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Abstract
In this paper, we develop well-balanced arbitrary Lagrangian–Eulerian discontinuous
Galerkin (ALE-DG)methods for the shallowwater equations,which preserve not only the still
water equilibrium but also the moving water equilibrium. Based on the time-dependent linear
affine mapping, the ALE-DG method for conservation laws maintains almost all mathemat-
ical properties of DG methods on static grids, such as conservation, geometric conservation
law (GCL), entropy stability. The main difficulty to obtain the well-balanced property of
the ALE-DG method for shallow water equations is that the grid movement and usual time
discretization may destroy the equilibrium. By adopting the GCL preserving Runge–Kutta
methods and the techniques of well-balanced DG schemes on static grids, we successfully
construct the high order well-balanced ALE-DG schemes for the shallow water equations
with still and moving water equilibria. Meanwhile, the ALE-DG schemes can also preserve
the positivity property at the same time. Numerical experiments in different circumstances
are provided to illustrate the well-balanced property, positivity preservation and high order
accuracy of these schemes.
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1 Introduction

The shallow water equations have been widely used to model flows in the atmosphere, rivers,
lakes and oceans as well as gravity waves in a smaller domain. They are especially suitable to
model tides which have very large length scales. In one space dimension, the shallow water
equations take the form:

⎧
⎨

⎩

ht + (hu)x = 0,

(hu)t + (hu2 + 1

2
gh2)x = −ghbx ,

(1.1)

where h denotes the water height, u is the velocity of the fluid, b is the bottom topography
and g is the gravitational constant. The shallow water equations exactly preserve the still
water equilibrium:

u = 0 and h + b = constant, (1.2)

which represents a still flat water surface. The shallow water equations also preserve the
general moving water equilibrium:

m := hu = constant and E := 1

2
u2 + g(h + b) = constant, (1.3)

where m, E are the moving water equilibrium variables. The still water equilibrium is just a
special case of the moving water equilibrium when the velocity equals zero.

The well-balanced schemes are introduced to preserve exactly, at a discrete level, these
equilibrium solutions. An important advantage of the well-balanced schemes is that they can
accurately resolve small perturbations to such steady state solutions with relatively coarse
meshes. Research on well-balanced numerical methods for the shallow water system has
attracted many attentions in the past two decades. Researchers have developed many well-
balanced schemes for the shallow water equations to preserve the still water equilibrium, e.g.
[3,25,31,34,36,38–40]. Most of the well-balanced methods which preserve the still water
equilibrium cannot preserve the moving water equilibrium, and it is significantly more diffi-
cult to obtain well-balanced schemes for the moving water equilibrium. Some well-balanced
schemes for the moving water equilibrium have been developed, see [8,10,21,27,30,31]. In
a recent paper [35], Xing designed a well-balanced discontinuous Galerkin (DG) scheme for
arbitrary equilibrium of the shallow water equations. The key idea of this paper is a special
way to recover the moving water equilibrium. Another important difficulty in solving the
shallow water equations is the appearance of dry areas. The water height may become neg-
ative near the wet-dry front and may cause the breakdown of numerical simulations. There
are some existing work to overcome this difficulty. In [6,7], the authors cut off the outgoing
numerical flux without reducing the global time step to maintain the positivity of the water
height. In [11], a hydrostatic reconstruction scheme based on subcell reconstruction is intro-
duced. Many other techniques can be found in [4,9,26]. A very popular technique for high
order methods is a simple scaling positivity-preserving limiter, which can preserve the high
order accuracy without losing local conservation [40].

The well-balanced schemes for shallow water equations were developed for static com-
putational meshes, but in many applications, numerical methods with a deformable moving
mesh are desirable for flexibility. In recent years, well-balanced moving mesh methods have
been designed within several different frameworks, which preserve the still water equilib-
rium. In [44,45], the authors introduced a new interpolation in finite volume methods to
remap the flow variables to the new mesh while keeping the well-balanced property and
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height positive. In [1,2], finite volume methods has been coupled pre-balanced ALE form of
shallow water equations. In [28], space-time discontinuous DG methods on moving meshes
and a new weak form were developed to preserve the steady states. A two-step moving mesh
DG scheme was presented in [42], where the well-balanced DG methods with hydrostatic
reconstruction on static grids and a remapping were coupled. We will choose the arbitrary
Lagrangian–Eulerian discontinuous Galerkin (ALE-DG) method developed by Klingenberg
et al. [19,23] in this paper, which maintains mathematical properties of the DG methods on
static grids, such as conservation, geometric conservation law (GCL), entropy stability and
high order accuracy. Thereinto, the GCL property of the grid deformation method is essential
for the development of well-balanced grid deformation schemes for the shallow water equa-
tions. It has been shown in [19] that the GCL property of the ALE-DGmethod can be satisfied
for any time discretization methods with the order greater than or equal to the dimension.
Thus the modified total variation diminishing Runge–Kutta (TVD-RK) methods has been
introduced to guarantee the GCL property in each stage of Runge–Kutta methods for two
or higher dimension cases. Besides, by adopting the time-dependent linear affine mapping,
the ALE-DG algorithm requires only very mild Lipschitz continuity of the mesh movement
function. Moreover, due to the GCL property, We can keep the water height average positive
under suitable time steps, which is consistent with the one in DGmethods [40] on static grids.

The DGmethod is a popular high order method for solving hyperbolic conservation laws.
It has been developed and analyzed by Cockburn, Shu et al. in a series of papers, e.g. [12–16]
and in a review article [33]. Researchers have developedmanywell-balancedDG schemes for
the shallowwater equations, e.g. [17,18,22,28,35,39,41],which can be classified as the hydro-
static reconstruction and special source term treatment schemes roughly. But well-balanced
DGmethods cannot be generalized to ALE-DGmethods directly, due to the mesh movement
and the time-dependent approximation space. We find that the GCL preserving fully discrete
ALE-DG scheme with the modified TVD-RK methods can be adopted to develop high order
accurate well-balanced schemes, also based on the techniques of well-balanced schemes on
static grids. The main objective of this paper is to develop high-order accurate positivity-
preservingwell-balancedALE-DGmethods for the shallowwater equations.Wewill describe
the algorithms of the methods preserving the still and moving water equilibria and prove the
well-balanced property of the schemes. We mainly concentrate on the formulation and show
the feasibility of using ALE-DG methods for solving shallow water equations. We remark
that the methods of the grid movement is not investigated in this work. The grid movement is
prescribed explicitly and not derived from the computed solution in the numerical examples.

The rest of the paper is organized as follows. In Sect. 2, we give some important notations
and properties for the ALE-DG method. In Sect. 3, we present the well-balanced ALE-DG
methods for the shallow water equations which preserve the still water equilibrium in two
space dimensions by adopting the modified TVD-RK time discretization. One-dimensional
case is similar. In Sect. 4, we develop the well-balanced ALE-DG scheme for moving water
equilibrium. In Sect. 5, we provide numerical examples both for still water equilibrium and
moving water equilibrium to verify the well-balanced property, the positivity preserving
property and high order accuracy. Finally, we will give some concluding remarks in Sect. 6.
All the technical proof details in this paper are shown in “Appendices A–B”.

2 Notations

In this section, we present the time-dependent cells and finite element spaces in one and two
dimensions respectively.
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2.1 Mesh Grids for 1D and Notations

We discretize the computational space domain � into time-dependent cells. We assume that

there are given points

{

xn
j− 1

2

}N+1

j=1
at time level tn and

{

xn+1
j− 1

2

}N+1

j=1
at tn+1, such that

� =
N⋃

j=1

[

xn
j− 1

2
, xn

j+ 1
2

]

, � =
N⋃

j=1

[

xn+1
j− 1

2
, xn+1

j+ 1
2

]

.

Then we define straight lines connecting xn
j− 1

2
and xn+1

j− 1
2

x j− 1
2
(t) := xn

j− 1
2

+ ω j− 1
2

(
t − tn

)
, for t ∈ [tn, tn+1] , (2.1)

where

ω j− 1
2

:=
xn+1
j− 1

2
− xn

j− 1
2

tn+1 − tn
. (2.2)

The straight lines (2.1) provide time-dependent cells K j (t) =
[
x j− 1

2
(t), x j+ 1

2
(t)
]
at any

time t ∈ [tn, tn+1
]
. The size of the j-th cell is denoted by

� j (t) := x j+ 1
2
(t) − x j− 1

2
(t). (2.3)

For any time t ∈ [tn, tn+1] and cell K j (t), we define the grid velocity field ω

ω(x, t) = ω j+ 1
2

x − x j− 1
2
(t)

� j (t)
+ ω j− 1

2

x j+ 1
2
(t) − x

� j (t)
. (2.4)

We define the following finite dimensional test function space

Vh(t) :=
{
ψ ∈ L2(�)

∣
∣
∣ ψ |K j (t) ∈ Pk (K j (t)

)
, ∀ 1 ≤ j ≤ N

}
, (2.5)

where k denotes the polynomial degree and

�h(t) :=
{
(ζ, ψ)T | ζ, ψ ∈ Vh(t)

}
. (2.6)

For ψ ∈ Vh(t), the values at the cell boundaries of x j+ 1
2
is defined by

ψ−
j+ 1

2
:= lim

ε→0+ ψ(x − ε), ψ+
j+ 1

2
:= lim

ε→0+ ψ(x + ε). (2.7)

2.2 Mesh Grids for 2D and Notations

Similarly, we present the time-dependent cells in two dimensions. We assume that there exist
triangle meshes T n = ⋃N

j=1 Kn
j at time level tn and T n+1 = ⋃N

j=1 K
n+1
j at tn+1 which

cover the convex polyhedron domain � such that

� =
N⋃

j=1

Kn
j and � =

N⋃

j=1

Kn+1
j ,

and {xnj }Mj=1 and {xn+1
j }Mj=1 are the mesh grids at time tn and tn+1.
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We define the straight lines between the points xnj and xn+1
j :

x j (t) := xnj + (t − tn)ωn
j , ωn

j := 1

tn+1 − tn
(xn+1

j − xnj ). (2.8)

For each pair of trianglesKn
j andK

n+1
j , assume xna , x

n
b , x

n
c are three vertices ofKn

j and x
n+1
a ,

xn+1
b , xn+1

c are corresponding vertices of Kn+1
j . We can define the time-dependent triangles

by

K j (t) = conv{xa(t), xb(t), xc(t)}, (2.9)

where conv(·) denote the convex hull of a set. The area of cell K j (t) is denoted by � j (t).
We then define the grid velocity field ω(x, t) for t ∈ [tn, tn+1]. We assume that ω is a

vector with two components: ω1, ω2. Each component is a piecewise linear polynomial, such
that ω1, ω2|K j (t) ∈ P1(K j (t)). In each cell K j (t), the components ω1, ω2 are defined as
follows:

∣
∣
∣
∣
∣
∣

x − xa(t) ω1(x, t) − ωn
a,1

xb(t) − xa(t) ωn
b,1 − ωn

a,1
xc(t) − xa(t) ωn

c,1 − ωn
a,1

∣
∣
∣
∣
∣
∣
= 0,

∣
∣
∣
∣
∣
∣

x − xa(t) ω2(x, t) − ωn
a,2

xb(t) − xa(t) ωn
b,2 − ωn

a,2
xc(t) − xa(t) ωn

c,2 − ωn
a,2

∣
∣
∣
∣
∣
∣
= 0.

