
Computers and Fluids 244 (2022) 105584

A
0

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

A simplified multilayer perceptron detector for the hybrid WENO scheme
Zhengyang Xue a,b, Yinhua Xia a,∗, Chen Li b,∗, Xianxu Yuan b

a School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
b State Key Laboratory of Aerodynamics, Mianyang, Sichuan 621000, PR China

A R T I C L E I N F O

Keywords:
Hybrid WENO scheme
Multilayer perceptron
Smoothness detector
Euler equations

A B S T R A C T

This paper develops a Multilayer Perceptron (MLP) smoothness detector for the hybrid WENO scheme. Since the
MLP detector contains nonlinear activation functions and large matrix operators, we analyze and reduce it to a
simplified MLP (SMLP) detector for efficiency. In the hybrid WENO scheme, both detectors can be adopted to
identify whether the reconstruction stencil is a smooth region or not. To improve the spectral resolution of the
hybrid scheme, a high-frequency region is introduced. Thus, the high order linear reconstruction, WENO type
reconstruction, and blending reconstruction are performed on the smooth, non-smooth, and high-frequency
regions. Numerical tests and comparisons for Euler equations are presented to demonstrate the robustness and
performance of the hybrid scheme and the efficiency of the simplified MLP detector.
1. Introduction

High-fidelity numerical methods are widely used in fluid dynamics
nowadays [1,2], such as the discontinuous Galerkin methods [3–5] and
the weighted essentially non-oscillatory (WENO) schemes [6,7]. In par-
ticular, the WENO scheme can provide numerical solutions with high
order accuracy in the smooth region and essentially non-oscillatory
(ENO) property near discontinuity, which makes it a popular choice
for simulating supersonic or hypersonic flows.

However, the original WENO scheme has at least two drawbacks,
i.e., order-degradation near the critical points and over-dissipation
for the scale-resolved simulations. To overcome the former defect, a
specific uniform function [8] was used to map the original nonlinear
weights to the new ones. Besides, Borges et al. [9] introduced a
global smoothness indicator to reformulate the nonlinear weighting
procedure, named WENOZ. To cover the latter deficiency, adding a
downwind candidate stencil, which results in a central-type scheme, is
a common strategy to enhance the spectral resolution of the scheme.
Martín et al. [10] and Sun et al. [11] devised central-type schemes
with bandwidth optimization and minimizing the dissipation for direct
numerical simulation of compressible turbulence. Hu et al. [12], and
Li et al. [13] proposed the central-type WENO schemes by improving
the global smoothness indicators, which results in good enhancements
in the turbulent simulations. Additionally, a symmetric sixth-order
targeted ENO scheme [14] with the idea of excluding the less smooth
sub-stencils, was applied to the turbulent channel flow [15].

Besides, the hybrid WENO scheme is an alternative remedy for the
shortcomings of the original WENO scheme. One of the key elements
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of the hybrid WENO scheme is the discontinuity indicator, which
greatly influences the performance of the corresponding hybrid scheme.
Taking the compact-WENO scheme [16] as an example, a low thresh-
old of the density-based indicator yields over-dissipative for smooth
regions, whereas a high value may affect the robustness of shock-
capturing. Apart from the feature-based discontinuity indicators [17,
18], many indicators are in cooperation with the WENO schemes. Zhao
et al. [19] devised a discontinuity indicator based on the divergence
between the nonlinear weights and ideal weights. Hill et al. [20], Liu
et al. [21] and Li et al. [13] proposed the indicators based on dif-
ferent functions of smoothness measurements, respectively. Moreover,
comparisons of the performances of the hybrid WENO schemes were
presented [22] using nine limiter-based indicators from discontinuous
Galerkin (DG) methods. The numerical tests in Refs. [13,17–21] demon-
strated that the hybrid scheme is a practical strategy to get a balance
between high accuracy for multi-scale flow structures and robustness
for shock capturing. However, the parameters or the thresholds in
most of the indicators above are full of empiricism, even artificially
set case-by-case.

Machine learning (ML) is an emerging tool to tackle this issue, and
it has made significant developments in fluid mechanics [23] recently.
In particular, some progress was made by incorporating ML-based
shock detection techniques into the high-fidelity numerical methods.
Wen et al. [24] proposed an artificial neural network (ANN) edge
detector and developed a hybrid fifth-order Compact-WENO finite dif-
ference scheme. Sun et al. [25] trained a convolution neural network
(CNN)-based discontinuity indicator and combined the WENO scheme
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with a six-order central difference scheme. Besides, more ML-based
indicators are proposed in the DG method for solving nonlinear hy-
perbolic conservation laws. Feng et al. [26] presented a characteristic-
featured indicator on the structured mesh by training an artificial
neuron without activation function in the hidden layer and extended
it to unstructured mesh later [27]. Ray and Hesthaven [28] proposed
an indicator by training a specific type of ANN, known as a multilayer
perceptron (MLP), with five hidden layers, and a minor architecture
was further adopted in Ref. [29] for unstructured meshes in two
dimensions. To enhance the performance of the limiter-based indicator,
Yu and Shu [30] developed a TVB constant MLP-based estimator with
automatically selecting M in the TVB limiter, other than the classical
choice through trial and error. Another troubled-cell indicator was
proposed [31] using K-means clustering with the KXRCF indication
variable and obtained better performance compared with the original
KXRCF limiter. Apart from using the limiters to control spurious oscil-
lations near the discontinuities, Discacciati et al. [32] developed the
artificial viscosity method with an MLP-based indicator, which also
outperforms the classical artificial viscosity models. The ML-indicators’
advantage over traditional counterparts is that they do not contain any
problem-independent parameters. In contrast, most of them are used as
black boxes, and the neural networks are of high complexity and lack
interpretability.

Inspired by the above works, we aim to construct a simple MLP-
based ‘‘smoothness’’ detector for the hybrid WENO scheme. The net-
work is trained offline using a supervised learning strategy. And we
analyze and simplify the MLP detector for efficiency. Then, both the
MLP detector and the simplified one are adopted in the hybrid scheme
by separating the troubled stencil from the numerical solution. In the
hybrid strategy [33], the troubled stencil is further labeled as a high-
frequency or non-smooth stencil to enhance the performance of the
hybrid scheme. Thus, the high-order linear, WENO-type, and blending
reconstructions are performed on the smooth, non-smooth, and high-
frequency regions, respectively. The new hybrid WENO schemes have
high resolution and robustness for various flows with shock waves.

The remainder of this paper is organized as follows. In Section 2, we
briefly review the finite difference WENO scheme and the framework of
the hybrid WENO scheme. The algorithm of the MLP-based smoothness
detector and the expression of the simplified MLP (SMLP) detector are
described in Section 3. Numerical examples for Euler equations with
shock waves are provided in Section 4 to demonstrate the capability of
the efficiency of the detectors and the high fidelity of the new hybrid
scheme. Conclusions are given in Section 5.

2. Finite difference WENO method for hyperbolic conservation
laws

This section will briefly review the finite difference WENO method
for hyperbolic conservation laws and the hybrid approach. We will
mainly focus on the most popular fifth-order scheme to illustrate the
procedure.

2.1. Finite difference WENO method for conservation laws

Consider the following scalar conservation law:
{

𝑢𝑡 + 𝑓 (𝑢)𝑥 = 0, 𝑥 ∈ [𝑎, 𝑏],

𝑢(𝑥, 0) = 𝑢0(𝑥),
(2.1)

with the periodic boundary condition for simplicity. On a uniform grid
𝑎 = 𝑥 1

2
< 𝑥 3

2
< ⋯ < 𝑥𝑁+ 1

2
= 𝑏, define mesh size 𝛥𝑥 = 𝑥𝑗+ 1

2
− 𝑥𝑗− 1

2
, a

emidiscrete conservative high-order finite difference scheme of (2.1)
s
𝑑 𝑢𝑗 +

1
(

𝑓 1 − 𝑓 1

)

= 0, (2.2)
2

𝑑𝑡 𝛥𝑥 𝑗+ 2 𝑗− 2
where 𝑢𝑗 is an approximation to the point value 𝑢(𝑥𝑗 , 𝑡), and the
umerical flux 𝑓𝑗+ 1

2
= 𝑓

(

𝑢𝑗−𝑟,… , 𝑢𝑗+𝑠
)

is designed to approximate the
sliding function ℎ(𝑥𝑗+ 1

2
) to a high-order accuracy which is defined by

1
𝛥𝑥 ∫

𝑥+ 𝛥𝑥
2

𝑥− 𝛥𝑥
2

ℎ(𝜉)𝑑𝜉 = 𝑓 (𝑢(𝑥)). (2.3)

