discrete actually
is the integration form of (1.1), i.e.

ut +
(
1

2
u2

)
x

+ γ ∂−1
x u = 0. (2.2)

We divide the OV equation into a first order system{
ut + ( 1

2u
2
)
x + γ v = 0,

vx = u,
(2.3)

with periodic boundary condition or Dirichlet boundary condition for u. An extra constraint
for v is necessary to ensure the uniqueness of the Eq. (2.3). To enforce the conservation law
d
dt

∫
I udx = 0, it results in the zero mean condition

∫
I vdx = 0.

2.2.1 The DG Scheme for the OV Equation

To develop the DG scheme for the Eq. (2.3), we rewrite it into the following specific form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut +
(
1

2
u2

)
x

+ γ v = 0, (2.4a)

vx = u, (2.4b)∫
I
vdx = 0. (2.4c)

Scheme 1 For the Eq. (2.4), the energy stable non-integration DG scheme is formulated as
follows:{

((uh)t , φ)I j + < ̂f (uh), φ >I j −( f (uh), φx )I j + γ (vh − v̄h, φ)I j = 0, (2.5a)

< v̂h, ϕ >I j −(vh, ϕx )I j = (uh, ϕ)I j (2.5b)
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where f (u) = 1
2u

2, v̄h = 1
b−a

∫
I vh . The “hat” terms in (2.5) are the so-called “numerical

fluxes”, which are functions defined on the cell boundary from integration by parts and should
be designed based on different guiding principles for different PDEs to ensure the stability
and local solvability of the intermediate variables. To introduce some dissipation of energy,
we adopt the dissipative numerical flux as

̂f (uh) = f̂ (u−
h , u+

h ) = 1

2
( f (u+

h ) + f (u−
h ) − α(u+

h − u−
h )), α = max

u

∣∣ f ′(u)
∣∣ . (2.6)

Here f̂ (u−
h , u+

h ) is the local Lax–Friedrichs flux, and the maximum for the parameter α is
taken over the range covered by u−

h and u+
h . The numerical flux v̂h depends on the sign of

the parameter γ ,

v̂h =
{

v−
h , γ > 0,

v+
h , γ < 0,

, (2.7)

which comes from the stability analysis. Here we consider the periodic or Dirichlet boundary
condition for u. The Dirichlet boundary condition for u is given by exact solution

(uh)
−
1
2

= u(a, t), (uh)
+
N+ 1

2
= u(b, t). (2.8)

We take the start-up boundary value for vh as

(vh)
−
1
2

= 0, γ > 0,

(vh)
+
N+ 1

2
= 0, γ < 0. (2.9)

In fact, the boundary value (vh)
−
1
2
or (vh)

+
N+ 1

2
can be an arbitrary constant. We finally aim

at enforcing the zero mean condition by setting vh = vh − v̄h . Numerically, the energy
stable non-integration DG scheme (2.5) with numerical fluxes (2.6) and (2.7) can achieve the
(k + 1)-th order of accuracy.

Scheme 2 Alternatively, we can integrate the equation (vh)x = uh directly instead of the
DG scheme (2.5b). Therefore, the energy stable integration DG scheme is defined as: Find
the numerical solutions uh ∈ V k

h , vh ∈ V k+1
h ∩ C

0, for all test functions φ ∈ V k
h , such that⎧⎪⎨

⎪⎩
((uh)t , φ)I j + < ̂f (uh), φ >I j −( f (uh), φx )I j + γ (vh − v̄h, φ)I j = 0, (2.10a)

vh(x, t) |I j = vh(x j+ 1
2
, t) −

∫ x
j+ 1

2

x
uh(ξ, t) dξ. (2.10b)

The Eq. (2.10b) can also be replaced by

vh(x, t) |I j = vh(x j− 1
2
, t) +

∫ x

x
j− 1

2

uh(ξ, t) dξ, (2.11)

which depends on the start-up value vh we give,

(vh)N+ 1
2

= 0 for (2.10b),

(vh) 1
2

= 0 for (2.11). (2.12)

The boundary condition for u is the same as Scheme 1. Numerically, this energy stable
integration DG scheme (2.10) achieve the optimal accuracy for u as well as the energy stable
non-integration DG scheme.
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2.2.2 Algorithm Flowchart

In this part, we give some details related to the implementation of our numerical Schemes 1
and 2.We can see that the equation (2.5a), (2.10a) are identical. The main difference between
Schemes 1 and 2 lies in (2.5b) and (2.10b) which we will explain in Step 1 respectively.

Step 1: First, we obtain vh from uh by (2.5b) in Scheme 1, or (2.10b), (2.11) in Scheme 2.

• In Scheme 1: From the equation (2.5b), we have the following matrix form,

Avh = uh . (2.13)

Here, uh, vh are the vectors containing the degrees of freedom for uh and vh , respectively.
The size of matrix A is (N ∗ (k + 1)) × (N ∗ (k + 1)), N is the number of spatial cells
and k is the degree of the approximate space V k

h . Actually, we need a boundary condition
for vh to start up the numerical scheme. To enforce the zero mean condition (2.4c) for
vh , we set the boundary (vh)

−
1
2

= 0 for γ > 0 or (vh)
+
N+ 1

2
= 0 for γ < 0. According to

the Eq. (2.5b), we can get vh on each cell I j . Subsequently, we enforce the zero mean
condition by

vh = vh − v̄h, (2.14)

where v̄h = 1
b−a

∫
I vh .

Remark 2.1 If u is periodic, then v is periodic too. And then a start-up value on boundary
is unnecessary. However, the linear system (2.13) is under-determined and the rank of A is
N ∗ (k + 1) − 1. Therefore, the zero mean condition will help determine the unique solution
vh , i.e. we obtain the vh satisfied the zero mean condition directly.

• In Scheme 2: First, we set the start-up value in boundary of vh , vh(x 1
2
, t) = 0 in (2.10b)

or vh(xN+ 1
2
, t) = 0 in (2.11). Next, vh can be solved cell by cell. Finally, we can have

the mean value v̄h . Following the same procedure with Scheme 1, we enforce the zero
mean condition by setting vh = vh − v̄h .

Step 2: Substituting the new value vh = vh − v̄h into the Eq. (2.5a) or (2.10a), we have

(uh)t = res(uh, vh).

By choosing a suitable ODE solver, such as explicit Runge–Kutta time discretization meth-
ods, we will finally implement these two numerical schemes.

2.2.3 Energy Stability

The energy stability of Schemes 1 and2 are presented in Propositions 2.1 and 2.2, respectively.
Both schemes can be proved energy stable.

