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In this paper, we develop an energy stable fully discrete discontinuous Galerkin (DG) finite 
element method for the thin film epitaxy problem. Based on the method of lines, we 
construct and prove the energy stability of the spatial semi-discrete DG scheme firstly. To 
avoid the strict time step restriction of the explicit time integration method, the first order 
convex splitting method is used to get an unconditionally stable fully discrete DG method, 
which is a linearly implicit scheme for this nonlinear problem. The energy stability of the 
fully discrete convex splitting DG scheme is also proved. To improve the temporal accuracy, 
spectral deferred correction (SDC) method is adapted to achieve the high order accuracy in 
both time and space. Combining with the convex splitting method, the SDC method can be 
linearly solvable, high order accurate and stable in our numerical tests. These advantages 
ensure that the resulting fully discrete DG scheme is efficient to perform the long time 
simulation of the thin film epitaxy model. Numerical experiments of the accuracy and long 
time simulation show the capability and efficiency of the method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The epitaxial thin film model is the gradient flow with the energy

E(u) =
∫
Ω

(
F (∇u) + ε2

2
|�u|2

)
dx, (1.1)

where Ω ∈ Rd with d ≥ 2, u : Ω → R is the height function, F (∇u) is a smooth function of its argument ∇u, and ε is a 
constant. This model arises in the phenomenological macroscopic coarsening processes, which usually take place on a very 
long time scale for large systems. The first part of the energy,

E E S(u) =
∫
Ω

F (∇u)dx,
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represents the Ehrlich–Schwoebel energy, which is the higher energy barrier for the absorbed atoms to overcome and stick 
to a step from an upper terrace. The second part of the energy,

E S D(u) =
∫
Ω

ε2

2
|�u|2dx,

represents the surface diffusion effect. In [13], the so-called no-slope-selection Ehrlich–Schwoebel energy is defined by the 
integral of F (∇u) = − 1

2 ln(1 + |∇u|2), in which the function F (∇u) is unbounded below. The chemical potential is defined 
by the variational derivative of the energy, i.e.

μ := δE(u)

δu
= ∇ ·

( ∇u

1 + |∇u|2
)

+ ε2�2u. (1.2)

Then the gradient flow follows,

∂t u = −μ = −∇ ·
( ∇u

1 + |∇u|2
)

− ε2�2u, (1.3)

with the Neumann boundary condition

∂u

∂ν
= ∂�u

∂ν
= 0, on ∂Ω, (1.4)

or the periodic boundary condition, where ν is the unit normal vector on ∂Ω pointing exterior to Ω . Eq. (1.3) is called the 
no-slope-selection thin film model. Under the assumption that the slope |∇u| is small, Eq. (1.3) can be approximated by

∂t u = −∇ · ((1 − |∇u|2)∇u
) − ε2�2u, (1.5)

in which the Ehrlich–Schwoebel effect becomes F (∇u) = 1
4 (|∇u|2 − 1)2. This model has a slope selection mechanism, in 

which |∇u| = 1 is preferred. Eq. (1.5) is called the slope-selection thin film model.
Various unconditionally stable first order [20,2] and second order [19] temporal discretization schemes have been de-

veloped for the thin film model recently, based on the convex splitting technique derived in [10] for the Allen–Cahn and 
Cahn–Hilliard equations. In [23], the first, second and third order time accurate schemes also have been explored, where 
the energy stability for the first order scheme is based on the assumption of the numerical solution itself. For the spatial 
discretization, usually the central finite difference or the spectral method has been adopted for the periodic problems. In 
this paper, the discontinuous Galerkin (DG) method will be developed for the general boundary condition and domain prob-
lems. Another advantage of the discontinuous Galerkin method is the arbitrary high order accuracy by choosing the local 
approximating basis. Meanwhile, the spectral deferred correction (SDC) method [9,21] is used to achieve the high order 
accuracy for the temporal discretization.

The discontinuous Galerkin method is a class of finite element methods, in which using the discontinuous, piecewise 
polynomial basis as the solution and test spaces. It was first developed for solving the hyperbolic problems, which contains 
only first order spatial derivatives, e.g. Reed and Hill [18] for solving the linear time-independent neutron transport equation, 
and Cockburn et al. [4–7] for the nonlinear hyperbolic conservation laws. Then the DG method was generalized to the partial 
differential equations (PDEs) containing higher than the first oder derivatives in several different approaches, e.g. interior 
penalty DG [1], local DG [24], direct DG [16], and DG based on multiple integration by parts [3] etc. The main idea in 
these different DG approaches is to choose the numerical fluxes carefully to ensure the energy stability, based on different 
weak forms of the problem. In this paper, we will use the framework of the local DG (LDG) method to develop the DG 
scheme for the thin film model. There are two steps in the LDG framework: first rewriting the problem into the form which 
contains only first order derivatives, and then applying the DG weak form by choosing the numerical fluxes to ensure energy 
stability. DG and LDG methods also have several attractive properties, such as arbitrary high order accuracy, the flexibility 
for arbitrary h and p adaptivity and their excellent parallel efficiency.