In order to ensure stability, the flux splitting approach is used to
divide the flux into positive and negative parts 𝑓𝑗+ 1

2
= 𝑓+

𝑗+ 1
2

+ 𝑓−
𝑗+ 1

2

,
e.g. the Lax–Friedrichs flux splitting as follows

𝑓±(𝑢) = 1
2
(𝑓 (𝑢) ± 𝛼𝑢), 𝛼 = max

𝑢
|

|

𝑓 ′(𝑢)|
|

. (2.4)

The basic idea of the WENO method is to use the smoothness
ndicators to automatically select the weight of sub-stencils and then
um them to avoid oscillation. In the fifth-order WENOJS method [7],
he numerical flux 𝑓+

𝑗+ 1
2

is reconstructed by

𝑓+
𝑗+ 1

2

= 𝜔0𝑞0 + 𝜔1𝑞1 + 𝜔2𝑞2, (2.5)

here 𝑞𝑘 is the value at 𝑥𝑗+ 1
2

obtained by low-order reconstruction on
each sub-stencil,

𝑞0 =
1
3
𝑓+
𝑗−2 −

7
6
𝑓+
𝑗−1 +

11
6
𝑓+
𝑗 , (2.6)

𝑞1 = −1
6
𝑓+
𝑗−1 +

5
6
𝑓+
𝑗 + 1

3
𝑓+
𝑗+1, (2.7)

2 =
1
3
𝑓+
𝑗 + 7

6
𝑓+
𝑗+1 −

1
6
𝑓+
𝑗+2. (2.8)

And the nonlinear weights 𝜔𝑘 are obtained by

𝜔𝑘 =
𝛼𝑘

∑2
𝑙=0 𝛼𝑙

, with 𝛼𝑘 =
𝑑𝑘

(

𝜀 + 𝛽𝑘
)2

, 𝑘 = 0, 1, 2, (2.9)

with the smoothness indicators 𝛽𝑘 defined by

𝛽0 =
13
12

(

𝑓+
𝑗−2 − 2𝑓+

𝑗−1 + 𝑓+
𝑗

)2
+ 1

4

(

𝑓+
𝑗−2 − 4𝑓+

𝑗−1 + 3𝑓+
𝑗

)2
, (2.10)

𝛽1 =
13
12

(

𝑓+
𝑗−1 − 2𝑓+

𝑗 + 𝑓+
𝑗+1

)2
+ 1

4

(

𝑓+
𝑗−1 − 𝑓+

𝑗+1

)2
, (2.11)

𝛽2 =
13
12

(

𝑓+
𝑗 − 2𝑓+

𝑗+1 + 𝑓+
𝑗+2

)2
+ 1

4

(

3𝑓+
𝑗 − 4𝑓+

𝑗+1 + 𝑓+
𝑗+2

)2
, (2.12)

and the linear weights, 𝑑0 = 3
10 , 𝑑1 = 3

5 and 𝑑2 = 1
10 . The parameter

𝜀 is taken as 10−6 for example to avoid the denominator being 0. The
reconstruction of 𝑓−

𝑗+ 1
2

is a mirror symmetry to that 𝑓+
𝑗+ 1

2

with respect
to 𝑥𝑗+ 1

2
.

Another popular method is the WENOZ reconstruction [9], which
adopt a global smoothness indicator 𝜏 = |𝛽0 − 𝛽2|, and the new nonlin-
ar weights are as follows

𝑧
𝑘 =

𝛼𝑧𝑘
∑2

𝑙=0 𝛼
𝑧
𝑙

, with 𝛼𝑧𝑘 = 𝑑𝑘

(

1 + 𝜏
𝛽𝑘 + 𝜀

)

, 𝜀 = 10−40, 𝑘 = 0, 1, 2.

(2.13)

For the one-dimensional hyperbolic system

𝒖𝑡 + 𝑭 (𝒖)𝑥 = 𝟎, 𝑥 ∈ [𝑎, 𝑏],

𝒖(𝑥, 0) = 𝒖0(𝑥),
(2.14)

sually the characteristic decomposition is used rather than the
omponent-wise reconstruction in order to make the algorithm more
obust. First, the Roe average [34] is performed to obtain the right
igenvector 𝑹𝑗+ 1

2
, the left eigenvector 𝑹−1

𝑗+ 1
2

and the eigenvalues 𝜦𝑗+ 1
2

of the Jacobian 𝑭 ′(𝑢𝑗+ 1
2
). Transform the conservative variables 𝑼 𝑖+ 1

2
and fluxes 𝑭 𝑖+ 1

2
to the characteristic variables 𝑽 𝑖+ 1

2
and fluxes 𝑮𝑖+ 1

2

by 𝑽 𝑖+ 1
2
= 𝑹−1

𝑗+ 1
2
𝑼 𝑖+ 1

2
and 𝑮𝑖+ 1

2
= 𝑹−1

𝑗+ 1
2
𝑭 𝑖+ 1

2
for 𝑖 in a neighborhood

of 𝑗. Second, adopt WENO reconstruction for each component of the
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⎪

⎨

⎪

characteristic variables to obtain 𝑮±
𝑗+ 1

2

. Then, transform them back into

physical space by using 𝑭 ±
𝑗+ 1

2

= 𝑹𝑗+ 1
2
𝑮±

𝑗+ 1
2

and obtain the numerical

fluxes 𝑭 𝑗+ 1
2
= 𝑭 +

𝑗+ 1
2

+ 𝑭 −
𝑗+ 1

2
.

For multi-dimensional problems, the WENO reconstruction can be
done in a dimension by dimension fashion. After the space is dis-
cretized, the semi-discrete system 𝑢𝑡 = 𝐿(𝑢, 𝑡) can be solved by the
popular strong-stability preserving Runge–Kutta (SSP-RK) method [35],
e.g. the third-order one with given 𝑢𝑛 to obtain 𝑢𝑛+1 by:

⎧

⎪

⎨

⎪

⎩

𝑢(1) = 𝑢𝑛 + 𝛥𝑡𝐿 (𝑢𝑛, 𝑡𝑛) ,
𝑢(2) = 3

4 𝑢
𝑛 + 1

4 𝑢
(1) + 1

4𝛥𝑡𝐿
(

𝑢(1), 𝑡𝑛 + 𝛥𝑡
)

,

𝑢𝑛+1 = 1
3 𝑢

𝑛 + 2
3 𝑢

(2) + 2
3𝛥𝑡𝐿

(

𝑢(2), 𝑡𝑛 + 1
2𝛥𝑡

)

,
(2.15)

where 𝛥𝑡 is a suitable time step. We refer to [36] for more details of
WENO methods for conservation laws.

2.2. Hybrid scheme for conservation laws

For the hybrid scheme, we adopt the approach in [33], which
identifies the stencil into three categories, the smooth stencil, the
non-smooth stencil, and the high-frequency stencil, to achieve better
spectral performance for problems with delicate structures. The fifth-
order linear upwind reconstruction is adopted in the smooth stencil
for the fifth-order scheme. In the non-smooth stencil, a specific WENO
reconstruction is used to achieve the ENO property of the scheme.
If all sub-stencils are not smooth enough, the stencil is marked as a
high-frequency one, and a blending WENO reconstruction is performed.

By some specific smoothness detector, e.g., the MLP detector to
be developed in the following section, we first determine whether
the stencil is smooth. If it is not smooth enough, then the stencil
is distinguished as a high-frequency or non-smooth one as follows.
Calculate the minimum value 𝛽𝐴 of the three smoothness metrics 𝛽0,
1 and 𝛽2. If all sub-stencils contain discontinuities, it can be measured
y 𝛽𝐴 > 𝐶𝛥𝑥, which means it is a high-frequency region. Otherwise,
he stencil contains at least one smooth sub-stencil and is marked as
he non-smooth region.

In the high-frequency stencil, the fifth-order blending WENO re-
onstruction is performed as follows. First, we calculate the smooth-
ess indicator 𝛽𝐿 for the fifth-order linear reconstruction 𝑃 4(𝑥) as the
moothness indicators 𝛽𝑖, 𝑖 = 0, 1, 2 for three sub-stencils

𝐿 =
4
∑

𝑟=1
ℎ2𝑟−1 ∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

(

(

𝑃 4(𝑥)
)(𝑟))2

d𝑥. (2.16)

The blending reconstruction is the convex combination of the linear
reconstruction and the WENO reconstruction with the weights 𝜔𝐿 and
− 𝜔𝐿 respectively. The 𝜔𝐿 is obtained by

𝐿 = min

(

1,
1 +

√

1 + (𝑎 + 1)(𝑄 − 1)
𝑎 + 1

)

, (2.17)

where 𝑎 = 𝛽𝐿
𝛽𝐴

, and 𝑄 is the amplification factor.