Proposition 2.1 (Energy stability for Scheme 1) The semi-discrete DG scheme (2.5) for the
periodic problemwith fluxes (2.6), (2.7) is amass conservative and energy stableDG scheme,
i.e.,

d

dt

∫
I
uhdx = 0,

d

dt
E(uh) = d

dt

∫
I
u2hdx ≤ 0. (2.15)

Proof First, we take the test function φ = 1 in Eq. (2.5a), after summing up all intervals I j ,
the mass conservativeness d

dt

∫
I uhdx = 0 can be obtained.
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Next, we try to prove the energy stability by taking the test function φ = uh, ϕ = γ vh in
scheme (2.5), thereafter, we have

((uh)t , uh)I j + < ̂f (uh), uh >I j −( f (uh), (uh)x )I j + γ (vh − v̄h, uh)I j = 0,

γ < v̂h, vh >I j −γ (vh, (vh)x )I j = γ (uh, vh)I j .

After applying summation of the above-mentioned two equations, we get

((uh)t , uh)I j − γ v̄h(uh, 1)I j + 
 j+ 1
2

− 
 j− 1
2

+ � j− 1
2

= 0 (2.16)

where the numerical entropy flux is


 = γ v̂h(v
−
h ) − γ

2
(v−

h )2 + f̂ (uh)u
−
h − F(u−

h ) (2.17)

with F(u) = ∫ u f (u)du, and the extra term � is given by

� = − γ v̂h[[vh]] + γ

2
[[(vh)2]] − f̂ (uh)[[uh]] + [[F(uh)]]

=γ (−v̂h + {{vh}})[[vh]] + ( f (ξ) − ̂f (uh))[[uh]]. (2.18)

The second equality (2.18) is yielded by the mean value theorem [[F(uh)]] = f (ξ)[[uh]],
where the value ξ is between u− and u+. The choice of v̂h (2.7) can guarantee that the first
term of (2.18) is non-negative. According to the monotonicity of the numerical flux f (↑,↓),
we divide the above-mentioned equation into two cases:

u− ≤ ξ ≤ u+, ( f (ξ) − f̂ (u−
h , u+

h ))[[u]] ≥ 0,

u+ ≤ ξ ≤ u−, ( f (ξ) − f̂ (u−
h , u+

h ))[[u]] ≥ 0.

Thereafter, we find that the whole term � is non-negative. Owing to the conservation law
d
dt

∫
I uh = 0 and initial data u0 satisfied (u0, 1)I = 0, we have (uh, 1)I = 0. After summing

up the cell entropy equalities (2.16) with periodic boundary condition, we have the energy
stability as

(uh, (uh)t )I ≤ 0, (2.19)

i.e., energy stability of the DG scheme (2.5) for the OV equation. ��
Proposition 2.2 (Energy stability for Scheme 2) The semi-discrete DG scheme (2.10) for the
periodic problem with flux (2.6) is a mass conservative and energy stable scheme, i.e.,

d

dt

∫
I
uhdx = 0,

d

dt
E(uh) = d

dt

∫
I
u2hdx ≤ 0. (2.20)

Proof The proof for mass conservativeness is exactly the same as Scheme 1. Here, we just
provide the proof for energy stability. We take test function φ = uh in (2.10a),

((uh)t , uh)I j + < ̂f (uh), uh >I j −( f (uh), (uh)x )I j + γ (vh, uh)I j − γ v̄h(uh, 1)I j = 0,
(2.21)

Additionally, following the idea of Proposition 2.1, we can have a stable property for the non-
linear term f (u). There is an extra term γ (vh, uh)I j required to be estimated. The Scheme 2,
which is also called the integration DG method, is based on (vh)x = uh , then

γ (vh, uh)I j = γ (vh, (vh)x )I j = γ

2

(
(vh)

2
j+ 1

2
− (vh)

2
j− 1

2

)
. (2.22)
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Due to the continuity of vh and periodic boundary condition, we obtain the result of L2

stability after summing up the Eq. (2.21) over all cells,

d

dt
E(uh) = d

dt

∫
I
u2hdx ≤ 0. (2.23)

��

2.2.4 Error Estimates

In this section, the a-priori error estimate of Schemes 1 (2.5) and 2 (2.10) will be stated.
Referring to the procedure in [35,41],wewill give some proofs in the subsequent descriptions.
Without loss of generality, we let γ = 1 in this section.

Notations, projections, and auxiliary results
First, wemake some conventions for different constants. Under different circumstances, these
constants will have different values. Following the convention in [35,41], we use the same
notation C denote a positive constant which is independent of h, but depends on the solution
of the problem considered in this paper. Additionally, the notation C∗ in [35,41] is used to
denote the constants which are relevant to the maximum of

∣∣ f ′′∣∣ and ∣∣ f ′′′∣∣. In this paper, our
nonlinear term is adopted as f (u) = 1

2u
2, hence f ′′′ = 0, i.e. C∗ depends on maximum of∣∣ f ′′∣∣.

In [41], Zhang and Shu proposed a key quantity to measure the difference between the
physical flux and numerical flux. In [35], Xu and Shu apply it to “uniform dissipative flux”,
for completeness, we list the definition and relevant properties in the following lemma.

Lemma 2.3 [41] For any piecewise smooth function w ∈ L2(I ), on each boundary point, we
define

α( f̂ ;w) ≡ α( f̂ ;w+, w−) �
{

[[w]]−1( f ({{w}}) − f̂ (w)), [[w]] �= 0,
1
2

∣∣ f ′({{w}})∣∣ , [[w]] = 0,
, (2.24)

where f̂ (w) = f̂ (w−, w+) is a monotone numerical scheme consistent with the given flux
f . The quantity α( f̂ ;w) is non-negative and bounded for ∀(w−, w+) ∈ R

2. Meanwhile, we
obtain the following estimate

1

2

∣∣ f ′({{w}})∣∣ ≤ α( f̂ ;w) + C∗ |[[w]]| ,

− 1

8

∣∣ f ′′({{w}})∣∣ [[w]] ≤ α( f̂ ;w) + C∗ |[[w]]|2 .

