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For strong shock waves in solutions of steady-state Euler equations, the high-order shock 
capturing schemes usually suffer from the difficulty of convergence of residue close to 
machine zero. Several new weighted essentially non-oscillatory (WENO) type schemes have 
recently been designed to overcome this long-standing issue. In this paper, a new hybrid 
strategy is proposed for the fifth-order WENO scheme to simulate steady-state solutions of 
Euler equations. Compared with the existing WENO schemes, the hybrid WENO scheme 
performs better steady-state convergence property with less dissipative and dispersive 
errors. Meanwhile, the essentially oscillation-free feature is kept. In the hybrid strategy, the 
stencil is distinguished into smooth, non-smooth, or transition regions, which is realized by 
a simple smoothness detector based on the smoothness indicators in the original WENO 
method. The linear reconstruction and the specific WENO reconstruction are applied to 
the smooth and non-smooth regions, respectively. In the transition region, the mixture 
of the linear and WENO reconstructions is adopted by a smooth transitive interpolation, 
which plays a vital role in the steady-state convergence for the hybrid scheme. Numerical 
comparisons and spectral analysis are presented to demonstrate the robust performance of 
the new hybrid scheme for steady-state Euler equations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The steady-state solutions to Euler equations

F (U )x + G(U )y + H(U )z = 0, (1.1)

take a great part in computational fluid dynamics. In (1.1), U = (ρ, ρu, ρv, ρw, E)T contains the conservative variables, 
F (U ) = (ρu, ρu2 + P , ρuv, ρuw, u(E + P ))T , G(U ) = (ρv, ρuv, ρv2 + P , ρv w, v(E + P ))T and H(U ) = (ρw, ρuw, ρv w,

ρw2 + P , w(E + P ))T are the fluxes in x, y and z directions, respectively. Here u, v and w are the velocities in the x, y and 
z directions, and ρ is the density. E = P

γ −1 + 1
2 ρ(u2 + v2 + w2) is the total energy, P is the pressure, and γ is the radio of 

specific heats.
In order to solve equations (1.1), one choice is to get the steady-state solutions of unsteady Euler equations with an 

appropriate time marching method. If the residue (some approximation to the time derivative) is small enough, the steady-
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state solutions of (1.1) are obtained. However, the existence of strong discontinuities brings great difficulty in numerical 
simulations, since some oscillations may appear and prevent the residue from converging to the ideal level, close to machine 
zero. Thus, we need a robust scheme to solve (1.1) and keep the high-resolution property simultaneously. By identifying the 
smoothest stencil for reconstruction, Harten et al. [23] proposed the essentially non-oscillatory (ENO) scheme to solve one-
dimensional unsteady problems. Afterward, Liu et al. [38] designed the original weighted essentially non-oscillatory (WENO) 
scheme based on the convex combination of the sub-stencils. Since the weight of the stencil containing shock is compressed 
nearly zero, the essentially non-oscillatory property is achieved. To improve the accuracy, Jiang and Shu [28] designed a new 
smoothness indicator that was widely used in lots of WENO schemes. This WENO scheme could obtain the optimal accuracy 
in a smooth region, which is termed the WENO-JS scheme in this paper. Nevertheless, the WENO-JS scheme may lose some 
resolution near critical points. To overcome this defect, Henrick et al. [24] proposed a mapping WENO scheme by modifying 
the nonlinear weight. However, this strategy increased about 20% CPU time. Later, Borges et al. [4] pointed out that the 
numerical solution given by the WENO-M scheme only recovers resolution satisfactorily near first-order critical points, 
and developed the WENO-Z scheme, which can successfully handle higher-order critical points by tuning the parameter. 
Meanwhile, it had been pointed out by Acker et al. in [1] that increasing the weight of the non-smooth stencil is of great 
importance to give better resolution on the coarse grid, while increasing the accuracy near critical points works on the fine 
grid. Thus, many papers focused on these points to devise new WENO schemes [1,12,17,19,27,32,37,39,45,57,58] to improve 
the accuracy and efficiency.

Another popular strategy in the development of WENO schemes is the hybrid approach to improve the performance, such 
as conservative hybrid compact-WENO schemes [42], hybrid compact-ENO scheme [2], hybrid Hermite WENO scheme [62], 
multi-domain hybrid spectral-WENO methods [10], characteristic-wise hybrid compact-WENO scheme [46], high-spectral 
resolution hybrid finite-difference method [16], hybrid compact-WENO finite difference schemes with shock detectors based 
on the radial basis function [53], conjugate Fourier algorithm [13], and artificial neural network [54], etc. The performances 
of these hybrid methods are heavily dependent on the proposed shock detectors. Thus, the design of shock detectors has 
become a hot topic for WENO schemes nowadays. There appeared a great deal of shock detectors, such as the minmod-
based TVB limiter [9], discontinuity indicator based on the average total variation of the solution [44,64], a shock-detection 
technique by Krivodonova et al. [29], Harten’s multi-resolution analysis [22], shock detection method based on radial basis 
function [53], the trigonometric detector-based conjugate Fourier analysis [13], monotonicity-preserving discontinuity indi-
cator [51], the shock detection method based on neural network [50,54], and shock detection method based on targeted 
ENO schemes [17,18], etc.

The classic WENO and hybrid WENO schemes made a great success in the simulations of unsteady problems; however, 
when they are adopted to solve steady-state problems with strong shock waves, the residue of numerical solution usually 
hangs at the level of truncation error even after long time iterations. Serna and Marquina [47] reconstructed the numerical 
flux by a new kind of limiter, and experiments verified the improvement of the convergence to the steady-state. Zhang 
and Shu [60,61] pointed out that the appearance of slight post-shock oscillations has a significant impact on steady-state 
convergence, which leads to the residue hanging at a relatively high level rather than settling down to machine zero. 
Afterward, the numerical results in [59,61] indicated that the upwind-biased interpolation technique is helpful for steady-
state convergence. However, it still seems difficult for the residue to converge to machine zero when the shock passes 
through the boundary. Chen et al. [7] used fast sweeping methods with Lax-Friedrichs numerical fluxes to solve steady-state 
hyperbolic conservation laws and developed novel multigrid fast sweeping methods [8] to improve steady-state convergence. 
Engquist et al. [14,15] showed that fast sweeping methods could solve conservation laws at the steady-state with high 
resolution and low computational cost. Hao et al. [21] suggested abandoning time marching and using the homotopy method 
to solve the nonlinear system obtained by WENO discretizations. The drawback is that one should solve the nonlinear 
system carefully because of the non-uniqueness of solutions. Hu et al. [25,26] solved steady Euler equations with non-
oscillatory k-exact reconstruction and enhanced the numerical accuracy of problems containing curved boundaries by non-
uniform rational B-splines [40]. Chen [6] and Wu et al. [56,61] proposed a new fixed-point sweeping WENO method to solve 
hyperbolic conservation law. However, the convergence failure to the steady state still existed, although the convergence 
property was improved significantly. Zhu et al. [61,65–69] proposed new schemes based on the central WENO (CWENO) 
and multi-resolution WENO (MRWENO) reconstructions to solve unsteady and steady problems. These schemes showed 
the lovely convergence property for the steady-state solutions, including extensive benchmark examples. However, some 
oscillations may appear near discontinuities because the schemes perform similarly to a linear scheme here. In [36], Li et 
al. combined the fixed-point fast sweeping method with multi-resolution WENO reconstruction to solve steady problems 
and utilized the immersed boundary method [41] to deal with curved boundaries. In [70], Zhu et al. developed multi-
resolution WENO limiters to solve steady-state problems with Runge-Kutta discontinuous Galerkin methods; besides, the 
new multi-resolution WENO limiters are easy to be constructed and extended to the higher order.

Meanwhile, few hybrid schemes are applied to steady-state simulations since the gap between different kinds of approx-
imations hinders the convergence of residue. Recently, a new hybrid strategy [52] has been proposed to Euler equations 
with the fifth-order WENO finite difference schemes. The fifth-order WENO scheme is the most popular one among all the 
high order WENO schemes because some oscillations may appear for higher order WENO schemes due to the usage of larger 
sub-stencil; meanwhile, this scheme maintains sufficiently low dissipation to capture strong discontinuities. Spectral analysis 
and numerical results of unsteady problems demonstrated that the hybrid schemes maintain less dispersion and dissipation 
2
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errors than the original schemes, and resolve more flow field details, especially in the multi-scale region. Following this 
work, we apply this new hybrid approach to steady-state simulations.