. The multilayer perceptron smoothness detector

This section will introduce the multilayer perceptron (MLP) smooth-
ess detector to identify whether the reconstruction stencil is smooth.

.1. Error metrics and the multilayer perceptron architecture

In the fifth-order finite difference WENO scheme, there are five
oints {𝑓𝑖}𝑖=𝑗−2,…,𝑗+2 for each reconstruction. Wen et al. [24] used the
ive points as input to train the artificial neural network. Besides, to
udge a discontinuity should also be related to the mesh size 𝛥𝑥. We
alculate the three error metrics as feature reduction, so the inputs
re reduced from six to four metrics. Taking three-point sub-stencils
3

⎩

Fig. 3.1. The three-point sub-stencils for constructing 𝑃 2
𝐿, 𝑃 2

𝐶 and 𝑃 2
𝑅.

from left to right in turn, we obtain three second degree polynomials,
denoted as 𝑃 2

𝐿, 𝑃 2
𝐶 and 𝑃 2

𝑅, as shown in Fig. 3.1. Then calculate the 𝐿2
error of the two polynomials in [𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
], which gives the following

error metrics 𝐸𝐿𝐶 , 𝐸𝐶𝑅, 𝐸𝐿𝑅,

𝐸𝐿𝐶 = 1
𝛥𝑥

‖

‖

‖

𝑃 2
𝐿(𝑥) − 𝑃 2

𝐶 (𝑥)
‖

‖

‖

2

𝐿2
= 23
960

(

𝑓𝑗−2 − 3𝑓𝑗−1 + 3𝑓𝑗 − 𝑓𝑗+1
)2 , (3.1)

𝐶𝑅 = 1
𝛥𝑥

‖

‖

‖

𝑃 2
𝐶 (𝑥) − 𝑃 2

𝑅(𝑥)
‖

‖

‖

2

𝐿2
= 23
960

(𝑓𝑗−1 − 3𝑓𝑗 + 3𝑓𝑗+1 − 𝑓𝑗+2)2, (3.2)

𝐸𝐿𝑅 = 1
𝛥𝑥

‖

‖

‖

𝑃 2
𝐿(𝑥) − 𝑃 2

𝑅(𝑥)
‖

‖

‖

2

𝐿2
= 1
320

(

−𝑓𝑗−2 + 2𝑓𝑗−1 − 2𝑓𝑗+1 + 𝑓𝑗+2
)2

+ 1
48

(

𝑓𝑗−2 − 4𝑓𝑗−1 + 6𝑓𝑗 − 4𝑓𝑗+1 + 𝑓𝑗+2
)2 .

(3.3)

The expansions of formula (3.1) to (3.3) in Taylor series at 𝑥𝑗 are

𝐸𝐿𝐶 = 23
960

(

𝑓 (3)
𝑗

)2
𝛥𝑥6 + (𝛥𝑥7), (3.4)

𝐶𝑅 = 23
960

(

𝑓 (3)
𝑗

)2
𝛥𝑥6 + (𝛥𝑥7), (3.5)

𝐸𝐿𝑅 = 1
80

(

𝑓 (3)
𝑗

)2
𝛥𝑥6 + (𝛥𝑥7), (3.6)

hen the function 𝑓 (𝑥) is sufficiently smooth.
Here we introduce the MLP architecture as in Fig. 3.2, a fully

onnected neural network with four inputs, one hidden layer and two
utputs. Based on a prior information, we choose three error metrics
𝐿𝐶 , 𝐸𝐶𝑅, 𝐸𝐶𝑅 and mesh size 𝛥𝑥 as inputs to judge whether the stencil

s good. The hidden layer contains 256 neurons, and rectified linear
nit ReLU(𝑥) = max(𝑥, 0) is chosen as the activation function to achieve
onlinearity. In the outputs layer, softmax function Softmax(𝑥) =
𝑒𝑥𝑖

∑𝑛
𝑗=1 𝑒

𝑥𝑗 is chosen as the activation function to obtain the probability

of smooth stencil 𝑦̂0 and troubled stencil 𝑦̂1. We use label to represent
the classification result, and
{

𝑦̂0 > 𝑦̂1 ⇒ label = 0, smooth stencil,
𝑦̂0 < 𝑦̂1 ⇒ label = 1, troubled-stencil.

(3.7)

.2. Construction of the training sets and validation sets

Inspired by the work of Sun et al. [25], the numerical solution is a
ittle different from the exact solution because of numerical dissipation
r spurious oscillation, especially near the discontinuities. Two differ-
nt strategies are used to generate the data sets. One is related to the
umerical methods, and the other is the artificially constructed function
lass. For simplicity of presentation, we denote by 𝑎 ∼ 𝑈 (𝐷) if 𝑎 is a
andom variable with a uniform distribution on 𝐷.

First, we generate the data for the training sets T of troubled sten-
ils. Consider the following one-dimensional linear advection equation

𝑢𝑡 + 𝑎𝑢𝑥 = 0, 𝑥 ∈ [−1, 1],

𝑢(𝑥, 0) =

{

0, 𝑥 < 0, (3.8)

𝑢𝑅, 𝑥 > 0.
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Fig. 3.2. The MLP architecture.
𝑓

where the advection coefficient 𝑎 ∼ 𝑈 ({−1, 1}), and the initial jump
𝑢𝑅 ∈ [−1, 1]. It is easy to obtain the exact solution is 𝑢(𝑥, 𝑇 ) = 𝑢(𝑥− 𝑎𝑇 )
and the discontinuity is located at 𝑥0 = 𝑎𝑇 at time 𝑡 = 𝑇 . Here
the time is chosen as 𝑇 = 𝑁𝑡

𝛥𝑥
6 , where the number of time step

𝑡 ∼ 𝑈 ({1, 2, 3, 4}) and the mesh sizes 𝛥𝑥 ∈ [0.001, 0.1]. Three sets of
solutions are obtained by the following methods:

(1) the fifth-order linear upwind finite difference method with the
third-order SSP-RK method,

(2) the fifth-order finite difference WENOJS method with the third-
order SSP-RK method,

(3) the exact solution formula.

We only retain the stencils that contain discontinuities in each set of
solutions.

Next, we generate the data for the training sets T of smooth stencil.
The smooth stencil data consists of random polynomial series

𝑃 𝑘(𝑥) =
𝑘
∑

𝑛=0
𝑎𝑛𝑥

𝑛, 𝑥 ∈ [−2, 2], (3.9)

where 𝑘 ∼ 𝑈 ({2, 3, 4, 5}) and 𝑎𝑛 are independent and identically
istributed random variables. The mesh sizes 𝛥𝑥 are the same as that
sed to generate the data of troubled stencils. Here the error metrics
re used as input, so that the results of the 𝑃 𝑘, 𝑘 ≤ 2 polynomial series
re all zero. In order to maintain the unbiasedness of data labels, the
raining set include 10,000 data from troubled stencils and 10,000 data
rom smooth stencils.

For the validation sets V, a part of it should be different from the
raining sets T, which comes from solving the Burgers equation in
rder to measure the generalization of the training model. Consider the
ollowing Burgers equation with periodic boundary condition

𝑢𝑡 +
(

𝑢2

2

)

𝑥
= 0, 𝑥 ∈ [−𝜋, 𝜋],

𝑢(𝑥, 0) = 0.5 + sin(𝑥).
(3.10)

We can use the characteristic method and Newton iteration to get
the exact solution and the shock wave location. The data includes
numerical solutions and exact solutions. The validation set V includes
000 data generated in the same way as the training sets V and 5000
4

ata from the Burgers equation.
3.3. Training the MLP model

Before calculating the error metrics for each sample
(

𝑓𝑗−2, 𝑓𝑗−1,
𝑓𝑗 , 𝑓𝑗+1, 𝑓𝑗+2

)

, we first use data preprocessing technology by

𝑖̂ =
𝑓𝑖

max𝑘=𝑗−2,…,𝑗+2
(

|

|

𝑓𝑘|| , 1
) , 𝑖 = 𝑗 − 2,… , 𝑗 + 2. (3.11)

This step eliminates the influence of the function value, so that the data
are all in [0, 1]. Finally, cross entropy loss function [37] are used to
measure the error result of classification, which is

 = − 1
𝑀

𝑀
∑

𝑘=1
𝑦𝑘0 log

(

𝑦̂𝑘0
)

+
(

1 − 𝑦𝑘0
)

log
(

1 − 𝑦̂𝑘0
)

, (3.12)

where 𝑀 is the number of samples, 𝑦̂𝑘0 and 𝑦𝑘0 represent the predicted
and true smooth probabilities of the stencil for the 𝑘th sample respec-
tively. The weight parameters in MLP are initialized based on a normal
distribution. The entire model is built by PyTorch. The optimizer is
Adam optimization [38] with batch size of 256, and learning rate
equals 0.001 with 5000 iterations. Finally, we choose the training
model that have an accuracy rate of more than 95% on both the
validation sets V and the training sets T.