In Sect. 2.2.4, the dissipative monotone numerical scheme is taken as Lax–Friedrichs flux
(2.6). For the sake of expression, we denote

α( f̂ ;w)[[φ]]2 =
N∑
j=1

α( f̂ ;w) j+ 1
2
[[φ]]2

j+ 1
2

(2.25)

for ∀w and φ.
Next, we will introduce some projection properties to be used later. The standard L2

projection of a function ζ with k + 1 continuous derivatives into space V k
h , is denoted by P ,

i.e., for each I j
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(Pζ − ζ, φ)I j = 0, ∀φ ∈ Pk(I j ),

and the special projections P± into V k
h satisfy, for each I j

(P+ζ − ζ, φ)I j = 0, ∀φ ∈ Pk−1(I j ), and P+ζ

(
y+
j− 1

2

)
= ζ

(
y j− 1

2

)
,

(P−ζ − ζ, φ)I j = 0, ∀φ ∈ Pk−1(I j ), and P−ζ

(
y−
j+ 1

2

)
= ζ

(
y j+ 1

2

)
.

For the projections mentioned above, it is easy to show [4] that∥∥ζ e
∥∥
L2(I ) + h

1
2
∥∥ζ e

∥∥
L∞(I ) + h

1
2
∥∥ζ e

∥∥
L2(∂ I ) ≤ Chk+1 (2.26)

where ζ e = ζ − Pζ or ζ e = ζ − P±ζ .
Then some inverse inequalities of finite element space V k

h will be applied in the subsequent
proofs.

Lemma 2.4 [4] For ∀ω ∈ V k
h , there exists a positive constant C which is dependent of ω, h,

such that

(i) ‖ωx‖L2(I ) ≤ Ch−1 ‖ω‖L2(I ) , (i i) ‖ω‖L2(∂ I ) ≤ Ch− 1
2 ‖ω‖L2(I ) ,

(i i i) ‖ω‖L∞(I ) ≤ Ch− 1
2 ‖ω‖L2(I ) , (2.27)

where ‖ω‖L2(∂ I ) =
√

N∑
j=1

(ω−
j+ 1

2
)2 + (ω+

j− 1
2
)2.

Finally, to deal with the nonlinearity of the flux f (u), we make a priori assumption that,
there holds

‖u − uh‖L2(I ) ≤ h (2.28)

for small enough h. We will verity the justification of this assumption at the end of the proof
for the theoremwewill propose subsequently. Suppose that the interpolation properties (2.26)
hold , by the inverse inequality (iii) in (2.27), the assumption (2.28) yields the error of L∞
norm

‖u − uh‖L∞(I ) ≤ Ch
1
2 , ‖Qu − uh‖L∞(I ) ≤ Ch

1
2 (2.29)

where Q = P or Q = P±.

Error estimate of Scheme 1
For the Scheme 1, we have below theorem to demonstrate the result of convergence for
smooth exact solutions.

Theorem 2.5 It is assumed that the OV equation (2.3) with periodic boundary condition
has a sufficiently smooth exact solution u. The numerical solution uh with initial condition
uh(x, 0) = Pu(x, 0) satisfies the semi-discrete DG scheme (2.5) with fluxes (2.6), (2.7). For
regular partitions of I = (a, b), and the finite element space V k

h with k ≥ 1, there holds the
following error estimate for small enough h

‖u − uh‖L2(I ) ≤ Chk+
1
2 . (2.30)
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Proof First, we give the error equation between the exact solution and numerical solution,

((u − uh)t , φ)I j + < f (u) − ̂f (uh), φ >I j −( f (u) − f (uh), φx )I j + (v − vh, φ)I j

+ < v − v̂h, ϕ >I j −(v − vh, ϕx )I j − (u − uh, ϕ)I j = 0, (2.31)

for all test functions φ, ϕ ∈ V k
h . Thereafter, we define two bilinear forms

B j (u − uh, v − vh;φ, ϕ)

= ((u − uh)t , φ)I j + (v − vh, φ)I j + < v − v̂h, ϕ >I j −(v − vh, ϕx )I j − (u − uh, ϕ)I j
(2.32)

and

H j ( f ; u, uh, φ) = ( f (u) − f (uh), φx )I j − < f (u) − ̂f (uh), φ >I j . (2.33)

After applying summation over all cells I j , the error equation is expressed by

N∑
j=1

B j (u − uh, v − vh;φ, ϕ) =
N∑
j=1

H j ( f ; u, uh, φ). (2.34)

Introducing notations

ξu = Pu − uh, ηu = Pu − u, (2.35)

ξv = P−v − vh, ηv = P−v − v, (2.36)

and taking test functions φ = ξu, ϕ = ξv , we have

N∑
j=1

B j (ξ
u − ηu, ξv − ηv; ξu, ξv) =

N∑
j=1

H j ( f ; u, uh, ξ
u). (2.37)

Next, we analyze the bilinear forms B j and H j , respectively. For bilinear form B j , the
following equation holds by projection properties

N∑
j=1

B j (ξ
u − ηu, ξv − ηv; ξu, ξv) = (ξut , ξu)I +

N∑
j=1

[[ξv]]2
j+ 1

2
− (ηv, ξu)I . (2.38)

For bilinear form H j , we follow the idea of [35,41] to present the estimate of H j ,

N∑
j=1

H j ( f ; u, uh, ξ
u) ≤ −1

4
α( f̂ ; uh)[[ξu]]2 + (C + C∗h−1 ‖u − uh‖2L∞(I ))h

2k+1

+ (C + C∗(
∥∥ξu

∥∥
L∞(I ) + h−1 ‖u − uh‖2L∞(I )))

∥∥ξu
∥∥2
L2(I ). (2.39)

Finally, combining the estimate Eqs. (2.38) and (2.39), we obtain the final error estimate
as follows,

(ξut , ξu)I + 1

4
α( f̂ ; uh)[[ξu]]2 +

N∑
j=1

[[ξv]]2
j+ 1

2

≤ (ηv, ξu)I + (C + C∗h−1 ‖u − uh‖2L∞(I ))h
2k+1

+ (C + C∗(
∥∥ξu

∥∥
L∞(I ) + h−1 ‖u − uh‖2L∞(I )))

∥∥ξu
∥∥2
L2(I ) .
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Using the Young’s inequality, the priori assumption (2.29) and the interpolation properties
(2.26), we get

1

2

d

dt

∥∥ξu
∥∥2
L2(I ) ≤ C

∥∥ξu
∥∥2
L2(I ) + Ch2k+1 + Ch2k+2.

By the Gronwall’s inequality with initial condition uh(x, 0) = Pu(x, 0), the equation
becomes ∥∥ξu

∥∥2
L2(I ) ≤ Ch2k+1.