(2.10)

Here | · | denotes the matrix determinant. xna, x
n
b, x

n
c are the vertexes of cell K j (t) and

ωn
a,ω

n
b,ω

n
c are the grid velocity of these vertexes defined in (2.8) respectively. ωn

i,1, ω
n
i,2 are

the two components of ωn
i , for i = a, b, c. The equation (2.10) means that for i = 1, 2,

the four points in three dimensional space, (x, ωi (x, t)), (xa, ωn
a,i ), (xb, ω

n
b,i ), (xc, ω

n
c,i )

coplanar. The two matrices in (2.10) are both 3 by 3 matrices.
We define the following finite dimensional test function space

V2d
h (t) :=

{
ψ ∈ L2(�) | ψ |K j (t) ∈ Pk(K j (t)), ∀ 1 ≤ j ≤ N

}
, (2.11)

where k denotes the polynomial degree and

�2d
h (t) :=

{
(ζ, ψ, δ)T | ζ, ψ, δ ∈ V2d

h (t)
}

. (2.12)

For ψ ∈ V2d
h (t), the values on the boundary of a triangle K is defined by

ψ int (x) := lim
ε→0+ ψ(x − −εn), ψext (x) := lim

ε→0+ ψ(x + εn), (2.13)

where the vector x is any point on the boundary of the triangleK and the vector n is the outer
normal vector of the triangle K at the point x.

3 TheWell-Balanced ALE-DGMethods for Still Water Equilibrium

In this section, we present the positivity-preservingwell-balanced high-order ALE-DGmeth-
ods for the shallow water equations which preserve the still water equilibrium. According to
the previous work in [19,23], the ALE-DGmethods canmaintain almost all the mathematical
properties of DG methods on static grids, such as conservation, geometric conservation law
(GCL), entropy stability, and optimal error estimates. Our well-balanced ALE-DG methods
for the still water equilibrium are mainly based on the GCL property on the movingmesh.We
will develop two different well-balanced schemes and introduce their well-balanced property
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and positivity-preserving property in two dimensions. The one-dimensional case is similar
to the two-dimensional case.

3.1 Equations

We first write out the shallow water equations in two dimensions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 + 1

2
gh2)x + (huv)y = −ghbx ,

(hv)t + (huv)x + (hv2 + 1

2
gh2)y = −ghby,

(3.1)

where h represents the water height, (u, v) denotes the velocity vector of the fluid, and b is
the bottom topography. The still water equilibrium takes the form as follows

u = 0, v = 0, h + b = constant. (3.2)

TheGCL propertymeans that the numerical scheme can preserve constant states, which fit
the still water equilibrium very well. Our motivation is to achieve the well-balanced property
by using GCL. The first step is to change the variables from conservative variables

u = (h, hu, hv)T

to equilibrium variables

v = (η, hu, hv)T , with η = h + b,

where η denotes the surface level. In this case, the time discretization will not destroy the
well-balanced property on the moving mesh. For the ease of presentation, we rewrite the
shallow water equations (3.1) as follows:

vt + f (v)x + h(v)y = s(v, b), (3.3)

where

f (v) =
⎛

⎜
⎝

hu
(hu)2

η−b + 1
2 g(η − b)2

(hu)(hv)
η−b

⎞

⎟
⎠ , h(v) =

⎛

⎜
⎝

hv
(hu)(hv)

η−b
(hv)2

η−b + 1
2 g(η − b)2

⎞

⎟
⎠ ,

s(v, b) =
⎛

⎝
0

−g(η − b)bx
−g(η − b)by

⎞

⎠ .

Because b(x) is independent of t , we can easily prove that the solution for (3.1) is the solution
for (3.3). The variables in v are constants in the case of the still water equilibrium.We denote
the numerical solution still by v and numerical bottom topography by b for simplicity.
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3.2 The Standard ALE-DG Scheme

3.2.1 The Semi-discrete Scheme

For the shallow water equations (3.3), the semi-discrete ALE-DG scheme is the following:
Find v ∈ �2d

h (t), for any φ ∈ �2d
h (t),

d

dt

∫

K j (t)

v · φ dx = L j (ω, v,φ, t) (3.4)

with

L j (ω, v,φ, t) =
∫

K j (t)

G(ω, v) : ∇φ dx −
∫

∂K j (t)

Ĝ · φint ds +
∫

K j (t)

s(v, b) · φ dx,

where

• The operator : is defined as follows: A : B =∑
i, j

ai j bi j for any matrices A = [ai j
]
and

B = [bi j
] ∈ R

n×m .
• ω = (ω1, ω2)

T is the grid velocity field defined in (2.10).
• Flux term G(ω, v) = ( f (v) − ω1v, h(v) − ω2v).
• The numerical flux Ĝ = Ĝ(ω, vint , vext , n) is a monotone flux of G(ω, v). We adopt

the Lax-Friedrichs flux [19] in this paper:

Ĝ(ω, vint , vext , n) = (G(ω, vint ) · n + G(ω, vext ) · n − α(vext − vint ))/2, (3.5)

where n is the outer normal vector,α = max(|((u, v)T −ω)·n|+√
gh) and themaximum

is taken in the relevant domain.

3.2.2 The Runge–Kutta Time Discretization

In this paper, we will adopt the total variation diminishing Runge–Kutta (TVD-RK) time
discretization method [20,32]. The time discretization for moving mesh is slightly different
with the static mesh, since the test functions will change over time. We first introduce the
relationship between the test functions at different time level.

We define the following time-dependent linear mapping, for any interval K j (t):

X j : [0, 1]2 → K j (t), X j (ξ , t) = AK j (t)ξ + xK j (t),a, (3.6)

where the matrix AK j (t) is given by

AK j (t) := (xK j (t),b − xK j (t),a, xK j (t),c − xK j (t),a
)
, (3.7)

and xK j (t),a , xK j (t),b, xK j (t),c are the three vertexes of cell K j (t). Then we define corre-

sponding basis functions. For time t , t̂ ∈ [tn, tn+1], we call φ ∈ Vh(t), φ̂ ∈ Vh(t̂) are
corresponding basis functions, if they satisfy that

φ̂(X j (ξ , t̂)) = φ(X j (ξ , t)), ∀ξ ∈ [0, 1]2. (3.8)

Now, we write the third order TVD-RK method [32] as follows:
∫

Kn,1
j

vn,1 · φn,1dx =
∫

Kn
j

vn · φndx + �t L j
(
ωn, vn,φn, tn

)
, (3.9)
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∫

Kn,2
j

vn,2 · φn,2dx =3

4

∫

Kn
j

vn · φndx

+ 1

4

⎛

⎜
⎜
⎝

∫

Kn,1
j

vn,1 · φn,1dx + �t L j
(
ωn,1, vn,1,φn,1, tn,1)

⎞

⎟
⎟
⎠ , (3.10)

∫

Kn+1
j

vn+1 · φn+1dx =1

3

∫

Kn
j

vn · φndx

+ 2

3

⎛

⎜
⎜
⎝

∫

Kn,2
j

vn,2 · φn,2dx + �t L j
(
ωn,2, vn,2,φn,2, tn,2)

⎞

⎟
⎟
⎠ , (3.11)

where Kn,1
j = Kn+1

j = K j (tn+1), Kn,2
j = K j (

tn+tn+1

2 ); φn,1, φn+1, φn and φn,2 are equiva-
lent in the sense of basis functions defined in (3.8). The spatial discretization L j is defined
in (3.4). Usually, it is obvious that the scheme (3.4) combined with (3.9)–(3.11) can not
keep the well-balanced property. We need to have more treatments and will introduce two
well-balanced schemes for the still water equilibrium below.

3.3 TheWell-Balanced Semi-discrete ALE-DG Schemes

In this subsection, we will introduce the well-balanced modifications based on the standard
ALE-DG scheme (3.4). We will introduce two different schemes in this subsection and show
their properties in the following subsections.

3.3.1 The Semi-discrete ALE-DG Scheme with Hydrostatic Reconstruction

The semi-discrete scheme is the following: Find v ∈ �2d
h (t), for any φ ∈ �2d

h (t),

d

dt

∫

K j (t)

v · φ dx = Lh
j (ω, v,φ, t) (3.12)

with

Lh
j (ω, v,φ, t) =

∫

K j (t)

G(ω, v) : ∇φ dx −
∫

∂K j (t)

Ĝ
∗ · φintds +

∫

K j (t)

s(v, b) · φ dx,

where

• The well-balanced numerical flux is given by

Ĝ
∗ =Ĝ(ω, v∗,int , v∗,ext , n)

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

2
(ω · n − α)(η∗,int − ηint ) + 1

2
(ω · n + α)(η∗,ext − ηext )

(
g

2
(ηint − bint )2 − g

2
(h∗,int )2)n1

(
g

2
(ηint − bint )2 − g

2
(h∗,int )2)n2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
(3.13)
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where Ĝ(ω, vint , vext , n) is defined in (3.5) and n = (n1, n2)T is the outer normal vector.
• v∗,int/ext and h∗,int/ext are the modified cell boundary values given by

v∗,int = (h∗,int + bint , (hu)int , (hv)int )T ,

v∗,ext = (h∗,ext + bext , (hu)ext , (hv)ext )T ,

h∗,int = max(0, ηint − max(bint , bext )),

h∗,ext = max(0, ηext − max(bint , bext )).

(3.14)

We note that we change the definition of numerical flux (3.13) in well-balanced scheme
(3.12) compared with (3.4).

3.3.2 The Semi-discrete ALE-DG Scheme with Special Source Term Treatment

The ALE-DG scheme with special source term treatment is defined in the following form:
find v ∈ �2d

h (t), for any φ = (ζ, ψ, δ)T ∈ �2d
h (t),

d

dt

∫

K j (t)

v · φ dx = Ls
j (ω, v,φ, t) (3.15)

with

Ls
j (ω, v,φ, t) =

∫

K j (t)

G(ω, v) : ∇φ dx −
∫

∂K j (t)

Ĝ(ω, vint , vext , n) · φint ds + s j + r j ,

where s j denotes the approximation of the source term
∫

K j (t)
−ghbxψdx and r j denotes the

approximation of the source term
∫

K j (t)
−ghbyδdx. They are defined as follows:

s j =
∫

∂K j (t)

1

2
gb̃2ψ int ds −

∫

K j (t)

1

2
gb2ψx dx

− gη j

⎛

⎜
⎝

∫

∂K j (t)

b̃ψ int ds −
∫

K j (t)

bψx dx

⎞

⎟
⎠−

∫

K j (t)

g(η − η j )bxψ dx,

(3.16)

r j =
∫

∂K j (t)

1

2
gb̃2δint ds −

∫

K j (t)

1

2
gb2δy dx

− gη j

⎛

⎜
⎝

∫

∂K j (t)

b̃δint ds −
∫

K j (t)

bδy dx

⎞

⎟
⎠−

∫

K j (t)

g(η − η j )byδ dx,

(3.17)

where the notations are defined by

η̄ j = 1

|K j (t)|
∫

K j (t)

η dx, b̃ = bint + bext

2
, b̃2 = (bint )2 + (bext )2

2
.

Compared with (3.4), we note that we change the definition of the source term approxi-
mation

∫

K j (t)
s(v, b) · φ dx to s j + r j in well-balanced scheme (3.15).
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3.3.3 Well-Balanced Property for Semi-discrete Schemes

For the well-balanced semi-discrete schemes (3.12) and (3.15), we have the following lemma
as key of the well-balanced property.

Lemma 3.1 If v is equal to the still water equilibrium, then the semi-discrete ALE-DG
schemes (3.12) in Sect. 3.3.1 and (3.15) in Sect. 3.3.2 can both be simplified to

d

dt

∫

K j (t)

v · φ dx =
∫

K j (t)

(∇ · (ω ⊗ v)) · φ dx, (3.18)

where ⊗ is the tensor product such that ω ⊗ v = (ω1v ω2v
)
and

∇ · (ω ⊗ v) = (ω1v)x + (ω2v)y . (3.19)

In order to show the main idea of the proofs, the one-dimensional cases for schemes (3.12)
and (3.15) are given in “Appendices A.1 and A.2” respectively. The two-dimensional case is
similar and we omit the corresponding proof in two dimensions.