3.4. Simplified MLP troubled-stencil indicator

The MLP is composed of complex nonlinear activation functions and
many matrix operations to achieve good approximation capabilities.
But it is a black box and relatively expensive. So we want to simplify
the MLP detector by checking the outputs carefully.

We denote the set of parameters 𝜽 in the MLP detector by

𝜽 =
(

𝑾 [0] ∈ R256×4,𝑾 [1] ∈ R2×256, 𝒃[0] ∈ R256.𝒃[1] ∈ R2) , (3.13)

where 𝑾 [0] and 𝑾 [1] are the weights of the input layer and the hidden
layer respectively, and 𝒃[0] and 𝒃[1] are the biases of the input layer
and the hidden layer respectively. The input is denoted as 𝒙[0] =
(

𝐸𝐿𝐶 , 𝐸𝐶𝑅, 𝐸𝐿𝑅, 𝛥𝑥
)𝑇 , and the output is denoted as 𝒚 =

(

𝑦̂0, 𝑦̂1
)𝑇 . The

MLP detector can be written as the following composite functions

𝒙[1] = ReLU
(

𝑾 [0]𝒙[0] + 𝒃[0]
)

, (3.14)

𝒙[2] = 𝑾 [1]𝒙[1] + 𝒃[1], (3.15)

𝒚 = softmax
(

𝒙[2]
)

, (3.16)
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denoted by

𝒚 = 𝑀𝐿𝑃 (𝒙[0]). (3.17)

Assume the input data is sufficiently smooth, the input 𝒙[0] ∼
(

(𝛥𝑥6),(𝛥𝑥6),(𝛥𝑥6), 𝛥𝑥
)𝑇 . We can obtain the following linear ap-

proximation

𝒙[1] = ReLU
(

𝑾 [0]𝒙[0] + 𝒃[0]
)

≈ 𝑾 [0]
mod𝒙

[0] + 𝒃[0]mod, (3.18)

where 𝑾 [0]
mod ∈ R256×4, 𝒃[0]mod ∈ R256. Taking formula (3.18) into formula

(3.15), then we get

𝒙[2] ≈ 𝑾 [1]
(

𝑾 [0]
mod𝒙

[0] + 𝒃[0]mod

)

+ 𝒃[1]

= 𝑾 𝒙[0] + 𝒃. (3.19)

where 𝑾 = 𝑾 [1]𝑾 [0]
mod and 𝒃 = 𝑾 [1]𝒃[0]mod + 𝒃[1].

The softmax function in the output layer is just for normalization,
and 𝑦̂0 > 𝑦̂1 is equivalents to 𝒙[2]1 > 𝒙[2]2 . Then we can use the value of
𝒙[2]1 −𝒙[2]2 to judge the label. According to the approximation (3.19), we
have

𝒙[2]1 − 𝒙[2]2 =
4
∑

𝑗=1

(

𝑾 1,𝑗 −𝑾 2,𝑗
)

𝒙[0]𝑗 +
(

𝒃1 − 𝒃2
)

= |

|

𝒃1 − 𝒃2||

( 4
∑

𝑗=1

𝑾 1,𝑗 −𝑾 2,𝑗
|

|

𝒃1 − 𝒃2||
𝒙[0]𝑗 + sgn

(

𝒃1 − 𝒃2
)

)

. (3.20)

Thus the simplified MLP detector function can be defined as follows

𝑆𝑀𝐿𝑃
(

𝐸𝐿𝐶 , 𝐸𝐶𝑅, 𝐸𝐿𝑅, 𝛥𝑥
)

= 𝑤𝐿𝐶𝐸𝐿𝐶+𝑤𝐶𝑅𝐸𝐶𝑅+𝑤𝐿𝑅𝐸𝐿𝑅+𝑤ℎ𝛥𝑥+𝑏,

(3.21)

where 𝑤𝐿𝐶 = 𝑾 1,1−𝑾 2,1
|𝒃1−𝒃2|

, 𝑤𝐶𝑅 = 𝑾 1,2−𝑾 2,2
|𝒃1−𝒃2|

, 𝑤𝐿𝑅 = 𝑾 1,3−𝑾 2,3
|𝒃1−𝒃2|

, 𝑤ℎ =
𝑾 1,4−𝑾 2,4
|𝒃1−𝒃2|

and 𝑏 = sgn
(

𝒃1 − 𝒃2
)

. For 𝑆𝑀𝐿𝑃
(

𝐸𝐿𝐶 , 𝐸𝐶𝑅, 𝐸𝐿𝑅, 𝛥𝑥
)

> 0

he stencil is ‘‘smooth’’, otherwise it is a trouble one.
The interesting result is that the distribution of coefficients is neat as

hown in Fig. 3.3. Note that 𝑆𝑀𝐿𝑃
(

𝐸𝐿𝐶 , 𝐸𝐶𝑅, 𝐸𝐿𝑅, 𝛥𝑥
)

is a piecewise
inear function, and the coefficients are given by

(𝑤𝐿𝐶 , 𝑤𝐶𝑅, 𝑤𝐿𝑅, 𝑤ℎ, 𝑏)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(−71902.289,−73288.375,−87095.492, 32.400, 1), 𝛥𝑥 ∈ (0, 0.0011],

(−71062.297,−72432.172,−86096.359, 22.939, 1), 𝛥𝑥 ∈ (0.0011, 0.0014],

(−70222.313,−71575.977,−85097.219, 13.477, 1), 𝛥𝑥 ∈ (0.0014, 0.018],

(−70515.172,−71874.508,−85451.891, 13.763, 1), 𝛥𝑥 ∈ (0.018, 0.05],

(−23766.861,−24225.002,−28797.424,−8.640, 1), 𝛥𝑥 ∈ (0.05, 0.076],

(−27398.197,−27927.742,−33171.141,−7.972, 1), 𝛥𝑥 ∈ (0.076, 0.078],

(−33540.254,−34190.500,−40570.602,−6.888, 1), 𝛥𝑥 ∈ (0.078, 0.1].

(3.22)

omparing the MLP detector 𝑀𝐿𝑃 in (3.14)–(3.17) and the simplified
ne 𝑆𝑀𝐿𝑃 in (3.21)–(3.22), the MLP detector function contains the
ultiplication of matrix and vector of about 256 × 13 operations. The

implified one contains only 8 operations. In the following numerical
ests, we will compare the efficiency and performance of these two
etectors. Finally, we summarize our MLP/SMLP hybrid reconstruction
rocedure in the Algorithm 3.1.

In the following numerical tests, we take the parameter 𝐶 = 1
nd 𝑄 = 9 as in [33] and the WENOJS and WENOZ schemes for
ybridizing. The dispersion and dissipation properties of the fifth-
rder hybrid schemes are discussed here by the approximate dis-
ersion relation [39]. It is observed from Fig. 3.4 that the hybrid
chemes all improve the spectral properties of the original WENOJS
nd WENOZ methods. And the spectral properties of hybrid schemes
ENOJS/WENOZ-H-MLP and WENOJS/WENOZ-H-SMLP are highly
5

imilar. c
Fig. 3.3. Coefficients of the simplified MLP detector function
𝑆𝑀𝐿𝑃

(

𝐸𝐿𝐶 , 𝐸𝐶𝑅 , 𝐸𝐿𝑅 , 𝛥𝑥
)

.

Algorithm 3.1 WENO-H-MLP/SMLP

Input:
(

𝑓𝑗−2, 𝑓𝑗−1, 𝑓𝑗 , 𝑓𝑗+1, 𝑓𝑗+2
)

and mesh size 𝛥𝑥 for reconstruction.
utput: Reconstruct the value of 𝑓 .

1: Preprocessing: Calculate error metrics 𝐸𝐿𝐶 , 𝐸𝐶𝑅, 𝐸𝐿𝑅 after the
scaling 𝑓𝑖 =

𝑓𝑖
max𝑘=𝑗−2,…,𝑗+2(|𝑓𝑘|,1)

, 𝑖 = 𝑗 − 2,… , 𝑗 + 2.