In this paper, we design a new hybrid finite difference scheme to simulate steady-state solutions, which can give nu-
merical solutions with lower dissipation than the central WENO and multi-resolution WENO schemes, and the essentially 
non-oscillatory property can be achieved. For general hybrid methods [33–35,62,63], people always classify the whole do-
main into two parts: the smooth region and the non-smooth region, and the corresponding linear reconstruction is used 
in the smooth region while specific WENO reconstruction in the non-smooth region. Different from the general approach, 
we classify the whole region into three parts: smooth, non-smooth, and transition regions. An elementary shock detec-
tor is adopted to distinguish these regions from the entire domain, which is based on the smoothness indicator in the 
WENO-JS [28] reconstruction and similar to the approach in [3] for the third-order WENO scheme. This shock detector 
could effectively identify the smooth region and critical points and keep the optimal accuracy in the smooth region while 
extra nonphysical oscillation is avoided. The linear reconstruction is used in the smooth region. Besides, a blending re-
construction is developed in the non-smooth region based on the smoothness amplification factor, which can significantly 
decrease dissipative and dispersive errors. In the transition region, a smooth transitive reconstruction of the smooth re-
gion and the non-smooth region is adopted, which also plays an important role in steady-state convergence for the hybrid 
scheme. Aiming to weaken the WENO reconstruction’s linearity, a new kind of nonlinear weight is proposed in this hybrid 
scheme. Therefore, compared with the numerical performances of the central WENO and multi-resolution WENO schemes, 
the new hybrid one could maintain a good balance between the steady-state convergence and compressing oscillations near 
discontinuities.

The rest of the paper is organized as follows. Section 2 will briefly review the WENO finite difference method for hy-
perbolic conservation laws, including the central WENO and multi-resolution reconstructions. Section 3 is devoted to the 
description of the new hybrid strategy. In the beginning, we propose a simple detector to distinguish three different regions, 
which is based on the smoothness indicator in the classical WENO-JS [28] reconstruction. After that, a blending reconstruc-
tion in the non-smooth region is developed. Then, we present a smoothing interpolation technique in the transition region 
to complete the whole hybrid scheme. Finally, the approximate spectral analysis is applied to show the good performance 
of the hybrid scheme on the dispersion and dissipation relations. In Section 4, numerous experiment results for benchmark 
problems show the excellent steady-state convergence and essentially non-oscillation properties of the new hybrid WENO 
scheme compared with the central WENO and multi-resolution WENO schemes. Conclusions and perspectives are drawn in 
Section 5.

2. The WENO finite difference method

This section will briefly review the finite difference method with the sliding operator and the WENO reconstruction.

2.1. The conservative finite difference method

We consider the one-dimensional scalar equation

f (u)x = 0, x ∈ [a,b]. (2.1)

Consider a uniform grid, a = x 1
2

< x 3
2

< · · · < xN+ 1
2

= b. Let Ii = [xi− 1
2
, xi+ 1

2
], �x = xi+ 1

2
− xi− 1

2
and xi is the center of the 

cell Ii for i = 1, 2, · · · , N . Let h(x) be the sliding function satisfying∫ x+ �x
2

x− �x
2

h(ξ)dξ

�x
= f (u(x, t)), (2.2)

then

f (u)x = h(x + �x
2 ) − h(x − �x

2 )

�x
. (2.3)

Thus, the spatial derivative operator can be discretized as

L(ui) =
f̂ i+ 1

2
− f̂ i− 1

2

�x
, (2.4)

where ui is the numerical approximation to the point value u(xi, t) and the numerical flux f̂ i+ 1
2

is the approximation 
of h(xi+ 1

2
, t) obtained by reconstruction. In the reconstruction, f (ui) can be regarded as the approximation of the cell 

average of the sliding function h̄i = 1
�x

∫ x
i+ 1

2
x

i− 1
2

h(x)dx. Therefore, we can reconstruct f̂ i+ 1
2

= hi+ 1
2

from the cell average h̄i . 

For sake of maintaining stability, the upwind mechanism is performed by the flux splitting, e.g. the Lax-Friedrichs splitting 
f̂ i+ 1 = f̂ +

1 + f̂ −
1 with f ±(u) = 1

2 ( f (u) ± αu) and α = max | f ′(u)| chosen in the relevant region.

2 i+ 2 i+ 2 u

3
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Similarly, for the one-dimensional system

f (u)x = 0, x ∈ [a,b], (2.5)

the spatial derivative operator can be discretized as

L(ui) =
f̂ i+ 1

2
− f̂ i− 1

2

�x
, (2.6)

where ui is the approximation to u(xi, t). As a natural choice, we can reconstruct f̂ i+ 1
2

in a component-wise fashion. 
However, for more demanding problems or when the resolution of approximation is high, the more robust characteristic 
decomposition is needed. Let R = R(ui+ 1

2
), L = R−1(ui+ 1

2
), � = �(ui+ 1

2
) be the matrices of right eigenvectors, left eigen-

vectors, and eigenvalues of the Jacobian f ′(ui+ 1
2
) respectively. The average state ui+ 1

2
can be computed by a Roe average 

satisfying

f (ui+1) − f (ui) = f ′(ui+ 1
2
)(ui+1 − ui). (2.7)

Transform the point value u j and f (u j) into local characteristic field by

v j = Lu j, g j = L f j, j = i − 2, · · · , i + 3. (2.8)

Next, we adopt the Lax-Friedrichs flux splitting for each characteristic variable and the WENO reconstruction to obtain the 
corresponding component of the flux ĝ±

i+ 1
2

. In the Lax-Friedrichs flux splitting, the maximum characteristic speed can be 

set as α = max
j

|λl(u j)| for each characteristic variable in the relevant region. Then we project the new flux ĝ±
i+ 1

2
back into 

physical space by

f̂
±
i+ 1

2
= R ĝ±

i+ 1
2
. (2.9)

The final numerical flux is given by f̂ i+ 1
2

= f̂
+
i+ 1

2
+ f̂

−
i+ 1

2
.

For a multi-dimensional system, a similar procedure can be performed in a dimension by dimension way to derive the 
corresponding finite difference scheme in conservative form. One can refer to [48,49] for more details.

Next, we describe the WENO reconstruction procedure to obtain hi+ 1
2

from the cell average h̄i of the sliding function. 
Generally, let {v̄ i} be the cell average of a function v(x) on the uniform grid above.

2.2. The WENO-JS reconstruction

First, we describe the classical reconstruction method given in [28] that is used to solve unsteady problems. This recon-
struction procedure is termed as the WENO-JS scheme in the following text. For each of the following equal-sized stencils,

S(1)
1 = {Ii−2, Ii−1, Ii}, S(1)

2 = {Ii−1, Ii, Ii+1}, S(1)
3 = {Ii, Ii+1, Ii+2}, (2.10)

there is a quadratic polynomial satisfying

1

�x

∫
I j

pL
3(ξ)dξ = v̄ j, I j ∈ S(1)

1 , (2.11)

1

�x

∫
I j

pC
3 (ξ)dξ = v̄ j, I j ∈ S(1)

2 , (2.12)

1

�x

∫
I j

pR
3 (ξ)dξ = v̄ j, I j ∈ S(1)

3 , (2.13)

respectively. Let β(1)
1 , β(1)

2 , β(1)
3 be the smoothness indicators of pL

3(x), pC
3 (x), pR

3 (x) respectively. The smoothness indicator is 
computed by

β =
n∑

r=1

�x2r−1

x
i+ 1

2∫
x

i− 1

(p(r)(ξ))2dξ, (2.14)
2

4
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where the superscript (r) represents the order of derivative and n represents the degree of p(x). The explicit formulas for 
β

(1)

k are

β
(1)
1 = 13

12
(v̄ i−2 − 2v̄ i−1 + v̄ i)

2 + 1

4
(v̄ i−2 − 4v̄ i−1 + 3v̄ i)

2, (2.15)

β
(1)
2 = 13

12
(v̄ i−1 − 2v̄ i + v̄ i+1)

2 + 1

4
(v̄ i−1 − v̄ i+1)

2, (2.16)

β
(1)
3 = 13

12
(v̄ i − 2v̄ i+1 + v̄ i+2)

2 + 1

4
(3v̄ i − 4v̄ i+1 + v̄ i+2)

2. (2.17)

By performing the Taylor expansion at xi , we have

β
(1)
1 = v̄ ′2

i �x2 + (
13

12
v̄ ′′2

i − 2

3
v̄ ′

i v̄ ′′′
i )�x4 − (

13

6
v̄ ′′

i v̄ ′′′
i − 1

2
v̄ ′

i v̄ ′′′′
i )�x5 +O(�x6), (2.18)

β
(1)
2 = v̄ ′2

i �x2 + (
13

12
v̄ ′′2

i + 1

3
v̄ ′

i v̄ ′′′
i )�x4 +O(�x6), (2.19)

β
(1)
3 = v̄ ′2

i �x2 + (
13

12
v̄ ′′2

i − 2

3
v̄ ′

i v̄ ′′′
i )�x4 + (

13

6
v̄ ′′

i v̄ ′′′
i − 1

2
v̄ ′

i v̄ ′′′′
i )�x5 +O(�x6). (2.20)