Therefore, the result of Theorem 2.5 is derived by triangle inequality and the interpolation
inequality (2.26). Finally, for the completeness of the Theorem 2.5, we verify the validity

of the a-priori assumption (2.28). Here, for the cases k ≥ 1, we assume that Chk+ 1
2 ≤ 1

2h
holds for sufficiently small h, where the constant C depends on the final time T . Subse-
quently, we set t∗ = sup{t : ‖u(t) − uh(t)‖L2(I ) ≤ h}, due to the continuity we have
‖u(t∗) − uh(t∗)‖L2(I ) = h if t∗ is finite. However, our roof for Theorem 2.5 concluded that

‖u(t∗) − uh(t∗)‖L2(I ) ≤ Chk+ 1
2 ≤ 1

2h for any t ≤ t∗. Thenwe get a contradiction if t∗ ≤ T .
Therefore, this result t∗ > T implies that the a-prior assumption is validate. ��

Error estimate of Scheme 2
For the Scheme 2, we also state the following error estimate for smooth exact solutions.

Theorem 2.6 It is assumed that the OV equation (2.3) with periodic boundary condition
has a sufficiently smooth exact solution u. The numerical solution uh with initial condition
uh(x, 0) = Pu(x, 0) satisfies the energy stable integration DG scheme (2.10). For regular
partitions of I = (a, b), and the finite element space V k

h with k ≥ 1, for adequately small
h, there holds

‖u − uh‖L2(I ) ≤ Chk+
1
2 . (2.40)

Proof Similarly, we give the error equations,

((u − uh)t , φ)I j + < f (u) − ̂f (uh), φ >I j −( f (u) − f (uh), φx )I j + (v − vh, φ)I j = 0,

(v − vh)x = u − uh

for any test function φ ∈ V k
h . Thereafter, we define another bilinear form

B̃ j (u − uh, v − vh;φ) = ((u − uh)t , φ)I j + (v − vh, φ)I j .

After applying summation over all cells I j , the error equations are expressed by

N∑
j=1

B̃ j (u − uh, v − vh;φ) =
N∑
j=1

H j ( f ; u, uh, φ).

We define notations ξu ∈ V k
h , ξv ∈ V k+1

h as follows

ξu = P−u − uh, ηu = P−u − u,

ξv = ṽ − vh, ηv = ṽ − v
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where ṽx = P−u, ṽ ∈ V k+1
h and ṽ(a, t) = v(a, t). By the Cauchy–Schwarz inequality, and

the following estimate holds

|(ṽ − v)(x)| =
∣∣∣∣(ṽ − v)(a) +

∫ x

a
(P−u − u)(ζ )dζ

∣∣∣∣ ≤ C
∥∥P−u − u

∥∥
L2(I )

which implies that ηv can be controlled by ηu ,∥∥ηv
∥∥
L2(I ) ≤ C

∥∥ηu
∥∥
L2(I ) ≤ Chk+1. (2.41)

With the test functions φ = ξu ∈ V k
h , we have

N∑
j=1

B̃ j (ξ
u − ηu, ξv − ηv; ξu) =

N∑
j=1

H j ( f ; u, uh, ξ
u).

For the bilinear form B̃ j , the following equation holds

N∑
j=1

B̃ j (ξ
u − ηu, ξv − ηv; ξu, ξv) = (ξut , ξu)I − (ηut , ξ

u)I +
N∑
j=1

(ξv, ξu)I j − (ηv, ξu)I

= (ξut , ξu)I +
N∑
j=1

[[(ξv)2]] j+ 1
2

− (ηv, ξu)I

= (ξut , ξu)I − (ηv, ξu)I . (2.42)

Combining estimate Eqs. (2.42) and (2.39), we will obtain the final error estimate,

(ξut , ξu)I + 1

4
α( f̂ ; uh)[[ξu]]2

≤ (ηv, ξu)I + (C + C∗(
∥∥ξu

∥∥
L∞(I ) + h−1 ‖u − uh‖2L∞(I )))

∥∥ξu
∥∥2
L2(I )

+ (C + C∗h−1 ‖u − uh‖2L∞(I ))h
2k+1. (2.43)

Using the Young’s inequality, the priori assumption (2.29) and error estimate (2.41), we get

1

2

d

dt

∥∥ξu
∥∥2
L2(I ) ≤ C

∥∥ξu
∥∥2
L2(I ) + Ch2k+1 + Ch2k+2. (2.44)

Utilized the Gronwall inequality with initial datum uh(x, 0) = Pu(x, 0), the equation
becomes ∥∥ξu

∥∥2
L2(I ) ≤ Ch2k+1.

Thus the result of Theorem 2.6 can be derived by triangle inequality and the interpolation
inequality (2.26). ��

2.3 The Hamiltonian DGMethod

In this section, we construct another two DG schemes, which base on the Hamiltonian H ,
including the Hamiltonian conservative DG scheme and the Hamiltonian integration scheme.
In this section, the sign of the parameter γ has no effect for numerical schemes we proposed
and the Hamiltonian conservativeness. Hence we simply take γ = 1.
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2.3.1 The DG Scheme for the OV Equation

We rewrite the OV equation (2.3) as another first order system⎧⎪⎨
⎪⎩
ut + wx + v = 0,

w = 1
2u

2,

vx = u,

(2.45)

where v satisfies the zero mean condition
∫
I vdx = 0.

Scheme 3 The Hamiltonian conservative DG scheme is defined as: Find numerical solutions
uh, vh, wh ∈ V k

h , for all test functions φ, ϕ,ψ ∈ V k
h , such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

((uh)t , φ)I j + < ŵh, φ >I j −(wh, φx )I j + (vh − v̄h, φ)I j = 0, (2.46a)

(wh, ϕ)I j =
(
1

2
u2h, ϕ

)
I j

, (2.46b)

< v̂h, ψ >I j −(vh, ψx )I j = (uh, ψ)I j . (2.46c)

The numerical fluxes are taken as

ŵh = {{wh}}, v̂h = {{vh}}. (2.47)

Here, for the Hamiltonian conservative DG scheme, the boundary condition is taken as
periodic. Numerically, this scheme have optimal order of accuracy (k + 1)-th for even k on
odd number meshes, it does not work for the rest situations. We will explain the reason in
the section of algorithm flowchart (Sect. 2.3.2).

Remark 2.2 The Hamiltonian conservative DG scheme (2.46) with numerical fluxes (2.47)
cannot preserve the Hamiltonian H and energy E both. If we adjust numerical fluxes as

ŵh =
{ [[F(uh)]][[uh ]] , [[uh]] �= 0,

f ({{uh}}), [[uh]] = 0.
, v̂h = {{vh}} (2.48)

with F(u) = ∫ u f (u)du, then the scheme (2.46) is equivalent to the Scheme 1 and conser-
vative for E(uh) only.