2: if 𝑀𝐿𝑃 ∕𝑆𝑀𝐿𝑃
(

𝐸𝐿𝐶 , 𝐸𝐶𝑅, 𝐸𝐿𝑅, 𝛥𝑥
)

judges that the stencil is
smooth, then

3: Perform the high order linear reconstruction.
4: else if 𝛽𝐴 > 𝐶𝛥𝑥 then
5: Perform the blending reconstruction.
6: else
7: Perform the specific WENO reconstruction.
8: end if

4. Numerical tests

This section performs numerical tests by using the fifth-order
WENOJS/WENOZ-H-MLP and WENOJS/WENOZ-H-SMLP schemes for
Euler equations. The two-dimensional Euler equations is given by

⎛

⎜

⎜

⎜

⎜

⎝

𝜌
𝜌𝑢
𝜌𝑣
𝐸

⎞

⎟

⎟

⎟

⎟

⎠𝑡

+

⎛

⎜

⎜

⎜

⎜

⎝

𝜌𝑢
𝜌𝑢2 + 𝑝
𝑝𝑢𝑣

𝑢(𝐸 + 𝑝)

⎞

⎟

⎟

⎟

⎟

⎠𝑥

+

⎛

⎜

⎜

⎜

⎜

⎝

𝜌𝑣
𝑝𝑢𝑣

𝜌𝑣2 + 𝑝
𝑣(𝐸 + 𝑝)

⎞

⎟

⎟

⎟

⎟

⎠𝑦

= 𝟎. (4.1)

ere 𝜌 is the density, (𝑢, 𝑣) is the velocity, and 𝐸 is the total internal
nergy. The pressure 𝑝 satisfies the ideal gas equation of state, 𝑝 =
𝛾−1)

(

𝐸 − 1
2𝜌𝑢

2
)

in the one dimension and 𝑝 = (𝛾−1)
(

𝐸 − 1
2𝜌(𝑢

2 + 𝑣2)
)

n the two dimensions. 𝛾 is the ratio of specific heats, and 𝛾 = 1.4 for
ir.

For each test, the percentage of non-smooth stencil 𝑁𝑠 and high-
requency stencil 𝐻𝑓 are counted in the entire calculation process.
he sum of 𝑁𝑠 and 𝐻𝑓 is recorded as 𝑇 𝑠, the percentage of troubled
tencils marked by the MLP or SMLP detectors. The ratio of 𝑇 𝑠 on
he coarse grid and the double refined grid is introduced to inspect
he robustness of the indicator, denoted as 𝑅𝐼 , which should be close
o 0.5 in the ideal scenario. The CPU time cost ratio of the WENO-
-MLP scheme to the WENO-H-SMLP scheme, denoted by 𝑅𝑇 , is also

ecorded to compare the efficiency of the two detectors. These numeri-
al tests can also be found partially in some recent papers on high order
ENO schemes [40–43], which can be used for numerical performance

omparison.
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Fig. 3.4. Approximate dispersion and dissipation relations for different schemes.
Example 4.1 (The Lax Problem). The Lax problem is a classic shock tube
problem, the initial condition is taken as [44]

(𝜌, 𝑢, 𝑝) =

{

(0.445, 0.698, 3.528), 𝑥 ∈ [−0.5, 0),
(0.5, 0, 0.571), 𝑥 ∈ [0, 0.5].

(4.2)

The computational domain is [−0.5, 0.5] and the final time is 𝑡 = 0.16
in the simulation. Numerical results are given in Figs. 4.1 and 4.2
with grid points 𝑁𝑥 = 100 and 200. It shows that these indicators can
accurately identify the troubled stencil. The results of hybrid schemes
are closer to the reference solution than the original WENO method
due to its low dissipation. Table 4.1 shows the percentage of troubled
stencils and the time ratio of the WENO-H-MLP and WENO-H-SMLP
schemes in the entire calculation process. As it can be seen, there is no
observable difference between the MLP and SMLP detectors, but the
latter is significantly faster.

Example 4.2 (The Sod Problem). Sod problem is another shock tube
problem, the initial condition is taken as [7]

(𝜌, 𝑢, 𝑝) =

{

(1, 0, 1), 𝑥 ∈ [−5, 0),
(0.125, 0, 0.1), 𝑥 ∈ [0, 5].

(4.3)

The computational domain is [−5, 5] and the final time is 𝑡 = 2.
The reference solution is given by the fifth-order finite difference
6

WENOJS scheme with 1600 grid points. Fig. 4.3 shows the solution
Table 4.1
Percentage of non-smooth and high-frequency stencil, and time ratio of the Lax problem
in Example 4.1.

WENOJS-H-MLP WENOJS-H-SMLP

𝑁𝑥 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 5.34 2.38 7.72 5.34 2.38 7.72 12.19
200 2.66 1.39 4.05 0.52 2.66 1.39 4.05 0.52 10.71
400 1.31 0.79 2.10 0.52 1.31 0.79 2.10 0.52 9.71
800 0.63 0.45 1.08 0.52 0.63 0.45 1.08 0.52 9.53

WENOZ-H-MLP WENOZ-H-SMLP

𝑁𝑥 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 5.35 2.37 7.72 5.35 2.37 7.72 9.95
200 2.66 1.38 4.04 0.52 2.66 1.38 4.04 0.52 9.68
400 1.31 0.78 2.09 0.52 1.31 0.78 2.09 0.52 9.20
800 0.64 0.44 1.08 0.52 0.64 0.44 1.08 0.52 8.72

by hybridization of two detectors almost overlaps in each subfigure
with grid points 𝑁𝑥 = 100 and 200 and maintains the characteristic
of essentially oscillation-free. However, the MLP and SMLP detectors
indicate a little differently when 𝑁𝑥 = 200 in Fig. 4.4, the indication
results are almost the same with the refinement of grids. Meanwhile,
the SMLP detector is much more efficient where 𝑅𝑇 ≈ 8 (see Table 4.2).
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Fig. 4.1. Numerical results for the Lax problem in Example 4.1. First column: 𝑁𝑥 = 100. Second column: 𝑁𝑥 = 200.

Fig. 4.2. Non-smooth and high-frequency stencils of different schemes for the Lax problem in Example 4.1, First row: 𝑁𝑥 = 100. Second row: 𝑁𝑥 = 200. First column: WENOJS-H-MLP.
Second column: WENOJS-H-SMLP. Third column: WENOZ-H-MLP. Fourth column: WENOZ-H-SMLP.
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Fig. 4.3. Numerical results for the Sod problem in Example 4.2. First column: 𝑁𝑥 = 100. Second column: 𝑁𝑥 = 200.

Fig. 4.4. Non-smooth and high-frequency stencil of different schemes for the Sod problem in Example 4.2, First row: 𝑁𝑥 = 100. Second row: 𝑁𝑥 = 200. First column: WENOJS-H-MLP.
Second column: WENOJS-H-SMLP. Third column: WENOZ-H-MLP. Fourth column: WENOZ-H-SMLP.
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Fig. 4.5. Numerical results for the Shu–Osher problem in Example 4.3. First column: 𝑁𝑥 = 200. Second column: 𝑁𝑥 = 400.

Fig. 4.6. Non-smooth and high-frequency stencil of different schemes for the Shu–Osher problem in Example 4.3, First row: 𝑁𝑥 = 200. Second row: 𝑁𝑥 = 400. First column:
WENOJS-H-MLP. Second column: WENOJS-H-SMLP. Third column: WENOZ-H-MLP. Fourth column: WENOZ-H-SMLP.
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Table 4.2
Percentage of non-smooth and high-frequency stencil, and time ratio of the Sod problem
in Example 4.2.

WENOJS-H-MLP WENOJS-H-SMLP

𝑁𝑥 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 3.59 0 3.59 3.59 0 3.59 7.99
200 0.54 0 0.54 0.15 1.01 0 1.01 0.28 9.53
400 0.49 0.01 0.50 0.93 0.49 0.01 0.50 0.50 8.03
800 0.22 0.02 0.24 0.48 0.22 0.02 0.24 0.48 8.00

WENOZ-H-MLP WENOZ-H-SMLP

𝑁𝑥 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 4.28 0 4.28 4.28 0 4.28 8.21
200 0.54 0.01 0.55 0.13 1.09 0 1.09 0.25 8.19
400 0.52 0.01 0.53 0.97 0.52 0.01 0.53 0.49 8.24
800 0.23 0.02 0.25 0.47 0.23 0.02 0.25 0.47 8.11

Table 4.3
Percentage of non-smooth and high-frequency stencil, and time ratio of the Shu–Osher
problem in Example 4.3.