For PDEs containing higher order spatial derivatives, the explicit time discretization will suffer from the extremely small 
time step restriction for stability, but not for accuracy. It would therefore be desirable to use either nonlocal or implicit time 
discretization techniques to alleviate this problem, especially for the thin film model in which the long time simulation is 
needed for the coarsening process. Based on the idea of the convex splitting method for the Allen–Cahn and Cahn–Hilliard 
equations [10], the first and second order convex splitting methods for the thin-film model have been proposed in [2,20]
and [19], respectively. In the convex splitting scheme, one first splits the energy into convex and concave parts. Then 
one discretizes the terms of the variational derivative implicitly for the convex part, and explicitly for the concave part 
of the energy respectively. The convex splitting method is unconditionally energy stable and uniquely solvable, regardless 
of the time step. Unfortunately, these schemes are only first or second order accurate, and not easy to extend to higher 
order accurate ones. In [21], some efficient semi-implicit time discretization methods have been explored coupled with 
LDG spatial discretization to obtain the uniformly high order fully discrete scheme, such as SDC method, exponential time 
differencing (ETD) method and additive Runge–Kutta (ARK) method. Coupled with the convex splitting method, we will 
construct a stable and linearly solvable SDC DG method for the thin film model, which is high order accurate in both space 
and time.



250 Y. Xia / Journal of Computational Physics 280 (2015) 248–260
The organization of the paper is as follows. In Section 2, we will develop the local discontinuous Galerkin method for the 
thin film model and prove its discrete energy stability. In Section 3, we first present the first order, linear convex splitting 
method coupled with the LDG spatial discretization scheme, and prove that the fully-discrete scheme is unconditionally 
energy stable. Then, we introduce the linearly implicit SDC method coupled with the convex splitting DG scheme to achieve 
the uniform high order accuracy. Numerical experiments are presented in Section 4, testing the performance of the fully 
discrete high order scheme. Finally, we give the concluding remarks in Section 5.

2. Local discontinuous Galerkin method

In this section, we will develop the local discontinuous Galerkin (LDG) semi-discrete scheme for the no-slope-selection 
thin film model.

We consider a subdivision Th of Ω with shape-regular elements K , and denote the union of the boundary faces of 
elements K ∈ Th by Eh , i.e. Eh = ⋃

K∈Th
∂ K , and Γ0 = Γ \∂Ω . We set

Vh := {
v ∈ L2(Ω) : v|K ∈ Pk(K ),∀K ∈ Th

}
, (2.6)

W h := {
v ∈ (

L2(Ω)
)d : v|K ∈ (

Pk(K )
)d

,∀K ∈ Th
}
, (2.7)

where Pk(K ) is the space of polynomial functions of degree at most k on K . Notice that functions in Vh and W h are 
allowed to be completely discontinuous across element interfaces. We denote all the interior faces by E i

h , that e ∈ E i
h if there 

are two elements K1 and K2 in Th such that e = ∂ K1 ∩ ∂ K2. And all the boundary faces are denoted by Γh := Eh\E i
h , that 

e ∈ Γh if there is an element K in Th such that e = ∂ K ∩ ∂Ω .
To develop the LDG scheme, we first rewrite Eq. (1.3) into the system form,

ut = −∇ · S − ε2∇ · R, (2.8a)

P = ∇u, (2.8b)

v = ∇ · P , (2.8c)

R = ∇v, (2.8d)

S = P

1 + |P |2 , (2.8e)

which contains only first order spatial derivatives. Next, we obtain the weak formulation of the exact solution. Multiplying 
the equations in the system (2.8) by the test functions φ, η, ϕ , ξ and ζ , respectively, integrating on each elements K , and 
adding over all K ∈ Th , we get the weak formulation that is satisfied by the exact solution (u, P , v, R, S):

(ut, φ)h = −〈S · ν, φ〉h + (S,∇φ)h − ε2〈R · ν, φ〉h + ε2(R,∇φ)h, (2.9a)

(P ,η)h = 〈u,η · ν〉h − (u,∇ · η)h, (2.9b)

(v,ϕ)h = 〈P · ν,ϕ〉h − (P ,∇ϕ)h, (2.9c)

(R, ξ )h = 〈v, ξ · ν〉h − (v,∇ · ξ)h, (2.9d)

(S, ζ )h =
(

P

1 + |P |2 , ζ

)
h
, (2.9e)

for all the test functions (φ, ϕ, η, ξ , ζ ). Here ν is the outward normal vector to ∂ K . We have used the notation

(u, v)h :=
∑

K∈Th

∫
K

u(x)v(x)dx,

〈u, v〉h :=
∑

K∈Th

∫
∂ K

u(x)v(x)ds,

(η, ξ)h :=
∑

K∈Th

∫
K

η(x) · ξ(x)dx,

and the definition of L2 norm on the domain Ω can be given by

‖u‖L2 = √
(u, u)h.