3.4 The Fully Discrete Schemes andWell-Balanced Property

For the DG schemes on static grids, usually Lemma 3.1 indicate the well-balanced property
of the corresponding fully-discrete schemes. But for the ALE-DG schemes, this is not the
case. The schemes need the property so-called geometric conservation law (GCL) tomaintain
the well-balanced property in the temporal discretization.

The GCL is an important property to keep high order accuracy for the grid deformation
method. We introduce the GCL briefly and refer [23] for details. If a method satisfies the
GCL, that means it can preserve the constant states. In one dimension, [23] proved that for the
ALE-DG method for conservation laws, semi-discrete ALE-DG scheme satisfies the GCL
and the fully discrete schemewith TVD-RKmethods (3.9)-(3.11) satisfies discrete geometric
conservation law (dGCL). In two dimensions, a modified TVD-RK methods was presented
in [19], where each equation of (3.9)–(3.11) adds a coefficient shown in [19]. For example,
the Euler forward time discretization in two dimensions is given as follows

β
|Kn

j |
|Kn+1

j |
∫

Kn+1
j

vn+1 · φn+1 dx =
∫

Kn
j

vn · φn dx + �t L j (ω
n, vn,φn, tn), (3.20)

where β = 1 + �t(∇ · ωn) and |K| represent the area of the cell K. In one dimension, we
note that (3.20) and the standard Euler forward scheme are the same, since coefficient

β
|Kn

j |
|Kn+1

j | = (1 + �tωn
x )

xn
j+ 1

2
− xn

j− 1
2

xn+1
j+ 1

2
− xn+1

j− 1
2

=
⎛

⎝1 + �t
ωn

j+ 1
2

− ωn
j− 1

2

xn
j+ 1

2
− xn

j− 1
2

⎞

⎠
xn
j+ 1

2
− xn

j− 1
2

xn+1
j+ 1

2
− xn+1

j− 1
2

= 1.

The second equality is due to (2.4) and the third equality is due to (2.2). For the modified
TVD-RK methods, the fully discrete scheme has the dGCL property and we refer [19] for
its proof.

For the shallow water equations, which are conservation laws with source terms, we adopt
the modified TVD-RK method in [19] and similar dGCL property can be proved for ALE-
DG methods. This is essential for our proof about the well-balanced property. We show
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the well-balanced property of the fully-discrete ALE-DG scheme with the Euler forward
discretization (3.20) and the well-balanced property about the modified TVD-RK methods
is the same.

Proposition 3.2 The semi-discrete ALE-DGschemes (3.12) and (3.15) coupledwith theEuler
forward scheme (3.20) maintain the still water equilibrium (3.2) exactly.

The main idea of the proof for Proposition 3.2 in one dimension is shown in “Appendix A.3”.
The proof in two dimensions is similar and we omit the details for simplicity.

Remark 3.3 Spurious oscillations can occur in numerical solutions of ALE-DG methods
when the solution contains discontinuities, so a slope limiter is needed after each time stage
of TVD-RK methods. We use the total variation bounded (TVB) limiter presented in [40].
Such limiter on static mesh still works well on moving meshes for ALE-DG methods. Since
we have changed the variables of the shallow water equations from u to v and v equals
constants for still water equilibrium, so the TVB limiter won’t destroy the well-balanced
property.

3.5 The Approximation of the BottomTopography andMass Conservation

We haven’t discussed the choice of the bottom topography b in our proposed schemes.
Actually, different approximations of the bottom topography won’t affect the well-balanced
property but may affect the mass conservation or the positivity-preserving property. We dis-
cuss how to choose the approximations of the bottom topography and the mass conservation
property in this subsection and the positivity-preserving property will be introduced in the
next subsection.

There are some different choices for the approximations of the bottom topography and in
[1] has some discussion about it. Two main choices are:

1. b ∈ Vh(t) is the L2 projection of the exact bottom topography.
2. Use the ALE-DG method to remap b on moving meshes, which means that according to

equation bt = 0, find b ∈ Vh(t), for any δ ∈ Vh(t),

d

dt

∫

K j (t)

bδ dx = −
∫

K j (t)

ωb · ∇δ dx +
∫

∂K j (t)

ω̂bδint ds, (3.21)

where ω̂b is the numerical flux based on our numerical schemes. In this work, based on
the Lax-Friedrichs flux, we set

ω̂b = (ω(bint + bext ) · n + α(bext − bint ))/2, (3.22)

where we take the same α in (3.5). We note that (3.21) is semi-discrete scheme, and we
choose the same time discretization as v, i.e. the modified TVD-RK methods in [19].

The first approach is shown in [1] and is thought to be more accurate than the second
approach for bottom topography in poor condition. But the first approach don’t have the
exactly mass conservation, which means that an accuracy enough integration quadrature
must be adopted in computations and don’t have the weak positivity property, which is
essential for the robustness of schemes and will be introduced in the next subsection.

We claim that our proposed well-balanced ALE-DG schemes have mass conservation
coupled with the numerical bottom. First, we claim that the numerical flux of η is single-
valued.This is obvious true for the scheme (3.15) and also true for the scheme (3.12) according
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to the discussion in (A.3), which means that the scheme (3.12) has single-valued numerical
flux for η. So we have that our proposed schemes conserve the surface level η = h+b. If our
schemes conserve the bottom topography b, we can conclude that our schemes have mass
conservation. This is obvious true for the scheme (3.21) of b with single-valued numerical
flux.

3.6 Positivity-Preserving Property and Limiter

A simple positivity-preserving limiter has been proposed and implemented for the shallow
water equations in [40] for the DG method. Such a limiter can keep the water height non-
negative under suitable time step size and preserve the local conservation and does not affect
the high-order accuracy. The basis of such limiter is a weak positivity property satisfied by
the cell average of the water height. In our work, we will show how to couple this limiter
with our proposed schemes in one dimension and the two-dimensional case is similar.

We begin with the quadrature rules. Let {x̂ (ν)
j }1≤ν≤L be the Gauss-Lobatto nodes in the

interval Kn
j , and {ω̂ν}1≤ν≤L be the associated quadrature weight satisfying

L∑

ν=1

ω̂ν = 1, ω̂1 = ω̂L = 1

L(L − 1)
, with L ≥ (k + 3)/2. (3.23)

We note that such quadrature rule is only used for the following proof and we denote the set
of quadrature points by

SKn
j

= {x̂ (ν)
j , ν = 1, . . . ..., L}. (3.24)

3.6.1 TheWeak Positivity Property for the Well-Balanced Schemes

We will show the weak positivity property of our schemes (3.12) and (3.15) combined with
the Euler forward time discretization (3.20) and the property for the high-order TVD-RK
methods are similar with it.

Theorem 3.4 If ∀x ∈ SKn
j
, ηnj (x) − bnj (x) > 0 holds, we have

η̄n+1
j > b̄n+1

j ,

for both two schemes (3.12) and (3.15) with the Euler forward discretization (3.20) under
the CFL-type condition

α̂0�t < �n
j , (3.25)

with

α̂0 = α

ω̂1
,

where α is the parameter adopted in the Lax-Friedrichs flux (3.5) and ω̂1 is the quadrature
weight in (3.23).

The proof of Theorem 3.4 is shown in “Appendix A.4”.
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3.6.2 The Positivity-Preserving Limiter

For this part, we mainly refer the results in [40]. Since our numerical methods satisfy the
weak positivity property in Theorem 3.4, we can apply a simple scaling limiter to make the
values of height at points x ∈ SKn

j
positive. We assume h̄nj > 0, then the scaling limiter is

given by

h̃nj (x) = �(hnj − h̄nj ) + h̄nj , � = min

⎛

⎝1,
h̄nj − ε

h̄nj − minx∈SKn
j
hnj (x)

⎞

⎠ .

where ε is sufficiently small positive numbers to avoid the effect of the round-off error, for
example ε = min(10−11, h̄nj ). Now we get h̃nj (x) > 0 for x ∈ SKn

j
.

We note that, to preserve the still water equilibrium, we do not change the surface level
η. We use the idea in [42] and update the bottom bnj (x) by

b̃nj (x) = ηnj (x) − h̃nj (x). (3.26)

Such an approach can preserve the still water equilibrium and keep the water height positive
at the same time.

4 TheWell-Balanced ALE-DGMethod for MovingWater Equilibrium

In this section, we will present the well-balanced ALE-DG scheme for the moving water
equilibrium. Since there is no general form of the moving water equilibrium states in two
dimensions, we only discuss about the one-dimensional case (1.1) in this paper. For the ease
of presentation, we denote the shallow water equations (1.1) as follows:

ut + f (u)x = s(u, b), (4.1)

where

f (u) =
(

hu
(hu)2

h + 1
2 gh

2

)

, (4.2)

s(u, b) =
(

0
−ghbx

)

. (4.3)

The numerical solution is still denoted by u with an abuse of notation. Since the mesh
grids are moving with time, it is difficult to preserve the moving water equilibrium. In [35],
a well-balanced DG scheme has been developed based on hydrostatic reconstruction. Such
approach can’t extend to ALE-DG methods directly. Standard TVD-RK time discretization
can’t preserve themoving water equilibrium and conserve themass at the same time. Inspired
by thework on thewell-balanced scheme forEuler equationswith explicitly given equilibrium
state in [24], we proposed a well-balanced ALE-DG scheme for moving water equilibrium.
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4.1 Preliminary Preparation

4.1.1 Relation Between Conservative and Equilibrium Variables

The variables u = (h, hu)T are called conservative variables and the equilibrium variables
v for moving water are defined as follows:

v = (E,m)T =
(
1

2
u2 + g(h + b), hu

)T

. (4.4)

For the still water case, the transformation between u and v is linear. But the transform
functions are nonlinear and complicated for the moving water case. It is necessary to find the
exactly transform functions between u and v.

• Given u and the bottom function b, the value of v can be computed directly. We denote
this transform function by v = V (u, b).

• Given v and the bottom function b, the value of u can not be computed directly. We
mainly follow the idea presented in [35] and present the main idea as follows.

If m = 0, the solution is trivial. Next, we assume that m �= 0. From (4.4), we have

E = m2

2h2
+ g(h + b). (4.5)

Thus we have

2gh3 − 2(E − gb)h2 + m2 = 0. (4.6)

This is a cubic polynomial of h with coefficients determined by v.
We use the Cardan formula to get three roots for the polynomial. If

E ≥ 3

2
(g|m|) 2

3 + gb,

we can claim that there are two real roots greater than zero and one real root less then zero.
By using this result, we can compute u exactly. We denote the two real roots greater than
zero by r1 and r2, and assume that r1 ≤ r2 without loss of generality.

We define the Froude number Fr and the sign function σ :

Fr := |u|/√gh, σ := sign(Fr − 1). (4.7)

Then we introduce the three different flow states

• sonic flow: σ = 0, h = r1 = r2;
• subsonic flow: σ < 0, h = r2;
• supersonic flow: σ > 0, h = r1.

Finally we get the following lemma.

Lemma 4.1 ( [35]) We assume that v and b are given suitably such that

E ≥ 3

2
(g|m|) 2

3 + gb.

If we also know the flow state (sonic, sub- or supersonic), then we can compute the unique
solution h exactly. We denote this transform function by h = H(u, b, σ ).