WENOJS-H-MLP WENOJS-H-SMLP

𝑁𝑥 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 29.37 1.03 30.40 29.37 1.08 30.45 10.45
200 2.53 1.71 4.24 0.14 4.53 1.71 6.24 0.21 9.40
400 1.61 1.59 3.20 0.75 1.61 1.59 3.20 0.51 8.89
800 0.7 0.32 1.02 0.32 0.70 0.32 1.02 0.32 8.18

WENOZ-H-MLP WENOZ-H-SMLP

𝑁𝑥 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 29.47 1.04 30.51 29.48 1.10 30.57 10.26
200 2.63 1.73 4.35 0.14 4.67 1.78 6.46 0.21 9.81
400 1.66 1.59 3.25 0.75 1.66 1.59 3.25 0.50 8.87
800 0.71 0.32 1.04 0.32 0.71 0.32 1.04 0.32 8.25

Example 4.3 (The Shu–Osher Problem). The Shu–Osher problem [7] is
onsidered here whose initial condition is

𝜌, 𝑢, 𝑝) =

{

(3.857143, 2.629369, 10.333333), 𝑥 ∈ [−5,−4),
(1 + 0.2 sin(5𝑥), 0, 0.1) , 𝑥 ∈ [−4, 5].

(4.4)

t describes that a Mach 3 shock wave interacts with a density dis-
urbance that generates a flow field with smooth structures and dis-
ontinuities. The density of the numerical results at 𝑡 = 1.8 with
rid points 𝑁𝑥 = 200 and 400 are shown in Fig. 4.5. The reference
olution is given by the fifth-order finite difference WENOJS scheme
ith 1600 grid points. When the grid points 𝑁𝑥 = 200, the WENOJS
nd WENOZ methods cannot obtain accurate wave numbers near the
igh-wavenumber region because of numerical dissipation, but the
ybrid schemes can. When the grid is refined to 𝑁𝑥 = 400, the hybrid
chemes are closer to the reference solution than the original schemes.
rom Fig. 4.6 and Table 4.3, there is a bit difference between the two
etectors when the grid points are equal to 200 because the structure
f the solution is complex. But after the grid points are refined, the
ndication results of the two detectors are almost the same. And the
fficiency of the SMLP detector is about ten times faster than the MLP
etector.

xample 4.4 (The Blast Wave Problem). This problem was first proposed
y Woodward and Colella [45]. It depicts the interaction of two blast
aves. The initial condition is given by

𝜌, 𝑢, 𝑝) =

⎧

⎪

⎨

⎪

(1, 0, 1), 𝑥 ∈ (0, 0.1),
(1, 0, 0.01), 𝑥 ∈ (0.1, 0.9), (4.5)
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⎩

(1, 0, 100), 𝑥 ∈ (0.9, 1).
Table 4.4
Percentage of non-smooth and high-frequency stencils, and time ratio of the blast wave
problem in Example 4.4.

WENOJS-H-MLP WENOJS-H-SMLP

𝑁𝑥 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 5.09 21.37 26.46 5.09 21.37 26.46 11.63
200 2.20 11.21 13.41 0.51 2.20 11.21 13.41 0.51 9.58
400 0.90 5.82 6.72 0.50 0.90 5.82 6.72 0.50 9.27
800 0.38 3.21 3.59 0.53 0.38 3.21 3.59 0.53 8.67

WENOZ-H-MLP WENOZ-H-SMLP

𝑁𝑥 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 5.21 21.09 26.31 5.21 21.1 26.31 10.44
200 2.29 11.04 13.33 0.51 2.30 11.04 13.34 0.51 9.30
400 0.96 5.72 6.68 0.50 0.96 5.72 6.68 0.50 8.68
800 0.40 3.16 3.57 0.53 0.40 3.16 3.57 0.53 8.52

Table 4.5
Percentage of non-smooth and high-frequency stencil, and time ratio of the Riemann
problem 1 in Example 4.5.

WENOJS-H-MLP WENOJS-H-SMLP

𝑁𝑥 ×𝑁𝑦 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 × 100 5.83 0.93 6.76 5.83 0.93 6.76 23.40
200 × 200 2.89 0.63 3.52 0.52 2.89 0.63 3.52 0.52 20.76
400 × 400 1.42 0.42 1.83 0.52 1.42 0.42 1.83 0.52 16.08
800 × 800 0.68 0.26 0.94 0.51 0.68 0.26 0.94 0.51 14.88

WENOZ-H-MLP WENOZ-H-SMLP

𝑁𝑥 ×𝑁𝑦 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

100 × 100 6.08 0.97 7.06 6.09 0.97 7.06 21.36
200 × 200 3.02 0.66 3.68 0.52 3.02 0.66 3.68 0.52 20.68
400 × 400 1.46 0.43 1.89 0.51 1.46 0.43 1.89 0.51 15.90
800 × 800 0.69 0.27 0.96 0.51 0.69 0.27 0.96 0.51 14.69

Reflection boundaries are used at 𝑥 = 0 and 𝑥 = 1, and the final time
is 𝑡 = 0.038. The reference solution is given by the fifth-order finite
ifference WENOJS method with 1600 grid points. From the numerical
olution in Fig. 4.7 and the marked stencils in Fig. 4.8, it can be seen
hat the indication results and numerical solutions of the two detectors
re very similar. Table 4.4 also verifies this observation. At the same
ime, in this test, these detectors accurately distinguish the structure of
he solution, where the ratios 𝑅𝐼 are all close to 0.5. And 𝑅𝑇 = 8 ∼ 10

shows the efficiency of the SMLP detector.

Example 4.5 (Riemann Problem 1). This is a classic Riemann prob-
lem [46], with the initial condition

(𝜌, 𝑢, 𝑣, 𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1.5, 0, 0, 1.5) , 𝑥 > 0.8, 𝑦 > 0.8,
(0.5323, 1.206, 0, 0) , 𝑥 < 0.8, 𝑦 > 0.8,
(0.138, 1.206, 1.206, 0.029) , 𝑥 < 0.8, 𝑦 < 0.8,
(0.5323, 0, 1.206, 0, 0.3) , 𝑥 > 0.8, 𝑦 < 0.8.

(4.6)

he computational domain is [0, 1] × [0, 1], and the final time is 𝑡 = 0.8.
our sets of grids 𝑁𝑥 × 𝑁𝑦 = 100 × 100, 200 × 200, 400 × 400 and
00 × 800 are used. The density of the numerical results on 400 × 400
re shown in Fig. 4.9. Small vortices near the slip lines are observed by
oth hybrid schemes WENO-H-MLP and WENO-H-SMLP, while they are
amped by the WENOJS method. In addition, the numerical solutions
f WENO-H-MLP and WENO-H-SMLP schemes also have more obvious
ortices than the WENOZ method due to their better spectral property.
he troubled stencil is well indicated by both detectors, as shown in
ig. 4.10. Table 4.5 shows the efficiency of the SMLP detector with
𝑇 ≈ 15.
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Fig. 4.7. Numerical results for the blast wave problem in Example 4.4. First column: 𝑁𝑥 = 200. Second column: 𝑁𝑥 = 400.

Fig. 4.8. Non-smooth and high-frequency stencil of different schemes for the blast wave problem in Example 4.4. First row: 𝑁𝑥 = 200. Second row: 𝑁𝑥 = 400. First column:
WENOJS-H-MLP. Second column: WENOJS-H-SMLP. Third column: WENOZ-H-MLP. Fourth column: WENOZ-H-SMLP.
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Fig. 4.9. Numerical results for the Riemann problem 1 in Example 4.5. 𝑁𝑥 ×𝑁𝑦 = 400 × 400 at 𝑡 = 0.8, 35 equally spaced density contours from 0.1 to 1.8.
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Fig. 4.10. Non-smooth s and high-frequency stencil of different schemes for the Riemann problem 1 in Example 4.5 on 𝑁𝑥 ×𝑁𝑦 = 400 × 400 at 𝑡 = 0.8.
Example 4.6 (Riemann Problem 2). This is another Riemann prob-
lem [46], the initial condition is taken as

(𝜌, 𝑢, 𝑣, 𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1, 0.75,−0.5, 1) , 𝑥 > 0.5, 𝑦 > 0.5,
(2, 0.75, 0.5, 1) , 𝑥 < 0.5, 𝑦 > 0.5,
(1,−0.75, 0.5, 1) , 𝑥 < 0.5, 𝑦 < 0.5,
(3,−0.75,−0.5, 1) , 𝑥 > 0.5, 𝑦 < 0.5.