The linear weights dk(x) satisfy

pC
5 (x) = d1(x)pL

3(x) + d2(x)pC
3 (x) + d3(x)pR

3 (x) = v(x) +O(�x5), (2.21)

where pC
5 (x) is defined by (2.25) in the following text. Afterwards, the nonlinear weights wk(x) are given by

αk(x) = dk(x)

(ε + β
(1)

k )2
, wk(x) = αk(x)

α1(x) + α2(x) + α3(x)
,k = 1,2,3, (2.22)

where the parameter ε is set as 10−6 to avoid the denominator becoming zero and reduce the influence of critical points. 
Then the WENO-JS reconstruction polynomial P1(x) is given by

P1(x) = w1(x)pL
3(x) + w2(x)pC

3 (x) + w3(x)pR
3 (x). (2.23)

2.3. The CWENOZ reconstruction

Next, we describe the central WENO type reconstruction method given in [66] which is used to solve steady-state 
problems. This WENO scheme was first named the WENO-ZQ scheme. In [12] (on page 2332, after Eqn. (7b)), it was 
pointed out that the WENO-ZQ scheme belongs to the central WENO class [5,11,12,30,31]. Thus, it will be termed as the 
CWENOZ scheme in the following text. In this paper, note that the term CWENOZ stresses the reconstruction method. More 
specifically, the numerical flux is evaluated at the cell boundary in this CWENOZ scheme instead of the midpoint of the cell 
originally. In the fifth-order case, for each of the following unequal-sized stencils

S(2)
1 = {Ii−2, Ii−1, Ii, Ii+1, Ii+2}, S(2)

2 = {Ii−1, Ii}, S(2)
3 = {Ii, Ii+1}, (2.24)

there is a unique polynomial satisfying

1

�x

∫
I j

pC
5 (ξ)dξ = v̄ j, I j ∈ S(2)

1 , (2.25)

1

�x

∫
I j

pL
2(ξ)dξ = v̄ j, I j ∈ S(2)

2 , (2.26)

1

�x

∫
I j

pR
2 (ξ)dξ = v̄ j, I j ∈ S(2)

3 . (2.27)

Let (d1, d2, d3) = (0.98, 0.01, 0.01) be the linear weights and let β(2)
1 , β(2)

2 , β(2)
3 be the smoothness indicators of pC

5 , pL
2, p

R
2

respectively. Take

τ = (
|β(2)

1 − β
(2)
2 | + |β(2)

1 − β
(2)
3 |

2
)2, (2.28)

the nonlinear weights wk are given by
5
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αk = dk(1 + τ

ε + β
(2)

k

), wk = αk

α1 + α2 + α3
,k = 1,2,3. (2.29)

Again, the parameter ε is set as 10−6 to avoid the denominator becoming zero and reduce the influence of critical points. 
The CWENOZ reconstruction polynomial P2(x) is given by

P2(x) = w1

d1
(pC

5 (x) − d2 pL
2(x) − d3 pR

2 (x)) + w2 pL
2(x) + w3 pR

2 (x). (2.30)

2.4. The MRWENO reconstruction

Then, we describe the multi-resolution reconstruction method given in [69] that is also used to solve steady-state prob-
lems. This reconstruction procedure is termed as the MRWENO scheme in the following text. In the fifth-order case, for 
each of the following multi-level stencils

S(3)
1 = {Ii−2, Ii−1, Ii, Ii+1, Ii+2}, S(3)

2 = {Ii−1, Ii, Ii+1}, S(3)
3 = {Ii}, (2.31)

there is a unique polynomial satisfying

1

�x

∫
I j

pC
5 (ξ)dξ = v̄ j, I j ∈ S(3)

1 , (2.32)

1

�x

∫
I j

pC
3 (ξ)dξ = v̄ j, I j ∈ S(3)

2 , (2.33)

1

�x

∫
I j

pC
1 (ξ)dξ = v̄ j, I j ∈ S(3)

3 . (2.34)

Let γl,l2 for l = 1, · · · , l2 and l2 = 2, 3 be the linear weights, and they are set as γl,l2 = γ̄l,l2
l2∑

l=1
γ̄l,l2

, in which γ̄1,2 = 1, γ̄2,2 = 10

and γ̄1,3 = 1, γ̄2,3 = 10, γ̄3,3 = 100. Borrowing the similar idea from the CWENO schemes [5,11,12,30,31,66], denote

q1(x) = pC
1 (x), (2.35)

q2(x) = 1

γ2,2
pC

3 (x) − γ1,2

γ2,2
q1(x), (2.36)

q3(x) = 1

γ3,3
pC

5 (x) − 1

γ3,3
(γ1,3q1(x) + γ2,3q2(x)). (2.37)

Let β(3)
2 , β(3)

3 be the smoothness indicators of q2(x), q3(x) respectively, which are computed by (2.14). Instead of setting 
β

(3)
1 = 0, the choice of the smoothness indicator of q1(x) is quite different. Denote

ζ0 = (v̄ i − v̄ i−1)
2, ζ1 = (v̄ i − v̄ i+1)

2, (2.38)

γ̄0,1 =
{

1, ζ0 ≥ ζ1,

10, otherwise,
γ̄1,1 = 11 − γ̄0,1, (2.39)

γ0,1 = γ̄0,1

γ̄0,1 + γ̄1,1
, γ1,1 = 1 − γ0,1, (2.40)

σ0 = γ0,1(1 + |ζ0 − ζ1|2
ζ0 + ε

),σ1 = γ1,1(1 + |ζ0 − ζ1|2
ζ1 + ε

),σ = σ0 + σ1, (2.41)

where ε = 10−6 is added to avoid the denominator becoming zero and reduce the influence of critical points. Then, take

β
(3)
1 = 1

σ 2
(σ0(v̄ i − v̄ i−1) + σ1(v̄ i+1 − v̄ i))

2. (2.42)

Set

τ3 = (
|β(3)

3 − β
(3)
1 | + |β(3)

3 − β
(3)
2 |

2
)2. (2.43)

The nonlinear weights wl,3 are given by
6
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αl,3 = γl,3(1 + τ3

ε + β
(3)

l

), wl,3 = αl,3

α1,3 + α2,3 + α3,3
, l = 1,2,3. (2.44)

The parameter ε is set as 10−6 as before to avoid the denominator becoming zero and reduce the influence of critical 
points. The MRWENO reconstruction polynomial P3(x) is given by

P3(x) =
3∑

l=1

wl,3ql(x). (2.45)

In any case mentioned above, the final fifth-order approximations at cell boundaries are given by

v−
i+ 1

2
= Pk(xi+ 1

2
), v+

i− 1
2

= Pk(xi− 1
2
),k = 1,2,3. (2.46)

In the finite difference method, the numerical fluxes are taken as f̂ +
i+ 1

2
= v−

i+ 1
2

by identifying v̄ i = f +(ui), and f̂ −
i+ 1

2
= v+

i+ 1
2

with v̄ i = f −(ui).

3. The hybrid reconstruction method

This section proposes a new hybrid strategy to perform the reconstruction. The major difference from existing hybrid 
strategies is that the domain is classified into three parts: smooth, non-smooth, and transition regions. The high-order 
linear reconstruction is used in the smooth region, and the nonlinear WENO reconstruction is used in the non-smooth 
region. Meanwhile, a smooth transitive reconstruction connecting the reconstructions in smooth and non-smooth regions is 
adopted in the transition region for the steady-state convergence.

First, we need to propose a specific smoothness detector to identify the current stencil. There are many different ways 
to give the smoothness detectors in the hybrid methods. In this paper, we still adopt the smoothness indicator (2.14) as 
the primary ingredient in the smoothness detector as in [52]. This approach may not be the sharpest but a practical and 
straightforward choice.

For the fifth-order method, let τ5 = |β(1)
1 − β

(1)
3 | and βM = 1

3

3∑
i=1

β
(1)
i . In the smooth region, basically we have τ5 < βM

since τ5 =O(�x5), and βM =O(�x2) if there is no critical point. Define the smoothness detector η = τ5
ε+βM , where ε is set 

as 10−6 to reduce the influence of critical points and avoid the denominator becoming zero. The smooth region is identified 
by η ≤ 1

2 , the non-smooth region is identified by η ≥ 1, and the transition region is identified by 1
2 < η < 1.

For the “smooth” region (η ≤ 1
2 ), we adopt the linear reconstruction in (2.25), denoted by P A(x) = pC

5 (x). Next, we will 
introduce the reconstruction in the non-smooth and transition regions respectively.

3.1. Reconstruction in the non-smooth region

In the “non-smooth” region (η ≥ 1), a blending technique of the linear and nonlinear reconstruction methods is proposed 
to increase the spectral resolution and the steady-state convergence, and maintain the ENO property.

