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Abstract
In this paper, several arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) 
methods are presented for Korteweg-de Vries (KdV) type equations on moving meshes. 
Based on the L2 conservation law of KdV equations, we adopt the conservative and dissipa-
tive numerical fluxes for the nonlinear convection and linear dispersive terms, respectively. 
Thus, one conservative and three dissipative ALE-DG schemes are proposed for the equa-
tions. The invariant preserving property for the conservative scheme and the corresponding 
dissipative properties for the other three dissipative schemes are all presented and proved 
in this paper. In addition, the L2 -norm error estimates are also proved for two schemes, 
whose numerical fluxes for the linear dispersive term are both dissipative type. More pre-
cisely, when choosing the approximation space with the piecewise kth degree polynomials, 
the error estimate provides the kth order of convergence rate in L2-norm for the scheme with 
the conservative numerical fluxes applied for the nonlinear convection term. Furthermore, 
the (k + 1∕2) th order of accuracy can be proved for the ALE-DG scheme with dissipative 
numerical fluxes applied for the convection term. Moreover, a Hamiltonian conservative 
ALE-DG scheme is also presented based on the conservation of the Hamiltonian for KdV 
equations. Numerical examples are shown to demonstrate the accuracy and capability of the 
moving mesh ALE-DG methods and compare with stationary DG methods.

Keywords  Arbitrary Lagrangian-Eulerian discontinuous Galerkin methods · KdV 
equations · Conservative schemes · Dissipative schemes · Error estimates
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1  Introduction

We are concerned with solving the following KdV type equation:
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with the periodic or other proper boundary conditions when � is a finite domain. The KdV 
equation may also be an initial value problem, which is defined in the whole domain with 
the initial condition only. Numerically, one of the commonly used strategies is to solve 
the infinite domain with periodic or compactly supported boundary conditions, if the 
initial condition decays fast in space. The KdV equation is a mathematical model of the 
wave propagation and can be applied to many fields, such as the oceanography, aeronaut-
ics, geology, plasma physics and many others. Boussinesq (1877) first introduced the KdV 
equation and Korteweg et al. in 1895 [26] rediscovered it, and in their study of the water 
wave, two classic solutions of the cnoidal wave and the  solitary wave are discussed.

Many numerical methods were used to solve KdV equations, including pseudo-
spectral methods by Fornberg et  al. [12], finite difference schemes [15, 33], the heat 
balance integral method [27], the finite element method, and specially the discontinu-
ous Galerkin (DG) method. The DG method is a class of finite element methods and 
its approximation space consists of completely discontinuous piecewise polynomials, 
which leads to the advantages of parallel efficiency, shock capturing and high-order 
accuracy etc. Reed et al. [30] firstly constructed the DG scheme for the neutron trans-
port equation. Subsequently, Cockburn et al. developed the Runge-Kutta discontinuous 
Galerkin (RKDG) method for the nonlinear hyperbolic conservation laws in [5–8] and 
also proved its high order accuracy in [4, 9]. The key of this method is to design suit-
able numerical fluxes in order to make the scheme stable and high order accurate in 
various situations. For certain conserved energy, the conservative or dissipative fluxes 
are adopted to ensure the energy conservation or stability of the scheme. In the numeri-
cal experiments of [2, 41], the higher accuracy and better stability of the conservative 
scheme over long temporal intervals can be seen. Usually, we consider the conservation 
of the L2 energy

The conservation of the Hamiltonian

is also considered since the KdV equation is the Hamiltonian system [14]. Within the DG 
framework, the  local discontinuous Galerkin (LDG) method was used to deal with deriva-
tives of order higher than one. Yan et al. [38] developed an LDG numerical method for a 
general KdV type equation and proved the suboptimal convergence rate for linear wave 
KdV equations, and Xu et al. further designed the LDG method to solve a series of nonlin-
ear wave equations [35, 36] and proved the suboptimal convergence rate. More recently, Xu 
et al. proved the optimal convergence rate for linear KdV equations in [37]. It is worth not-
ing that the scheme is only for the dissipative scheme for both linear and nonlinear terms 
in terms of the energy E. The E conserved LDG and ultra-weak DG schemes were pro-
posed in [2, 22, 41]. In addition, the Hamiltonian conserved LDG schemes were presented 
in [29, 41]. Usually, the conservative schemes can reduce the long-time phase error and 
improve the accuracy. Following the LDG method on static meshes for this problem, we 
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are interested in solving KdV equations by the arbitrary Lagrangian-Eulerian discontinu-
ous Galerkin (ALE-DG) method on adaptive moving meshes.

We can consider the ALE-DG method as a moving mesh DG method and its mesh 
motion follows the ALE method [11, 17], which allows the motion of the mesh to 
be like either the Lagrangian or the Eulerian description of motion. In recent years, 
Klingenberg et  al. developed an ALE-DG method for conservation laws [13, 24] and 
Hamilton-Jacobi equations [25], where local affine linear mappings connecting the cells 
for the current and next time levels are defined and yield the time-dependent approxi-
mation space. Within very mild conditions on mesh movements, the stability and high 
order accuracy can be obtained for the method, where the mesh movement function is 
assumed to be piecewise linear [42]. They also showed that the ALE-DG method satis-
fies the geometric conservation law (GCL) for any Runge-Kutta scheme, which is signif-
icant for the ALE method and has been analyzed by Guillard et al. [16]. The ALE-DG 
method shares many good properties of the DG method defined on static grids, e.g., the 
entropy stability, the high order accuracy, the local maximum principle, and so on.

Since solutions of KdV equations often have the local structures, the mesh adapta-
tion has been an important tool which focuses on the computational effort where it is 
most needed. In the ALE-DG method, we want to use the r-adaptive method without 
changing the number of mesh points and more grid points should be clustered in the 
area with wave to obtain better resolution comparing with the DG method on the static 
mesh. In recent years, a few research works are implemented in this aspect. Particularly, 
Tang et al. proposed the r-adaptive algorithm to the DG method for conservation laws in 
[10, 28, 32], in which they still need a conservative remapping projection from the new 
adaptive mesh to the last level mesh. Another motivation for designing the ALE-DG 
method is that KdV equations may contain the solitary wave solution (soliton), which 
is defined on the whole domain. One of the commonly used strategies is to solve the 
problem only in a finite domain with the periodic or compactly supported boundary 
conditions since the soliton decays very fast in space. But for long-time simulations, the 
computational domain should be large enough to justify this choice, thus it may not be 
very efficient. The ALE-DG method allows us to solve the equations in a moving com-
putational domain and track the soliton waves.

In this work, we present the conservative and dissipative ALE-DG methods for this 
equation with the stability and error estimates. When adaptive meshes are adopted, the 
schemes can reduce the phase error efficiently comparing with the LDG method on 
static grids. Although many works have been done with adaptive mesh methods and 
DG methods, few works have combined adaptive mesh with DG methods to solve KdV 
equations in an appropriate way without the need of remapping. In the ALE-DG meth-
ods, after we get the mesh-redistribution at the next time level, the numerical solution 
will be evolved directly from the former time level to the next time level between two 
different meshes. We refer to Huang et  al. [20] and Hong et  al. [18] for the adaptive 
mesh generation.

The outline of this paper is as follows. In Sect. 2, we introduce the ALE-DG method for 
KdV equations and construct conservative and dissipative schemes, and also give their L2 
or Hamiltonian stability. Section 3 is devoted to the L2 norm error estimates for two dis-
sipative schemes of problem  (1) with f (u) = u2 . Section  4 presents the methodology of 
adaptive moving meshes we use. In Sect. 5, some numerical results are demonstrated to 
validate the accuracy and effectiveness of the ALE-DG scheme. Finally, some conclusions 
are given in Sect. 6.
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2 � The ALE‑DG Method

In this section, we develop the ALE-DG schemes based on either L2 or Hamiltonian 
stability.

In order to describe the ALE-DG method, we need to take account of the motion of the 

grid for the time-dependent domain �(t) . Given grid points 
{
xn
j−

1

2

}N

j=1

 at the time level tn , 

so as 
{
xn+1
j−

1

2

}N

j=1

 at tn+1 , such that

Assume that the first point and the last point could move at the same speed for the periodic 
boundary problem and stay the same for the fixed boundary problem. Next, we define

as the moving point x
j−

1

2

(t) with the speed w
j−

1

2

 from tn to tn+1 . Then we define the function 
w ∶ � × [tn, tn+1] → ℝ as the grid velocity. It is for any time-dependent cell 
Kj(t) = [x

j−
1

2

(t), x
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1

2

(t)] and t ∈ [tn, tn+1] given by

where hj(t) = x
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1

2

(t) − x
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1

2

(t) . In addition, we assume that w(x, t) and �xw(x, t) are bounded 
in � × [0,T] . Denote the maximal cell length by h ∶= max

t∈[0,T]
max
1⩽j⩽N

hj(t) . We assume the 
mesh is regular, that is, there exists a constant 𝜎 > 0 which is independent of h, such that

Therefore, for any t ∈ [tn, tn+1] , the cell Kj(t) can be connected with the reference cell 
[−1, 1] by the time-dependent mapping

Thus, we have

Furthermore, the finite element space is defined as

where ℙk([−1, 1]) denotes the space of polynomials in [−1, 1] of degree at most k and the 
modal basis �i, i = 0, 1,⋯ , k could be used in the reference cell. Moreover, we denote the 
L2 inner products in Kj(t) and � by (v,w)j ∶= ∫
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(6)hj(t) ⩾ �h, ∀j = 1,⋯ ,N.
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2
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(9)Vh ∶= {vh ∈ L2(Ω)|vh(�j(⋅, t)) ∈ ℙ
k([−1, 1]),∀t ∈ [tn, tn+1] and j = 1,⋯ ,N},
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Next, we can easily get the transport equation in the approximation space Vh (cf. [24]).