(4.7)

The computational domain is [0, 1] × [0, 1], and the final time is 𝑡 = 0.3.
Four sets of grids 𝑁𝑥 × 𝑁𝑦 = 200 × 200, 400 × 400, 800 × 800 and
1600 × 1600 are used. The density of the numerical results on grid
points 1600 × 1600 and the corresponding marked stencils are shown
in Figs. 4.11 and 4.12. Compared with the original WENO method,
the hybrid schemes observe many small vortices structures near the
four slip lines. It is observed from Table 4.6 that the value of 𝑅𝐼
increases a little bit with the refinement of mesh, but it is still around
0.5 since more structures on the slip line are displayed. Besides, the
SMLP detector is at least 15 times faster than the MLP detector.
13
Table 4.6
Percentage of non-smooth and high-frequency stencil, and time ratio of the Riemann
problem 2 in Example 4.6.

WENOJS-H-MLP WENOJS-H-SMLP

𝑁𝑥 ×𝑁𝑦 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

200 × 200 1.43 0.45 1.88 1.43 0.45 1.88 20.34
400 × 400 0.59 0.28 0.87 0.46 0.59 0.28 0.87 0.46 18.32
800 × 800 0.24 0.17 0.41 0.47 0.24 0.17 0.41 0.47 15.61
1600 × 1600 0.11 0.11 0.21 0.52 0.11 0.11 0.21 0.52 17.61

WENOZ-H-MLP WENOZ-H-SMLP

𝑁𝑥 ×𝑁𝑦 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

200 × 200 1.48 0.45 1.93 1.48 0.45 1.93 20.61
400 × 400 0.61 0.28 0.89 0.46 0.61 0.28 0.89 0.46 16.92
800 × 800 0.24 0.17 0.42 0.47 0.24 0.17 0.42 0.47 15.63
1600 × 1600 0.11 0.11 0.22 0.52 0.11 0.11 0.22 0.52 17.09
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Fig. 4.11. Numerical results for the Riemann problem 2 in Example 4.6. 𝑁𝑥 ×𝑁𝑦 = 1600 × 1600 at 𝑡 = 0.3, 20 equally spaced density contours.



Computers and Fluids 244 (2022) 105584Z. Xue et al.
Fig. 4.12. Non-smooth s and high-frequency stencil of different schemes for the Riemann problem 2 in Example 4.6 on 𝑁𝑥 ×𝑁𝑦 = 1600 × 1600 at 𝑡 = 0.3.
Example 4.7 (Double Mach Reflection). This problem was introduced
by Woodward and Colella [45]. It describes a shock with a velocity
of Mach 10 hitting a reflective wall at an angle of 60◦. The density
of the air in front of the shock is 1.4, and the pressure is 1. The
computational domain is [0, 4] × [0, 1] and the final time is 𝑡 = 0.2. The
reflecting wall is at the bottom of the problem domain from 𝑥 = 1

6 to
𝑥 = 4, reflective boundary conditions are used in this region. Post-shock
condition is used in the bottom of the problem domain from 𝑥 = 0 to
𝑥 = 1

6 . The exact boundary conditions to describe the motion of the
shock wave are used at the top of the problem domain. And inflow and
outflow boundary conditions are used for the left and right boundaries
respectively. The initial condition is

(𝜌, 𝑢, 𝑣, 𝑝) =

⎧

⎪

⎨

⎪

⎩

(1.4, 0.0, 0.0, 1.0), 𝑦 <
√

3
(

𝑥 − 1
6

)

,

(8.0, 7.145,−4.125, 116.5), 𝑦 ≥
√

3
(

𝑥 − 1
6

)

.
(4.8)

Four sets of grids 𝑁𝑥 × 𝑁𝑦 = 120 × 30, 240 × 60, 480 × 120 and
960 × 240 are chosen respectively. The density of the numerical results
15
on grid points 960 × 240, and the corresponding marked stencils are
shown in Figs. 4.13 and 4.14. As shown in Fig. 4.13, the more small
vortex structures are observed near the slip line, and the wall jet
by the hybrid schemes WENO-H-MLP and WENO-H-SMLP compared
to original schemes WENOJS and WENOZ. Both the MLP and SMLP
indicators can accurately identify the troubled stencil by shock waves
and contact discontinuities from Fig. 4.13. In Table 4.7, it shows that
the SMLP detector significantly reduce the cost of the MLP detector,
where 𝑅𝑇 = 15 ∼ 22.

5. Conclusion

This paper first designed an MLP smoothness detector based on
error metrics for the hybrid WENO scheme. And then, it has been
simplified to an SMLP detector, which can significantly reduce the
cost of the original one. Both detectors have been integrated into the
hybrid WENO schemes with the high-frequency region [33], which
shows better spectral approximation property from ADR analysis than
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Fig. 4.13. Numerical results for the double Mach reflection in Example 4.7. 𝑁𝑥 ×𝑁𝑦 = 960 × 240 at 𝑡 = 0.3, 43 equally spaced density contours from 1.887 to 22.9.

Fig. 4.14. Non-smooth and high-frequency stencil of different schemes for the double Mach reflection in Example 4.7 on 𝑁𝑥 ×𝑁𝑦 = 960 × 240 at final time 𝑡 = 0.3.
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Table 4.7
Percentage of non-smooth and high-frequency stencil, and time ratio of the double
Mach reflection in Example 4.7.

WENOJS-H-MLP WENOJS-H-SMLP

𝑁𝑥 ×𝑁𝑦 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

120 × 30 3.41 9.25 12.66 3.41 9.26 12.67 22.00
240 × 60 1.62 5.25 6.88 0.54 1.62 5.25 6.88 0.54 18.62
480 × 120 0.76 2.84 3.60 0.52 0.76 2.85 3.61 0.52 15.81
960 × 240 0.34 1.51 1.85 0.51 0.34 1.51 1.85 0.51 15.20

WENOZ-H-MLP WENOZ-H-SMLP

𝑁𝑥 ×𝑁𝑦 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑁𝑠 𝐻𝑓 𝑇 𝑠 𝑅𝐼 𝑅𝑇

120 × 30 3.42 9.24 12.66 3.42 9.24 12.66 22.00
240 × 60 1.62 5.24 6.86 0.54 1.62 5.24 6.86 0.54 17.36
480 × 120 0.76 2.83 3.59 0.52 0.76 2.83 3.59 0.52 16.15
960 × 240 0.34 1.51 1.85 0.51 0.34 1.50 1.84 0.51 15.01

the original WENO schemes. These schemes have been applied to Euler
equations in one and two dimensions in the numerical tests. From
the comparisons with the hybrid/non-hybridized schemes, it has been
shown that the hybrid schemes have better resolution and fine-structure
capturing property due to their better spectral resolution. Meanwhile,
the results of the SMLP detector can maintain the sharp resolution of
the MLP detector but are much more efficient.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Funding

The work of Z. Xue was partially supported by the National Nu-
merical Windtunnel Project NNW2019ZT4-B08. The work of Y. Xia
was partially supported by the National Numerical Windtunnel Project
NNW2019ZT4-B08 and the NSFC grant No. 11871449. The work of
C. Li and X. Yuan was partially supported by the National Numerical
Windtunnel project, the National Key Research and Development Pro-
gram of China (2019YFA0405200), and the NSFC grant Nos. 11802324,
92052301.

References

[1] Pirozzoli S. Numerical methods for high-speed flows. Annu Rev Fluid Mech
2011;43:163–94.

[2] Wang ZJ, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H,
Hartmann R, Hillewaert K, Huynh HT, et al. High-order CFD methods: current
status and perspective. Internat J Numer Methods Fluids 2013;72(8):811–45.

[3] Baccouch M, Temimi H, Ben-Romdhane M. A discontinuous Galerkin method
for systems of stochastic differential equations with applications to population
biology, finance, and physics. J Comput Appl Math 2021;388:113297.

[4] Giri P, Qiu J. A high-order runge-kutta discontinuous Galerkin method with a
subcell limiter on adaptive unstructured grids for two-dimensional compressible
inviscid flows. Internat J Numer Methods Fluids 2019;91(8):367–94.

[5] Jiang Z-H, Yan C, Yu J. Implementation of the transition model for high order
discontinuous Galerkin method with hybrid discretization strategy. Comput &
Fluids 2021;218:104838.

[6] Liu X-D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J
Comput Phys 1994;115(1):200–12.

[7] Jiang G-S, Shu C-W. Efficient implementation of weighted ENO schemes. J
Comput Phys 1996;126(1):202–28.

[8] Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-
oscillatory schemes: achieving optimal order near critical points. J Comput Phys
17

2005;207(2):542–67.
[9] Borges R, Carmona M, Costa B, Don WS. An improved weighted essen-
tially non-oscillatory scheme for hyperbolic conservation laws. J Comput Phys
2008;227(6):3191–211.