First, we consider the stencils (2.24) used in the CWENOZ reconstruction. Similar to the procedures in the CWENOZ 
reconstruction, but now let (d1, d2, d3) = (1 − 2d, d, d) be the linear weights. Take

τ = (
|β(2)

1 − β
(2)
2 | + |β(2)

1 − β
(2)
3 |

2
)2. (3.1)

The nonlinear weights wk are given by

αk = dk(1 + τ

(ε + β
(2)

k )C R

), wk = αk

α1 + α2 + α3
,k = 1,2,3. (3.2)

The parameter ε is set as 10−6 to avoid the denominator becoming zero and reduce the influence of critical points. A typical 
choice of C R is C R = 1. However, this choice seems to cause some oscillations near discontinuities. For the sake of reducing 
the linearity of this reconstruction, we take

C R = Cs�x + β∗ + Cb, (3.3)

where Cb can be set, e.g., as 0.01 to avoid C R becoming too small on very fine grids, and the scaling parameter Cs is defined 
by

Cs = (

i+2∑
|U j|)2, (3.4)
j=i−2

7
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where U j is the point value of the variable under reconstruction. β∗ is added to measure the smoothness of the five-point 
stencil, which can be set as β(2)

1 or βM , etc. In the formula of C R , the first two terms dominate on coarse grids. When 
the grid is fine enough, the last two terms begin to dominate to provide proper linearity for steady-state convergence. In 
practice, if one finds that the residue in a small region only hangs at a relatively high level, Cb can be tuned to a larger 
number to improve the steady-state convergence. In all numerical tests in Sec. 4, Cb is chosen as 0.01 and β∗ is set as β(2)

1 .
Afterwards, a WENO reconstruction polynomial P N (x) is given by

P N(x) = w1 pC
5 (x) + w2 pL

2(x) + w3 pR
2 (x), (3.5)

where pC
5 (x), pL

2(x), pR
2 (x) are given by (2.25)-(2.27).

Next, in order to further the spectral resolution of the scheme, we adopt an additional procedure to amplify its smooth-
ness indicator as in [52]. Instead of P N (x), the following blending polynomial

P C (x) = W1 P L(x) + W2 P N(x), (3.6)

is applied in the non-smooth region, where the polynomial P L(x) is given by

P L(x) = d1 pC
5 (x) + d2 pL

2(x) + d3 pR
2 (x). (3.7)

This blending approximation is the convex combination of the P L(x) and P N (x) with the weights W1 and W2 respectively. 
The weights are computed by

W1 = min(1,
1 + √

1 + (a + 1)(Q − 1)

a + 1
), W2 = 1 − W1, (3.8)

where a = β L

β A+10−40 , β A = min{β(2)
1 , β(2)

2 , β(2)
3 }. By adopting this pair of weights (W1, W2), we can make a conclusion that 

the smoothness indicator of the blending polynomial P C (x) is no more than 2Q βN , where βN is the smoothness indicator 
of P N (x). It can be justified as follows.

The smoothness indicator β L of P L(x) can be computed by (2.14). To save computational cost, β L can also be computed 
according to β(2)

1 as follows

β L = |d2(v̄ i+1 − v̄ i−1)
2 + d(1 − 2d)(v̄ i+1 − v̄ i−1)(8v̄ i+1 − v̄ i+2 − 8v̄ i−1 + v̄ i−2)

6
+ (1 − 2d)2β

(2)
1 |, (3.9)

where d is the linear weight of lower order polynomials. Note that the absolute value should be taken to avoid β L becoming 
negative caused by floating-point errors. The smoothness indicator of the blending polynomial P C (x) can be written as

βC =
4∑

j=1

�x2 j−1

x
i+ 1

2∫
x

i− 1
2

((W1 P L + W2 P N)( j))2dx, (3.10)

thus we have

βC ≤ 2
4∑

j=1

�x2 j−1

x
i+ 1

2∫
x

i− 1
2

((W1 P L)( j))2 + ((W2 P N)( j))2dx = 2(W 2
1β L + W 2

2βN). (3.11)

We will get βC ≤ 2Q βN as long as 2(W 2
1 β L + W 2

2βN ) ≤ 2Q βN . Since β A ≤ βN and a = β L

β A+10−40 , it suffices to let

W 2
1a + W 2

2 = Q . (3.12)

Substitute W2 with 1 − W1, the conclusion follows by solving an one variable quadratic equation

(a + 1)W 2
1 − 2W1 + 1 − Q = 0. (3.13)

Denote F (a, Q ) = 1+√
1+(a+1)(Q −1)

a+1 . It can be seen that F is an increasing function of Q and a decreasing function 
of a, which can be adaptively adjusted according to the flow field information. When a ≤ Q , the weight W1 = 1 since 
F (Q , Q ) = 1, thus the linear approximation is dominant. Through the smoothness amplification factor Q , we can control 

the usage of linear approximation in the non-smooth region. Set Q = 1 + K min{β(1)
1 ,β

(1)
2 ,β

(1)
3 }

β A+10−40 , where K is set as 3 to control 

βC . Then from the above proof, we can conclude that βC ≤ 2(β A + K min{β(1)
, β(1)

, β(1)}).
1 2 3

8
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Fig. 3.1. Illustration of the weight functions M(η) in the transition region. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

There are two motivations for adopting this blending reconstruction. First, the blending polynomial P C (x) = W1 P L(x) +
W2 P N(x) gets closer to the linear polynomial P L(x) compared with the nonlinear polynomial P N (x), which may be helpful 
for steady-state convergence as pointed out in [66,69]. Second, the numerical dissipation is reduced a lot compared with 
the pure nonlinear reconstruction P N (x), as shown in the following numerical spectral analysis.

The blending polynomial P C (x) = μ1 pC
5 (x) + μ2 pL

2(x) + μ3 pR
2 (x) can also be seen as a modified version of P N (x), with 

μ1 = W1d1 + W2 w1, μ2 = W1d2 + W2 w2, and μ3 = W1d3 + W2 w3.

3.2. Reconstruction in the transition region

In the transition region (η ∈ ( 1
2 , 1)), a smooth transitive reconstruction from the linear reconstruction to nonlinear re-

construction is introduced for steady-state convergence. The smoothing approximation in the transition region is the convex 
combination of the linear reconstruction P A(x) and the nonlinear reconstruction P C (x) with the weights M(η) and 1 − M(η)

based on the smoothness detector η, i.e. P B(x) = M(η)P A(x) + (1 − M(η))P C (x). The weight function M(η) can be computed 
either by

M(η) = 2 − 2η, η ∈ (
1

2
,1), (3.14)

or

M(η) = e
− (2η−1)2

1−(2η−1)2 , η ∈ (
1

2
,1). (3.15)

Fig. 3.1 illustrates the above choices of M(η). In all the numerical tests, both weight functions perform well for the steady-
state convergence. Thus, we only show the numerical results with the second weight function. Even though the weight 
function is not unique, it is essential for the steady-state convergence in our hybrid scheme.

Finally, we summarize our fifth-order hybrid reconstruction procedure as follows.

Algorithm 1 Procedure for the hybrid reconstruction.
1: procedure WENO-H

2: Given the cell averages v̄ j for all j, calculate the smoothness detector η.
3: if η ≤ 1

2 then
4: Perform the linear reconstruction: P A (x)=pC

5 (x)

5: else if 1
2 < η < 1 then

6: Perform the transition reconstruction: P B (x)=M(η)P A (x)+(1−M(η))P C (x)

7: else
8: Perform the blending reconstruction: P C (x)=μ1 pC

5 (x)+μ2 pL
2(x)+μ3 pR

2 (x)

In this paper, the finite difference scheme based on this hybrid reconstruction is termed as the WENO-H scheme. To ex-
amine the performances of the schemes mentioned above, we adopt the approach in [39,42,43] to compare the approximate 
dispersion and dissipation relations with the fifth-order upwind linear (UW5) reconstruction and the popular fifth-order 
WENO-JS [28,38] reconstruction. Let ω, ω′ be the reduced wave number and the modified wave number respectively. The 
parameter ε is set as 10−6 for all WENO schemes and the parameter Cb for the WENO-H scheme is set as 0.01. Besides, 
the linear weights for the CWENOZ scheme are set as (d1, d2, d3) = (0.98, 0.01, 0.01) as in [66], the linear weights for the 
9
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Fig. 3.2. Approximate dispersion and dissipation relations for different schemes.

MRWENO scheme are set as (γ1,3, γ2,3, γ3,3) = ( 1
111 , 10

111 , 100
111 ) as in [69], and linear weights for the WENO-H scheme are set 

as (d1, d2, d3) = (0.8, 0.1, 0.1). The results are shown in Fig. 3.2, which demonstrate that the new hybrid scheme maintains 
lower dissipative and dispersive errors than CWENOZ, MRWENO and WENO-JS schemes.