Remark 2.3 For some solutions without sufficient smoothness, like peakon solution which
only owns first classical derivative, we modify the numerical fluxes in (2.47) as

ŵh = {{wh}} − α[[u]], v̂h = {{vh}} (2.49)

to stabilize the behavior of numerical scheme (2.46) for long time approximations. Here, the
parameter α is the same as the definition in (2.6). We will apply it to the peakon solution in
the section of numerical experiments.

Scheme 4 We can still deal vx = u by directly integrating it, similar to the method followed
in Eq. (2.10b) or (2.11). To avoid unnecessary duplication, we do not repeat the process.
This scheme based on (2.45) has similar numerical results with the Hamiltonian conservative
DG scheme (2.46), but it avoids solving the linear system at each time level and reduce
the complexity of programs, even though the Hamiltonian conservation cannot be proved
theoretically. Hereafter, we name this method by the Hamiltonian integration scheme as well
as Scheme 4. Numerically, this Hamiltonian integration scheme can achieve the k-th order
for odd k, the (k + 1)-th order for even k.
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2.3.2 Algorithm Flowchart

Themain difference between the Hamiltonian conservative DG scheme and the energy stable
non-integration scheme in Sect. 2 is the numerical fluxes v̂h . The v̂h for the energy stable non-
integration DG scheme is one-side, so we just need a start-up value on boundary. However,
for the Hamiltonian conservative DG scheme, v̂h is taken as {{vh}} which needs two start-up
values in the numerical scheme. It cannot be achieved by our method in Step 1 of Scheme 1
in the Sect. 2.2.2.

In fact, the Hamiltonian conservative DG scheme can only be achieved on odd number
meshes with even degree k of space V k

h for periodic boundary on u and v. Only for this case,
we have the linear system

Avh = uh

came from the Eq. (2.46c) with rank N ∗ (k + 1) − 1. Added the extra constraint, the zero
mean condition, the linear system can be solved uniquely. The next procedures are exactly
the same as those of the energy stable non-integration scheme in Sect. 2.2.2.

There is few difference on algorithm between the Hamiltonian integration scheme and the
energy stable integration scheme, so we just omit the detail.

2.3.3 Hamiltonian Conservation

Proposition 2.7 The semi-discreteDG scheme (2.46)with fluxes (2.47) is amass conservative
and Hamiltonian conservative DG scheme that can preserve the mass and Hamiltonian H
simultaneously

d

dt

∫
I
uhdx = 0,

d

dt
H(uh, vh) = d

dt

∫
I
−1

6
u3h + 1

2
v2hdx = 0. (2.50)

Proof With the periodic boundary condition, we can obtain the conservation of mass after
summing up the Eq. (2.46a) with φ = 1.

Subsequently, we give the proof for the Hamiltonian conservativeness. We take the time
derivative of the Eq. (2.46c) to obtain

< ̂(vh)t , η >I j −((vh)t , ηx )I j = ((uh)t , η)I j . (2.51)

As (2.46a), (2.46b), (2.51) hold true for any test function in space V k
h , we choose

φ = (vh)t , ϕ = (uh)t , η = wh . (2.52)

Using the selected fluxes and summing up the three above-mentioned Eqs. (2.46a), (2.46b)
and (2.51), we have

((uh)t , (vh)t )I j + < ŵh, (vh)t >I j −(wh, (vh)t x )I j + (vh, (vh)t )I j − v̄h((vh)t , 1)I j

+ < ̂(vh)t , wh >I j −((vh)t , (wh)x )I j −
(
1

2
u2h, (uh)t

)
I j

= 0. (2.53)

To eliminate the extra term ((uh)t , (vh)t )I j , we take the test function η = (vh)t in Eq. (2.51),
and obtain

< ̂(vh)t , (vh)t >I j −((vh)t , (vh)t x )I j = ((uh)t , (vh)t )I j . (2.54)

Substituting Eq. (2.54) into (2.53), we finally get the following summation

< ̂(vh)t , (vh)t >I j −((vh)t , (vh)t x )I j + < ŵh, (vh)t >I j −(wh, (vh)t x )I j + (vh, (vh)t )I j
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− v̄h((vh)t , 1)I j + < ̂(vh)t , wh >I j −((vh)t , (wh)x )I j −
(
1

2
u2h, (uh)t

)
I j

= 0. (2.55)

We rewrite the above-mentioned equation into its equivalence form

(vh, (vh)t )I j −
(
1

2
u2h, (uh)t

)
I j

− v̄h((vh)t , 1)I j + 
 j+ 1
2

− 
 j− 1
2

+ � j− 1
2

= 0 (2.56)

where the numerical entropy flux is given by


 = ŵh(v
−
h )t + ̂(vh)tw

−
h − (v−

h )tw
−
h + v̂h(v

−
h ) − 1

2
(v−

h )2 (2.57)

and the extra term � is

� = −ŵh[[(vh)t ]] − ̂(vh)t [[wh]] + [[wh(vh)t ]] − v̂h[[vh]] + 1

2
[[(vh)2]] = 0. (2.58)

Summed up the cell entropy equalities (2.56) with periodic boundary condition, the Hamil-
tonian conservation is proved(

−1

2
(uh)

2, (uh)t

)
I
+ (vh, (vh)t )I = 0, (2.59)

i.e., Hamiltonian conservative DG scheme for the OV equation. ��

3 The DGMethods Via the Hodograph Transformation

In this section, we solve the singular solutions of the OV equation (1.1) by transforming
it into a new coupled dispersionless type equation (CD system). This type of methods that
solve numerical solutions by hodograph transformations are also applied in [44] for the short
pulse equation. Similar to the method followed in [44], a DG scheme and an integration
DG scheme are constructed for the transformed CD system. After obtaining the numerical
solutions of the CD system, the profiles of solutions for the OV equation are obtained.

First, we analyze a more general case, two-component OV system as{
(ut + uux )x + γ u = c(1 − ρ), (3.1a)

ρt + (ρu)x = 0. (3.1b)

where u(x, t) denote the amplitude of waves and ρ(x, t) is the density of medium. When
c = 0, the two-component OV system will degenerate to the OV equation.

Through the conservation laws (3.1b), according to the compatibility condition, we set

yx = ρ, yt = −ρu,

i.e. the hodograph transformation

dx = 1

ρ
dy + uds, dt = ds. (3.2)

In this way, we link the two-component OV system (3.1) with a new type CD system{
(ρ−1)s = uy,

ρuys + γ u + c(ρ − 1) = 0.
(3.3)
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For the sake of expression and computation, we make q = 1/ρ, then we have{
qs = uy,

uys + γ qu + c(1 − q) = 0,
(3.4)

for which we will construct the DG schemes in the subsequent section.
Subsequently, the parametric representation of the solution for the two-component OV

system (3.1) is given by

u = u(y, s), ρ = ρ(y, s), (3.5)

x = x(y0, s) +
∫ y

y0

1

ρ(ζ, s)
dζ, t = s. (3.6)

where y0 is a real constant.