Lemma 1  Let u ∈ W
1,∞(0,T;H1(Ω)). Then, for all test functions vh ∈ Vh where we can 

choose vh as �i◦�−1
j
, i = 0, 1,⋯ , k , the following transport equation holds:

for all j = 1, 2,⋯ ,N , which is owing to

We first define some notations about norms. Denote ‖v‖j and ‖v‖∞,j as the L2-norm and 
L∞-norm of v on Kj ,  respectively. Moreover,

And we express the value of u on the left and right limits of the grid point x
j+

1

2

(t) with u−
j+

1

2

 

and u+
j+

1

2

 , respectively. Define the jump and the mean of u at x
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1

2
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2
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1

2
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1
2

+u−
j−

1
2

2
 , respectively.

2.1 � The Schemes Related to the L2 Energy

Rewrite (1) into the following first-order system:

Then, we adopt the ALE-DG method by Lemma  1 to approximate (12) as follows: find 
uh, ph, qh ∈ Vh(t) such that for all test functions v, r, z ∈ Vh(t),

(10)
d

dt
(u, vh)j = (�tu, vh)j + (�x(wu), vh)j,
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h,j−

1

2

z+
j−

1

2

= 0,



535Communications on Applied Mathematics and Computation (2022) 4:530–562	

1 3

for all j, where g(�, u) = f (u) − �u , ĝ
j+

1

2

= ĝ

(
𝜔
j+

1

2

, u−
h,j+

1

2

, u+
h,j+

1

2

)
 and the “hat” terms are 

the numerical fluxes. Summing up with respect to j, we obtain

Next, different kinds of numerical fluxes for linear and nonlinear terms will be discussed. 
We firstly give several definitions and propositions for the numerical flux of the linear term.

Definition 1  We define the operators L(⋅, ;�),T(⋅, ⋅) as follows:

∀u, v ∈ Vh(t) and � is a constant.

Definition 2  The operator Nd(⋅, ⋅) for the nonlinear term g(�, u) is defined as

where ĝ = ĝ(w, u−, u+) is a monotone numerical flux. It is a dissipative treatment for the 
nonlinear term for the L2 energy.

And we can define the conservative treatment for the nonlinear term as follows.

Definition 3  ∀u, v ∈ Vh(t) , the operator Nc(∶, ∶) is defined as

where ĝ = ĝ(w, v−, v+) is taken as a conservative flux

where G(w, u) = ∫ u
g(w, s)ds, especially for f (u) = up , p is an integer,

(14)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

d
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�
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�
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⎧⎪⎨⎪⎩

L(u, v;�) = −(u, vx) −
�
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�
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∑
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(ĝ[v])
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2

+
(
(𝜕xw)

u

2
, v
)
,∀u, v ∈ Vh(t),
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∑
j

(ĝ[v])
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+
(
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u

2
, v
)
,

(18)ĝ =

⎧⎪⎨⎪⎩

[G(w, u)]

[u]
, [u] ≠ 0,

g(w, u), [u] = 0,

(19)ĝ =
1

p + 1

p∑
j=0

(u−)j(u+)p−j − w{u}.
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When p = 2 , we define the bilinear flux

Therefore, ĝ = f̂ (u, u) − w{u} when p = 2 . Moreover, we also define a special operator

Therefore, Ncc(u, v; �) is the Trilinear operator. It is symmetric for variables u and v. It also 
holds

For the dissipative flux, Zhang et al. [40] introduced an important quantity to meas-
ure the difference between the numerical flux and the physical flux. In the following 
lemma, we give the definition.

Lemma 2  For any monotone numerical flux ĝ consistent with g, define

Then, â(ĝ; v) ⩾ 0 and it is bounded for any piecewise smooth function v ∈ L2. Moreover, 
we have

where the positive constant C∗ depends solely on the maximum of  |f ��(v)| and |f ���(v)| .

Remark 1  (Uniformly dissipative flux) For our error estimates, we rewrite the numerical 
flux in a viscosity form

and assume the viscosity coefficient �(v−, v+) satisfies 𝜆(v−, v+) ⩾ 𝜆0 > 0 , �0 is a constant. 
The property is necessary due to the lack of control for the jump terms at cell boundaries.

By simple calculations [25], we present several properties of several operators in the 
following lemma.

(20)f̂ (u, v) =
1

6
(2u+v+ + u+v− + u−v+ + 2u−v−).

(21)Ncc(u, v; 𝜌) = −(uv, 𝜌x) −
∑
j

(f̂ (u, v)[𝜌])
j−

1

2

.

(22)Ncc(u, u; v) + (�u, v
x
) +

∑
j

(�{u}[v])
j−

1

2

+
(
(�

x
�)

u

2
, v

)
= N

c(u, v).

â(ĝ; v) ∶=

{
[v]−1(g(𝜔, {v}) − ĝ(𝜔, v−, v+)), [v] ≠ 0,

|g�(𝜔, {v})|, [v] = 0.

(23)

⎧⎪⎨⎪⎩

1

2
�g�(𝜔, {v})� ⩽ â(ĝ; v) + C∗�[v]�,

−
1

8
g��(𝜔, {v})[v] ⩽ â(ĝ; v) + C∗[v]

2,

(24)ĝ(𝜔, v−, v+) =
1

2
(g(𝜔, v−) + g(𝜔, v+) − 𝜆(v−, v+)(v+ − v−)),
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Lemma 3  There hold the equalities

In the following lemma, we also present several properties of several operators for the 
nonlinear term.

Lemma 4  There hold the equalities

Proof  We first calculate the first term

Then we have

Therefore,

(25)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

L(u, u; 0) = 0,

L
�
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L
�
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1

2
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1

2

�
,
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(26)

⎧⎪⎨⎪⎩
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d

dt
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−
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u

2

�
+
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u

2

�
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�
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�
−
�
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�
−
�
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�
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�
−
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(�xw)

u

2
, u
�

= T(u, u).

(28)

⎧⎪⎨⎪⎩

G(w, u) = ∫
u

g(w, s)ds = ∫
u

f (s)ds −
w

2
u2,

�xG(w, u) = f (u)ux − wuux − �x�u
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2
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The last equation holds because ĝ is a monotone flux.

Moreover, for the special operator Ncc , we have the following lemma.

Lemma 5  The operator Ncc has the properties as follows.

	 (i)	 Ncc is consistent, 

	 (ii)	 For u, v, � ∈ Vh(t),

	 (iii)	 For u, v, � ∈ Vh(t),

	 (iv)	 For u, v, � ∈ Vh(t),

Proof 

	 (i)	 For u, v ∈ C(�), � ∈ Vh(t) , we can easily get (30) by integration by parts and the 
definition of Ncc (21), 

	 (ii)	 We can easily verify  (31) by integration by parts and the definition of f̂  (20).
	 (iii)	 The property (32) can be obtained by taking � = u in (31) and using the symmetry 

of the operator Ncc.
	 (iv)	 Take v = u in  (32), we can get the property (33).

(29)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nc(u, u) = −
�
g(𝜔, u), ux

�
−
�
j

(ĝ[u])j− 1

2

+
��

𝜕xw
�u
2
, u
�

= −
�
𝜕xG(w, u), 1

�
−
�
j

(ĝ[u])j− 1

2

=
�
j

�
[G(w, u)] −

[G(w, u)]

[u]
[u]

�

j−
1

2

= 0,

Nd(u, u) =
�
j

⎛⎜⎜⎝∫
u+

j−
1
2

u−
j−

1
2

g(w, s)ds − ĝ∫
u+

j−
1
2

u−
j−

1
2

1ds

⎞⎟⎟⎠

=
�
j

⎛
⎜⎜⎝∫

u+

j−
1
2

u−
j−

1
2

(g(w, s) − ĝ(w, u−, u+))ds

⎞
⎟⎟⎠
⩾ 0.

(30)Ncc(u, v; �) = ((uv)x, �), for u, v ∈ C(Ω), � ∈ Vh(t).

(31)Ncc(u, v; �) + Ncc(�, u; v) + Ncc(v, �; u) = 0.

(32)Ncc(u, v; u) = −
1

2
Ncc(u, u; v).

(33)Ncc(u, u; u) = 0.

Ncc(u, v; 𝜌) = ((uv)x, 𝜌) +
∑
j

((uv − f̂ (u, v))[𝜌])
j−

1

2

.
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Then, we can propose the dissipative and conservative schemes as follows. When 
choosing p̂h = p+

h
, q̂h = q+

h
, ûh = u−

h
 , the dissipative ALE-DG scheme (14) for the first 

order system (12) can be written as: find uh, ph, qh ∈ Vh(t) such that for all test functions 
v, r, z ∈ Vh(t),

The scheme satisfies the L2 stability, which means d
dt
‖uh‖2 ⩽ 0 . The dissipative scheme 

destroys the balance between nonlinear steepening and dispersive spreading numerically, 
it may cause the phase error, shape error and the inaccuracy of the ALE-DG numerical 
scheme over a long temporal interval.