We denote the transform function u = U(v, b, σ ) = (H(v, b, σ ),m)T .
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4.1.2 Definition of Well-Balanced Property on Moving Meshes

Since the meshes are moving with time, the numerical solution must become different with
different meshes. So it’s hard to define the well-balanced property on moving meshes. We
assume that the desiredmovingwater equilibrium is explicitly given and is denoted by ud .We
note that such equilibrium states can be obtained according to Sect. 4.1.1 by giving (v, b, σ ).
Set ue as an approximation of ud , which is independent of the flux term and source term
of the shallow water equations. For example, the L2 projection of ud is a choice that meet
the conditions. We define the well-balanced property on moving meshes as: if the numerical
solution u equals ue for all time t ≥ 0, we call that the scheme can preserve the moving water
equilibrium. Such a definition is reasonable and in our numerical examples in Sect. 5, our
proposed scheme can capture the small perturbation to the moving water equilibrium well.
Like the still water equilibrium case, considering the mass conservation and the positivity-
preserving property, we define ue by using the ALE-DG scheme of (ud)t instead of L2

projection in our proposed scheme, which is introduced as follow:
For initialization, we define ue,0 = Pud ∈ �h(0). The way to update ue is by using the

ALE-DG scheme of uet = 0: Find ue ∈ �h(t), for any δ ∈ �h(t),

d

dt

∫

K j (t)

ue · δdx = ω̂ue j+ 1
2

· δ−
j+ 1

2
− ω̂ue j− 1

2
· δ+

j− 1
2

−
∫

K j (t)

ωue · δxdx, (4.8)

where ω̂ue is the numerical flux, which is given by

ω̂ue = ωud . (4.9)

We note that ω̂ue = 0 at the cell boundary when ud is discontinuous, since we assume that
the mesh grids must locate exactly at the discontinuity and won’t move i.e. ω = 0.

4.1.3 Hydrostatic Reconstruction

We will use the idea of hydrostatic reconstruction [35] to modify numerical fluxes. First, we
define ur by

ur = u − ue ∈ �h(t). (4.10)

We can think that u is divided into two parts, ue in (4.8) and ur . ue represents the equilibrium
part and ur denotes the residue part, which means that if uex is in equilibrium state, we have
u = ue and ur = 0.

Secondly we will modify the cell boundary value of u. There are two steps to get the
modified boundary value u∗,±

j+ 1
2
:

1. Compute the cell boundary value ur ,±
j+ 1

2
of ur .

2. Then the modifed boundary value are defined as follow:

u∗,±
j+ 1

2
=
(

max

(

0, hd,±
j+ 1

2
+ hr ,±

j+ 1
2

)

,md,±
j+ 1

2
+ mr ,±

j+ 1
2

)T

. (4.11)

We note that although the desired equilibrium states ud /∈ �h(t), it can be discontinuous at
the cell boundary due different σ or discontinuous bottom topography. So in the definition,
we distinguish its right and left limits as ud,±.
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4.1.4 Treatment for the Source Term

As in [35], we define the approximation of the source term
∫

K j (t)
s(u, b) · φdx by

s j = −
∫

K j (t)

f (ue) · φxdx + f (ue,−
j+ 1

2
) · φ−

j+ 1
2

− f (ue,+
j− 1

2
) · φ+

j− 1
2

+
∫

K j (t)

s(ur , b) · φdx,

(4.12)

where ue and ur is defined in (4.8) and (4.10); ue,±
j+ 1

2
are the boundary value of ue; φ is the

test function vector. It can be proved that s j has a high-order approximation (See [35] for
details).

4.2 Semi-discrete ALE-DG Scheme

The semi-discrete scheme is the following: Find u ∈ �h(t), for any φ ∈ �h(t),

d

dt

∫

K j (t)

u · φdx = Lm
j (ω, u,φ, t) (4.13)

with

Lm
j (ω, u,φ, t) =

∫

K j (t)

g(ω, u) · φxdx − ĝl
j+ 1

2
· φ−

j+ 1
2

+ ĝr
j− 1

2
· φ+

j− 1
2

+ s j ,

where

• g(ω, u) = f (u) − ωu;
• ĝl and ĝr are defined as

ĝl
j+ 1

2
= ĝ(ω j+ 1

2
, u∗,−

j+ 1
2
, u∗,+

j+ 1
2
) + f (u−

j+ 1
2
) − f (u∗,−

j+ 1
2
), (4.14)

ĝr
j− 1

2
= ĝ(ω j− 1

2
, u∗,−

j− 1
2
, u∗,+

j− 1
2
) + f (u+

j− 1
2
) − f (u∗,+

j− 1
2
); (4.15)

• u∗,±
j+ 1

2
are given by (4.11);

• ĝ(ω, u∗,−, u∗,+) is a monotone numerical flux of g(ω, u∗). We use the Lax-Friedrichs
flux, which is defined as follow:

ĝ(ω, ul , ur ) =1

2

(
g(ω, ul) + g(ω, ur ) − α(ur − ul)

)
, (4.16)

α = max
u∈{ul ,ur }

(|u − ω| +√gh), (4.17)

if ud is continuous at the cell boundary and we use the Roe’s flux in the scheme, which
is defined as follow:

ĝ(ω, ul , ur ) = 1

2

(
g(ω, ul) + g(ω, ur ) − Aω(ur − ul)

)
,

Aω = R

(|q̂ − ĉ| 0
0 |q̂ + ĉ|

)

R−1, R =
(

1 1
q̂ − ĉ q̂ + ĉ

)

,

ĉ =
√

gĥ, ĥ = 1

2

(
hl + hr

)
, q̂ = ul

√
hl + ur

√
hr√

hl + √
hr

− ω,
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if ud has a stationary shock at the cell boundary.
• s j is defined in (4.12).

Next, similar to the case of the still water equilibrium, we will show the property of the
semi-discrete ALE-DG scheme (4.13) is in Lemma 4.2 and its proof in “Appendix B.1”.

Lemma 4.2 If the numerical solution u = ue where ue is defined in (4.8) and the stationary
shocks of ud are all located at the cell boundaries, the semi-discrete ALE-DG scheme (4.13)
satisfies

Lm
j (ω, u,φ, t) = ω j+ 1

2
ud,−
j+ 1

2
· φ−

j+ 1
2

− ω j− 1
2
ud,+
j− 1

2
· φ+

j− 1
2

−
∫

K j (t)

ωue · φxdx . (4.18)

4.3 Fully-Discrete ALE-DG Scheme andWell-Balanced Property

For the time discretization, we adopt the same TVD-RK method (3.9)–(3.11) for the semi-
discrete scheme (4.13) of u and semi-discrete scheme (4.8) of ue to keep the well-balanced
property.

Remark 4.3 We claim that our ALE-DG scheme (4.13) coupled with TVD-RK time dis-
cretization conserves the mass. Since me always equals constant, we m∗,−

j+ 1
2

= m∗,+
j+ 1

2
. This

leads to the numerical flux of h is single-valued. Then we can say our claim holds true.

Since TVD-RK time discretizations are convex combinations of the Euler forward
operators, it’s enough to use the fully-discrete ALE-DG scheme with the Euler forward
discretization for the proofs in the following two subsections:

∫

Kn+1
j

un+1 · φn+1dx =
∫

Kn
j

un · φndx + �tLm
j (ωn, un,φn, tn), (4.19)

combined with
∫

Kn+1
j

ue,n+1 · δn+1dx

=
∫

Kn
j

ue,n · δndx + �t

⎛

⎜
⎜
⎝ω̂ue

n
j+ 1

2
· δ

n,−
j+ 1

2
− ω̂ue

n
j− 1

2
· δ

n,+
j− 1

2
−
∫

Kn
j

ωnue,n · δnxdx

⎞

⎟
⎟
⎠ .

(4.20)

Proposition 4.4 The scheme described in (4.19) maintain the moving water equilibrium
exactly, which means that

u = ue, ur = 0, (4.21)

hold exactly.

The proof of Proposition 4.4 is shown in “Appendix B.2”.
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Remark 4.5 We also want to apply the TVB limiter to the numerical solution after each time
stage of TVD-RKmethods.Different from thewell-balanced scheme for still water equations,
the TVB limiter may destroy the moving water equilibrium. We use the strategy in [35] on
static mesh, which is the same for moving meshes. We divide the TVB limiter into two parts:
First, we check if the TVB limiter is needed based on u− ue; Second, we apply TVB limiter
to the ’trouble’ cells found in the first step.

4.4 Positivity Property of theWell-Balanced Scheme for theMovingWater
Equilibrium

We want to adopt the same positivity-preserving limiter in [40] to ensure the robustness of
our proposed scheme. As shown in [35,40], the positivity-preserving limiter is based on the
weak positivity property of the cell average of water height h. In the following, we will
show the weak positivity property of our proposed scheme coupled with Euler forward time
discretization (4.19).We can obtain the equation for the cell average of h in the scheme (4.19)
as follows

�n+1
j

�n
j
h̄n+1
j = h̄nj − λ

(

ĝl,[1]
j+ 1

2
− ĝr ,[1]

j− 1
2

)

, (4.22)

where ĝl/r ,[1] denote thefirst component of ĝl/r andλ = �t
�n

j
. Thenwe introduce the following

weak positivity property with Lax-Friedrichs numerical flux (4.16) in (4.22) and its proof is
shown in “Appendix B.3”.

Theorem 4.6 If ∀x ∈ SKn
j
, hnj (x) > 0 holds, for h̄n+1

j calculated from (4.22), we have

h̄n+1
j > 0, (4.23)

for the scheme (4.19) under CFL-type condition

α̂0�t < �n
j , (4.24)

with

α̂0 = α

ω̂1
max

x∈{x+
j− 1

2
,x−

j+ 1
2
}
h∗
j (x)

hnj (x)
, (4.25)

where h∗,±
j+ 1

2
is defined in (4.11).

Now, we can apply the positivity-preserving limiter introduced in Sect. 3.6.2 for both u
and ue at each TVD-RK stage to keep the water height positive as before. Note that this
positivity-preserving limiter preserves the local conservation and does not destroy the high
order accuracy.

Moreover, we note that our proposed scheme can keep the water height h positive and
preserve the moving water equilibrium at the same time. When the desired equilibrium ud

involve low water height or dry area, the limiter may change the numerical solution un, ue,n ,
but we still have un = ue,n and ur ,n = 0 since we applied the same limiter to un, ue,n . So
we still can use Lemma 4.2 and Proposition 4.4 to get un+1 = ue,n+1 since the assumption
of un = ue,n still holds true.
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4.5 Algorithm

In summary, we will implement our scheme by following steps.

1. Initialization at time t = 0 to get u0 and ue,0 = Pud .
2. We apply the same TVD-RK methods (3.9)–(3.11) for both u and ue.
3. For each time stage in TVD-RK methods, we apply the positivity-preserving limiter � in

Sect. 3.6.2 to both u and ue; We apply the TVB limiter in [35] to u.
4. We compute Lm

j in (4.13) for u and (4.8) for ue to finish the spatial discretization.
5. Repeat the steps 2-4 to continue numerical simulations.

5 Numerical Examples

In this section we provide numerical results.We first give some basic settings. The gravitation
constant g is taken as 9.812m/s2. In the following numerical examples, to verify the well-
balanced property and the positivity-preserving property of the ALE-DG schemes onmoving
mesh, the grid movement is prescribed explicitly and is not derived from the computed
solution. We adopt the moving grid

x j+ 1
2
(t) = x j+ 1

2
(0) + 1

3(xr − xl)2
sin

(
2π t

tend

)(
x j+ 1

2
(0) − xr

) (
x j+ 1

2
(0) − xl

)
, (5.1)

where xl and xr are the endpoints of the computational domain in most 1D examples and

x j (t) = x j (0) + 0.03 sin

(
2πx j (0)

xr − xl

)

sin

(
2π y j (0)

yr − yl

)

sin

(
2π t

tend

)

,

y j (t) = y j (0) + 0.02 sin

(
2πx j (0)

xr − xl

)

sin

(
2π y j (0)

yr − yl

)

sin

(
4π t

tend

)

,

(5.2)

where tend is the stop time and xr , xl , yr , yl are the vertexes of the rectangle domain in most
2D examples and P2 piecewise polynomials in most numerical examples, unless otherwise
stated. The CFL number is set as 0.15 for 1D examples according to [35,40] and 0.1 for 2D
examples according to [43].