Remark 3.1 When the two-component OV system degenerates to the OV equation with c = 0
in (3.1), there is no explicit conservation law for us to construct a hodograph transformation.
In this case, we follow the method mentioned in [8] by transforming the OV equation to its
bilinear form under which we will obtain the explicit representation of variable ρ. And then
we can convert the OV equation into the CD system by the hodograph transformation (3.2).

3.1 The DG Schemes for the CD System

In this section, two DG schemes are constructed for the CD system (3.4), including the DG
scheme and the integration DG scheme, the specific forms of which will be provided in
Schemes 5 and 6, respectively.

We rewrite (3.4) as a first order system⎧⎪⎨
⎪⎩
qs = ω,

ωs = −γ qu − c(1 − q),

ω = uy .

(3.7)

Scheme 5 The DG scheme for the CD system (3.4) is defined as follows: Find qh, uh, ωh ∈
V k
h , such that, ⎧⎪⎪⎨

⎪⎪⎩
((qh)s, φ)I ′

j
= (ωh, φ)I ′

j
, (3.8a)

((ωh)s, ϕ)I ′
j
= −(γ qhuh, ϕ)I ′

j
− (c(1 − qh), ϕ)I ′

j
, (3.8b)

(ωh, ψ)I ′
j
=< ûh, ψ >I ′

j
−(uh, ψy)I ′

j
, (3.8c)

for all test functions φ, ϕ,ψ ∈ V k
h . Here, the numerical flux is ûh = u+

h . After solving the
numerical solutions of the CD system, we can finally profile the singular solutions of the OV
system.

Scheme 6 Under the same DG framework (3.7), we use integration scheme deal with the
equation uy = ω. Here, we construct the integration DG scheme for the CD system (3.4):
Find qh, ωh ∈ V k

h , uh ∈ V k+1
h ∩ C

0, such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

((qh)s, φ)I ′
j
= (ωh, φ)I ′

j
, (3.9a)

((ωh)s, ϕ)I ′
j
= −(γ qhuh, ϕ)I ′

j
− (c(1 − qh), ϕ)I ′

j
, (3.9b)

uh(y, s) |I j = uh(y j+ 1
2
, s) −

∫ y
j+ 1

2

y
ωh(ξ, s) dξ, (3.9c)
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Table 1 DG schemes proposed in this paper

S/N Equation Scheme

Scheme 1 OV equation The energy stable non-integration DG scheme (2.5)

Scheme 2 OV equation The energy stable integration DG scheme (2.10)

Scheme 3 OV equation The Hamiltonian conservative DG scheme (2.46)

Scheme 4 OV equation The Hamiltonian integration scheme

Scheme 5 CD system The DG scheme for CD system (3.8)

Scheme 6 CD system The integration DG scheme for CD system (3.9)

for all test functions φ, ϕ ∈ V k
h . Here, the boundary condition is taken as uh(yN+ 1

2
, s) =

u(b, s). The primary difference between this integrationDG scheme (3.9) and theDG scheme
(3.8) is the finite element space that the numerical solution uh belongs to. In this case, not
only uh is in V

k+1
h space, but uh is continuous. Numerically, this integration DG scheme can

achieve the (k + 2)-th order of accuracy for uh , and the (k + 1)-th order for qh, ωh .

3.2 Algorithm Flowchart

In this section, the processes of Schemes 5 and 6 are listed as follows:
Step 1: From the Eqs. (3.8a), (3.8b), we have

(qh)s = Res(ωh),

(ωh)s = Res(uh,qh).

The vectors uh,qh,ωh denote the freedoms of numerical solutions uh, qh, ωh . Explicit
TVD/SSP Runge–Kutta method is used for solving ωh, qh .

Step 2: From (3.8c) or (3.9c), we need to solve the coefficients of uh from ωh . We also
need a boundary condition for uh to start up the numerical scheme. The Dirichelet boundary
condition by exact solution u is considered here. We do not list further details.

Remark 3.2 After the hodograph transformation, the conservation law for u cannot hold
under the new spatial coordinate y, for periodic boundary condition on u, the lack of an extra
constraint will cause the under-determined linear system for solving uh .

4 Numerical Experiments

In this section, some numerical experiments are presented to show the convergence rate
and capability of our numerical schemes. The time discretization method is the fourth order
explicit Runge–Kuttamethod [10,26].We take the time step as�t = 0.1�x with our uniform
spatial meshes for all experiments. Different solutions of the OV equation are calculated in
this part, including not only smooth, shock solution, but peakon, cuspon and loop soliton
solutions. In order to distinguish our proposed schemes clearly, we review them by Table 1.

Example 4.1 Smooth solution In this example, a smooth solution is used to test the accuracy
and convergence rate of our numerical schemes with periodic boundary condition. The initial
condition is taken as

u0(x) = sin(x), x ∈ [0, 2π]. (4.1)
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Table 2 Example 4.1, Schemes 1 and 2: accuracy test for smooth solution u (4.2) at T = 1

N Scheme 1 Scheme 2
‖u − uh‖L2 Order ‖u − uh‖L∞ Order ‖u − uh‖L2 Order ‖u − uh‖L∞ Order

P1 40 4.74E−04 – 3.39E−03 – 4.74E−04 – 3.35E−03 –

80 1.18E−04 2.00 8.43E−04 2.01 1.18E−04 2.00 8.38E−04 2.00

160 2.95E−05 2.00 2.10E−04 2.00 2.95E−05 2.00 2.10E−04 2.00

320 7.36E−06 2.00 5.25E−05 2.00 7.37E−06 2.00 5.24E−05 2.00

P2 40 1.45E−05 – 1.16E−04 – 1.44E−05 – 1.14E−04 –

80 1.93E−06 2.91 1.91E−05 2.60 1.93E−06 2.90 1.90E−05 2.58

160 2.56E−07 2.91 3.00E−06 2.66 2.56E−07 2.91 2.99E−06 2.67

320 3.53E−08 2.86 4.08E−07 2.88 3.53E−08 2.86 4.07E−07 2.88

Table 3 Example 4.1, Schemes 3 and 4: accuracy test for smooth solution u (4.2) at T = 1

N Scheme 3 Scheme 4
‖u − uh‖L2 Order ‖u − uh‖L∞ Order ‖u − uh‖L2 Order ‖u − uh‖L∞ Order