Based on the weak formulation (2.9), the semi-discrete scheme of the thin film model given by the LDG method is de-
fined by the spatial discretization of the system (2.9) in the space Vh, W h . To simplify the notation, we still use u, v, P , R, S
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as the numerical solution. The semi-discrete LDG scheme for Eq. (2.9) is defined as: Find u, v ∈ Vh and P , R, S ∈ W h , such 
that

(ut, φ)h = −〈̂S · ν, φ〉h + (S,∇φ)h − ε2〈R̂ · ν, φ〉h + ε2(R,∇φ)h, (2.10a)

(P ,η)h = 〈̂u,η · ν〉h − (u,∇ · η)h, (2.10b)

(v,ϕ)h = 〈 P̂ · ν,ϕ〉h − (P ,∇ϕ)h, (2.10c)

(R, ξ )h = 〈̂v, ξ · ν〉h − (v,∇ · ξ)h, (2.10d)

(S, ζ )h =
(

P

1 + |P |2 , ζ

)
h
, (2.10e)

for all φ, ϕ ∈ Vh and η, ξ , ζ ∈ W h . Here Ŝ , R̂ , û, P̂ and v̂ are the numerical traces (numerical fluxes). To complete the 
definition of the method, we need to define these numerical fluxes.

Now let e be an interior face shared by the elements K L and K R and define the outward unit normal vectors ν L and 
νR on e respectively. For our purpose “left” and “right” can be uniquely defined for each face according to any fixed rule. 
For example, ν0 can be chosen as a constant vector. The left element K L to the face e requires that ν L · ν0 ≤ 0, and the 
right one K R requires that νR · ν0 > 0. If w is a function on K L and K R , but possibly discontinuous across e, let w L denote 
(w|KL )|e and w R denote (w|K R )|e , the left and right traces, respectively. The numerical fluxes are chosen based on the 
stability analysis. It turns out that the simple alternating numerical fluxes can guarantee the energy stability, such as

Ŝ = S L, R̂ = R L, û = uR , P̂ = P L, v̂ = v R . (2.11)

For boundary faces with the Neumann boundary condition (1.4), the numerical fluxes will be chosen as

Ŝ · ν = 0, R̂ · ν = 0, û = uI , P̂ · ν = 0, v̂ = v I , (2.12)

where uI and v I mean the numerical traces from the inside of the computational domain. In the following proof of the 
energy stability, we can see that the choice of the alternating numerical fluxes is not unique and the crucial part is to take 
û and Ŝ, ̂R from opposite sides, also v̂ and P̂ from opposite sides. Besides the alternating fluxes, the central fluxes or the 
linear combination of the alternating fluxes also work for the stability analysis. However, similar to the LDG scheme for the 
heat equation ut = uxx [8], non-alternating numerical fluxes could lead to the suboptimal convergence rate sometimes.

Obviously, the scheme is conservative, by choosing the test function φ = 1 in the scheme (2.10). Next, we will prove the 
energy stability for semi-discrete LDG scheme (2.10) with the alternating numerical fluxes and the Neumann or periodic 
boundary condition.

Proposition 2.1 (Energy stability for the semi-discrete DG scheme). The solution to the LDG scheme (2.10) with numerical fluxes (2.11)
and the Neumann boundary condition (2.12) or the periodic boundary condition satisfies the energy stability

d

dt
Eh(P , v) = d

dt

∫
Ω

(
F (P ) + ε2

2
v2

)
dx ≤ 0, (2.13)

where F (P ) = − 1
2 ln(1 + |P |2).

Proof. Taking the test function φ = ut in Eq. (2.10a) of the LDG scheme (2.10), we have

(ut, ut)h = −〈̂S · ν, ut〉h + (S,∇ut)h − ε2〈R̂ · ν, ut〉h + ε2(R,∇ut)h. (2.14)

After taking the time derivative of Eqs. (2.10b) and (2.10c) and choosing the test functions η = S, R , and ϕ = v , we obtain

(P t, S)h = 〈ût, S · ν〉h − (ut,∇ · S)h, (2.15)

(P t, R)h = 〈ût, R · ν〉h − (ut,∇ · R)h, (2.16)

(vt, v)h = 〈 P̂ t · ν, v〉h − (P t,∇v)h. (2.17)

Then we choose the test function ξ = P t and ζ = P t in Eqs. (2.10d) and (2.10e) of the scheme and we get

(R, P t)h = 〈̂v, P t · ν〉h − (v,∇ · P t)h, (2.18)

(S, P t)h =
(

P

1 + |P |2 , P t

)
h
. (2.19)

Now let (2.14) − (2.15) − ε2(2.16) + ε2(2.18) + ε2(2.17) + (2.19), and we find
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(ut, ut)h + ε2(vt, v)h =
(

P

1 + |P |2 , P t

)
h

− 〈̂S · ν, ut〉h + (S,∇ut)h − 〈ûtν, S〉h + (ut,∇ · S)h

+ ε2(−〈R̂ · ν, ut〉h + (R,∇ut)h − 〈ûtν, R〉h + (ut,∇ · R)h
)

+ ε2(〈 P̂ t · ν, v〉h − (P t,∇v)h + 〈̂vν, P t〉h − (v,∇ · P t)h
)
.