Next, the conservative scheme will be presented, which preserves the conser-
vation law of the L2 energy, i.e., d

dt
‖uh‖2 = 0 . By choosing the numerical fluxes 

p̂h = p+
h
, q̂h = {qh}, ûh = u−

h
 , the L2 conservative scheme is defined as: find uh, ph, qh ∈ Vh(t) 

such that for all test functions v, r, z ∈ Vh(t),

The scheme is conservative for the nonlinear term and linear term, so we denote the 
scheme by the C-C scheme. The dissipative scheme (34) is denoted by the NC-NC scheme, 
it is dissipative for the nonlinear term and linear term. We can also denote the C-NC 
scheme which is conservative for the nonlinear term and dissipative for the linear term: 
find uh, ph, qh ∈ Vh(t) such that for all test functions v, r, z ∈ Vh(t),

We can also denote the NC-C scheme by replacing L(qh, r;
1

2
) in the scheme (34) with 

L(qh, r; 0) . The NC-NC, C-NC, NC-C schemes are all the dissipative schemes. Moreo-
ver, the flux p̂h = p+

h
, ûh = u−

h
 can be defined as p̂h = {ph} + 𝛼[ph], ûh = {uh} − 𝛼[uh] in 

those schemes. When � ≠ ±
1

2
 , it results in a wider stencil. Comparing with the dissipative 

scheme, the conservative scheme not only has high accuracy and stability, but reduces the 
phase error and shape error validly over a long temporal interval, especially in low order 
approximation.

(34)NC-NC scheme

⎧
⎪⎪⎨⎪⎪⎩

T(uh, v) + Nd(uh, v) + L
�
ph, v;

1

2

�
= 0,

(ph, r) − L
�
qh, r;

1

2

�
= 0,

(qh, z) − L
�
uh, z; −

1

2

�
= 0.

(35)C-C scheme

⎧
⎪⎪⎨⎪⎪⎩

T(uh, v) + Nc(uh, v) + L
�
ph, v;

1

2

�
= 0,

(ph, r) − L(qh, r; 0) = 0,

(qh, z) − L
�
uh, z; −

1

2

�
= 0.

(36)C-NC scheme

⎧
⎪⎪⎨⎪⎪⎩

T(uh, v) + Nc(uh, v) + L
�
ph, v;

1

2

�
= 0,

(ph, r) − L
�
qh, r;

1

2

�
= 0,

(qh, z) − L
�
uh, z; −

1

2

�
= 0.
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2.2 � The Scheme Related to Hamiltonian Energy H

In this section, we introduce the Hamiltonian conservative ALE-DG scheme based on the 
LDG schemes on static grids [29, 41]. Rewrite (1) into the following first-order system:

Then the minimal stencil ALE-DG scheme for (37) is defined: find uh, ph, qh, gp ∈ Vh(t) 
such that for all test functions v, r, z, s ∈ Vh(t),

We can verify that the scheme (38) is a Hamiltonian conservative ALE-DG scheme if the 
grid velocity function � is a constant, where V(u) = G(w, u) is in the Hamiltonian energy 
(2). Then, we have

If � is a constant, we take the time derivative of the third term and rewrite the scheme as

Taking the test functions as v = −(gp + ph), r = (uh)t + �(uh)x, z = qh, s = −((uh)t + �(uh)x) , 
we have

(37)

⎧
⎪⎪⎨⎪⎪⎩

ut + (gp + wu)x + px = 0,

p − qx = 0,

q − ux = 0,

g(w, u) − gp = 0.

(38)HC scheme

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

d

dt
(uh, v) + L(gp, v; 0) + L(ph, v; 0) = 0,

(ph, r) − L
�
qh, r; −

1

2

�
= 0,

(qh, z) − L
�
uh, z;

1

2

�
= 0,

(g(w, uh), s) − (gp, s) = 0.

(39)
dH

dt
= (q, qt) + (q,�qx) − (g(�, u), ut) − (g(�, u),�ux).

(40)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

((uh)t + �(uh)x, v) + L(gp, v; 0) + L(ph, v; 0) = 0,

(ph, r) − L
�
qh, r; −

1

2

�
= 0,

((qh)t + �(qh)x, z) − L
�
(uh)t + �(uh)x, z;

1

2

�
= 0,

(g(w, uh), s) − (gp, s) = 0.

(41)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

((uh)t + �(uh)x,−(gp + ph)) + L(gp,−(gp + ph); 0) + L(ph,−(gp + ph); 0) = 0,

(ph, (uh)t + �(uh)x) − L
�
qh, (uh)t + �(uh)x; −

1

2

�
= 0,

((qh)t + �(qh)x, qh) − L
�
(uh)t + �(uh)x, qh;

1

2

�
= 0,

(g(u),−((uh)t + �(uh)x)) − (gp,−((uh)t + �(uh)x)) = 0.
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Summing up the terms in (41) and using the properties of the operators, we can easily get 
dH

dt
= 0 . Unfortunately, when the grid velocity is no longer a constant, we can not get the 

Hamiltonian conservation of the scheme. Even though, we still call the scheme (38) as HC 
scheme.

It is worth to mention that another Hamiltonian conservation scheme in [31] can be 
extended to moving meshes, in which the multi-symplectic form of the Hamiltonian sys-
tem was adopted to develop the structure preserving DG methods.

3 � Error Estimate

In this section, we consider the L2-norm error estimates for the NC-NC scheme (34) and 
C-NC scheme (36). For the ALE-DG methods to nonlinear KdV equations, there exist 
some obstacles in handling the error estimates for linear terms when choosing q̂h = {qh} . 
We only choose the dissipative flux q̂h = q+

h
 in the following error estimates and consider 

mainly the NC-NC and C-NC schemes. For NC-NC scheme, we refer to Xu et al. [35] for 
our error estimates. For the C-NC scheme, we refer to Zhang et  al. [39] to estimate our 
error. Before starting the error estimates, we first give some notations.

3.1 � Notations for Projections and Some Properties of Approximation Space

The inverse properties of the finite space Vh will be used.

Lemma 6  When the mesh is regular, ∀v ∈ Vh, ∃C > 0, s.t.

where the positive constant C is independent of h and v.

Define the L2-projection Pk , two Gauss-Radau projections P− and P+ of u into Vh as 
follows:

The following lemma states the error of these projections [3].

Lemma 7  Let Ph be a projection, either Pk, P− or P+ , and P⟂

h
q = q − Phq be the projec-

tion error. For any smooth function q(x), ∃c > 0, such that

(42)h2‖�xv‖2 + h‖v‖2
Γ
⩽ C‖v‖2,

(Pku, vh) = (u, vh),∀vh ∈ Vh with vh(�j(⋅, t)) ∈ Pk([−1, 1]),

(P−u, vh) = (u, vh),∀vh ∈ Vh with vh(�j(⋅, t)) ∈ Pk−1([−1, 1]), and (P−u)
−

j−
1

2

= u−
j−

1

2

,

(P+u, vh) = (u, vh),∀vh ∈ Vh with vh(�j(⋅, t)) ∈ Pk−1([−1, 1]), and (P+u)
+

j−
1

2

= u+
j−

1

2

.

(43)‖P⟂

h
q‖D + h‖�x(P⟂

h
q)‖D + h

1

2 ‖P⟂

h
q‖∞,D ⩽ chk+1�q�k+1,D,

(44)‖P⟂

h
q‖Γ ⩽ ch

k+
1

2 ‖�k+1
x

q‖,
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where the positive constant c is not dependent on h, solely depending on q, and D may be 
� or Kj(t).

From [24], we have the following lemmas on the time-dependent projections.

Lemma 8  Let � ∈ W1,∞(0,T;H1(�)) . Then, it holds that

Lemma 9  Let u ∈ L2(�) and vh ∈ Vh ,  Then, it holds that

Furthermore, to avoid the confusion with different constants, we denote a generic posi-
tive constant by C, which is independent of the numerical solution and the mesh size for 
our problem. But, the constant may be dependent on the exact solution and may have a dif-
ferent value in each occurrence. Moreover, for problems considered in this paper, the exact 
solution is assumed to be smooth with periodic or compactly supported boundary condi-
tions. Therefore, the exact solution is always bounded. We follow the convention [40] to 
refine the nonlinear function f(u) outside their ranges such that the derivatives f �(u), f ��(u) 
become globally bounded functions.

3.2 � L2‑Norm Error Estimate for NC‑NC Scheme (34)

We first state the L2-norm error estimate for the scheme and then give its proof. Similar to 
the LDG method on static grid [35, 38] , we can get the suboptimal error estimate. How-
ever, in the numerical tests we can observe the optimal order of accuracy.

Theorem 1  Let u be the exact solution of problem (1), which is sufficiently smooth with 
bounded derivatives, and f ∈ C3. Assume uh is the ALE-DG approximation of semi-dis-
crete NC-NC scheme (34) with the flux (24) and the approximation space Vh is the space 
consisting of k-th piecewise polynomial (k ⩾ 1). Assuming �xw , w are bounded. Then, it 
holds that

where C is a positive constant independent on h.