P1 41 – – – – 1.29E−02 – 1.54E−01 –

81 – – – – 7.40E−03 0.82 1.35E−01 0.20

161 – – – – 3.92E−03 0.92 8.55E−02 0.66

321 – – – – 2.00E−03 0.98 4.82E−02 0.83

P2 41 1.23E−05 – 9.32E−05 – 1.23E−05 – 9.34E−05 –

81 1.18E−06 3.45 8.46E−06 3.52 1.18E−06 3.45 8.44E−06 3.53

161 1.17E−07 3.37 1.07E−06 3.01 1.17E−07 3.37 1.07E−06 3.01

321 1.18E−08 3.32 1.16E−07 3.22 1.18E−08 3.32 1.16E−07 3.22

We fix the exact solution as

u(x, t) = sin(x + t), (4.2)

we add a source term s f = cos 2(x + t) to make sure the equation holds, that is,(
ut +

(
1

2
u2

)
x

)
x

+ u = s f . (4.3)

We record the errors, orders of accuracy at time T = 1 for proposed DG schemes in
Tables 2 and 3. On the one hand, for two energy stable DG schemes, the convergence rates
of L2 and L∞ errors are both (k + 1)-th order for the variable u. For the Hamiltonian
conservative DG scheme, there is (k+1)-th order for even k on odd number meshes, the rest
cases cannot be approximated by Scheme 3. For the Hamiltonian integration DG scheme,
we obtain the k-th order for odd k, (k + 1)-th order for even k. On the other hand, we can
see that the numerical errors of non-integration and integration schemes are almost identical.
The integration method is more efficient than the non-integration one owing to not solving
the linear system at each time level.

In Table 4, we compare the energy stable non-integration scheme and integration DG
scheme on the variable v, the integration DG scheme is one order higher than the non-
integration scheme on the variable v. However, the final numerical solution u belongs to
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Table 4 Example 4.1, Schemes 1 and 2: accuracy test for the derivative of solution v = ux (4.2) at T = 1

N Scheme 1 Scheme 2
‖v − vh‖L2 Order ‖v − vh‖L∞ Order ‖v − vh‖L2 Order ‖v − vh‖L∞ Order

P1 40 3.80E−04 – 1.71E−03 – 1.97E−05 2.99 9.76E−05 2.97

80 9.22E−05 2.04 3.94E−04 2.12 2.46E−06 3.00 1.22E−05 3.00

160 2.30E−05 2.01 9.39E−05 2.07 3.08E−07 3.00 1.53E−06 3.00

320 5.75E−06 2.00 2.29E−05 2.04 3.85E−08 3.00 1.90E−07 3.00

P2 40 4.73E−06 – 2.39E−05 – 4.41E−07 3.90 3.25E−06 3.89

80 5.76E−07 3.04 2.91E−06 3.04 2.62E−08 4.07 2.32E−07 3.81

160 7.29E−08 2.98 3.76E−07 2.95 1.60E−09 4.03 1.38E−08 4.07

320 9.15E−09 2.99 4.66E−08 3.01 1.09E−10 3.88 1.02E−09 3.76

x
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Scheme2 t2
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Scheme2 t31
Scheme2 t36
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Scheme1 t21
Scheme1 t31
Scheme1 t36

Fig. 1 Example 4.2, Schemes 1 and 2: the process of cosine initial condition (4.4) at different times T = 0 to
T = 36 with the cells N = 160, P2 elements

space V k
h , therefore, the convergence rate for variable u is still (k + 1)-th order rather than

(k + 2)-th.

Example 4.2 Shock solution In this example, we consider the smooth initial data

u0(x) = −0.05 cos(2πx), x ∈ [0, 1], (4.4)

for OV equation (
ut +

(
1

2
u2

)
x

)
x

− u = 0 (4.5)

which will develop a shock in finite time. To eliminate the oscillation near the shock, we
follow the idea of handling the shock solutions for conservation laws [5] to introduce a
TVB limiter. Our numerical schemes can capture the shock without oscillation, see Fig. 1.
We provide the approximation results of two energy stable DG schemes here. Because the
lack of dissipation for nonlinear term f (u), the Hamiltonian conservative scheme or the
Hamiltonian integration scheme fails to model this shock solution.
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Table 5 Example 4.3, Scheme 1: accuracy test for peakon solution (4.7) at T = 36

N ‖u − uh‖L2 Order ‖u − uh‖L∞ Order

P1 20 1.86E−04 – 1.98E−03 –

40 9.96E−05 0.90 1.27E−03 0.65

80 4.65E−05 1.10 8.07E−04 0.65

160 2.10E−05 1.15 5.00E−04 0.69

P2 20 7.30E−05 – 6.78E−04 –

40 3.22E−05 1.18 4.38E−04 0.63

80 1.43E−05 1.18 3.11E−04 0.49

160 6.22E−06 1.20 2.04E−04 0.61

x
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(d) N = 40, P 4

Fig. 2 Example 4.3, Schemes 1 and 3: Peakon solution (4.7) at T = 180
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Table 6 Example 4.4, Scheme 5: accuracy test for the one-soliton solution (4.10) of the CD system (3.7) at
T = 1, the computational domain is [−20, 20], k1 = 1.0, c = 2.0

N ‖u − uh‖L2 Order ‖u − uh‖∞ Order ‖ρ − ρh‖L2 Order ‖ρ − ρh‖∞ Order

P2 20 6.50E−03 – 7.13E−02 – 2.04E−02 – 2.93E−01 –

40 1.14E−03 2.51 2.54E−02 1.49 2.32E−03 3.14 4.69E−02 2.64

80 1.43E−04 3.00 2.55E−03 3.31 4.82E−04 2.27 8.73E−03 2.42

160 2.05E−05 2.80 4.17E−04 2.62 6.38E−05 2.92 1.44E−03 2.60

320 2.57E−06 2.99 5.20E−05 3.00 7.87E−06 3.02 1.75E−04 3.04

P3 20 2.73E−03 – 3.56E−02 – 6.81E−03 – 8.69E−02 –

40 2.69E−04 3.34 5.22E−03 2.77 9.20E−04 2.89 1.44E−02 2.59

80 2.53E−05 3.41 5.00E−04 3.38 7.65E−05 3.59 1.50E−03 3.26

160 1.35E−06 4.22 3.62E−05 3.79 4.12E−06 4.21 1.04E−04 3.86

320 8.51E−08 3.99 2.39E−06 3.92 2.58E−07 4.00 7.10E−06 3.87

Table 7 Example 4.4, Scheme 6: accuracy test for the one-soliton solution (4.10) of the CD system (3.7) at
T = 1, the computational domain is [−20, 20], k1 = 1.0, c = 2.0