In Sects. 5.1–5.3, numerical examples are shown to demonstrate the properties of the
numerical schemes for the still water equilibrium in 1D and 2D, themovingwater equilibrium
in 1D respectively. Examples 5.1, 5.6 and 5.10 are well-balanced tests. Examples 5.3, 5.8
and 5.11 are small perturbation tests. Examples 5.2, 5.7 and 5.9 are accuracy tests. Examples
5.4 and 5.12 are positivity-preserving tests.

5.1 StillWater Equilibrium in 1D

Example 5.1 Test for the well-balanced property

The purpose of this example is to verify that our schemes indeed maintain the well-balanced
property on moving grid with smooth or discontinuous bottom. We choose two different
functions for the bottom topography for 0 ≤ x ≤ 1.

• Smooth bottom

b(x) = 5e−40(x−0.5)2 . (5.3)
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Table 1 (Example 5.1) The hydrostatic reconstruction scheme and the special source term scheme, L1 and
L∞ errors for different precision with the smooth bottom (5.3)

Precision Hydrostatic reconstruction Special source term

L1 error L∞ error L1 error L∞ error

η hu η hu η hu η hu

Double 1.42E–11 1.11E–12 1.46E–11 4.76E–12 1.46E–11 1.21E–12 1.50E–11 6.26E–12

Quadruple 1.37E–29 8.28E–31 1.41E–29 2.91E–30 1.37E–29 9.58E–31 1.41E–29 3.74E–30

Table 2 (Example 5.1) The hydrostatic reconstruction scheme and the special source term scheme, L1 and
L∞ errors for different precision with the discontinuous bottom (5.4)

Precision Hydrostatic reconstruction Special source term

L1 error L∞ error L1 error L∞ error

η hu η hu η hu η hu

Double 1.42E–11 1.12E–12 1.45E–11 3.89E–12 1.47E–11 1.32E–12 1.50E–11 5.53E–12

Quadruple 1.37E–29 7.80E–31 1.40E–29 2.74E–30 1.37E–29 1.04E–30 1.40E–29 4.14E–30

• Discontinuous bottom

b(x) =
{
4, if 0.4 ≤ x ≤ 0.8,

0, otherwise.
(5.4)

The initial data is

h + b = 10, hu = 0.

We set stop time tend = 0.5 and use N = 200 uniform cells at the beginning. We show the
L1 and L∞ errors for two cases at different precision. We use the schemes hydrostatic recon-
struction (3.12) and special source term (3.15). Table 1 shows the results of two schemes with
the smooth bottom (5.3) and Table 2 shows the results of two schemes with the discontinuous
bottom (5.4). We can see all results can reach the round-off error, which means the schemes
are well-balanced.

Example 5.2 Accuracy test with moving boundary

In this example, we will show that our ALE-DG schemes can achieve high order accuracy
for the problem with moving boundary. We choose the following bottom function and initial
conditions

b(x) = sin2(πx), h(x, 0) = 5 + ecos(2πx), (hu)(x, 0) = sin(cos(2πx)), x ∈ [0, 1],
with periodic boundary conditions. Since the exact solution is not known explicitly, we use
the fifth order finite volume WENO scheme with N = 12800 cells to compute a reference
solution, and treat this reference solution as the exact solution in computing the numerical
errors. We set stop time tend = 0.1 and the solution is still smooth. A moving computational
domain at each time step is used and the grid velocity is set as follows

ω j+ 1
2
(t) = 1 + sin

(
2π t

tend

)(
x j+ 1

2
(0) − x1

) (
x j+ 1

2
(0) − x0

)
.
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Fig. 1 Example 5.2. The meshes
with 25 cells at different time t
for the moving domain problem.
The boundaries move with speed
ω = 1
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Table 3 (Example 5.2) The hydrostatic reconstruction scheme and the special source term scheme, L1 error
table for the moving boundary problem

N Hydrostatic reconstruction Special source term

η hu η hu

L1 error Order L1 error Order L1 error Order L1 error Order

25 9.71E–04 – 7.42E–03 – 9.71E–04 – 7.42E–03 –

50 9.16E–05 3.41 6.63E–04 3.48 9.16E–05 3.41 6.63E–04 3.48

100 9.41E–06 3.28 5.94E–05 3.48 9.41E–06 3.28 5.94E–05 3.48

200 1.19E–06 2.98 7.46E–06 2.99 1.19E–06 2.98 7.46E–06 2.99

400 1.53E–07 2.97 9.49E–07 2.97 1.53E–07 2.97 9.49E–07 2.97

800 1.94E–08 2.98 1.19E–07 2.99 1.94E–08 2.98 1.19E–07 2.99

The initial mesh is set as uniform mesh. So the mesh at every time step tk can be defined as

x j+ 1
2
(tk) = x j+ 1

2
(tk−1) + (tk − tk−1)ω j+ 1

2
(tk−1),

which is consist with the definition of the grid velocity. The meshes with 25 cells for different
time are shown in Fig. 1 for example, where the boundaries move with the speed ω = 1.
Since this moving boundary problem is periodic, the boundary movement is easy to be
implemented in the current algorithm framework. The L1 errors are shown in Table 3 for
both two schemes, hydrostatic reconstruction (3.12) and special source term (3.15). Figure
2 shows the numerical solutions with 200 cells compared with reference solution. We can
see that our schemes can calculate the problem correctly in high-order accurate with moving
boundaries.

Example 5.3 A small perturbation test

We will test the situation when a small perturbation added into the still water equilibrium.We
first show that our ALE-DG methods can capture the perturbation correctly when involving
moving meshes (5.1). Then we will adopt a specific adaptive mesh to show the efficiency of
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Fig. 2 (Example 5.2) The numerical solution of surface level η and discharge hu with 200 cells compared
with reference solution for the moving domain problem
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Fig. 3 (Example 5.3) The numerical solution of surface level η compared with initial data and bottom topog-
raphy with ε = 0.001. Right is the zoom in of the left figure for η ∈ [0.997, 1.003]

the ALE-DG methods. The initial conditions are

(hu)(x, 0) = 0, h(x, 0) =
{
1 − b(x) + ε, if 1.1 ≤ x ≤ 1.2,

1 − b(x), otherwise,
(5.5)

where ε is the perturbation constant, with the bottom topography

b(x) =
{
0.25(cos(10π(x − 1.5)) + 1), if 1.4 ≤ x ≤ 1.6,

0, otherwise.
(5.6)

In this example, we consider a quiet small perturbation ε = 0.001 and set the stop time
as tend = 0.2. The transmissive boundary conditions are used in our numerical tests. For
the exact solution, the perturbation will propagate to the left and right at the characteristic
speeds ±√

gh. The reference solutions computed by the hydrostatic reconstruction scheme
with N = 3000 cells are plotted in Fig. 3, together with the initial surface level and bottom
topography. In Fig. 4, we plot the numerical results by two ALE-DG schemes (3.12) and
(3.15) on the coarse mesh with N = 200. It shows that both ALE-DG schemes can capture
the small perturbation near the equilibrium on the relative coarse meshes.

Thenwe adopt a specialmoving grid to compare theALE-DGmethodwith theDGmethod
on the uniform static grid. We use the hydrostatic reconstruction scheme (3.12) in this test.
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Fig. 4 (Example 5.3). ε = 0.001 and N = 200. Left: the surface level η; right: the discharge hu

With N = 200 cells, the moving grid is defined as follows. The initial grid is

x j+ 1
2
(0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j

59
, if 0 ≤ j ≤ 59,

1 + 0.003( j − 59), if 60 ≤ j ≤ 159,

1.3 + 7( j − 159)

410
, if 160 ≤ j ≤ 200,

(5.7)

and the final grid at the stop time tend = 0.2 is

x j+ 1
2
(0.2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

11

650
j, if 0 ≤ j ≤ 26,

0.44 + 0.003( j − 26), if 27 ≤ j ≤ 76,

0.59 + 0.016875( j − 76), if 77 ≤ j ≤ 140,

1.67 + 0.003( j − 140), if 141 ≤ j ≤ 190,

1.82 + 0.018( j − 190), if 191 ≤ j ≤ 200.

(5.8)

Then we define straight lines connecting two meshes and have

ω j+ 1
2

= 5(x j+ 1
2
(0.2) − x j+ 1

2
(0)), (5.9)

and for 0 < t < 0.2

x j+ 1
2
(t) = x j+ 1

2
(0) + ω j+ 1

2
t . (5.10)

The moving grid is plotted in Fig. 5. The numerical solutions are shown in Fig. 6. The
reference solution is computed by the hydrostatic DG scheme (i.e. the grid velocity ω ≡ 0
in the ALE-DG scheme (3.12)) on the uniform grid with N = 3000 cells. We can see that
the ALE-DG solution has better resolution than the DG solution. Additionally, we compute
the CPU time in this test. For the solution on moving mesh with 200 cells, the CPU time is
45.28s, which is comparable to the CPU time 41.95s on static mesh with 200 cells. It is also
found that with suitable moving mesh, the ALE-DG solution has less numerical dissipation
than DG solutions on static mesh and the size of the small perturbation is almost the same
as the reference solution.
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Fig. 5 (Example 5.3) The meshes at different time t
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Fig. 6 (Example 5.3) The comparison with ALE-DG method and DG method for a small perturbation ε =
0.001 of the still water equilibrium. We use the hydrostatic reconstruction scheme. Left: the surface level η;
right: the discharge hu

Example 5.4 Parabolic bowl

This example is used to demonstrate the positivity-preserving ability of our methods. The
parabolic bottom is given by

b(x) = h0(x/a)2, (5.11)
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Table 4 (Example 5.4) The minimum of the water height h at time t = 1000, 2000, 3000, 4000, 5000, 6000
for two schemes

Time t 1000 2000 3000 4000 5000 6000

Hydrostatic reconstruction 1.21E–11 1.23E–11 1.22E–11 1.17E–11 1.20E–11 1.25E–11

Special source term 1.27E–11 1.12E–11 1.21E–11 1.23E–11 1.22E–11 1.20E–11

with h0 = 10 and a = 3000. The computational domain is set as [−5000, 5000]. The
analytical water surface level is given in [40]

η(x, t) = h0 − B2

4g
cos(2κt) − B2

4g
− Bx

2a

√
8h0
g

cos(κt), (5.12)

where κ = √
2gh0/a and B = 5. The exact location of wet/dry front takes the form

x0 = − Bκa2

2gh0
cos(κt) ± a. (5.13)

We use the exact solution for the initial data and the boundary conditions. The CFL number
is set as 0.15, which is little smaller than ω̂1 = 1

6 and the stop time is set as tend = 6000
with 200 cells. In practical computation, in order to avoid the influence of round-off error,
we set the minimum of h equals 10−11 in condition data. The sufficiently small number ε in
positivity-preserving limiter is set as 10−11 too. The numerical solutions and the analytical
solutions of the surface level are shown in Fig. 7. Theminimumof thewater height is shown in
Table 4 and it certainly keeps the minimum of the water height. We can see that the numerical
solution agree with the analytical solutions very well.

Example 5.5 The dam breaking problem over a rectangular bump

The purpose of this example is to show the capacity of the well-balanced schemes for the
situations away from the steady states. The bottom function is

b(x) =
{
8, if 4500

8 ≤ x ≤ 7500
8 ,

0, otherwise,
(5.14)

for x ∈ [0, 1500]. The initial conditions are:

(hu)(x, 0) = 0, h(x, 0) =
{
20 − b(x), if x ≤ 750,

15 − b(x), otherwise.

We test two cases: tend = 15 and tend = 60 and set N = 400. The reference solution is
computed by the hydrostatic reconstruction scheme (3.12) on the uniformgridwith N = 4000
cells. We plot the figure of surface level η in Figs. 8 and 9 with two schemes (3.12) and (3.15)
respectively. It shows that our well-balanced methods still perform well when the solution is
far away from the steady states.