Proof  To deal with the nonlinearity of the flux g(u) we want to make a priori assumption.

Assumption 1  For a small enough h, it holds

The priori assumption is unnecessary for linear KdV equations.
By Lemmas 6 and 7, Assumption 1 implies

where eu = uh − u . Notice that the scheme (34) is still satisfied with uh = u, ph = uxx,

qh = ux . Therefore, we have the error equation

(45)�tPh� +��xPh� = Ph(�t�) + Ph(��x�).

(46)(u − Pku, �tvh)j = 0.

(47)‖u(T) − uh(T)‖ ⩽ Ch
k+

1

2 ,

(48)‖u − uh‖ ⩽ h.

(49)‖uh − Phu‖∞ ⩽ ch
1

2 , ‖eu‖∞ ⩽ ch
1

2 ,
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Define eu = uh − u = (uh − P−u) − (u − P−u) = ẽu − P⟂

−
u , ph − p = (ph − Pkp) 

−(p − Pkp) = ẽp − P⟂

k
p , and qh − q = (qh − Pkq) − (q − Pkq) = ẽq − P⟂

k
q . Then taking 

v = ẽu, r = ẽq, z = −ẽp , we have

We know the operators T, L are bilinear. By Lemmas 3, 4, the definition of the projections, 
the right terms RHS of the error (52) become

Furthermore, using Lemma 8, we have

Then, we consider the left term LHS of the error (52),

(50)Nd(u, v) − Nd(uh, v) = T(uh − u, v) + L
(
ph − p, v;

1

2

)
+ (ph − p, r) − L

(
qh − q, r;

1

2

)

(51)+ (qh − q, z) − L
(
uh − u, z; −

1

2

)
.

(52)

Nd(u, ẽu) − Nd(uh, ẽu) = T(ẽu − P⟂

−
u, ẽu) + L

(
ẽp − P⟂

k
p, ẽu;

1

2

)
+ (ẽp − P⟂

k
p, ẽq)

− L
(
ẽq − P⟂

k
q, ẽq;

1

2

)
+ (ẽq − P⟂

k
q,−ẽp) − L

(
ẽu − P⟂

−
u,−ẽp; −

1

2

)
.

(53)

RHS = T(ẽu, ẽu) + L
�
ẽp, ẽu;

1

2

�
+ (ẽp, ẽq) − L

�
ẽq, ẽq,

1

2

�
+ (ẽq,−ẽp)

− L
�
ẽu,−ẽp; −

1

2

�
− T(P⟂

−
u, ẽu) − L

�
P⟂

k
p, ẽu;

1

2

�
− (P⟂

k
p, ẽq)

+ L
�
P⟂

k
q, ẽq;

1

2

�
− (P⟂

k
q,−ẽp) + L

�
P⟂

−
u,−ẽp; −

1

2

�

=
1

2

d

dt
‖ẽu‖2 + 1

2

�
j

[ẽq]
2

j−
1

2

− T(P⟂

−
u, ẽu) +

�
j

((P⟂

k
p)+[ẽu])j− 1

2

−
�
j

((P⟂

k
q)+[ẽq])j− 1

2

.

(54)

T(P⟂

−
u, ẽu) = (𝜕t(P

⟂

−
u), ẽu) + (𝜕x(𝜔P

⟂

−
u), ẽu) −

(
(𝜕x𝜔)

P⟂

−
u

2
, ẽu

)

= (P⟂

−
(𝜕tu + 𝜔𝜕xu) − 𝜔𝜕xP

⟂

−
u, ẽu) + ((𝜕x𝜔)P

⟂

−
u, ẽu) + (𝜔𝜕x(P

⟂

−
u), ẽu) −

(
(𝜕x𝜔)

P⟂

−
u

2
, ẽu

)

= (P⟂

−
(𝜕tu + 𝜔𝜕xu), ẽu) +

1

2
((𝜕x𝜔)P

⟂

−
u, ẽu).

(55)

LHS = Nd(u, ẽu) − Nd(uh, ẽu) = −(g(𝜔, u), 𝜕xẽu)

−
∑
j

(ĝ(w, u)[ẽu])j− 1

2

+
(
(𝜕x𝜔)

u

2
, ẽu

)

+ (g(𝜔, uh), 𝜕xẽu) +
∑
j

(ĝ(𝜔, uh)[ẽu])j− 1

2

−
(
(𝜕x𝜔)

uh

2
, ẽu

)

= −(g(𝜔, u) − g(𝜔, uh), 𝜕xẽu) −
∑
j

((g(𝜔, u) − ĝ(w, uh))[ẽu])j− 1

2

+
1

2
((𝜕xw)(P

⟂

−
u − ẽu), ẽu).
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Therefore, the error (52) becomes

where

Next, the estimates for E1, E2 and E3 are presented in the following, and the proofs are 
given in Appendixes A, B, and C:

Using (56), (58)–(60), we can obtain

which implies

Thus by Gronwall’s inequality, the conclusion in Theorem 1 follows.
To complete the proof we need to justify Assumption 1. Here we use “induction over 

the continuum” in [21]. There are two steps to verify ||u(t) − uh(t)|| ⩽ h for all t ⩽ T  .  

	 I.	 Because uh(0) is the initial projection, we have ||u(0) − uh(0)|| ⩽ Chk+1 < h 
for a small enough h. By the continuity of ||u(t) − uh(t)|| , ∃𝜖 > 0 , such that 
||u(t) − uh(t)|| ⩽ h,∀t ∈ [0, �).

	 II.	 For a small enough h, for any a ⩽ T  , if ||u(t) − uh(t)|| ⩽ h,∀t ∈ [0, a] , we have 
proved that ||u(t) − uh(t)|| ⩽ Ch

k+
1

2 . Again by the continuity of ||u(t) − uh(t)|| , 

(56)
1

2

d

dt
‖ẽu‖2 + 1

2

�
j

[ẽq]
2

j−
1

2

= E1 + E2 + E3,

(57)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E1 = (P⟂

−
(𝜕tu + 𝜔𝜕xu), ẽu) +

1

2
((𝜕x𝜔)P

⟂

−
u, ẽu) −

1

2
((𝜕xw)ẽu, ẽu) −

�
j

((P⟂

k
p)+[ẽu])j− 1

2

+
�
j

((P⟂

k
q)+[ẽq])j− 1

2

,

E2 = −
�
j

((g(𝜔, {uh}) − ĝ(w, uh))[ẽu])j− 1

2

,

E3 = −(g(𝜔, u) − g(𝜔, uh), 𝜕xẽu) −
�
j

((g(𝜔, u) − g(w, {uh}))[ẽu])j− 1

2

.

(58)E1 ⩽ C(h2k+1 + ‖ẽu‖2) + 1

8

�
j

â(ĝ; uh)[ẽu]
2

j−
1

2

+
1

4

�
j

[ẽq]
2

j−
1

2

,

(59)E2 ⩽ ch2k+1 −
3

4

∑
j

(â(ĝ; uh)[ẽu]
2)

j−
1

2

,

(60)

E3 ⩽
1

2

�
j

(â(ĝ; uh)[ẽu]
2)

j−
1

2

+ (c + c(‖ẽu‖∞ + h−1‖eu‖2∞))‖ẽu‖2 + (c + ch−1‖eu‖2∞)h2k+1.

(61)
1

2

d

dt
‖ẽu‖2 + 1

4

�
j

[ẽq]
2

j−
1

2

+
1

8

�
j

â(ĝ; uh)[ẽu]
2

j−
1

2

⩽ c‖ẽu‖2 + ch2k+1,

(62)
1

2

d

dt
‖ẽu‖2 ⩽ c‖ẽu‖2 + ch2k+1.
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||u(t) − uh(t)|| ⩽ Ch
k+

1

2 ,∀t ∈ [0, a] ⇒ ∃b > a, ||u(t) − uh(t)|| ⩽ h,∀t ∈ [0, b) . This 
implies ||u(t) − uh(t)|| ⩽ h,∀t ∈ [0, a] ⇒ ∃b > a, ||u(t) − uh(t)|| ⩽ h,∀t ∈ [0, b).

By those two steps and “induction over the continuum” in [21], we can get 
||u(t) − uh(t)|| ⩽ h,∀t ∈ [0, T].

3.3 � L2‑Norm Error Estimate for C‑NC Scheme (36)

We first state the L2-norm error estimate for C-NC scheme and then give its proof.

Theorem 2  Let u be the exact solution of problem (1), which is sufficiently smooth with 
bounded derivatives. Assume uh is the ALE-DG approximation of the semi-discrete C-NC 
scheme (36) and the approximation space Vh is the space consisting of the k-th piecewise 
polynomial (k ⩾ 1). Assuming �xw , w is bounded. Then, it holds that

where C is a positive constant independent on h.