N ‖u − uh‖L2 Order ‖u − uh‖∞ Order ‖ρ − ρh‖L2 Order ‖ρ − ρh‖∞ Order

P2 40 4.59E−04 – 7.01E−03 – 3.89E−03 – 5.44E−02 –

80 2.31E−05 4.31 4.30E−04 4.03 5.39E−04 2.85 9.38E−03 2.54

160 2.59E−06 3.16 6.49E−05 2.73 6.10E−05 3.14 1.21E−03 2.95

320 1.65E−07 3.97 4.73E−06 3.78 7.71E−06 2.98 1.58E−04 2.94

640 1.03E−08 3.99 3.02E−07 3.97 9.66E−07 3.00 1.97E−05 3.01

P3 40 7.55E−05 – 1.26E−03 – 7.90E−04 – 9.93E−03 –

80 6.90E−06 3.45 1.30E−04 3.28 3.36E−05 4.55 5.62E−04 4.14

160 1.74E−07 5.31 4.19E−06 4.96 4.02E−06 3.06 9.16E−05 2.62

320 5.52E−09 4.98 1.44E−07 4.86 2.55E−07 3.98 7.06E−06 3.70

640 1.74E−10 4.98 4.50E−09 5.00 1.60E−08 4.00 4.54E−07 3.96

Example 4.3 Peakon solution This example is devoted to solve a well-known traveling wave
solution of the OV equation with γ = −1, i.e. Eq. (4.5). We call the corner wave whose
first order derivative is finite discontinuous as a peakon solution which is the limit case of a
family of smooth traveling wave solution [13,22,27]. The initial data is given by

u0(x) =
{

1
6 (x − 1

2 )
2 + 1

6

(
x − 1

2

) + 1
36 , x ∈ [

0, 1
2

]
,

1
6

(
x − 1

2

)2 − 1
6

(
x − 1

2

) + 1
36 , x ∈ [ 1

2 , 1
]
,
, (4.6)

and the exact solution is

u(x, t) = u0
(
x − t

36

)
. (4.7)

The solution at temporal time which equals multiple of 36 will return to its initial state after
periods. First, we set the temporal time T = 36 , the L2, L∞ errors and convergence rate
of the energy stable non-integration scheme are contained in Table 5. Because of the lack
of sufficient smoothness for the peakon solution, the convergence is the first order for L2

norm, the 1
2 -th order for L∞ norm which validates the results in [7]. In Fig. 2, two numerical
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Fig. 3 Example 4.4, Schemes 5 and 6: the two-cuspon solution u of the OV system (4.8) with the cells
N = 320, P2 elements. The parameters are k1 = 2.0, k2 = 2.6, c = −2.0, ηi0 = −20ki

solutions at T = 180 are plotted. The Hamiltonian conservative DG scheme have some oscil-
lations for long time approximation, hence we adopt the numerical fluxes (2.49) to stabilize
this peakon solution. Here, this scheme is no longer Hamiltonian conservative. However, we
can see that this Hamiltonian DG scheme has more accurate approximation than the energy
stable non-integration DG scheme on same mesh. Without causing misunderstanding, we
still denote this modified Hamiltonian DG scheme by Scheme 3 in Fig. 2. It can be seen
that the finer mesh or higher order accuracy can help reduce the phase error and amplitude
decay.

Example 4.4 Loop and cuspon soliton solutions This example is devoted to solve the loop
and cuspon solutions for the OV equation and the two-component OV system with γ = −3,{

(ut + uux )x − 3u = c(1 − ρ),

ρt + (ρu)x = 0
(4.8)
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Fig. 4 Example 4.4, Schemes 5 and 6: the two-cuspon solution q of the OV system (4.8) with the cells
N = 320, P2 elements. The parameters are k1 = 2.0, k2 = 2.6, c = −2.0, ηi0 = −20ki

where c = 0, the system degenerates to the OV equation. We provide the exact solution of
the OV system under the coordinate (y, s),

u(y, s) = −2 ln(g)ss,

ρ(y, s) = (1 − 2(ln g)ys)
−1,

x = y − 2(ln g)s, t = s, (4.9)

which expresses the N -soliton solutions, g is the Pfaffian polynomial.
First, we use the one-soliton solution to test the error and the convergence rate,

g = 1 + eη1 , η1 = k1s + 3k1
k21 − c

y + η10 (4.10)

where k1 = 1.0, c = 2.0, η10 = 0.0 are constants. The L2, L∞ errors and the convergence
rates of two DGmethods are listed in Tables 6, 7. We see that optimal error order can be both
achieved for Schemes 5 and 6.
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Fig. 5 Example 4.4, Schemes 5 and 6: the two-loop solution u of the OV system (4.8) with the cells N = 320,
P2 elements. The parameters are k1 = 1.2, k2 = 1.5, c = 0.0, ηi0 = −20ki

Next, we list the expression of the two-soliton solution

g = 1 + eη1 + eη2 + b12e
η1+η2 ,

ηi = ki s + 3ki
k2i − c

y + ηi0,

b12 = (k1 − k2)2(k21 − k1k2 + k22 − 3c)

(k1 + k2)2(k21 + k1k2 + k22 − 3c)
, (4.11)

where c, ki , ηi0 = −20ki are constants. Figures 3 and 4 display the elastic collision between
two cuspon solitons in computational domain [−80, 80]. Referring to [9], the shape of solu-
tion depends on the choice of parameters ki . In Fig. 5, we provide a 2-loop solution in
[−22, 20] for the OV equation. It can be seen that our numerical schemes have good resolu-
tions for the cuspon and loop soliton solutions of the OV equation or the OV system.
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5 Conclusion

In this paper, we presented the discontinuous Galerkin methods for the OV equation. These
methods can be divided into two classes: direct and indirect. Direct methods consist of two
energy stable, Hamiltonian conservative and Hamiltonian integration DG schemes for the
OV equation. The L2 stability and Hamiltonian conservativeness of the corresponding DG
schemes are proved respectively. Based on the L2 stability, we also give the suboptimal
error estimates for two energy stable DG schemes. Indirect methods, composed of the DG
scheme and the integration DG scheme for the CD system obtain the profile of solutions
of the OV equation via the hodograph transformation. Numerical experiments are provided
to demonstrate the accuracy and capability of the DG schemes, including shock solution,
peakon, cuspon and loop soliton solutions, in addition to smooth solutions.
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