For the alternating numerical fluxes (2.11) on interior faces and the Neumann boundary condition (2.12) or the periodic 
boundary condition (with the same alternating numerical fluxes as (2.11)) on boundary faces, it is easy to check that

−〈̂S · ν, ut〉h + (S,∇ut)h − 〈ûtν, S〉h + (ut,∇ · S)h = 0,

−〈R̂ · ν, ut〉h + (R,∇ut)h − 〈ûtν, R〉h + (ut,∇ · R)h = 0,

〈 P̂ t · ν, v〉h − (P t,∇v)h + 〈̂vν, P t〉h − (v,∇ · P t)h = 0.

Thus, we see that

d

dt
Eh(P , v) = −

(
P

1 + |P |2 , P t

)
h
+ ε2(vt, v)h = −(ut, ut)h (2.20)

which means that the discrete energy decreases at the rate of ‖ut‖2
L2 . �

Remark 2.1. From the energy stability for the LDG scheme, only the intermediate variable P and v can be bounded. So 
we cannot derive the H2 stability for the LDG scheme. Consequently, we cannot give the error estimate based only on the 
energy stability.

3. Time discretization

When ε is small, the coarsening process occurs on a very long time scale. And also, the explicit time integration methods 
lead to a very strict time step for stability, due to the high order spatial derivatives. Therefore, the time discretization method 
for the thin film model requires long time accuracy and stability.

3.1. Convex splitting method

We employ the convex splitting method for the time discretization coupled with the discontinuous Galerkin spatial 
discretization, to obtain a fully discrete stable DG scheme for the thin film model.

First, we split the discrete energy Eh(P , v) as Eh(P , v) = Ei
h(P , v) − Ee

h(P , v), where

Ei
h(P , v) =

∫
Ω

1

2
|P |2 + ε2

2
v2dx, Ee

h(P , v) = 1

2

∫
Ω

|P |2 + ln
(
1 + |P |2)dx.

There are many different ways to split the energy. Here we follow the energy splitting approach suggested in [2]. This 
splitting approach can lead to a linearly semi-implicit time discretization method, which is uniquely solvable obviously and 
efficient comparing to the nonlinearly implicit method. The corresponding convex splitting DG scheme is given by: Find 
un+1 ∈ Vh and P n+1, Rn+1, Sn+1 ∈ W h ,(

un+1 − un

�t
, φ

)
h

= −〈
P̂ n · ν, φ

〉
h + (

P n,∇φ
)

h − 〈
Ŝn · ν, φ

〉
h + (

Sn,∇φ
)

h

+ 〈
̂P n+1 · ν, φ

〉
h − (

P n+1,∇φ
)

h − ε2〈̂Rn+1 · ν, φ
〉
h + ε2(Rn+1,∇φ

)
h, (3.21)

where un, un+1 represents the numerical solution at time level tn and tn+1 respectively, and the time step �t = tn+1 − tn . 
The time step �t could be chosen adaptively at each time level.

It is easy to see that the fully-discrete scheme is also conservative. Next, we will prove the energy stability for the 
fully-discrete DG scheme (3.21) with the choice of the numerical fluxes in the previous section.

Proposition 3.1 (Energy stability for the fully discrete DG scheme). The solution to the LDG scheme (3.21) with the numerical fluxes 
(2.11) and the Neumann boundary condition (2.12) or the periodic boundary condition satisfies the energy stability

Eh
(

P n+1, vn+1) − Eh
(

P n, vn) ≤ 0, (3.22)

where Eh(P , v) = ∫
(F (P ) + ε2

v2)dx and F (P ) = − 1 ln(1 + |P |2).

Ω 2 2
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Proof. Let Du denote un+1 − un . The fully discrete DG scheme can be written as

1

�t
(Du, φ)h = 〈D P̂ · ν, φ〉h − (DP ,∇φ)h − 〈

Ŝn · ν, φ
〉
h + (

Sn,∇φ
)

h

− ε2〈̂Rn+1 · ν, φ
〉
h + ε2(Rn+1,∇φ

)
h. (3.23)

Choosing the test function φ =Du, we have

1

�t
(Du,Du)h = 〈D P̂ · ν,Du〉h − (DP ,∇Du)h − 〈

Ŝn · ν,Du
〉
h + (

Sn,∇Du
)

h

− ε2〈̂Rn+1 · ν,Du
〉
h + ε2(Rn+1,∇Du

)
h. (3.24)

For Eq. (2.10b) of the LDG scheme, subtracting the equation at time level tn from the equation at time level tn+1, we get

(DP ,η)h = 〈Dû,η · ν〉h − (Du,∇ · η)h,

where DP = P n+1 − P n . Then taking the test function η =DP , Sn, Rn+1 separately, we obtain

(DP ,DP )h = 〈Dû,DP · ν〉h − (Du,∇ ·DP )h, (3.25)(
DP , Sn)

h = 〈
Dû, Sn · ν〉

h − (
Du,∇ · Sn)

h, (3.26)(
DP , Rn+1)

h = 〈
Dû, Rn+1 · ν〉

h − (
Du,∇ · Rn+1)

h. (3.27)