Remark 3.1. This hybrid strategy can also be applied to the MRWENO scheme, the second-order TVD scheme, and the first-
order scheme, respectively, to construct new hybrid schemes to solve steady-state problems successfully. Expressly, with the 
same smoothness detector η, we can adopt the linear reconstruction in the smooth region, the MRWENO/TVD/P 0 blending 
reconstruction in the non-smooth region, and the smooth transitive reconstruction in the transition region. For the steady-
state problems of Euler equations, these schemes work well for the steady-state convergence, at least in all our following 
numerical tests. For the brevity of the paper, we will not show the details.

4. Numerical tests

In this section, we present the numerical results of the fifth-order CWENOZ, MRWENO and WENO-H finite difference 
schemes for the steady-state problems of Euler equations. Since we adopt the pseudo-time marching approach, the third-
order TVD/SSP Runge-Kutta method [20]⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(1) = un − �tL(un),

u(2) = 3

4
un + 1

4
u(1) − 1

4
�tL(u(1)),

un+1 = 1

3
un + 2

3
u(2) − 2

3
�tL(u(2)),

(4.1)

is used in the iterations, where L is the spatial discrete operator given by (2.4) or (2.6). Unless specified, the CFL number is 
set as 0.2 and the parameters set in all the numerical tests are the same as the choice in the approximate dispersion and 
dissipation relations analysis in the last section.

Let R1i, R2i, R3i, R4i, R5i be the local residue of five conservative variables for three-dimensional Euler equations (1.1), 

which are defined by R1i = ∂ρ
∂t |i ≈ ρn+1

i −ρn
i

�t , R2i = ∂(ρu)
∂t |i ≈ (ρu)n+1

i −(ρu)n
i

�t , R3i = ∂(ρv)
∂t |i ≈ (ρv)n+1

i −(ρv)n
i

�t , R4i = ∂(ρw)
∂t |i ≈

(ρw)n+1
i −(ρw)n

i
�t , and R5i = ∂ E

∂t |i ≈ En+1
i −En

i
�t . Then the average residue is given by

ResA =
ND∑
i=1

|R1i| + |R2i| + |R3i| + |R4i| + |R5i|
(D + 2)ND

, (4.2)

where ND is the total number of grid points for one-dimensional or two-dimensional or three-dimensional problems and D
is the dimension of space. In x or y or z direction, the maximum characteristic speed α in the Lax-Friedrichs flux splitting 
is typically set as max

�
(|u| + c) or max

�
(|v| + c) or max

�
(|w| + c) for each characteristic variable unless specified, where 

c =
√

γ P
ρ (γ = 1.4) is the sound speed and � is the whole computational domain. The legend “WENO(1.1)” indicates that 

the maximum characteristic speed α is amplified 1.1 times in this WENO scheme. For one-dimensional Euler equations, the 
time step is set as
10
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Fig. 4.1. Numerical results of Example 4.1 with 400 grid points. Left: density distributions of 1D stationary shock wave; right: the time history of average 
residue of different schemes.

�t = CFL
�x

max
�

(|u| + c)
.

For two-dimensional Euler equations, the time step is chosen such that

�t(
max

�
(|u| + c)

�x
+

max
�

(|v| + c)

�y
) = CFL,

and three-dimensional Euler equations,

�t(
max

�
(|u| + c)

�x
+

max
�

(|v| + c)

�y
+

max
�

(|w| + c)

�z
) = CFL.

Example 4.1. As the first example, we consider the one-dimensional stationary shock wave. The governing equation takes 
the form

∂ F (U )

∂x
= 0, (4.3)

where U = (ρ, ρu, E)T and F (U ) = (ρu, ρu2 + P , u(E + P ))T . We compute this problem on the interval [−1, 1], and the 
shock wave is located at x = 0. The Mach number of the left flow is set as M∞ = 2. The initial conditions are given by

U (x,0) =
{

U L, x < 0,

U R , x ≥ 0,
(4.4)

where

⎛
⎝ P L

ρL

uL

⎞
⎠ =

⎛
⎝

1
γ M2∞

1
1

⎞
⎠ ,

⎛
⎝ P R

ρR

uR

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

P L
2γ M2∞−(γ −1)

γ +1
γ +1
γ −1

P R
P L

+1
γ +1
γ −1 + P R

P L√
γ

(2+(γ −1)M2∞)P R

(2γ M2∞+(1−γ ))ρR

⎞
⎟⎟⎟⎟⎟⎠ .

We present the results when the numerical solutions have reached their steady states. The density distributions of the 
numerical solutions are shown in Figs. 4.1 and 4.2. From the zoom-in Fig. 4.2, we can see that the result of the WENO-H 
scheme is less oscillatory. We also show the time history of the average residue of different schemes in Fig. 4.1. It can be 
seen that the average residue of all schemes can settle down to machine zero.

Example 4.2. As an accuracy test, we consider the following two-dimensional Euler equations with source terms

∂

∂x

⎛
⎜⎜⎝

ρu
ρu2 + P

ρuv
u(E + P )

⎞
⎟⎟⎠ + ∂

∂ y

⎛
⎜⎜⎝

ρv
ρuv

ρv2 + P
v(E + P )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.4 cos(x + y)

0.6 cos(x + y)

0.6 cos(x + y)

1.8 cos(x + y)

⎞
⎟⎟⎠ . (4.5)
11
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Fig. 4.2. Numerical results of Example 4.1 with 400 grid points. Left: zoom-in picture around the left of shock wave; right: zoom-in picture around the right 
of shock wave.

Fig. 4.3. Average residue history of different schemes for Example 4.2. Left: the CWENOZ scheme; center: the MRWENO scheme; right: the WENO-H scheme.

Table 4.1
L1 and L∞ errors of different schemes for Example 4.2. Steady state.

Nx × N y UW5 WENO-H

L1 error order L∞ error order L1 error order L∞ error order

20 × 20 1.86E-03 —— 1.25E-04 —— 1.86E-03 —— 1.25E-04 ——
30 × 30 2.51E-04 4.94 1.61E-05 5.05 2.51E-04 4.94 1.61E-05 5.05
40 × 40 6.01E-05 4.97 3.71E-06 5.11 6.01E-05 4.97 3.71E-06 5.11
50 × 50 1.98E-05 4.98 1.19E-06 5.09 1.98E-05 4.98 1.19E-06 5.09
60 × 60 7.96E-06 4.99 4.81E-07 4.98 7.96E-06 4.99 4.81E-07 4.98
70 × 70 3.69E-06 4.99 2.23E-07 4.97 3.69E-06 4.99 2.23E-07 4.97

The exact steady-state solutions are ρ(x, y) = 1 + 0.2 sin(x + y), u(x, y) = 1, v(x, y) = 1, and P (x, y) = 1 + 0.2 sin(x + y). 
The initial solutions are set as the exact solutions projected onto the grid. We compute this problem in a square domain 
[0, 2π ] × [0, 2π ], and the boundary conditions of all the directions are imposed by the exact solutions. We show the time 
history of the average residue in Fig. 4.3. It shows that the residue of all schemes settles down to tiny values close to 
machine zero. The accuracy test results are listed in Table 4.1, and the final computational time is T = 120. The results of 
the CWENOZ and MRWENO schemes are omitted for simplicity since they are similar to the result of the WENO-H scheme. 
We can see that the WENO-H scheme achieves the designed fifth-order accuracy.

Example 4.3. Then we consider the 2D vortex evolution problem. We compute this nonlinear problem on a square [0, 10]2

with periodic boundary condition. The mean flow is ρ = 1, P = 1, (u, v) = (1, 1). An isentropic vortex is added with no 
perturbation in the entropy S = P

ργ . Take temperature Ts = P
ρ , and the perturbation for the velocities (u, v), Ts , S can be 

given as follows:

(δu, δv) = ε

2π
e0.5(1−r2)(−y, x), δTs = − (γ − 1)ε2

8γπ2
e1−r2

, δS = 0, (4.6)

where (x, y) = (x −5, y −5), r2 = x2 + y2, and the vortex strength is set as ε = 5. The exact solution is the passive convection 
of the vortex with the mean velocity. As an accuracy test, we solve the unsteady Euler equations
12
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Table 4.2
L1 and L∞ errors of different schemes for Example 4.3.