5.2 StillWater Equilibrium in 2D

Example 5.6 Test for the well-balanced property
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Fig. 7 (Example 5.4) The numerical surface level η using 200 cells compared with analytical solution and
bottom b at different time. From top left to bottom right: t = 1000, 2000, 3000, 4000, 5000, 6000

This example is used to verify that our schemes indeed maintain the still water equilibrium
for 2D shallow water equations. The two-dimensional bottom is given by

b(x, y) = 0.8e−50((x−0.5)2+(y−0.5)2), x, y ∈ [0, 1] (5.15)

The initial data is h(x, y, 0) = 1 − b(x, y) and hu(x, y, 0) = 0, hv(x, y, 0) = 0. A static
uniform criss-triangular mesh with 800 triangles is used at the beginning. We set stop time
tend = 0.1 and use double and quadruple precision separately. Tables 5 and 6 contain the L1

errors for h and hu and hv. We can clearly see that the L1 errors are at the level of round-off
errors for different precision.
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Fig. 8 (Example 5.5) The surface level η at time t = 15. Left: the numerical solution using hydrostatic
reconstruction with N = 400, together with the initial condition and the bottom; right: the comparison
between the numerical solution of two schemes and the reference solution
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Fig. 9 (Example 5.5) The surface level η at time t = 60. Left: the numerical solution using hydrostatic
reconstruction with N = 400, together with the initial condition and the bottom; right: the comparison
between the numerical solution of two schemes and the reference solution

Table 5 (Example 5.6) Hydrostatic reconstruction, L1 errors for different precision of the surface level η and
the discharges hu and hv

Precision L1 error L∞ error

η hu hv η hu hv

Double 3.87E–14 1.27E–13 7.14E–14 5.67E–12 1.94E–11 9.04E–12

Quadruple 7.23E–32 2.14E–31 1.38E–31 8.21E–30 3.19E–29 1.33E–29

Table 6 (Example 5.6) Special source term, L1 errors for different precision of the surface level η and the
discharges hu and hv

Precision L1 error L∞ error

η hu hv η hu hv

Double 7.60E–14 2.17E–13 1.47E–13 9.30E–12 3.16E–11 1.75E–11

Quadruple 7.65E–32 2.26E–31 1.46E–31 8.21E–30 3.25E–29 1.42E–29
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Table 7 (Example 5.7) L1 errors and numerical orders of accuracy for hydrostatic reconstruction

N η hu hv

L1 error Order L1 error Order L1 error Order

200 8.26E–03 – 4.16E–02 – 8.18E–02 –

800 9.79E–04 3.08 5.72E–03 2.86 1.02E–02 3.00

3200 8.12E–05 3.59 7.48E–04 2.94 1.06E–03 3.27

12800 7.97E–06 3.35 9.82E–05 2.93 1.21E–04 3.13

51200 9.14E–07 3.12 1.33E–05 2.88 1.52E–05 3.00

Table 8 (Example 5.7) L1 errors and numerical orders of accuracy for special source term

N η hu hv

L1 error Order L1 error Order L1 error Order

200 8.38E–03 – 5.06E–02 – 8.78E–02 –

800 1.01E–03 3.05 7.50E–03 2.76 1.11E–02 2.98

3200 7.53E–05 3.75 9.74E–04 2.94 1.07E–03 3.37

12800 6.86E–06 3.46 1.44E–04 2.76 1.20E–04 3.16

51200 7.78E–07 3.14 2.15E–05 2.74 1.59E–05 2.92

Example 5.7 Accuracy test in 2D

In this examplewewill show that our schemes have high order accuracy for a smooth solution.
The bottom function and the initial data are given by:

b(x, y) = sin(2πx) + cos(2π y), h(x, y, 0) = 10 + esin(2πx) cos(2π y),

(hu)(x, y, 0) = sin(cos(2πx)) sin(2π y), (hv)(x, y, 0) = cos(2πx) cos(sin(2π y)),

where (x, y) ∈ [0, 1]×[0, 1]with periodic boundary conditions.We set stop time tend = 0.05
when the solution is still smooth. We use the same fifth order WENO scheme with an
extremely refined mesh consisting of 1600×1600 rectangle cells to compute a reference
solution, according to [39]. Tables 7 and 8 contain the L1 errors and orders. We see that
ALE-DG schemes can achieve the optimal convergence rate.

Additionally, we compare the CPU time of our scheme (3.12) on the moving mesh defined
in (5.2) and the static mesh in this example. We use 3200 triangle cells and the efficiency is
comparable: the CPU time is 181.60s on the moving mesh and 178.75s on the static mesh.

Example 5.8 A small perturbation test

In this example, we will test the ability of our schemes to capture the small perturbation of
the still water equilibrium in 2D. This is a classical example to show the capability of the
well-balanced scheme for the perturbation of the equilibrium state, which was used in [25].

The initial data and the bottom function are given by:

h(x, y, 0) =
{
1 − b(x, y) + 0.01, if 0.05 ≤ x ≤ 0.15,

1 − b(x, y), otherwise,
(5.16)

hu(x, y, 0) = hv(x, y, 0) = 0, (5.17)

123



Journal of Scientific Computing (2021) 88 :57 Page 29 of 43 57

Table 9 (Example 5.9) L1 errors
and numerical orders of accuracy
of the ALE-DG solutions with
piecewise P2 polynomial basis

N h hu

L1 error Order L1 error Order

25 8.43E–04 – 7.12E–03 –

50 9.95E–05 3.08 8.35E–04 3.09

100 9.89E–06 3.33 8.02E–05 3.38

200 1.14E–06 3.12 9.09E–06 3.14

400 1.41E–07 3.01 1.13E–06 3.00

800 1.78E–08 2.99 1.42E–07 3.00

b(x, y) = 0.5e−5(x−0.9)2−50(y−0.5)2 . (5.18)

where (x, y) ∈ [0, 2] × [0, 1] and the bottom is an isolated elliptical shaped hump. We
show the numerical solution of surface level h + b with 2 × 160 × 80 criss-triangle cells at
different times. Note that the wave speed is slower above the hump than elsewhere, leading to
a distortion of the initially planar disturbance. In addition, different from the one-dimensional
perturbation tests, the left-going pulse has already cleanly left the domain at the first time
shown, due to the outflow boundary conditions. We can see that ALE-DG schemes can
capture the small perturbation correctly (Fig. 10).

5.3 MovingWater Equilibrium in 1D

Example 5.9 Test for the accuracy

In this example we will test the high order accuracy of our schemes for a smooth solution.
We have the following bottom function and initial conditions

b(x) = sin2(πx), h(x, 0) = 5 + ecos(2πx), (hu)(x, 0) = sin(cos(2πx)), x ∈ [0, 1]
with periodic boundary conditions. The exact solution is not known explicitly and we use
the fifth order finite volume WENO scheme with N = 12800 cells to compute a reference
solution [35] in computing the numerical errors. We compute up to tend = 0.1 when the
solution is still smooth. Table 9 shows the L1 errors and numerical orders for u. It is found
that ALE-DG scheme has the third order accuracy for piecewise P2 polynomial basis.

Example 5.10 Test for the well-balanced property

The purpose is to verify that our schemes maintain the well-balanced property. We choose
three different moving water equilibrium which are classical cases and have been widely
used. The bottom function is given by:

b(x) =
{
0.2 − 0.05(x − 10)2, if 8 ≤ x ≤ 12,

0, otherwise,
(5.19)

for a channel of length 25meters. Three cases, subcritical or transcritical flowwith or without
a steady shock are in exactly equilibrium for the initial condition, which means E and m are
constants:

(a) Subcritical flow: The initial condition is E = 22.06605 and m = 4.42. The boundary
condition is m = 4.42 at x = 0 and h = 2 at x = 25.
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Fig. 10 (Example 5.8) Left: hydrostatic reconstruction; Right: special source term treatment. The contours of
the surface level h + b for Example 5.8 using a mesh of 25600 triangles. 30 uniformly spaced contour lines.
From top to bottom: at time t = 0.12 from 0.99942 to 1.00656; at time t = 0.24 from 0.99318 to 1.01659; at
time t = 0.36 from 0.98814 to 1.01161; at time t = 0.48 from 0.99023 to 1.00508; and at time t = 0.6 from
0.99514 to 1.00555

(b) Transcritical flow without a shock: The initial condition is E = 11.08071 andm = 1.53.
The boundary condition is m = 1.53 at x = 0 and h = 0.66 at x = 25 when the flow is
subsonic.
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Table 10 (Example 5.10) L1 errors and L∞ errors of the water height h and the discharge hu for moving
water equilibrium

Test L∞ error L1 error

h hu h hu

(a) Double 2.34E–13 1.43E–12 4.86E–14 1.96E–13

Quadruple 2.01E–31 1.32E–30 3.95E–32 1.66E–31

(b) Double 1.51E–13 3.29E–13 5.75E–15 1.75E–14

Quadruple 8.98E–32 3.36E–31 4.55E–33 1.52E–32

(c) Double 5.82E–14 1.36E–13 2.99E–15 7.48E–15

Quadruple 5.82E–32 1.84E–31 2.74E–33 7.03E–33

(c) Transcritical flowwith a shock. The initial condition is E = 4.15408when x < 11.66550
and E = 3.38672 when x > 11.66550 and m = 0.18. The boundary condition is
m = 0.18 at x = 0 and h = 0.33 at x = 25.

Here we choose mesh to make sure that x = 8, 12 and x = 11.66550 if there is a shock are
located at the cell boundary. For the first two cases, we choose uniformmesh at the beginning
and

x j+ 1
2
(t) =x j+ 1

2
(0) + 1

3(x1 − x0)4
sin

(
t

tend

)

(x j+ 1
2
(0) − 25)

(
x j+ 1

2
(0) − 8

) (
x j+ 1

2
(0) − 12

)
x j+ 1

2
(0).

(5.20)

For the third case, since the equilibrium states on both sides of the shock are not the same, we
recover two different equilibrium states and set the one of mesh grids exactly on the shock
x = 11.66550 and assume this mesh grid unchanged over time. So we choose uniform mesh
and shift the point near the shock to x = 11.66550 at the beginning and

x j+ 1
2
(t) =x j+ 1

2
(0) + 1

3(x1 − x0)5
sin

(
t

tend

)

(x j+ 1
2
(0) − 25)

(
x j+ 1

2
(0) − 8

) (
x j+ 1

2
(0) − 11.66550

) (
x j+ 1

2
(0) − 12

)
x j+ 1

2
(0).

(5.21)

We compute their solutions until tend = 5 using N = 200 points. we show the L1 and L∞
errors for the water height h and the discharge hu in Table 10 with two different precision,
where we can clearly see that the L1 and L∞ errors are at the level of round-off errors.

Example 5.11 A small perturbation test

In this example, we continue to test the three cases in Example 5.10 to demonstrate that
our scheme can capture the small perturbation of moving water equilibrium correctly. Our
initial conditions are almost the same as Example 5.10 that we additionally impose a small
perturbation of size 0.05 on the h in the interval [5.75, 6.25]. We use transmissive boundary
conditions. We take N = 200 cells and use the same meshes in Example 5.10. The stopping
time tend = 1.5 for the first two cases, tend = 3 for the third case. We show the numerical
results in Figs. 11, 12 and 13 and can clearly see that the propagated small perturbation is
captured correctly for the both three cases.