For Eq. (2.10c), taking the difference between two time levels and choosing test function ϕ = vn+1 give(
Dv, vn+1)

h = 〈
D P̂ · ν, vn+1〉

h − (
DP ,∇vn+1)

h. (3.28)

For Eq. (2.10d), choosing the test function ξ =DP at time level tn+1 shows that(
Rn+1,DP

)
h = 〈

̂vn+1,DP · ν〉
h − (

vn+1,∇ ·DP
)

h. (3.29)

For Eq. (2.10e), choosing the test function ζ =DP at time level tn leads to

(
Sn,DP

)
h =

(
P n

1 + |P n|2 ,DP
)

h
. (3.30)

Let (3.24) + (3.25) − (3.26) + (3.30) − ε2(3.27) + ε2(3.29) + ε2(3.28), and after a careful calculation we obtain

1

�t
(Du,Du)h + (DP ,DP )h + ε2(Dv, vn+1)

h =
(

P n

1 + |P n|2 ,DP
)

h
, (3.31)

with the help of the alternating numerical fluxes (2.11) on interior faces and the Neumann boundary condition (2.12) or the 
periodic boundary condition (with the same alternating numerical fluxes as (2.11)) on boundary faces. Notice that

2
(
Dv, vn+1)

h = (
vn+1, vn+1)

h − (
vn, vn)

h + (Dv,Dv)h,

and set DE E S
h = E E S

h (P n+1) − E E S
h (P n), where E E S

h (P ) = ∫
Ω

(− 1
2 ln(1 + |P |2))dx. Eq. (3.31) can be rewritten as

1

�t
(Du,Du)h +DE E S

h + ε2

2

((
vn+1, vn+1)

h − (
vn, vn)

h + (Dv,Dv)h
)

= −(DP ,DP )h +
(

Pn

1 + |P n|2 ,DP
)

h
+DE E S

h ,

or,

1

�t
(Du,Du)h + Eh

(
P n+1, vn+1) − Eh

(
Pn, vn) + ε2

2
(Dv,Dv)h

= −(DP ,DP )h +
(

Pn

1 + |P n|2 ,DP

)
h
+DE E S

h , (3.32)

where Eh(P , v) = E E S
h (P ) + ε2

2 (v, v)h . Provided that the right hand side is not bigger than zero, then we obtain the energy 
stability

Eh
(

P n+1, vn+1) − Eh
(

P n, vn) ≤ − 1

�t
(Du,Du)h − ε2

2
(Dv,Dv)h ≤ 0.

In fact, it has been proved in [2] that
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DE E S
h =

∫
Ω

(
−1

2
ln

(
1 + ∣∣P n+1

∣∣2) + 1

2
ln

(
1 + ∣∣P n

∣∣2))
dx,

= 1

2

∫
Ω

ln

(
1 + |P n|2 − |P n+1|2

1 + |P n+1|2
)

dx,

≤ 1

2

∫
Ω

|Pn|2 − |P n+1|2
1 + |P n+1|2 dx,

and (
P n

1 + |Pn|2 ,DP

)
h
+DE E S

h ≤
∫
Ω

(
P n ·DP

1 + |P n|2 + 1

2

|P n|2 − |P n+1|2
1 + |P n+1|2

)
dx,

≤
∫
Ω

(DP ·DP )dx,

which means that the right hand side of Eq. (3.32) is not bigger than zero and yields the energy stability (3.22) for the fully 
discrete DG scheme (3.21). �

However, the convex splitting DG scheme (3.21) is only first order accurate in time. To improve the temporal accuracy, 
the spectral deferred correction (SDC) method will be employed, which was developed in [9] and adapted to the LDG 
method in [21].

3.2. Spectral deferred correction method with convex splitting

The SDC method is driven iteratively by the chosen low order method, for example the convex splitting method (3.21)
here. An advantage of this method is that it is a one step method and can be constructed easily and systematically for any 
order of accuracy.

For convenience, we rewrite the convex splitting scheme (3.21) as

un+1 = un + �t
(
L
(
un+1) + N

(
un)), (3.33)

where L(u) represents the linearly implicit part and N(u) represents the nonlinearly explicit part of the scheme, i.e.

L(u) = �u − ε2�2u, N(u) = −�u − ∇ ·
( ∇u

1 + |∇u|2
)

.

The SDC method is a one step, multi-stage method. We divide the time interval [tn, tn+1] into P subintervals by choosing 
the points tn,m for m = 0, 1, · · · , P such that tn = tn,0 < tn,1 < · · · < tn,m < · · · < tn,P = tn+1. Let �tn,m = tn,m+1 − tn,m and 
un,m

k denotes the kth order approximation to u(tn,m). To avoid the instability of approximation at equispaced nodes for high 
order accuracy, the points {tn,m}P

m=0 are chosen to be the Chebyshev Gauss–Lobatto nodes on [tn, tn+1]. We can also use 
the Legendre Gauss–Lobatto nodes, or Chebyshev or Legendre Gauss–Radau or Gauss nodes. Starting from un , we give the 
algorithm to calculate un+1 in the following.