Nx × N y UW5 WENO-H

L1 error order L∞ error order L1 error order L∞ error order

10 × 10 2.97E-01 —— 6.36E-02 —— 3.71E-01 —— 7.87E-02 ——
20 × 20 3.52E-02 3.08 5.62E-03 3.50 4.85E-02 2.94 1.36E-02 2.53
40 × 40 1.77E-03 4.32 2.73E-04 4.36 2.42E-03 4.33 4.98E-04 4.77
80 × 80 6.33E-05 4.80 1.01E-05 4.76 2.22E-04 3.45 9.31E-05 2.42
160 × 160 2.12E-06 4.90 3.20E-07 4.98 2.12E-06 6.71 3.19E-07 8.19
320 × 320 8.34E-08 4.67 1.30E-08 4.62 8.34E-08 4.67 1.30E-08 4.62

Nx × N y MRWENO CWENOZ

L1 error order L∞ error order L1 error order L∞ error order

10 × 10 5.05E-01 —— 1.06E-01 —— 5.03E-01 —— 1.01E-01 ——
20 × 20 6.41E-02 2.98 2.19E-02 2.27 6.43E-02 2.97 2.72E-02 1.89
40 × 40 1.86E-03 5.11 7.79E-04 4.81 2.01E-03 5.00 7.38E-04 5.20
80 × 80 6.33E-05 4.88 1.07E-05 6.19 6.34E-05 4.99 1.06E-05 6.12
160 × 160 2.12E-06 4.90 3.20E-07 5.06 2.12E-06 4.90 3.19E-07 5.05
320 × 320 8.35E-08 4.67 1.30E-08 4.63 8.34E-08 4.67 1.30E-08 4.62

∂

∂t

⎛
⎜⎜⎝

ρ
ρu
ρv
E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρu
ρu2 + P

ρuv
u(E + P )

⎞
⎟⎟⎠ + ∂

∂ y

⎛
⎜⎜⎝

ρv
ρuv

ρv2 + P
v(E + P )

⎞
⎟⎟⎠ = 0, (4.7)

and the final computational time is T = 0.2. We take �t ≈ �x
5
3 to make sure that the spatial error dominates, the numerical 

results are shown in Table 4.2. We can observe that all schemes achieve the designed fifth-order accuracy.

Example 4.4. Next we consider the shock reflection problem. We compute this problem in a rectangular [0, 4] × [0, 1]. The 
reflection boundary condition and the supersonic outflow boundary condition are applied along the bottom boundary and 
right boundary respectively. The boundary conditions on other two sides are given by

(ρ, u, v, P )T =
⎧⎨
⎩(1.0,2.9,0,

1.0

1.4
)T |(0,y,t)T ,

(1.69997,2.61934,−0.50632,1.52819)T |(x,1,t)T .

(4.8)

The initial condition is equal to that at the left boundary. The time history of the average residue is shown in Fig. 4.4, 
from which we see that only the average residue of the WENO-H scheme could settle down to a tiny value, around 10−12. 
To further verify the robustness and good convergence of the new scheme, we take ε = 10−10 to compute this case. The 
result is also shown in Fig. 4.4. We can see that the residue can still converge to a tiny value. As an alternative choice, 
taking x direction for example, the maximum characteristic speeds can be set as max

�
|u − c|, max

�
|u|, max

�
|u|, max

�
|u| + c

respectively for the four characteristic variables. By adopting this choice of maximum characteristic speeds, the time history 
of the average residue is shown in Fig. 4.5, from which now we can observe that the average residue of all WENO schemes 
could settle down to a tiny value around 10−12. The density contours of the numerical solutions after steady states reached 
are presented in Fig. 4.6, and the density distributions along the line y = 0.5 − �y

2 are shown in Fig. 4.5. It can be seen 
that some oscillations appear in the numerical solutions of the CWENOZ and MRWENO schemes. In contrast, the numerical 
solution of the WENO-H scheme achieves the essentially non-oscillation property better.

Example 4.5. Next, we consider the forward-facing step problem. The wind tunnel is three units in length and 1 unit 
in width. Initially, a Mach 3 flow with (ρ, u, v, P )T = (1.4, 3.0, 0, 1.0)T goes from the left to the right. The step with a 
height of 0.2 units is located in the interval [0.6, 3]. Inflow and outflow boundary conditions are applied along the left and 
right boundaries, respectively, and reflective boundary conditions are imposed along the walls of the tunnel. Based on the 
assumption of a nearly steady flow, we adopt the method introduced in [55] to fix the singularity at the corner of the step. 
We show the results when the numerical solutions have arrived at their numerical steady states. The history of the average 
residue is shown in Fig. 4.7, which shows that the average residue of all schemes can settle down to a value around 10−13

except for the MRWENO scheme. But the MRWENO(1.1) scheme can solve this issue successfully. The density contours of the 
numerical solutions are presented in Fig. 4.8, and the density distributions along the line y = 0.5 − �y

2 are also shown in 
Fig. 4.7. It can be seen that all schemes can solve this problem well now. Note that this is not a pure steady-state problem 
since the slip line will appear when the grid is fine enough.
13
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Fig. 4.4. The time history of average residue of different schemes for Example 4.4 with mesh size 120 × 30.

Fig. 4.5. Numerical results of Example 4.4 with mesh size 120 ×30. Left: the history of average residue of different schemes; right: 1D cut along y = 0.5 − �y
2

for different schemes.

Fig. 4.6. Density contours of different schemes for Example 4.4 with mesh size 120 × 30. 15 equally spaced contour lines from 1.10 to 2.58. Top: result of 
the CWENOZ scheme; center: result of the MRWENO scheme; bottom: result of the WENO-H scheme.

Example 4.6. A 2D supersonic flow past a cylinder [28]. The physical smooth grid is presented in Fig. 4.9. We compute this 
problem in the square [0, 1]2 on the ξ -η plane. The transformations between the physical domain and the computational 
domain are

x = −(Rx − (Rx − 0.5)ξ) cos(θ(2η − 1)), (4.9)
14



Fig. 4.7. Numerical results of Example 4.5 with mesh size 90 ×30. Left: the history of average residue of different schemes; right: 1D cut along y = 0.5 − �y
2

for different schemes.

Fig. 4.8. Density contours of different schemes for Example 4.5 with mesh size 90 × 30. 30 equally spaced contour lines from 0.32 to 6.15. Top: result of 
the CWENOZ scheme; center: result of the MRWENO scheme; bottom: result of the WENO-H scheme.

and

y = (R y − (R y − 0.5)ξ) sin(θ(2η − 1)), (4.10)

where Rx = 3, R y = 6, and θ = π
2 . The initial condition is a Mach 3 flow with (ρ, u, v, P ) = (1.0, 3

√
1.4, 0, 1.0). The outflow 

boundary condition is applied at η = 0 and η = 1, and the inflow boundary condition is applied at ξ = 0. At ξ = 1, the 
reflective boundary condition is imposed. The time history of the average residue is presented in Fig. 4.10, which shows that 
the average residue of all schemes can settle down to a value around 10−14 , close to machine zero. The pressure contours 
of numerical solutions are shown in Fig. 4.11, and the pressure distributions along the line ξ = 5

6 − �ξ
2 are also shown in 

Fig. 4.10. It can be seen that all schemes can solve this problem well, while the WENO-H scheme gives sharper resolution.
We proceed to solve this problem with mesh size 120 × 160. The time history of the average residue is presented in 

Fig. 4.12, which shows that only the average residue of the WENO-H scheme can settle down to the round-off error level. 
The pressure contours of numerical solutions are shown in Fig. 4.13, and the pressure distributions along the line ξ = 5

6 − �ξ
2

are also shown in Fig. 4.12. Still the result of the WENO-H scheme looks sharper.

Example 4.7. A supersonic flow past a plate with angle θ = 15◦ . The initial condition is given by (ρ, u, v, P ) =
(1, cos(θ), sin(θ), 1

9γ ), where γ = 1.4. We compute this problem in a square [0, 10] × [−5, 5]. The plate is located at 
[1, 2] × {0}, and the slip boundary condition is imposed on it. The inflow boundary condition is applied along the left 
and bottom boundaries, while the outflow boundary condition is applied along the right and top boundaries. We present 
the results when the numerical solutions have reached their steady states. First, we compute this problem with mesh size 
Y. Wan and Y. Xia Journal of Computational Physics 463 (2022) 111292
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Fig. 4.9. The 2D supersonic flow past a cylinder problem for Example 4.6. The physical grid with mesh size 60 × 80.

Fig. 4.10. Numerical results of Example 4.6 with mesh size 60 ×80. Left: the history of average residue of different schemes; right: 1D cut along ξ = 5
6 − �ξ

2
for different schemes.

Fig. 4.11. Pressure contours of different schemes for Example 4.6 with mesh size 60 × 80. 30 equally spaced contour lines from 0.0 to 12.0. Left: result of 
the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.
16
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Fig. 4.12. Numerical results of Example 4.6 with mesh size 120 × 160. Left: the history of average residue of different schemes; right: 1D cut along 
ξ = 5

6 − �ξ
2 for different schemes.

Fig. 4.13. Pressure contours of different schemes for Example 4.6 with mesh size 120 × 160. 30 equally spaced contour lines from 0.0 to 12.0. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

200 × 200. The time history of the average residue is presented in Fig. 4.14, from which we can see that the average residue 
of all schemes can settle down to a value around 10−13.5. The pressure contours of the numerical solutions are shown 
in Fig. 4.15, from which we can see that the contours of the WENO-H scheme seem to be slightly sharper. The pressure 
distributions along the line x = 8 − �x

2 are shown in Fig. 4.14. Thus, the hybrid one suppresses numerical oscillation better 
than the CWENOZ and MRWENO schemes.