Example 5.12 Riemann problem over a flat bottom
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Fig. 11 (Example 5.11) Small perturbation of the subcritical flow (a) with 200 cells
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Fig. 12 (Example 5.11) Small perturbation of the transcritical flow without a shock (b) with 200 cells

In this example, we want to demonstrate that our ALE-DG well-balanced methods for
moving water equilibrium have the positivity-preserving property. We consider Riemann
problem containing dry area over a flat bottom, which means b(x) ≡ 0. This example was
used in [40]. The initial conditions are given by

hu(x) = 0, h(x) =
{
10 if x ≤ 0,

0 otherwise.
(5.22)

We set the computational domain as [-300,300] with transmissive boundary conditions and
200 uniform cells. The analytical solutions can be found in [5]. In practical computation,
in order to avoid the influence of round-off error, we set the minimum of h equals 10−11

in condition data. The sufficiently small number ε in positivity-preserving limiter is set as
10−11 too.We plot the numerical solution of the water height h at time t = 4, 8, 12 compared
with the analytical solutions in Fig. 14. We can see our scheme keeps the height positive and
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Fig. 13 (Example 5.11) Small perturbation of the transcritical flow with a shock (c) with 200 cells
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Fig. 14 (Example 5.12) The numerical solution of water height h compared with exact solutions for the
Riemann problem. Left: water height h; Right: the zoom in of the left figure for x ∈ [0, 250], where water
height h is near 0

Table 11 (Example 5.12) The
minimum of the water height h at
time t = 4, 8, 12

Time t 4 8 12

Minimum of h 1.00E–11 1.00E–11 1.00E–11

captures the exact solution well. The minimum of the water height is shown in Table 11 and
it certainly keeps the minimum of the water height positive.

6 Conclusion

In this paper we developed the well-balanced ALE-DG methods for both still and moving
water equilibria of the shallowwater equations. For the ALE-DGmethods, the well-balanced
property is based on the GCL and corresponding modification of time discretization, besides
the techniques of DG methods on static grids. For the still water equilibrium, the well-
balanced ALE-DG method can be extended to the two-dimensional case. And the well-
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balanced scheme for the moving water equilibrium is only for the one-dimensional case,
since there is no general form of moving water equilibrium in two dimensions. Numerical
examples have been given to show the well-balanced property, positivity-preserving property
and high order accuracy. In this work, we mainly focus on the scheme design on the moving
mesh. The grid movement in all the numerical examples is prescribed and is not derived from
the computed solution. The performance of these schemes in applications is also dependent
on the mesh optimization for the specific problem and its bottom topography due to the
“time-dependent" approximation of the bottom. Themethodology of mesh adaptation will be
considered in our future work on applications. These techniques in moving water equilibrium
part can also be extended to many other balance laws, such as Euler equations etc.
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A Proofs for the Still Water Equilibrium Schemes

In order to show the main idea of the proof, we only show the proofs of the properties in Sect.
3 in one dimensional case. The two-dimensional proofs are similar and we omit the detail
for simplicity. In one dimensional case, the flux term is defined by

G(ω, v) = f (v) − ωv, with f (v) =
⎛

⎝
hu

(hu)2

η − b
+ 1

2
g(η − b)2

⎞

⎠ .

A.1 Proof of Lemma 3.1 for Scheme (3.12)

We first simplify the numerical flux Ĝ
l,r
. We denote the two components of the numerical

flux Ĝ by Ĝ
[1]

and Ĝ
[2]
.

We write the specific form of Ĝ
[1],l

as follows

Ĝ
[1],l = Ĝ

[1]
(ω, v∗,−, v∗,+) + 1

2

(
(ω + α)(η∗,+ − η+) + (ω − α)(η∗,− − η−)

)
(A.1)

= 1

2

(
hu− − ωη∗,− + hu− − ωη∗,+ − α(η∗,+ − η∗,−)

+(ω + α)(η∗,+ − η+) + (ω − α)(η∗,− − η−)
)

= 1

2

(
hu− − ωη− + hu− − ωη+ − α(η+ − η−) = Ĝ

[1]
(ω, v−, v+). (A.2)

Similarly we have

Ĝ
[1],r = Ĝ

[1]
(ω, v−, v+) = Ĝ

[1],r
. (A.3)

Here without causing conflict, we have omitted the subscript j + 1
2 and we note that we don’t

use the assumption of still water equilibrium.
Next, since v equals the still water equilibrium, i.e. h(x)+b(x) = constant and hu(x) = 0.

We have η+
j+ 1

2
= η−

j+ 1
2
and (hu)±

j+ 1
2

= 0. For the numerical flux of the first equation, we
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use (A.3) to get

Ĝ
[1],l
j+ 1

2
= Ĝ

[1],r
j+ 1

2
= Ĝ
(

ω j+ 1
2
, v−

j+ 1
2
, v+

j+ 1
2

)

= G[1]
(

ω j+ 1
2
, v−

j+ 1
2

)

. (A.4)

For the numerical flux of the second equation, we have

Ĝ
[2],l
j+ 1

2
= Ĝ

[2]
(

ω j+ 1
2
, v

∗,−
j+ 1

2
, v

∗,+
j+ 1

2

)

+ g

2

(

η−
j+ 1

2
− b−

j+ 1
2

)2

− g

2

(

h∗,−
j+ 1

2

)2

= 1

2

(

G(ω j+ 1
2
, v

∗,−
j+ 1

2
) + G(ω j+ 1

2
, v

∗,+
j+ 1

2
)

)

+ g

2

(

η−
j+ 1

2
− b−

j+ 1
2

)2

− g

2

(

h∗,−
j+ 1

2

)2

= 1

2

(
g

2

(

η
∗,−
j+ 1

2
− b−

j+ 1
2

)2

+ g

2

(

η
∗,+
j+ 1

2
− b+

j+ 1
2

)2
)

+ g

2

(

η−
j+ 1

2
− b−

j+ 1
2

)2

− g

2

(

h∗,−
j+ 1

2

)2

= g

2

(

h∗,−
j+ 1

2

)2

+ g

2

(

η−
j+ 1

2
− b−

j+ 1
2

)2

− g

2

(

h∗,−
j+ 1

2

)2

= g

2

(

η−
j+ 1

2
− b−

j+ 1
2

)2

= G[2]
(

ω j+ 1
2
, v−

j+ 1
2

)

. (A.5)

Here we use the fact that hu−
j+ 1

2
= hu+

j+ 1
2

= 0. Similarly, we have

Ĝ
[2],r
j+ 1

2
= G[2]

(

ω j+ 1
2
, v+

j+ 1
2

)

. (A.6)

So we combine the results (A.2)–(A.6) and have

Ĝ
l
j+ 1

2
= G
(

ω j+ 1
2
, v−

j+ 1
2

)

=
⎛

⎜
⎝

ω j+ 1
2
η−
j+ 1

2

g
2

(

η−
j+ 1

2
− b−

j+ 1
2

)2

⎞

⎟
⎠ ,

Ĝ
r
j− 1

2
= G
(

ω j− 1
2
, v+

j− 1
2

)

=
⎛

⎜
⎝

ω j− 1
2
η+
j− 1

2

g
2

(

η+
j− 1

2
− b+

j− 1
2

)2

⎞

⎟
⎠ .

Thus we have

Lh
j (ω, v,φ, t) =

∫

K j (t)

( −ωη
g
2 (η − b)2

)

· φxdx −
(

ω j+ 1
2
η−
j+ 1

2g
2 (η−

j+ 1
2

− b−
j+ 1

2
)2

)

· φ−
j+ 1

2

+
(

ω j− 1
2
η+
j− 1

2g
2 (η+

j− 1
2

− b+
j− 1

2
)2

)

· φ+
j− 1

2
+
∫

K j (t)

(
0

−g(η − b)bx

)

· φdx

= −
∫

K j (t)

∂x

( −ωη
g
2 (η − b)2

)

· φdx +
∫

K j (t)

(
0

−g(η − b)bx

)

· φdx

=
∫

K j (t)

∂x

(
ωη

0

)

· φdx

=
∫

K j (t)

(ωv)x · φdx .
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where we use the integration by parts to cancel the boundary interface terms. This finishes
the proof.

A.2 Proof of Lemma 3.1 for Scheme (3.15)

Since v equals the still water equilibrium, i.e. v is constant vector, we have

v−
j+ 1

2
= v+

j+ 1
2
.

Because Ĝ is a monotone flux, then we have

Ĝ j+ 1
2

= 1

2

(

G
(

ω j+ 1
2
, v−

j+ 1
2

)

+ G
(

ω j+ 1
2
, v+

j+ 1
2

))

= 1

2

(

f
(

v−
j+ 1

2

)

+ f
(

v+
j+ 1

2

))

− ω j+ 1
2
v−
j+ 1

2
. (A.7)

Similarly we have

Ĝ j− 1
2

= 1

2

(

f
(

v−
j− 1

2

)

+ f
(

v+
j− 1

2

))

− ω j− 1
2
v+
j− 1

2
. (A.8)

Then we can compute that

Ls
j (ω, v,φ, t)

=
∫

K j (t)

−ωv · φxdx + ω j+ 1
2
v−
j+ 1

2
· φ−

j+ 1
2

− ω j− 1
2
v+
j− 1

2
· φ+

j− 1
2

+
∫

K j (t)

f (v) · φxdx − 1

2

(

f
(

v−
j− 1

2

)

+ f
(

v+
j− 1

2

))

· φ−
j+ 1

2
+ 1

2

(

f
(

v−
j− 1

2

)

+ f
(

v+
j− 1

2

))

· φ+
j− 1

2
+ s j

=
∫

K j (t)

(ωv)x · φdx +
∫

K j (t)

1

2
g(η − b)2 ψxdx

−
g(η − b−

j+ 1
2
)2 + g

(

η − b+
j+ 1

2

)2

4
ψ−

j+ 1
2

+
g

(

η − b−
j+ 1

2

)2

+ g

(

η − b+
j+ 1

2

)2

4
ψ+

j− 1
2

+ s j

=
∫

K j (t)

(ωv)x · φdx +
∫

K j (t)

(
1

2
gη2 + 1

2
gb2 − gηb

)

ψxdx

−
(
1

2
gη2 + 1

4
g

(

b−
j+ 1

2

)2

+ 1

4
g

(

b+
j+ 1

2

)2

− 1

2
gη b−

j+ 1
2

− 1

2
gη b+

j+ 1
2

)

ψ−
j+ 1

2

+
(
1

2
gη2 + 1

4
g

(

b−
j− 1

2

)2

+ 1

4
g

(

b+
j− 1

2

)2

− 1

2
gη b−

j− 1
2

− 1

2
gη b+

j− 1
2

)

ψ+
j− 1

2

+
∫

K j (t)

(

−1

2
gb2 + gηb

)

ψxdx
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−
(

−1

4
g

(

b−
j+ 1

2

)2

− 1

4
g

(

b+
j+ 1

2

)2

+ 1

2
gη b−

j+ 1
2

+ 1

2
gη b+

j+ 1
2

)

ψ−
j+ 1

2

+
(

−1

4
g

(

b−
j− 1

2

)2

− 1

4
g

(

b+
j− 1

2

)2

+ 1

2
gη b−

j− 1
2

+ 1

2
gη b+

j− 1
2

)

ψ+
j− 1

2

=
∫

K j (t)

(ωv)x · φdx +
∫

K j (t)

1

2
gη2ψxdx − 1

2
gη2ψ−

j+ 1
2

+ 1

2
gη2ψ+

j− 1
2

=
∫

K j (t)

(ωv)x · φdx +
∫

K j (t)

(
1

2
gη2
)

x
ψdx =

∫

K j (t)

(ωv)x · φdx .

The second equality is due to hu = 0 and η = constant. The sixth equality uses the fact
η = constant.

A.3 Proof of Proposition 3.2

It is sufficient and necessary to prove that if v are the still water equilibrium at time t = 0,
i.e.