1. Compute the initial approximation Use the convex splitting DG scheme (3.33) to compute a first order accurate approx-
imate solution u1 at the nodes {tn,m}P

m=1.

1.0. un,0
1 = un .

1.1. For m = 0, · · · , P − 1

un,m+1
1 = un,m

1 + �tn,m(
L
(
un,m+1

1

) + N
(
un,m

1

))
. (3.34)

2. Compute successive corrections
2.0. For k = 1, · · · , K

un,0
k+1 = un.

2.1. For m = 0, · · · , P − 1

un,m+1
k+1 = un,m

k+1 + �tn,m(
L
(
un,m+1

k+1

) − L
(
un,m+1

k

)) + Im+1
m

(
L(uk) + N(uk)

)
, (3.35)
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where Im+1
m (L(uk) + N(uk)) is the integral of the P -th degree interpolating polynomial on the P + 1 points (tn,m , (L(un,m

k ) +
N(un,m

k ))P
m=0 over the subinterval [tn,m, tn,m+1], which is the numerical quadrature approximation of

tn,m+1∫
tn,m

L
(
u(τ )

) + N
(
u(τ )

)
dτ . (3.36)

Finally we have un+1 = un,P
K+1.

It has been shown in [9,21] that the term �tn,m(L(un,m+1
k+1 ) − L(un,m+1

k )) in the SDC scheme (3.35) is helpful to the 
stability of the scheme, which is implicit and linear. The term Im+1

m (L(uk) + N(uk)) in the scheme (3.35) is explicit and 
responsible for the accuracy increasing. Thus, the SDC scheme driven by the linearly implicit convex splitting scheme (3.21)
is also linearly implicit, which is much easier than the nonlinearly implicit time discretization methods. We denote the SDC 
method (3.35) by SDCP

K . The SDCP
K has min(K + 1, P + 2) accuracy in time for P > 1 or min(K + 1, P + 1) accuracy for P = 1

when we choose the Gauss–Lobatto subinterval points [21].

Remark 3.1. According to the approach described in [21], L(u) and N(u) can also be chosen to be the linear part and 
nonlinear part of the equation, i.e.

L(u) = −ε2�2u, N(u) = −∇ ·
( ∇u

1 + |∇u|2
)

.

But the time step restriction for this approach is about �t ∼ O(�x2). From the numerical experiments in the next section, 
it can be found that the SDC method coupled with the unconditionally stable convex splitting method can maintain the 
stability numerically.

Remark 3.2. The residue equation for the SDC scheme (3.35) is

σk(t) = un +
t∫

tn

(
L(uk) + N(uk)

)
dt − uk(t),

and the discretization of the residue equation is

σ n,m
k (t) = un + Im

0

(
L(uk) + N(uk)

) − un,m
k .

The error equation is

δ(t) =
t∫

tn

L(uk + δ) + N(uk + δ) − (
L(uk) + N(uk)

)
dt + σk(t),

and the discretization of the error equation is

δ
n,m+1
k = δ

n,m
k + �tn,m(

L
(
un,m+1

k + δ
n,m+1
k

) − L
(
un,m+1

k

)) + �tn,m(
N

(
un,m

k + δ
n,m
k

) − N
(
un,m

k

))
+ σ n,m+1

k

(
uk) − σ n,m

k

(
uk).

Hence, the SDC scheme is

un,m+1
k+1 = un,m

k+1 + �tn,m(
L
(
un,m+1

k+1

) − L
(
un,m+1

k

)) + �tn,m(
N

(
un,m

k+1

) − N
(
un,m

k

))
+ Im+1

m

(
L(uk) + N(uk)

)
.

The terms �tn,m(L(un,m+1
k+1 ) − L(un,m+1

k )) and �tn,m(N(un,m
k+1) − N(un,m

k )) in the SDC scheme is on the local truncation error 
level O(�tk+2) and does not affect the accuracy of the scheme. Usually L(u) is stiffer than N(u), since L(u) contains the 
fourth order derivative and N(u) contains at most the second order derivative. But when ε is very small, N(u) could be 
stiffer than L(u) for not very small spatial step size h. Therefore, we omit the second term �tn,m(N(un,m

k+1) − N(un,m
k )) in 

case that N(u) is stiffer than L(u) for small ε .

4. Numerical experiments

In this section we present some numerical results for the no-slope-selection thin film model. Specifically, we use the 
DG spatial discretization coupled with the convex splitting temporal discretization or SDC method described in the previous 
sections. Each time step we solve the linear algebraic equations by the conjugate gradient method, due to only linear 
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Table 4.1
Temporal accuracy test in Example 4.1: L1 and L∞ errors and orders of e�t = uh,�t − uh,2�t at T = 0.32. Here we choose h =
Lx/N = L y/N with N = 120 and the piecewise Pk polynomial basis with k = 4. The refinement path is taken to be �t = �t0/2m , 
m = 0, 1, 2, · · · and �t0 = 0.2 ∗ h.