Then we compute this problem with mesh size 400 × 400. The time history of the average residue is presented in 
Fig. 4.16. It can be seen that the average residue of both the CWENOZ scheme and the WENO-H scheme can settle down 
to a value around 10−13, while the average residue of the MRWENO scheme only settles down to a value around 10−3.5. 
But this time MRWENO(1.1) scheme can not solve this issue either. Additionally, the residue of the WENO-H scheme is less 
than the residue of the CWENOZ scheme at any time in this example. The pressure contours of the numerical solutions are 
shown in Fig. 4.17, from which it seems that the contours of the WENO-H scheme are still sharp and clear. The pressure 
distributions along the line x = 8 − �x

2 are also shown in Fig. 4.16. Obviously, the hybrid one suppresses numerical oscillation 
better than the CWENOZ and MRWENO schemes.

Example 4.8. A supersonic flow past two plates with angle θ = 15◦ . The initial condition is given by (ρ, u, v, P ) =
(1, cos(θ), sin(θ), 1

9γ ), where γ = 1.4. We compute this problem in a square [0, 10] × [−5, 5]. The first plate is located 
at [2, 3] × {−2}, and the second plate is located at [2, 3] × {2}. We impose the slip boundary condition on these plates. The 
inflow boundary condition is applied along the left and bottom boundaries, while the outflow boundary condition is applied 
along the right and top boundaries. We present the results when the numerical solutions have reached their steady states. 
First, we compute this problem with mesh size 200 × 200. The time history of the average residue is presented in Fig. 4.18. 
17
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Fig. 4.14. Numerical results of Example 4.7 with mesh size 200 ×200. Left: the history of average residue of different schemes; right: 1D cut along x = 8 − �x
2

for different schemes.

Fig. 4.15. Pressure contours of different schemes for Example 4.7 with mesh size 200 × 200. 30 equally spaced contour lines from 0.02 to 0.23. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

Fig. 4.16. Numerical results of Example 4.7 with mesh size 400 ×400. Left: the history of average residue of different schemes; right: 1D cut along x = 8 − �x
2

for different schemes.

The average residue of all schemes can settle down to a tiny value around 10−13.5. The pressure contours of the numerical 
solutions are shown in Fig. 4.19. It can be found that the contours of the WENO-H scheme appear to be sharper than the 
other two. The pressure distributions along the line x = 8 − �x

2 are also shown in Fig. 4.18, which shows that the hybrid 
one suppresses numerical oscillation better than the CWENOZ and MRWENO schemes.

Next, we compute this problem with mesh size 400 × 400. The time history of the average residue is presented in 
Fig. 4.20. But this time, we find that the average residue of both the CWENOZ scheme and the WENO-H scheme can settle 
down to a value around 10−13, while the average residue of the MRWENO scheme only settles down to a value around 
10−3.5. Besides, the residue of the hybrid one is less than the residue of the CWENOZ scheme at any time in this case. 
The pressure contours of the numerical solutions are shown in Fig. 4.21. It can also be observed that the contours of the 
18
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Fig. 4.17. Pressure contours of different schemes for Example 4.7 with mesh size 400 × 400. 30 equally spaced contour lines from 0.02 to 0.23. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

Fig. 4.18. Numerical results of Example 4.8 with mesh size 200 ×200. Left: the history of average residue of different schemes; right: 1D cut along x = 8 − �x
2

for different schemes.

Fig. 4.19. Pressure contours of different schemes for Example 4.8 with mesh size 200 × 200. 30 equally spaced contour lines from 0.02 to 0.23. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

WENO-H scheme look sharp and clear. The pressure distributions along the line x = 8 − �x
2 are also shown in Fig. 4.20. 

Again, the hybrid one suppresses numerical oscillation better than the CWENOZ and MRWENO schemes.

Example 4.9. A supersonic flow past three plates with angle θ = 10◦ . The initial condition is given by (ρ, u, v, P ) =
(1, cos(θ), sin(θ), 1

9γ ), where γ = 1.4. We compute this problem in a square [0, 10] × [−5, 5]. The first plate is located 
at [2, 3] × {−2}, the second plate is located at [1, 2] × {0}, and the third plate is located at [2, 3] × {2}. We impose the slip 
boundary condition on these plates. The inflow boundary condition is applied along the left and bottom boundaries, while 
the outflow boundary condition is applied along the right and top boundaries. We present the results when the numeri-
cal solutions have reached their steady states. The time history of the average residue is presented in Fig. 4.22. The average 
residue of all schemes can settle down to a value around 10−13. The pressure contours of the numerical solutions are shown 
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Fig. 4.20. Numerical results of Example 4.8 with mesh size 400 × 400. Left: the history of average residue of different schemes; right: 1D cut along 
x = 8 − �x

2 for different schemes.

Fig. 4.21. Pressure contours of different schemes for Example 4.8 with mesh size 400 × 400. 30 equally spaced contour lines from 0.02 to 0.23. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

Fig. 4.22. Numerical results of Example 4.9 with mesh size 400 × 400. Left: the history of average residue of different schemes; right: 1D cut along 
x = 8 − �x

2 for different schemes.

in Fig. 4.23. It seems that the contours of the WENO-H scheme look sharp. It is verified by the pressure distributions along 
the line x = 8 − �x

2 in Fig. 4.22. Similarly, the hybrid one shows a better transition near discontinuities.

Example 4.10. A supersonic flow past a long plate with angle θ = 10◦ . The initial condition is given by (ρ, u, v, P ) =
(1, cos(θ), sin(θ), 1

9γ ), where γ = 1.4. We compute this problem in a rectangular [0, 7] × [−5, 5]. The long plate is lo-
cated at [2, 7] × {0}, and the slip boundary condition is imposed on it. The inflow boundary condition is applied along 
the left and bottom boundaries, while the outflow boundary condition is applied along the right and top boundaries. We 
present the results when the numerical solutions have reached their steady states. The time history of the average residue 
20
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Fig. 4.23. Pressure contours of different schemes for Example 4.9 with mesh size 400 × 400. 30 equally spaced contour lines from 0.02 to 0.23. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

Fig. 4.24. Numerical results of Example 4.10 with mesh size 280 × 400. Left: the history of average residue of different schemes; right: 1D cut along 
x = 5.6 − �x

2 for different schemes.

Fig. 4.25. Pressure contours of different schemes for Example 4.10 with mesh size 280 × 400. 30 equally spaced contour lines from 0.031 to 0.161. Left: 
result of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

is presented in Fig. 4.24, which shows that the average residue of all schemes can settle down to a value around 10−13 . The 
pressure contours of the numerical solutions are shown in Fig. 4.25, from which it is also found that the contours of the 
WENO-H scheme look sharp and clear. The pressure distributions along the line x = 5.6 − �x

2 are also shown in Fig. 4.24, 
which verifies that the hybrid one suppresses numerical oscillation better than the CWENOZ and MRWENO schemes.

Example 4.11. A supersonic flow past three long plates with angle θ = 10◦ . The initial condition is given by (ρ, u, v, P ) =
(1, cos(θ), sin(θ), 1

9γ ), where γ = 1.4. We compute this problem in a rectangular [0, 5] × [−5, 5]. The first long plate is 
located at [2, 5] × {−2}, the second long plate is located at [2, 5] × {0}, and the third long plate is located at [2, 5] ×
{2}. The slip boundary condition is imposed on these plates. The inflow boundary condition is applied along the left and 
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Fig. 4.26. Numerical results of Example 4.11 with mesh size 200 × 400. Left: the history of average residue of different schemes; right: 1D cut along 
x = 4 − �x

2 for different schemes.

Fig. 4.27. Pressure contours of different schemes for Example 4.11 with mesh size 200 × 400. 30 equally spaced contour lines from 0.031 to 0.161. Left: 
result of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

bottom boundaries, while the outflow boundary condition is applied along the right and top boundaries. We present the 
results when the numerical solutions have reached their steady states. The time history of the average residue is presented 
in Fig. 4.26. The average residue of all schemes can settle down to a value around 10−13. The pressure contours of the 
numerical solutions are shown in Fig. 4.27. It looks that the contours of the WENO-H scheme are sharp and clear. The 
pressure distributions along the line x = 4 − �x

2 in Fig. 4.26 verify that the hybrid one achieves the essentially non-oscillation 
property better. At the same time, some oscillations appear in the results computed by the CWENOZ and MRWENO schemes.