Proof  Equation (56) is still valid,

(63)‖u(T) − uh(T)‖ ⩽ Chk,

(64)

1

2

d

dt
‖ẽu‖2 + 1

2

�
j

[ẽq]
2

j−
1

2

= (P⟂

−
(𝜕tu + 𝜔𝜕xu), ẽu) +

�
(𝜕x𝜔)P

⟂

−
u, ẽu

�
−

1

2

�
(𝜕xw)ẽu, ẽu

�
−
�
j

((P⟂

k
p)+[ẽu])j− 1

2

+
�
j

((P⟂

k
q)+[ẽq])j− 1

2

− (g(𝜔, u) − g(𝜔, uh), 𝜕xẽu) −
�
j

((g(𝜔, u) − ĝ(w, uh))[ẽu])j− 1

2

= (P⟂

−
(𝜕tu + 𝜔𝜕xu), ẽu) + ((𝜕x𝜔)P

⟂

−
u, ẽu) −

1

2
((𝜕xw)ẽu, ẽu) −

�
j

((P⟂

k
p)+[ẽu])j− 1

2

+
�
j

((P⟂

k
q)+[ẽq])j− 1

2

+ Ncc(u, u; ẽu) − Ncc(uh, uh; ẽu) + (𝜔(u − uh), (ẽu)x)

+
�
j

(𝜔{u − uh}[ẽu])j− 1

2

= (P⟂

−
(𝜕tu + 𝜔𝜕xu), ẽu) + ((𝜕x𝜔)P

⟂

−
u, ẽu) −

1

2
((𝜕xw)ẽu, ẽu) −

�
j

((P⟂

k
p)+[ẽu])j− 1

2

+
�
j

((P⟂

k
q)+[ẽq])j− 1

2

+ Ncc(u, u; ẽu) − Ncc(uh, uh; ẽu) + (𝜔(P⟂

−
u − ẽu), (ẽu)x)

+
�
j

(𝜔{P⟂

−
u − ẽu}[ẽu])j− 1

2

= (P⟂

−
(𝜕tu + 𝜔𝜕xu), ẽu) + ((𝜕x𝜔)P

⟂

−
u, ẽu) + (𝜔P⟂

−
u, (ẽu)x)

+
�
j

((P⟂

k
q)+[ẽq])j− 1

2

−
�
j

((P⟂

k
p)+[ẽu])j− 1

2

+
�
j

(𝜔{P⟂

−
u}[ẽu])j− 1

2

−
1

2
((𝜕xw)ẽu, ẽu) − (𝜔ẽu, (ẽu)x) −

�
j

(𝜔{ẽu}[ẽu])j− 1

2

+ Ncc(u, u; ẽu) − Ncc(uh, uh; ẽu)

= R1 + R2 + R3 + R4 + R5,
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where

By Young’s inequality, Lemma 7, �xw ⩽ c , Lemma 6 and integrating by parts, we have

Next, we estimate the two terms of R5, respectively. By uh = ẽu + P−u , the trilinear prop-
erty of Ncc , Lemmas 5 and 6, we have

Applying Lemma  7 and the smoothness of u, we can get a constant boundary for 
‖�xP−u‖∞ + h−1‖P⟂

−
u‖∞ . Therefore, we have

Then, by using u = P−u + P⟂

−
u , the trilinear property, the symmetry of Ncc , and Lemma 5, 

we also get

Hence, by Lemma 7, the Cauchy-Schwartz inequality, and Lemma 6, it can easily obtain

(65)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R1 = (P⟂

−
(𝜕tu + 𝜔𝜕xu), ẽu) + ((𝜕x𝜔)P

⟂

−
u, ẽu) + (𝜔P⟂

−
u, (ẽu)x),

R2 =
�
j

((P⟂

k
q)+[ẽq])j− 1

2

,

R3 = −
�
j

((P⟂

k
p)+[ẽu])j− 1

2

+
�
j

(𝜔{P⟂

−
u}[ẽu])j− 1

2

,

R4 = −
1

2
((𝜕xw)ẽu, ẽu) − (𝜔ẽu, (ẽu)x) −

�
j

(𝜔{ẽu}[ẽu])j− 1

2

,

R5 = Ncc(u, u; ẽu) − Ncc(uh, uh; ẽu).

(66)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R1 ⩽ c(h2k+2 + ‖ẽu‖2),
R2 ⩽ c(h2k+1) +

1

4

�
j

[ẽq]
2

j−
1

2

,

R3 ⩽ c(h2k + ‖ẽu‖2),
R4 = 0,

R5 = (Ncc(u, u; ẽu) − Ncc(P−u,P−u; ẽu)) + (Ncc(P−u,P−u; ẽu) − Ncc(uh, uh; ẽu)).

(67)

Ncc(P−u,P−u; ẽu) − Ncc(uh, uh; ẽu) = Ncc(P−u,P−u; ẽu) − Ncc(ẽu + P−u, ẽu + P−u; ẽu)

= −Ncc(ẽu, ẽu; ẽu) − Ncc(ẽu,P−u; ẽu) − Ncc(P−u, ẽu; ẽu)

= Ncc(ẽu, ẽu;P−u)

= −(ẽ2
u
, 𝜕xP−u) −

�
j

(f̂ (ẽu, ẽu)[P−u])j− 1

2

⩽ C(‖𝜕xP−u‖∞ + h−1‖P⟂

−
u‖∞)‖ẽu‖2.

(68)Ncc(P−u,P−u; ẽu) − Ncc(uh, uh; ẽu) ⩽ C‖ẽu‖2.

(69)

Ncc(u, u; ẽu) − Ncc(P−u,P−u; ẽu) = Ncc(P−u + P⟂

−
u,P−u + P⟂

−
u; ẽu) − Ncc(P−u,P−u; ẽu)

= Ncc(P−u,P
⟂

−
u; ẽu) + Ncc(P

⟂

−
u,P−u; ẽu) + Ncc(P

⟂

−
u,P⟂

−
u; ẽu)

= 2Ncc(P−u,P
⟂

−
u; ẽu) + Ncc(P

⟂

−
u,P⟂

−
u; ẽu).
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and

Therefore, we have

Furthermore,

Finally, we verify Theorem 2 by Gronwall’s inequality.

4 � Adaptive Moving Meshes

In this section, we discuss the generation of adaptive moving meshes for problem (1). 
That is, we want to put more points in the position where the solution changes greatly. 
We mainly follow Huang et al. [19, 20] and Hong et al. [18]. We firstly denote the refer-
ence domain by [0,1] and the physical domain as � . The mesh transformation from the 
reference domain to the physical domain

can be obtained by the equidistribution principle

where �(x) is the given positive function which depends on the solution, so called the mesh 
density function. We discretize (74) with central difference and Gauss-Seidel iteration

where we denote the value of u in the Kj(tn) by u[n]
j+1

 . Clearly, the mesh depends on the mesh 
density function � . The mesh density function is based on the error indicator �j . Here we 
adopt an indicator with arbitrary higher order derivative for smooth solutions as in [18],

(70)

Ncc(P−u,P
⟂

−
u; ẽu) = −(P−u(P

⟂

−
u), 𝜕xẽu) −

�
j
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⟂

−
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2
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−
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(71)

Ncc(P
⟂

−
u,P⟂

−
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−
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2 ‖ẽu‖.

(72)Ncc(u, u; ẽu) − Ncc(P−u,P−u; ẽu) ⩽ c(h2k + ‖ẽu‖2).

(73)R5 ⩽ c(h2k + ‖ẽu‖2).

x ∶ � ↦ x, [0, 1] ↦ �
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where � is a mesh quality parameter. We may also choose different indicators according to 
different situations.

After we get the initial adaptive mesh, to improve the efficiency we adopt the moving 
mesh partial differential equation (MMPDE) method [19]. In which, the mesh evolves as 
follows:

where the mesh density function is as same as above. For simplicity, we choose the relaxa-
tion time parameter � = 1.

According to this procedure, we can get the mesh which clusteres more grid points to 
the positions where the solution changes greatly. It is noteworthy that we still need a low-
pass filter to improve the mesh smoothness and strict mesh movement restriction to keep 
the stability. The restriction is to adjust repeatedly the adaptive mesh by reducing the time 
step to meet the CFL limit.

5 � Numerical Experiments

The aims of this section are applying the ALE-DG method on moving meshes to verify the 
theoretical analysis. For the following numerical examples, the initial discretization is 
obtained by taking the L2 projection. And we apply the ALE-DG method with the conserv-
ative and dissipative fluxes to the spatial discretization by using Pk polynomials on moving 
meshes, and divide the domain into N intervals. For the time discretization, we adopt the 
fourth-order diagonally implicit-explicit additive Runge-Kutta time method in [23, 34], in 
which the nonlinear term f (u)x is treated explicitly and the linear dispersive term implic-
itly. Thus it results in a linear implicit scheme and the time step can be chosen as Δt
= 0.1h

�(2k+1)
 , where � = max(f �(u) − w) and h = min

1⩽j⩽N
hj(t).