m ‖e�t‖L1 Order ‖e�t‖L∞ Order

SDC0
1 0 1.26E−02 – 5.85E−02 –

1 6.14E−03 1.03 2.88E−02 1.02
2 3.20E−03 0.94 1.49E−02 0.95
3 1.63E−03 0.97 7.53E−03 0.98
4 8.22E−04 0.99 3.79E−03 0.99

SDC1
1 0 4.10E−03 – 1.91E−02 –

1 1.29E−03 1.67 6.00E−03 1.67
2 3.70E−04 1.80 1.73E−03 1.80
3 1.00E−04 1.89 4.70E−04 1.88
4 2.62E−05 1.93 1.23E−04 1.93

SDC2
2 0 4.34E−04 – 2.08E−03 –

1 6.12E−05 2.61 3.12E−04 2.56
2 9.31E−06 2.72 4.67E−05 2.69
3 1.35E−06 2.79 6.76E−06 2.79
4 1.89E−07 2.84 9.25E−07 2.87

even spatial derivatives in the implicit part of the scheme (3.33) and (3.35). For more complicated linear and nonlinear 
problems, we refer to the linear and nonlinear multigrid solver recently developed in [11,12] for the Cahn–Hilliard and 
Cahn–Hilliard–Hele–Shaw problems. We first present the accuracy tests that give the expected convergence rate of the 
scheme and the stability test of the scheme. Next, we will show the long time simulation of the scheme of the coarsening 
process, and the coarsening rate for the problem.

Example 4.1 (Accuracy and stability tests). Consider Eq. (1.3) in the two-dimensional domain Ω = [0, Lx] × [0, L y], with the 
periodic boundary condition. The initial condition is given by

u(x, y,0) = 0.1 sin2
(

2πx

Lx

)
sin

(
4π(y − 1.4)

L y

)
− 0.1 cos

(
2π(x − 2.0)

Lx

)
sin

(
2π y

L y

)
.

Choose the parameters ε = 0.1, and Lx = L y = 3.2. This example is taken from [19] for easily comparison. We test the 
temporal and spatial accuracy at the final time T = 0.32 in the following ways. We choose the uniform mesh with the cell 
size h = Lx/N = L y/N and piecewise Pk polynomial basis in the approximation spaces Vh and Wh . To test the temporal 
accuracy numerically, we set the parameters N = 120 and k = 4 in the DG discretization fixed to ensure that the spatial 
discretization error is small enough, such that the temporal discretization error is dominant in the numerical experiment. 
Without the exact solution in this example, the numerical error is measured by

e�t = uh,�t − uh,2�t,

where uh,�t denotes the numerical solution under the spatial cell size h and temporal step size �t . Table 4.1 shows the 
temporal accuracy and order in L1 and L∞ norms. We find that the SDC method (3.35) based on the first order convex 
splitting method (3.21) gives the expected convergence rate. To test the spatial accuracy numerically, the SDC3

4 method is 
used for the temporal discretization to ensure that the spatial discretization error is dominant in our numerical experiment. 
The spatial error is measured by

eh = ur − uh,�t,

where ur is a reference numerical solution computed very accurately, with the temporal discretization SDC3
4 and the spatial 

discretization piecewise P 4 polynomial on the mesh N = 320. Table 4.2 gives the spatial accuracy and order in L1 and L∞
norms. It shows that the DG discretization has the optimal convergence rate numerically.

Next, we will test the stability of the SDC scheme coupled with the DG discretization. We set the final time T = 3.2. In 
Table 4.3, it shows the L1 and L∞ norms of the error e�t = ur − uh,�t at T = 3.2 and the orders with the increasing time 
steps of �t = �t0/2m, m = 0, −1, −2, −3 and �t0 = 0.2 ∗ h. Similar to the first accuracy test, we choose the parameters 
N = 120 and k = 4 in the DG discretization to ensure the temporal error is dominant in the test. Since the convergence is 
an asymptotic behavior, the convergence rate decreases when the time step becomes coarse. We find that the SDC scheme 
driven by the convex splitting method is always stable in the test. These numerical experiments verify that the fully discrete 
SDC DG method is stable and accurate for the thin film model.

Example 4.2 (Long time simulation). In this example, we will show the long time characteristics of the no-slope-selection 
model on the square domain with the random initial data. The square domain size is Lx = L y = 12.8. The computational 
parameters are the spatial discretization cell size h = Lx/N = L y/N with N = 120 and the piecewise Pk polynomial basis 
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Table 4.2
Spatial accuracy test in Example 4.1: L1 and L∞ errors and orders of eh = ur − uh,�t at T = 0.32. Here we choose time integration 
method SDCP

K with P = 3 and K = 4, and the time step �t = 0.2 ∗ h with h = Lx/N = L y/N .