η0(x) = constant, and (hu)0(x) = 0, (A.9)

then the numerical solution at any time tn has to be

ηn(x) = constant, and (hu)n(x) = 0. (A.10)

Now we will use induction to prove the proposition.
Basic Step: Suppose that the initial data v0 are the still water equilibrium, i.e. η0(x) =

constant and (hu)0(x) = 0. So v0 is true.
Inductive Step:Nowwe assume the truth of vk , for some k ∈ N —that is, we assume that

ηk(x) = constant, (hu)k(x) = 0, (A.11)

is a true state. From this assumption we want to deduce that

ηk+1(x) = constant, (hu)k+1(x) = 0. (A.12)

In each time step, we use the Euler forward scheme (3.20). For both two schemes, we can
use Lemma 3.1 to simplify the equation in (3.20) and get

∫

Kk+1
j

vk+1 · φk+1dx =
∫

Kk
j

vk · φkdx + �t
∫

Kk
j

(ωkvk)x · φkdx

=vk ·

⎛

⎜
⎜
⎝

∫

Kk
j

φkdx + �t
∫

Kk
j

(ωk)xφ
kdx

⎞

⎟
⎟
⎠

=vk ·
∫

Kk+1
j

φk+1dx

=
∫

Kk+1
j

vk · φk+1dx,

(A.13)
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where the second equality holds since vk is a constant vector and the third equality is due to
the dGCL in [23].

So we prove that vk+1 = vk , which is also the still water equilibrium, i.e.

ηk+1 = constant, (hu)k+1 = 0.

This claim means that the numerical solution vn for n ∈ N is in the case of still water
equilibrium, thus the fully discrete schemes are well-balanced.

A.4 Proof of Theorem 3.4

According to the results in (A.2) and (A.3), we simplify the numerical flux in (3.12) to get that
the numerical scheme for the first equation in (3.12) and (3.15) are the same. Then according
to the first equation of (3.12) or (3.15), we write the equation satisfied by the cell average of
surface level η:

�n+1
j

�n
j

η̄n+1
j = η̄nj − λ

(
Ĝ

[1]
j+ 1

2
+ Ĝ

[1]
j− 1

2

)
. (A.14)

where Ĝ
[1]

denote the first component of Ĝ:

Ĝ
[1]
j+ 1

2
= 1

2

(

(hu)
n,+
j+ 1

2
− ω j+ 1

2
η
n,+
j+ 1

2
+ (hu)

n,−
j+ 1

2
− ω j+ 1

2
η
n,−
j+ 1

2
− α(η

n,+
j+ 1

2
− η

n,−
j+ 1

2
)

)

,

(A.15)

and λ = �t
�n

j
. Moreover, we write out the equation satisfied by the cell average of bottom

topography b:

�n+1
j

�n
j
b̄n+1
j = b̄nj + λ

(
ω̂b j+ 1

2
− ω̂b j− 1

2

)
. (A.16)

We denote η j − b j by h j . We firstly decompose h̄n+1
j in (A.14) into two parts:

�n+1
j

�n
j
h̄n+1
j = W1 + W2, (A.17)

with

W1 =b̄nj − �n+1
j

�n
j
b̄n+1
j + λ

(
ω̂b j+ 1

2
− ω̂b j− 1

2

)
,

W2 =h̄nj − λ
((

Ĝ
[1]
j+ 1

2
+ ω̂b j+ 1

2

)
−
(
Ĝ

[1]
j− 1

2
+ ω̂b j− 1

2

))
.

We note that W1 = 0. This is because the definition of b in (A.16). So we only need to
prove W2 > 0.

Since we use the Lax-Friedrichs flux in this paper, we first simplify Ĝ
[1]
j+ 1

2
+ ω̂b j+ 1

2
by

combining (A.15) and (3.22):

Ĝ
[1]
j+ 1

2
+ ω̂b j+ 1

2
= 1

2

(

(hu)
n,+
j+ 1

2
− ω j+ 1

2
hn,+
j+ 1

2
+ (hu)

n,−
j+ 1

2
− ω j+ 1

2
hn,−
j+ 1

2
− α(hn,+

j+ 1
2

− hn,−
j+ 1

2
)

)

= 1

2

((

un,+
j+ 1

2
− ω j+ 1

2
− α

)

hn,+
j+ 1

2
+
(

un,−
j+ 1

2
− ω j+ 1

2
+ α

)

hn,−
j+ 1

2

)
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<
1

2

(

(α − α) hn,+
j+ 1

2
+ (α + α) hn,−

j+ 1
2

)

= αhn,−
j+ 1

2
.

The first equality is due to Ĝ
[1]
j+ 1

2
and ω̂b j+ 1

2
use the same α. The inequality is due to the

definition of α:

−α < un,+
j+ 1

2
− ω j+ 1

2
< α.

Similarly we have

Ĝ
[1]
j− 1

2
+ ω̂b j− 1

2
> −αhn,+

j− 1
2
.

So we use the Gauss quadrature rule and above inequalities to get

W2 =
L∑

ν=1

ω̂νh
n
j (x̂

(ν)
j ) − λ

((
Ĝ

[1]
j+ 1

2
+ ω̂b j+ 1

2

)
−
(
Ĝ

[1]
j− 1

2
+ ω̂b j− 1

2

))

>

L∑

ν=1

ω̂νh
n
j (x̂

(ν)
j ) − αλhn,+

j− 1
2

− αλhn,−
j+ 1

2

=
L−1∑

ν=2

ω̂νh
n
j (x̂

(ν)
j ) + (ω̂1 − αλ

)
hn,+
j− 1

2
− (ω̂L − αλ

)
hn,−
j+ 1

2

>0.

Notice that ω̂1 = ω̂L and λ < 1
α̂0

= ω̂1
α
. Combined with the assumption h(x) > 0, for

x ∈ SKn
j
, we proved that W2 > 0.

B Proofs for theMovingWater Equilibrium Scheme

B.1 Proof of Lemma 4.2

We first prove that ĝ(ω j+ 1
2
, u∗,−

j+ 1
2
, u∗,+

j+ 1
2
) = g(ω j+ 1

2
, ud,−

j+ 1
2
) = g(ω j+ 1

2
, ud,−

j+ 1
2
). Under

such assumption, we have

ur = 0, u∗ = ud . (B.1)

With stationary shocks of ud and the assumption ω j+ 1
2

= 0 at the shock, we can calculate
that

ĝ
(

ω j+ 1
2
, u∗,−

j+ 1
2
, u∗,+

j+ 1
2

)

= ĝ
(

ω j+ 1
2
, ud,−

j+ 1
2
, ud,+

j+ 1
2

)

= g
(

ω j+ 1
2
, ud,−

j+ 1
2

)

= g
(

ω j+ 1
2
, ud,−

j+ 1
2

)

.

(B.2)

The first equality is due to (B.1). The second and the third equality is due to ω j+ 1
2

= 0, the
property of Roe’s flux that it can exactly solve the Riemann problem [35], and the shock at
point x j+ 1

2
is a stationary shock.

With the continuity of ud , we have u∗,±
j+ 1

2
= ud,±

j+ 1
2
and we have the same conclusion

with (B.2) according to the property of the Lax-Friedrichs flux. This means that for all the
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numerical fluxes,

ĝl
j+ 1

2
= f (u−

j+ 1
2
) − ω j+ 1

2
ud,−
j+ 1

2
and ĝr

j− 1
2

= f (u+
j− 1

2
) − ω j− 1

2
ud,+
j− 1

2
.

Now, we have

Lm
j (ω, u,φ, t) =

∫

K j (t)

g(ω, u) · φxdx −
(

f (u−
j+ 1

2
) − ω j+ 1

2
ud,−
j+ 1

2

)

· φ−
j+ 1

2

+
(

f (u+
j− 1

2
) − ω j− 1

2
ud,+
j− 1

2

)

· φ+
j− 1

2
−
∫

K j (t)

f (ue) · φxdx

+ f (ue,−
j+ 1

2
) · φ−

j+ 1
2

− f (ue,+
j− 1

2
) · φ+

j− 1
2

= −
∫

K j (t)

ωu · φxdx + ω j+ 1
2
ud,−
j+ 1

2
· φ−

j+ 1
2

− ω j− 1
2
ud,+
j− 1

2
· φ+

j− 1
2
.

This is because of the assumption u = ue and we finish the proof.

B.2 Proof of Proposition 4.4

Similar to previous proof in Proposition 3.2, we will use induction to prove the proposition.
Basic Step: Suppose that ud is the initial condition. Then we have u0 = Pud and ue,0 =

Pud , which will lead to u0 = ue,0. So u0 is true.
Inductive Step: Now we assume the truth of uk , for some k ∈ N —that is, we assume that

uk = ue,k is a true state. From this assumption we want to deduce that uk+1 = ue,k+1.
Since uk = ue,k , we have ur ,k = 0. Use Lemma 4.2, we have

Lm
j (ωk, uk,φk, tk) = ωk

j+ 1
2
ud,−
j+ 1

2
· φ−

j+ 1
2

− ωk
j− 1

2
ud,+
j− 1

2
· φ+

j− 1
2

−
∫

Kk
j

ωkue,k · (φk)xdx .

(B.3)

By comparing (4.19) and (4.20), we have
∫

Kk+1
j

(uk+1 − ue,k+1) · φk+1dx = 0. (B.4)

This means uk+1 = ue,k+1. This finishes the proof that for n ∈ N the numerical solution un

is in the case of moving water equilibrium, which means our scheme do preserve the moving
water equilibrium.

B.3 Proof of Theorem 4.6

Since we use the Lax-Friedrichs numerical flux, we can write the specific form of ĝl,[1]
j+ 1

2
:

ĝl,[1]
j+ 1

2
= ĝ[1]

(ω j+ 1
2
, u∗,−

j+ 1
2
, u∗,+

j+ 1
2
)

= 1

2

(

m∗,+
j+ 1

2
− ω j+ 1

2
h∗,+
j+ 1

2
− αh∗,+

j+ 1
2

+ m∗,−
j+ 1

2
− ω j+ 1

2
h∗,−
j+ 1

2
+ αh∗,−

j+ 1
2

)
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= 1

2

((

u∗,+
j+ 1

2
− ω j+ 1

2
− α

)

h∗,+
j+ 1

2
+
(

u∗,−
j+ 1

2
− ω j+ 1

2
+ α

)

h∗,−
j+ 1

2

)

<
1

2

(

(α − α) h∗,+
j+ 1

2
+ (α + α) h∗,−

j+ 1
2

)

= αh∗,−
j+ 1

2
. (B.5)

The first equality is due to md = me is constant, which is same as the proof of mass
conservation and the inequality is due the definition of α in (4.17). Similar we simplify ĝr ,[1]

j− 1
2

to get

ĝr ,[1]
j− 1

2
> −αh∗,+

j− 1
2
. (B.6)

Now we combine (B.5), (B.6) and Gauss-Lobatto quadrature rule, which introduced in (3.6)
to simplify (4.22):

�n+1
j

�n
j
h̄n+1
j = h̄nj − λ

(

ĝl,[1]
j+ 1

2
− ĝr ,[1]

j− 1
2

)

>

L∑

ν=1

ω̂νh
n
j (x̂

(ν)
j ) − αλ

(

h∗,−
j+ 1

2
+ h∗,+

j− 1
2

)

=
L−1∑

ν=2

ω̂νh
n
j (x̂

(ν)
j ) +

(

ω̂1h
n,+
j− 1

2
− αλh∗,+

j− 1
2

)

+
(

ω̂Lh
n,−
j+ 1

2
− αλh∗,−

j+ 1
2

)

> 0.

This is because the assumption of the theorem that hnj (x̂
(ν)
j ) > 0 and (4.25):

1 > α̂0λ = αλ

ω̂1
max

x∈{x+
j− 1

2
,x−

j+ 1
2
}
h∗
j (x)

hnj (x)
→ ω̂Lh

n
j (x) > αλh∗

j (x), for x ∈ {x+
j− 1

2
, x−

j+ 1
2
},

(B.7)

and the assumption of Gauss-Lobatto quadrature rule: x̂ (ν)
1 and x̂ (ν)

L are the cell boundaries
of Kn

j and ω̂1 = ω̂L . Now we have proved h̄n+1
j > 0 and finish the proof.
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