Example 1  Soliton wave solution

We compute the classical soliton solution of the KdV equation

Clearly, the exact solution is

(76)

⎧
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1

2

, t
��2�
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N

N�
j=1

𝜂
[n]

j
,
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[n]

j
) =

�
𝜂̄ + 𝛽min

�
𝜂̄, 𝜂

[n]

j

�
,

(77)
�x

�t
=

1

�

�

��

(
�
�x

��

)
= 0,

(78)

{
ut − 3(u2)x + uxxx = 0,

u(x, 0) = −2sech2(x).
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We simulate this example to time T = 0.5 using the periodic boundary conditions on the 
moving mesh and uniform mesh, respectively. The moving mesh is defined with an initial 
adaptive mesh with � = 10 in (76) on [−15, 17] and the grid velocity w = 4 . The uniform 
mesh is defined with an initial uniform mesh on [−15, 17] and the grid velocity w = 0 . 
Although the exact solution is not periodic, the error produced by the periodic boundary 
is negligible due to the large size of the computational domain. In addition, to perform the 
difference of those schemes, we define several types of ALE-DG schemes according to dif-
ferent fluxes in Table 1.

The L2 and L∞-norm errors for the P1 , P2 and P3 ALE-DG solutions on the moving 
mesh and the uniform mesh are shown in Tables  2, 3, 4, 5 and 6 for the C-C (alter-
nating), C-C (central), HC (alternating), HC (central) and NC-NC types of schemes, 
respectively. From the tables, it verifies the (k + 1)-th order of accuracy for the HC 

(79)u(x, t) = −2sech2(x − 4t).

Table 1   Example 1: ALE-DG 
schemes according to different 
fluxes

Scheme Flux

ĝ p̂ q̂ û

C-C (alternating) −(u+u+ + u
+
u
− + u

−
u
−) − w{u} p

+ {q} u
−

C-C (central) −(u+u+ + u
+
u
− + u

−
u
−) − w{u} {p} {q} {u}

HC (alternating) {−3u2 − wu} {p} q
−

u
+

HC (central) {−3u2 − wu} {p} {q} {u}

NC-NC g(w,u+)+g(w,u−)−�|u+−u−|
2

p
+

q
+

u
−

C-NC −(u+u+ + u
+
u
− + u

−
u
−) − w{u} p

+
q
+

u
−

Table 2   Example 1: the L2 and L∞-norm errors of the C-C (alternating) type of ALE-DG solutions on the 
uniform and the moving meshes at T = 0.5

N Uniform mesh Moving mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

P
1 20 1.31E+00 – 1.11E+00 – 2.63E−01 – 1.70E−01 –

40 5.80E−01 1.18 3.51E−01 1.66 9.24E−02 1.51 5.89E−02 1.52
80 2.67E−01 1.12 1.38E−01 1.34 4.15E−02 1.15 1.71E−02 1.78
160 1.32E−01 1.02 5.49E−02 1.33 2.02E−02 1.04 7.50E−03 1.19
320 6.56E−02 1.00 2.36E−02 1.22 1.02E−02 0.99 3.80E−03 0.98

P
2 20 4.15E−01 – 3.79E−01 – 1.32E−01 – 9.90E−02 –

40 7.94E−02 2.39 9.37E−02 2.02 3.35E−03 5.31 6.15E−03 4.01
80 3.47E−03 4.52 1.01E−02 3.21 3.98E−04 3.07 6.36E−04 3.28
160 3.75E−04 3.21 1.07E−03 3.25 4.82E−05 3.05 7.71E−05 3.04
320 4.67E−05 3.01 1.36E−04 2.97 5.71E−06 3.08 9.85E−06 2.97

P
3 20 9.74E−02 – 1.16E−01 – 4.50E−03 – 3.96E−03 –

40 8.15E−03 3.58 1.37E−02 3.09 5.08E−04 3.15 3.34E−04 3.56
80 9.44E−04 3.11 1.31E−03 3.38 6.89E−05 2.88 4.02E−05 3.06
160 1.21E−04 2.97 1.11E−04 3.57 1.03E−05 2.75 5.90E−06 2.77
320 1.52E−05 2.99 1.11E−05 3.32 1.70E−06 2.59 9.66E−07 2.61
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Table 3   Example 1: the L2 and L∞-norm errors of the C-C (central) type of ALE-DG solutions on the uni-
form and the moving meshes at T = 0.5

N Uniform mesh Moving mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

P
1 20 8.32E−01 – 8.91E−01 – 5.51E−01 – 5.94E−01 –

40 5.71E−01 0.54 6.06E−01 0.56 2.95E−01 0.90 2.59E−01 1.20
80 3.43E−01 0.73 4.01E−02 0.60 1.49E−01 0.99 1.35E−01 0.94 
160 1.78E−01 0.95 2.02E−01 0.99 7.55E−02 0.98 6.69E−02 1.01
320 8.95E−02 0.99 9.78E−02 1.05 3.77E−02 1.00 3.35E−02 1.00

P
2 20 3.30E−01 – 2.40E−01 – 1.10E−01 – 9.18E−02 –

40 1.35E−01 1.29 2.10E−01 0.19 7.25E−03 3.92 7.00E−03 3.71
80 5.50E−03 4.62 1.06E−02 4.32 8.70E−04 3.06 9.00E−04 2.96
160 2.27E−04 4.60 5.90E−04 4.16 1.14E−04 2.93 1.17E−04 2.94
320 2.72E−05 3.06 6.92E−05 3.09 1.44E−05 2.98 1.48E−05 2.98

P
3 20 1.54E−01 – 1.98E−01 – 1.06E−02 – 7.45E−03 –

40 1.46E−02 3.40 2.00E−02 3.31 1.06E−03 3.32 8.52E−04 3.13
80 1.42E−03 3.36 1.71E−03 3.54 1.32E−04 3.00 9.78E−05 3.12
160 1.85E−04 2.94 2.27E−04 2.91 1.67E−05 2.99 1.32E−05 2.88
320 2.35E−05 2.98 2.97E−05 2.94 2.10E−06 2.99 1.74E−06 2.93

Table 4   Example 1: the L2 and L∞-norm errors of the HC (alernating) type of ALE-DG solutions on the 
uniform and the moving meshes at T = 0.5

N Uniform mesh Moving mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

P
1 20 2.74E+00 – 1.95E+00 – 8.00E−02 – 1.17E−01 –

40 1.12E+00 1.29 9.31E−01 1.07 3.25E−02 1.30 5.76E−02 1.02
80 6.21E−02 4.17 1.06E−01 3.13 7.58E−03 2.10 1.77E−02 1.70
160 1.33E−02 2.22 2.51E−02 2.08 1.55E−03 2.29 3.51E−03 2.34
320 3.16E−03 2.07 6.32E−03 1.99 4.08E−04 1.93 9.44E−04 1.89

P
2 20 4.28E+00 – 2.96E+00 – 1.62E−02 – 3.06E−02 –

40 5.80E−02 6.21 4.05E−02 6.19 1.93E−03 3.07 3.35E−03 3.19
80 2.42E−03 4.58 5.06E−03 3.00 1.98E−04 3.29 3.46E−04 3.27
160 2.80E−04 3.11 6.37E−04 2.99 2.47E−05 3.00 4.34E−05 2.99
320 3.50E−05 3.00 8.07E−05 2.98 3.08E−06 3.00 5.50E−06 2.98

P
3 20 1.15E−01 – 6.45E−02 – 1.75E−03 – 1.69E−03 –

40 3.60E−03 5.00 3.49E−03 4.21 1.33E−04 3.71 1.26E−04 3.75
80 1.70E−04 4.41 3.55E−04 3.30 8.96E−06 3.90 8.47E−06 3.89
160 1.00E−05 4.08 2.16E−05 4.04 4.68E−07 4.26 5.18E−07 4.03
320 6.29E−07 4.00 1.43E−06 3.91 3.16E−08 3.89 3.77E−08 3.78
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Table 5   Example 1: the L2 and L∞-norm errors of the HC (central) type of ALE-DG solutions on the uni-
form and the moving meshes at T = 0.5

N Uniform mesh Moving mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

P
1 20 5.09E−01 – 6.56E−01 – 2.32E−01 – 2.46E−01 –

40 1.78E−01 1.52 1.85E−01 1.83 9.24E−02 1.33 1.33E−01 0.89
80 9.97E−02 0.83 1.14E−01 0.71 4.18E−02 1.14 4.68E−02 1.50
160 4.56E−02 1.13 5.12E−02 1.15 2.28E−02 0.88 2.72E−02 0.78
320 2.01E−02 1.18 1.98E−02 1.37 1.12E−02 1.02 1.25E−02 1.12

P
2 20 1.13E+00 – 1.35E+00 – 1.23E−01 – 1.50E−01 –

40 8.81E−02 3.69 7.37E−02 4.20 1.52E−03 6.34 2.95E−03 5.67
80 3.02E−03 4.87 6.12E−03 3.59 1.96E−04 2.96 3.91E−04 2.91
160 2.26E−04 3.74 5.89E−04 3.38 2.50E−05 2.97 4.99E−05 2.97
320 2.72E−05 3.06 6.92E−05 3.09 3.19E−06 2.97 6.30E−06 2.98

P
3 20 1.15E−01 – 8.21E−02 – 1.78E−03 – 2.35E−03 –

40 2.90E−03 5.30 5.04E−03 4.03 2.11E−04 3.07 2.68E−04 3.13
80 2.51E−04 3.53 5.14E−04 3.29 2.45E−05 3.11 3.29E−05 3.03
160 3.21E−05 2.97 7.85E−05 2.71 3.52E−06 2.80 4.68E−06 2.81
320 4.37E−06 2.87 8.87E−06 3.15 4.91E−07 2.84 5.34E−07 3.13