[10] Martín MP, Taylor EM, Wu M, Weirs VG. A bandwidth-optimized WENO scheme
for the effective direct numerical simulation of compressible turbulence. J
Comput Phys 2006;220(1):270–89.

[11] Sun D, Guo Q, Li C, Liu P. Assessment of optimized symmetric fourth-order
weighted essentially non-oscillatory scheme in direct numerical simulation of
compressible turbulence. Comput & Fluids 2020;197:104383.

[12] Hu X, Wang Q, Adams NA. An adaptive central-upwind weighted essentially
non-oscillatory scheme. J Comput Phys 2010;229(23):8952–65.

[13] Li C, Sun D, Guo Q, Liu P, Zhang H. A new hybrid WENO scheme on a four-point
stencil for Euler equations. J Sci Comput 2021;87(1):1–37.

[14] Fu L, Hu XY, Adams NA. A family of high-order targeted ENO schemes for
compressible-fluid simulations. J Comput Phys 2016;305:333–59.

[15] Hamzehloo A, Lusher DJ, Laizet S, Sandham ND. On the performance
of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed
compressible flows. Internat J Numer Methods Fluids 2021;93(1):176–96.

[16] Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence
interaction. J Comput Phys 2002;178(1):81–117.

[17] Ren Y-X, Zhang H, et al. A characteristic-wise hybrid compact-WENO scheme
for solving hyperbolic conservation laws. J Comput Phys 2003;192(2):365–86.

[18] Ducros F, Ferrand V, Nicoud F, Weber C, Darracq D, Gacherieu C, Poinsot T.
Large-eddy simulation of the shock/turbulence interaction. J Comput Phys
1999;152(2):517–49.

[19] Zhao G-Y, Sun M-B, Pirozzoli S. On shock sensors for hybrid compact/WENO
schemes. Comput & Fluids 2020;199:104439.

[20] Hill DJ, Pullin DI. Hybrid tuned center-difference-WENO method for large
eddy simulations in the presence of strong shocks. J Comput Phys
2004;194(2):435–50.

[21] Liu S, Shen Y, Peng J, Zhang J. Two-step weighting method for constructing
fourth-order hybrid central WENO scheme. Comput & Fluids 2020;207:104590.

[22] Li G, Qiu J. Hybrid weighted essentially non-oscillatory schemes with different
indicators. J Comput Phys 2010;229(21):8105–29.

[23] Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid mechanics.
Annu Rev Fluid Mech 2020;52:477–508.

[24] Wen X, Don WS, Gao Z, Hesthaven JS. An edge detector based on artificial neural
network with application to hybrid compact-WENO finite difference scheme. J
Sci Comput 2020;83:1–21.

[25] Sun Z. Convolution neural network shock detector for numerical solution of
conservation laws. Commun Comput Phys 2020;28(5).

[26] Feng Y, Liu T, Wang K. A characteristic-featured shock wave indicator for
conservation laws based on training an artificial neuron. J Sci Comput
2020;83(1):1–34.

[27] Feng Y, Liu T. A characteristic-featured shock wave indicator on unstructured
grids based on training an artificial neuron. J Comput Phys 2021;110446.

[28] Ray D, Hesthaven JS. An artificial neural network as a troubled-cell indicator. J
Comput Phys 2018;367:166–91.

[29] Ray D, Hesthaven JS. Detecting troubled-cells on two-dimensional unstructured
grids using a neural network. J Comput Phys 2019;397:108845.

[30] Yu X, Shu C-W. Multi-layer perceptron estimator for the total variation bounded
constant in limiters for discontinuous galerkin methods. La Mat 2021;1–32.

[31] Zhu H, Wang H, Gao Z. A new troubled-cell indicator for discontinuous Galerkin
methods using K-means clustering. SIAM J Sci Comput 2021;43(4):A3009–31.

[32] Discacciati N, Hesthaven JS, Ray D. Controlling oscillations in high-order dis-
continuous Galerkin schemes using artificial viscosity tuned by neural networks.
J Comput Phys 2020;409:109304.

[33] Wan Y, Xia Y. A new hybrid WENO scheme with the high-frequency region
for hyperbolic conservation laws. Commun Appl Math Comput 2021. http:
//dx.doi.org/10.1007/s42967-021-00153-2, (in press).

[34] Roe PL. Approximate Riemann solvers, parameter vectors, and difference
schemes. J Comput Phys 1981;43(2):357–72.

[35] Gottlieb S, Shu C-W, Tadmor E. Strong stability-preserving high-order time
discretization methods. SIAM Rev 2001;43(1):89–112.

[36] Shu C-W. High order weighted essentially nonoscillatory schemes for convection
dominated problems. SIAM Rev 2009;51(1):82–126.

[37] Nasr GE, Badr E, Joun C. Cross entropy error function in neural networks:
Forecasting gasoline demand.. In: FLAIRS conference. 2002, p. 381–4.

[38] Kingma DP, Ba J. Adam: A method for stochastic optimization. 2014, arXiv
preprint arXiv:1412.6980.

[39] Pirozzoli S. On the spectral properties of shock-capturing schemes. J Comput
Phys 2006;219(2):489–97.

[40] Zhao Z, Zhu J, Chen Y, Qiu J. A new hybrid WENO scheme for hyperbolic

conservation laws. Comput & Fluids 2019;179:422–36.

http://refhub.elsevier.com/S0045-7930(22)00194-3/sb1
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb1
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb1
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb2
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb2
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb2
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb2
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb2
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb3
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb3
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb3
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb3
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb3
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb4
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb4
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb4
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb4
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb4
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb5
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb5
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb5
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb5
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb5
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb6
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb6
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb6
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb7
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb7
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb7
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb8
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb8
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb8
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb8
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb8
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb9
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb9
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb9
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb9
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb9
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb12
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb12
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb12
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb13
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb13
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb13
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb14
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb14
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb14
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb15
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb15
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb15
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb15
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb15
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb16
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb16
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb16
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb17
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb17
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb17
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb19
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb19
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb19
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb20
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb20
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb20
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb20
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb20
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb21
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb21
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb21
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb22
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb22
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb22
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb23
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb23
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb23
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb24
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb24
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb24
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb24
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb24
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb25
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb25
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb25
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb26
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb26
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb26
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb26
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb26
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb27
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb27
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb27
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb28
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb28
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb28
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb29
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb29
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb29
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb30
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb30
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb30
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb31
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb31
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb31
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb32
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb32
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb32
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb32
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb32
http://dx.doi.org/10.1007/s42967-021-00153-2
http://dx.doi.org/10.1007/s42967-021-00153-2
http://dx.doi.org/10.1007/s42967-021-00153-2
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb34
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb34
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb34
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb35
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb35
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb35
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb36
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb36
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb36
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb37
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb37
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb37
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb39
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb39
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb39
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb40
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb40
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb40


Computers and Fluids 244 (2022) 105584Z. Xue et al.
[41] Zhao Z, Zhang Y-T, Qiu J. A modified fifth order finite difference Hermite WENO
scheme for hyperbolic conservation laws. J Sci Comput 2020;85(2):1–22.

[42] Luo X, Wu S-P. An improved WENO-Z+ scheme for solving hyperbolic
conservation laws. J Comput Phys 2021;445:110608.

[43] Wang Z, Zhu J, Yang Y, Tian L, Zhao N. A class of robust low dissipation nested
multi-resolution WENO schemes for solving hyperbolic conservation laws. Adv
Appl Math Mech 2021;13(5):1064–95.
18
[44] Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical
computation. Comm Pure Appl Math 1954;7(1):159–93.

[45] Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow
with strong shocks. J Comput Phys 1984;54(1):115–73.

[46] Lax PD, Liu X-D. Solution of two-dimensional Riemann problems of gas dynamics
by positive schemes. SIAM J Sci Comput 1998;19(2):319–40.

http://refhub.elsevier.com/S0045-7930(22)00194-3/sb41
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb41
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb41
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb42
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb42
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb42
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb43
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb43
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb43
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb43
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb43
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb44
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb44
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb44
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb45
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb45
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb45
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb46
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb46
http://refhub.elsevier.com/S0045-7930(22)00194-3/sb46

	A simplified multilayer perceptron detector for the hybrid WENO scheme
	Introduction
	Finite difference WENO method for hyperbolic conservation laws 
	Finite difference WENO method for conservation laws 
	Hybrid scheme for conservation laws

	The multilayer perceptron smoothness detector
	Error metrics and the multilayer perceptron architecture
	Construction of the training sets and validation sets
	Training the MLP model 
	Simplified MLP troubled-stencil indicator 

	Numerical tests
	Conclusion
	Declaration of competing interest
	
	References