Example 4.12. A supersonic flow past a square column with angle θ = 0◦ . The initial condition is given by (ρ, u, v, P ) =
(1, 1, 0, 1

16γ ), where γ = 1.4. We compute this problem in a rectangular [−5, 5] × [−9, 9]. The square column is located at 
[1, 5] ×[−0.5, 0.5], imposing the slip boundary condition. The inflow and outflow boundary conditions are applied along the 
outer boundaries. We present the results when the numerical solutions have reached their steady states. First, we compute 
this problem with mesh size 60 × 108. The time history of the average residue is presented in Fig. 4.28. We can see that the 
average residue of all schemes can settle down to a value around 10−14. The pressure contours of the numerical solutions 
are shown in Fig. 4.29, and the pressure distributions along the line x = 9 − �x

2 are also shown in Fig. 4.28. It can be seen 
that all schemes can solve this problem well.

Next, we compute this problem with mesh size 120 × 216. The time history of the average residue is presented in 
Fig. 4.30. It can be found that the average residue of all schemes can settle down to a value around 10−13.5 except the 
CWENOZ scheme. Notice that the CWENOZ(1.1) scheme can solve this issue. The pressure contours of the numerical solu-
tions are shown in Fig. 4.31. The pressure distributions along the line x = 9 − �x

2 are also shown in Fig. 4.30. Once again, 
the hybrid one suppresses numerical oscillations better than other WENO schemes based on the performances near y = ±4, 
and the hybrid one presents sharper transition near discontinuities based on the performances near y = ±0.5.

Example 4.13. A supersonic flow past two square columns with angle θ = 0◦ . The initial condition is given by (ρ, u, v, P ) =
(1, 1, 0, 1

16γ ), where γ = 1.4. We compute this problem in a rectangular [−5, 5] ×[−9, 9]. The first square column is located 
at [1, 5] ×[−4.5, −3.5], and the second square column is located at [1, 5] ×[3.5, 4.5]. We impose the slip boundary condition 
22
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Fig. 4.28. Numerical results of Example 4.12 with mesh size 60 ×108. Left: the history of average residue of different schemes; right: 1D cut along x = 9 − �x
2

for different schemes.

Fig. 4.29. Pressure contours of different schemes for Example 4.12 with mesh size 60 × 108. 30 equally spaced contour lines from 0.05 to 0.87. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

Fig. 4.30. Numerical results of Example 4.12 with mesh size 120 × 216. Left: the history of average residue of different schemes; right: 1D cut along 
x = 9 − �x

2 for different schemes.

on these columns. The inflow and outflow boundary conditions are applied along the outer boundaries. We present the 
results when the numerical solutions have reached their steady states. First, we compute this problem with mesh size 
80 × 144. The time history of the average residue is presented in Fig. 4.32. We can see that the average residue of all 
schemes can settle down to a value around 10−14. The pressure contours of the numerical solutions are shown in Fig. 4.33, 
and the pressure distributions along the line x = 6 − �x

2 are shown in Fig. 4.32. It can be found that all schemes could solve 
this problem well.

Second, we compute this problem with mesh size 160 × 288. The time history of the average residue is presented in 
Fig. 4.34. In this case, we see that the average residue of all schemes can settle down to a value around 10−13.5 except 
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Fig. 4.31. Pressure contours of different schemes for Example 4.12 with mesh size 120 × 216. 30 equally spaced contour lines from 0.05 to 0.87. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

Fig. 4.32. Numerical results of Example 4.13 with mesh size 80 ×144. Left: the history of average residue of different schemes; right: 1D cut along x = 6 − �x
2

for different schemes.

Fig. 4.33. Pressure contours of different schemes for Example 4.13 with mesh size 80 × 144. 30 equally spaced contour lines from 0.05 to 0.87. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

for the CWENOZ scheme, but CWENOZ(1.1) scheme works. The pressure contours of the numerical solutions are shown in 
Fig. 4.35. The pressure distributions along the line x = 6 − �x

2 are also shown in Fig. 4.34, from which it can be found that 
the result of the hybrid one is slightly less oscillatory.

Example 4.14. Three-dimensional Euler quations with source terms. The source term (0.6 cos(x + y + z), 0.8 cos(x + y +
z), 0.8 cos(x + y + z), 0.8 cos(x + y + z), 3 cos(x + y + z))T is added to the right hand side of equations (1.1), and the exact 
steady-state solutions are (ρ, u, v, w, P )T = (1 + 0.2 sin(x + y + z), 1, 1, 1, 1 + 0.2 sin(x + y + z))T . We compute this problem 
in a cube domain [0, 2π ]3 with the CFL number 0.6, and the boundary conditions of all the directions are imposed by the 
exact solutions. The accuracy test results are listed in Table 4.3, and the final computational time is T = 40. The results of 
the CWENOZ and MRWENO schemes are omitted for simplicity since they are similar to the result of the WENO-H scheme. 
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Fig. 4.34. Numerical results of Example 4.13 with mesh size 160 × 288. Left: the history of average residue of different schemes; right: 1D cut along 
x = 6 − �x

2 for different schemes.

Fig. 4.35. Pressure contours of different schemes for Example 4.13 with mesh size 160 × 288. 30 equally spaced contour lines from 0.05 to 0.87. Left: result 
of the CWENOZ scheme; center: result of the MRWENO scheme; right: result of the WENO-H scheme.

Table 4.3
L1 and L∞ errors of different schemes for Example 4.14. Steady state.

Nx × N y × Nz UW5 WENO-H

L1 error order L∞ error order L1 error order L∞ error order

20 × 20 × 20 3.90E-03 —— 5.76E-05 —— 3.90E-03 —— 5.76E-05 ——
30 × 30 × 30 5.00E-04 5.07 7.35E-06 5.08 5.00E-04 5.07 7.35E-06 5.08
40 × 40 × 40 1.17E-04 5.04 1.73E-06 5.03 1.17E-04 5.04 1.73E-06 5.03
50 × 50 × 50 3.82E-05 5.03 5.65E-07 5.01 3.82E-05 5.03 5.65E-07 5.01
60 × 60 × 60 1.53E-05 5.01 2.27E-07 5.01 1.53E-05 5.01 2.27E-07 5.01
70 × 70 × 70 7.06E-06 5.01 1.05E-07 5.02 7.06E-06 5.01 1.05E-07 5.02

We can see that the WENO-H scheme achieves the designed fifth-order accuracy. We show the time history of the average 
residue in Fig. 4.36. It shows that the average residue of the WENO-H scheme can settle down to tiny values close to 
machine zero.

Example 4.15. A 3D Mach 3 flow past a plate. The initial condition is given by (ρ, u, v, w, P ) = (1, 
√

3
3 , 

√
3

3 , 
√

3
3 , 1

9γ ). We 
compute this problem in a cube domain [−5, 5]3 with the CFL number 0.6. The plate is located at [0, 2] × {0} × [−1, 1], 
and the slip boundary condition is imposed on it. The inflow and outflow boundary conditions are applied along the outer 
boundaries. We compute this problem with mesh size 100 × 100 × 100. The CWENOZ scheme fails to solve this problem 
due to negative pressure. However, the modified CWENOZ scheme with linear weights (d1, d2, d3) = (0.8, 0.1, 0.1) can solve 
this problem. The time history of the average residue is presented in Fig. 4.37, from which we can see that the numerical 
solutions computed by all schemes can converge to the steady state except the MRWENO scheme. The pressure contours 
of the numerical solution computed by the WENO-H scheme are shown in Fig. 4.38. The results computed by the modified 
CWENOZ and MRWENO schemes are omitted for simplicity since they are similar to that of the WENO-H scheme.
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Fig. 4.36. Average residue history of the WENO-H scheme for Example 4.14.

Fig. 4.37. Average residue history of different schemes for Example 4.15.

Fig. 4.38. Pressure contours of the WENO-H scheme for Example 4.15 with mesh size 100 × 100 × 100. 30 equally spaced contour lines from 0.0 to 0.6.

5. Conclusion

In this paper, we proposed a hybrid approach to the fifth-order WENO scheme for the steady-state problems of Euler 
equations. Inspired by the work in [52], the reconstruction stencil was identified as smooth, non-smooth, and transition 
regions by adopting a simple and effective smoothness detector. The linear and blending reconstructions applied on the 
smooth and non-smooth regions aimed to increase the spectral resolution, verified by the approximate spectral analysis 
and numerous numerical examples. Meanwhile, the blending and transition reconstructions adopted on the non-smooth 
and transition regions aimed to overcome the difficulty of residue convergence caused by strong discontinuities. In all the 
benchmarks of our numerical tests, the average residue of the hybrid scheme could settle down to the round-off error 
level successfully. Besides, the hybrid scheme presented the numerical solutions with better robustness and essentially non-
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oscillatory property than the newly proposed schemes [66,69] used to solve steady-state problems and maintained the sharp 
resolution near shocks. For strong shock waves, this hybrid approach possesses a good potential to be adapted for other high 
order reconstructions and numerical schemes.
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