Table 6   Example 1: the L2 and L∞-norm errors of the NC-NC type of ALE-DG solutions on the uniform 
and the moving meshes at T = 0.5

N Uniform mesh Moving mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

P
1 20 9.35E−01 – 7.80E−01 – 1.96E−01 – 2.13E−01 –

40 3.30E−01 1.50 2.91E−01 1.42 3.77E−02 2.38 4.40E−02 2.28
80 6.96E−02 2.25 8.21E−02 1.83 7.55E−03 2.32 1.41E−02 1.64
160 1.22E−02 2.52 1.89E−02 2.12 1.75E−03 2.11 3.97E−03 1.83
320 2.50E−03 2.28 5.78E−03 1.71 4.29E−04 2.03 1.04E−03 1.93

P
2 20 2.27E−01 – 1.91E−01 – 1.53E−02 – 2.71E−02 –

40 2.85E−02 2.99 3.51E−02 2.44 2.01E−03 2.93 4.45E−03 2.61
80 2.95E−03 3.27 8.27E−03 2.09 2.59E−04 2.95 5.88E−04 2.92
160 3.70E−04 3.00 1.05E−03 2.98 3.27E−05 2.99 7.37E−05 2.99
320 4.65E−05 2.99 1.40E−04 2.95 4.10E−06 3.00 9.23E−06 3.00

P
3 20 6.01E−02 – 6.60E−02 – 1.89E−03 – 4.59E−03 –

40 3.60E−03 4.06 1.15E−02 2.51 1.38E−04 3.78 2.84E−04 4.02
80 2.26E−04 4.00 9.21E−04 3.65 9.26E−06 3.89 2.00E−05 3.83
160 1.45E−05 3.96 5.65E−05 4.03 5.91E−07 3.97 1.45E−06 3.78
320 9.12E−07 3.99 3.74E−06 3.92 3.71E−08 3.99 1.00E−07 3.86
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Table 7   Example 1: the L2 and L∞-norm errors of the NC-NC type of ALE-DG solutions on the uniform 
and adaptive meshes at T = 0.5

N Uniform mesh Adaptive mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

P
1 20 9.35E−01 – 7.80E−01 – 2.07E−01 – 2.24E−01 –

40 3.30E−01 1.50 2.91E−01 1.42 3.73E−02 2.47 4.14E−02 2.44
80 6.96E−02 2.25 8.21E−02 1.83 7.54E−03 2.31 1.24E−02 1.74
160 1.22E−02 2.52 1.89E−02 2.12 1.73E−03 2.12 3.39E−03 1.87
320 2.50E−03 2.28 5.78E−03 1.71 4.20E−04 2.04 8.90E−04 1.92

P
2 20 2.27E−01 – 1.91E−01 – 1.64E−02 – 3.06E−02 –

40 2.85E−02 2.99 3.51E−02 2.44 2.48E−03 2.72 4.83E−03 2.66
80 2.95E−03 3.27 8.27E−03 2.09 3.10E−04 2.98 5.13E−04 3.24
160 3.70E−04 3.00 1.05E−03 2.98 3.92E−05 3.00 6.72E−05 2.93
320 4.65E−05 2.99 1.40E−04 2.95 4.95E−06 2.99 8.36E−06 3.01

P
3 20 6.01E−02 – 6.60E−02 – 1.98E−03 – 4.57E−03 –

40 3.60E−03 4.06 1.15E−02 2.51 2.39E−04 3.05 4.55E−04 3.33
80 2.26E−04 4.00 9.21E−04 3.65 2.05E−05 3.55 5.12E−05 3.15
160 1.45E−05 3.96 5.65E−05 4.03 1.26E−06 4.02 3.04E−06 4.08
320 9.12E−07 3.99 3.74E−06 3.92 7.89E−08 4.00 1.75E−07 4.11

Table 8   Example 1: the L2 and L∞-norm errors of the C-NC type of ALE-DG solutions on the uniform and 
adaptive meshes at T = 0.5

N Uniform mesh Adaptive mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

P
1 20 8.10E−01 – 8.57E−01 – 1.38E−01 – 1.64E−01 –

40 2.02E−01 2.00 2.61E−01 1.71 2.92E−02 2.24 5.09E−02 1.68
80 4.34E−02 2.22 8.04E−02 1.70 6.87E−03 2.09 1.40E−02 1.87
160 9.72E−03 2.16 2.35E−02 1.77 1.68E−03 2.03 3.57E−03 1.97
320 2.35E−03 2.05 6.32E−03 1.90 4.16E−04 2.01 9.15E−04 1.96

P
2 20 1.84E−01 – 1.47E−01 – 1.64E−02 – 3.49E−02 –

40 3.13E−02 2.56 4.52E−02 1.70 2.48E−03 2.73 4.83E−03 2.85
80 2.95E−03 3.41 8.42E−03 2.43 3.14E−04 2.99 5.13E−04 3.24
160 3.71E−04 2.99 1.06E−03 2.99 3.93E−05 3.00 6.72E−05 2.93
320 4.65E−05 3.00 1.36E−04 2.97 4.95E−06 2.99 8.36E−06 3.01

P
3 20 6.26E−02 – 6.17E−02 – 2.01E−03 – 4.65E−03 –

40 3.88E−03 4.01 1.20E−02 2.36 2.40E−04 3.07 4.56E−04 3.35
80 2.28E−04 4.09 9.28E−04 3.70 2.05E−05 3.55 5.12E−05 3.15
160 1.45E−05 3.97 5.66E−05 4.03 1.27E−06 4.02 3.04E−06 4.08
320 9.12E−07 3.99 3.74E−06 3.92 7.89E−08 4.00 1.75E−07 4.11
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(alternating) and NC-NC types of ALE-DG solutions both on the uniform and the mov-
ing meshes. We can only get the k-th order of accuracy for the C-C (alternating), C-C 
(central), and HC (central) types of ALE-DG solutions both on the uniform and the 
moving meshes when k is odd. For the same mesh size N of all those schemes, the error 
of the ALE-DG solution on the moving mesh is much smaller than that on the uni-
form mesh because more grid points were put into the area where the solution changes 
quickly. Moreover, the L2 and L∞-norm errors for the P1 , P2 and P3 ALE-DG solutions 
on the adaptive mesh and the uniform mesh are shown in Tables 7 and 8 for the NC-NC 
and C-NC types of schemes, respectively, where the adaptive meshes are obtained by 
Sect. 4. It is also shown that the error of the ALE-DG solution on the moving mesh is 
much smaller than that on the uniform mesh due to the mesh adaption.

Example 2  Nonlinear: cnoidal wave case

We consider the nonlinear KdV equation by setting � = 1∕242 , 

Table 9   Example 2: the L2 and L∞-norm errors of the NC-NC, HC (alternating), C-C (alternating) type of 
P
2 ALE-DG solutions on the uniform and the moving meshes at T = 1

N Uniform mesh Moving mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

NC-NC 20 6.33E−03 – 1.58E−02 – 1.99E−03 – 5.06E−03 –
40 3.85E−04 4.04 1.91E−03 3.05 1.92E−04 3.37 8.08E−04 2.65
80 4.31E−05 3.16 2.72E−04 2.81 2.38E−05 3.01 1.12E−04 2.85
160 5.38E−06 3.00 3.51E−05 2.95 2.99E−06 2.99 1.48E−05 2.92
320 6.73E−07 3.00 4.43E−06 2.99 3.75E−07 3.00 1.90E−06 2.96

HC (alternating) 20 2.32E−03 – 1.06E−02 – 1.25E−03 – 3.99E−03 –
40 2.59E−04 3.16 1.32E−03 3.01 1.48E−04 3.07 5.45E−04 2.87
80 3.24E−05 3.00 1.69E−04 2.96 1.79E−05 3.05 6.70E−05 3.02
160 4.05E−06 3.00 2.11E−05 3.00 2.25E−06 3.00 8.81E−06 2.93
320 5.05E−07 3.00 2.68E−06 2.98 2.82E−07 3.00 1.18E−06 2.90

HC (central) 20 5.45E−03 – 2.36E−02 – 1.48E−03 – 5.76E−03 –
40 2.21E−04 4.62 1.31E−03 4.17 1.24E−04 3.57 5.21E−04 3.47
80 2.54E−05 3.12 1.46E−04 3.16 1.54E−05 3.01 7.05E−05 2.89
160 3.13E−06 3.02 1.79E−05 3.03 1.96E−06 2.98 1.05E−05 2.74
320 3.89E−07 3.01 2.22E−06 3.01 2.34E−07 3.06 1.36E−06 2.96

C-C (alternating) 20 5.99E−03 – 2.18E−02 – 1.91E−02 – 7.02E−02 –
40 3.50E−04 4.10 2.32E−03 3.23 7.78E−03 1.29 2.58E−02 1.44
80 4.33E−05 3.02 2.85E−04 3.02 9.25E−04 3.01 3.14E−03 3.04
160 5.40E−06 3.00 3.55E−05 3.01 1.12E−04 3.04 3.85E−04 3.03
320 3.89E−07 3.79 2.22E−06 4.00 1.39E−05 3.02 4.76E−05 3.01

C-C (central) 20 8.03E−03 – 3.41E−02 – 2.68E−02 – 6.78E−02 –
40 2.24E−04 5.16 1.32E−03 4.70 7.33E−03 1.87 1.74E−02 1.96
80 2.54E−05 3.14 1.46E−04 3.17 9.21E−04 2.99 2.21E−03 2.98
160 3.13E−06 3.02 1.79E−05 3.04 1.15E−04 3.00 2.76E−04 3.00
320 3.89E−07 3.01 2.22E−06 3.01 1.44E−05 3.00 3.43E−05 3.01
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The computational domain is [0,  1], and we use the cnoidal-wave solution to check the 
accuracy. The analytic solution is

where

The function cn(z) = cn(z;m) is the Jacobi elliptic function with modulus m ∈ (0, 1) (see, 
[1]). In the numerical experiment, we take m = 0.9 and K = K(m) is the complete ellip-
tic integral of the first kind. We take the parameter x0 as zero and 1 is the spatial period 

(80)ut +
1

2
(u2)x + �uxxx = 0.

(81)u(x, t) = a cn2(4K(x − vt − x0)),

(82)

{
a = 192m�K2(m),

v = 64�(2m − 1)K2(m).

Table 10   Example 2: the L2 and L∞-norm errors of the NC-NC, HC (alternating), C-C (alternating) type of 
P
2 ALE-DG solutions on the uniform and the moving meshes at T = 10

N Uniform mesh Moving mesh

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

NC-NC 20 4.23E−01 – 7.16E−01 – 1.16E−01 – 1.99E−01 –
40 1.66E−02 4.68 2.85E−02 4.65 4.05E−03 4.84 7.19E−03 4.79
80 5.35E−04 4.95 1.00E−03 4.83 1.31E−04 4.95 2.56E−04 4.81
160 1.76E−05 4.92 4.09E−05 4.62 5.18E−06 4.66 1.65E−05 3.96
320 1.35E−06 3.71 3.60E−06 3.50 3.81E−07 3.76 1.92E−06 3.10

HC (alternating) 20 8.02E−03 – 2.28E−02 – 2.25E−02 – 4.08E−02 –
40 2.61E−04 4.94 1.42E−03 4.01 9.01E−04 4.64 1.77E−03 4.53
80 3.23E−05 3.01 1.68E−04 3.07 3.28E−05 4.78 8.46E−05 4.38
160 4.04E−06 3.00 2.12E−05 2.98 2.36E−06 3.80 9.07E−06 3.22
320 5.22E−07 2.95 2.91E−06 2.87 3.75E−07 2.65 1.58E−06 2.52

HC (central) 20 3.07E−02 – 6.43E−02 – 4.69E−03 – 1.19E−02 –
40 4.13E−04 6.21 1.75E−03 5.20 1.39E−04 5.08 5.67E−04 4.40
80 2.62E−05 3.98 1.52E−04 3.52 1.49E−05 3.22 6.71E−05 3.08
160 3.12E−06 3.07 1.77E−05 3.10 2.03E−06 2.87 8.80E−06 2.93
320 4.16E−07 2.91 1.98E−06 3.16 3.62E−07 2.49 1.22E−06 2.85

C-C (alternating) 20 2.01E−01 – 5.04E−01 – 3.15E−01 – 7.84E−01 –
40 3.81E−04 9.04 2.53E−03 7.64 1.40E−01 1.17 2.95E−01 1.41
80 4.34E−05 3.13 2.87E−04 3.14 1.60E−02 3.13 5.26E−02 2.49
160 5.39E−06 3.01 3.54E−05 3.02 1.47E−03 3.45 4.89E−03 3.43
320 8.12E−07 2.73 5.09E−06 2.80 1.58E−04 3.22 5.25E−04 3.22

C-C (central) 20 5.50E−02 – 1.06E−01 – 4.59E−01 – 1.07E+00 –
40 5.01E−04 6.78 1.89E−03 5.81 8.15E−02 2.49 2.31E−01 2.21
80 2.66E−05 4.23 1.54E−04 3.61 9.22E−03 3.14 2.22E−02 3.37
160 3.12E−06 3.09 1.78E−05 3.12 1.15E−03 3.00 2.69E−03 3.05
320 4.15E−07 2.91 1.98E−06 3.16 1.44E−04 3.00 3.36E−04 3.00
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of the solution. The moving mesh is defined with an initial adaptive mesh with � = 4 in 
(76) on [0,  1] and the grid velocity w = v . The L2 and L∞-norm errors of the NC-NC, 
HC(alternating), HC(central), C-C(alternating), and C-C(central) type of P2 ALE-DG 
solutions on the static uniform and the moving meshes are shown in Table 9 at T = 1 and 
Table 10 at T = 10 , respectively. We can get the optimal order convergence for the ALE-
DG solution on both meshes. Besides, for NC-NC and HC type of schemes, the errors 
on the moving mesh are smaller than that on the static uniform mesh. For the long time 
simulation, the adaptive moving mesh can help the dissipative NC-NC scheme to reduce 
the phase error in Fig. 1. For the HC schemes, especially HC (central) scheme, the adaptive 
moving mesh works quite well, which does not suffer the artificial oscillations, as shown 
in Figs. 2 and 3. For the C-C (alternating) scheme, the situation is exactly the opposite. It 
may be due to the lack of damping mechanism in the L2 energy conservative C-C schemes, 
which leads to the artificial oscillations increasing with time evolution, see also Figs. 4, 5 

Fig. 1   Example 2: the NC-NC type of ALE-DG solutions u with N = 40 , P2 polynomial at T = 100 on the 
static uniform mesh (left) and the moving mesh (right), respectively

Fig. 2   Example 2: the HC (alternating) type of ALE-DG solutions u with N = 40 , P2 polynomial at 
T = 100 on the static uniform mesh (left) and the moving mesh (right), respectively
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and 6 for long time simulations. And these artificial oscillations could be amplified by the 
mesh movement, see Figs. 5 and 7.

6 � Concluding Remarks

In this paper, we developed and analyzed the conservative and dissipative ALE-DG 
methods to solve KdV type equations. We also investigated the L2-norm error esti-
mates for two dissipative schemes. Numerically, we demonstrated the stability and the 
accuracy of different ALE-DG solutions in accordance with the theoretical analysis. 
These results also show that the ALE-DG method has better performance on adaptive 
moving meshes than static meshes.

Fig. 3   Example 2: the HC (central) type of ALE-DG solutions u with N = 40 , P2 polynomial at T = 100 on 
the static uniform mesh (left) and the moving mesh (right), respectively

Fig. 4   Example 2: the C-C (alternating) type of ALE-DG solutions u with N = 40 , P2 polynomial on the 
static uniform mesh at T = 100 (left) and T = 200 (right), respectively
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Appendix A Proof of the Estimate (58)

First, we give the estimate of E1 by Young’s inequality and Lemma 7.

Fig. 5   Example 2: the C-C (alternating) type of ALE-DG solutions u with N = 40 , P2 polynomial at 
T = 200 on the mesh with static non-uniform mesh, w = 0 (left) and the moving uniform mesh, w = v 
(right), respectively

Fig. 6   Example 2: the C-C (central) type of ALE-DG solutions u with N = 40 , P2 polynomial on the static 
uniform mesh at T = 100 (left) and T = 200 (right), respectively
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Appendix B Proof of the Estimate (59)

By Lemma 2 and Young’s inequality, we have

(A1)

E1 ⩽ ‖P⟂

−
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2
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+ C‖P⟂

k
p‖Γ

��
j

(â
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Fig. 7   Example 2: the C-C (central) type of ALE-DG solutions u with N = 40 , P2 polynomial at T = 300 
on the mesh with initial adaptive mesh, w = 0 (left) and T = 200 with initial uniform mesh, w = v (right), 
respectively
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Appendix C Proof of the Estimate (60)

We mainly refer the work [35] to estimate (60). We first use the Taylor expansions and 
eu = uh − u = ẽu − P⟂

−
u , 

where g�(u), g��(u) are the derivatives of g(w,  u) to the variable u and g′′′
u
, g̃′′′

u
 are the 

mean values. In fact, g�(u) = f �(u) − w, g��(u) = f ��(u) . Then, we have the following 
representation:

where

After integration by parts, we can easily get

We rewrite �2 as

By the definition of the projection, the second term of the equation is zero. And we  
also have |g�(u) − g�(uj)| = O(h), uj = u(xj) because g��(u) = f ��(u) is bounded. Then by the  
Cauchy-Shwartz inequality and Lemma 7, we have �((g�(u) − g

�(u
j
))P⟂
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u, 𝜕

x
ẽ
u
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+ c‖ẽ

u
‖2 . For the third term, by Taylor’s expansion,
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�
j
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1

2

�
j

(g��(u){P⟂

−
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u, 𝜕xẽu) −

∑
j

(g�(u){P⟂

−
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Then, by the inequality (23), we have

Hence by Young’s inequality and the boundedness of â(ĝ; uh) , we get

Now, we can obtain the estimate of �2,

Next, we estimate �3 . After integration by parts, we have

By Taylor’s expansion, the inequality (23), and Lemma 7, we have

Then, by Lemma 6, we have

By Young’s inequality, Lemmas 7 and 6, we have

Therefore, we complete the esitmate.
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3

�
j
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−
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