N ‖eh‖L1 Order ‖eh‖L∞ Order

P 0 20 8.77E−03 – 4.12E−02 –
40 4.71E−03 0.90 2.20E−02 0.90
80 2.42E−03 0.96 1.12E−02 0.97

160 1.23E−03 0.98 5.66E−03 0.99
320 6.17E−04 0.99 2.84E−03 1.00

P 1 20 2.58E−03 – 1.20E−02 –
40 7.76E−04 1.73 3.61E−03 1.73
80 2.17E−04 1.85 1.01E−03 1.84

160 5.77E−05 1.91 2.71E−04 1.91
320 1.50E−05 1.95 7.03E−05 1.95

P 2 20 5.63E−04 – 2.72E−03 –
40 6.64E−05 3.08 3.48E−04 2.97
80 7.25E−06 3.20 3.98E−05 3.13

160 7.66E−07 3.24 4.11E−06 3.27
320 7.80E−08 3.30 4.22E−07 3.28

Table 4.3
Stability test in Example 4.1: L1 and L∞ errors and orders of e�t = ur − uh,�t at T = 3.2. Here we choose h = Lx/N = L y/N with 
N = 120 and the piecewise Pk polynomial basis with k = 4. The refinement path is taken to be �t = �t0/2m , m = 0, −1, −2, −3
and �t0 = 0.2 ∗ h.

m ‖e�t‖L1 Order ‖e�t‖L∞ Order

SDC1
1 0 7.37E−03 – 2.14E−02 –

−1 3.21E−02 2.14 8.22E−03 1.94
−2 7.56E−02 1.24 2.03E−01 1.31
−3 9.49E−02 0.33 2.97E−01 0.55

SDC2
2 0 4.44E−04 – 1.41E−03 –

−1 2.71E−03 2.61 8.35E−03 2.57
−2 1.80E−02 2.73 4.82E−02 2.53
−3 7.62E−02 2.08 1.89E−01 1.91

with k = 2; and the temporal discretization SDC2
2 method with the time step �t = 0.2h. In all three cases with different 

parameter ε = 0.02, 0.04 and 0.08, the initial conditions are the same, i.e. the random perturbation around 0.6 with a 
fluctuation no larger than 0.05. The periodic boundary condition is taken. Numerical convergence has been confirmed by 
the mesh refinement technique up to time T = 400. All three cases have been run till the system saturates, i.e. achieves the 
steady state.

In Fig. 4.1, the numerical results of uh before saturation are showed at different time T = 400, 2000 and 10 000 for the 
parameter ε = 0.02, 0.04 and 0.08. We can see that the coarsening speed is dependent on the parameter ε: the bigger 
the parameter ε , the faster the coarsening speed. In Fig. 4.2, the numerical saturation solutions are showed for three cases 
with different ε . We find that the saturation time also depends on the parameter ε: the bigger the parameter ε , the less 
saturation time. And, the saturation solutions in three cases share the similar pattern, i.e. almost the same hill (red region) 
and valley (blue region) size. Also, the height of the hill and the depth of the valley are almost the same in the same test 
case with the same ε . But the height of the mounds (hills and valleys), called η(ε), is different in different cases with 
different ε . We point out that our calculation here yields

η(0.02)

η(0.04)
≈ η(0.04)

η(0.08)
≈ 2,

which means the linear dependence of η on 1/ε , i.e. η ∼O(1/ε).
The energy decay rate and surface roughness growth rate are of interest of to physicists and engineers. The discrete 

energy is defined in (2.13), and the roughness is

R(t) =
√√√√ 1

|Ω|
∫
Ω

∣∣u(x, t) − ū(t)
∣∣2

dx, (4.37)

where ū = 1
|Ω|

∫
Ω

u(x, t)dx. For the no-slope-selection model, the growth rates are predicted as E(t) ∼ O(− ln(t)), R(t) ∼
O(t− 1

2 ) in [14,15]. Also the lower bound of the energy is

E(u) ≥ L2 (
ln(α) − α + 1

) := γ , (4.38)

2
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Fig. 4.1. Numerical results of height function u at indicated times before saturation for the different parameter ε . From the top to the bottom row, it 
corresponds to numerical solutions at the time T = 400, 2000 and 10 000. From the left to the right column, it corresponds to the numerical solutions for 
the parameter ε = 0.02, 0.04 and 0.08. The color scale changes with time. The hills (red) at early times are not as high as time at later times, and similarly 
with the valleys (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where α = ( 2επ
L )2 [2]. This lower bound of the energy indicates that the decreasing rate of the energy will only hold when 

the system is away from the saturation. Similar to the height of the mounds (hills and valleys) η(ε), in Fig. 4.1 the minimum 
of the roughness Rmin(ε) yields

Rmin(0.02)

Rmin(0.04)
≈ Rmin(0.04)

Rmin(0.08)
≈ 2,

which is also linear dependent on 1/ε .
In Fig. 4.3, the decay rate of the energy has been shown for three cases ε = 0.02, 0.04 and 0.08 respectively in the 

semi-log plots. In which, the blue lines represent the energy plot obtained by the simulations, the red lines are obtained 
by the least square linear fitting of the energy data till time T = 400 with ae + be ln(t), and the black lines are the lower 
bound of the energy predicted in the formula (4.38). We can see that the energy decay rate satisfies an approximate ln(t)
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Fig. 4.2. Numerical results of height function u when the system saturates at indicated times for the parameter ε = 0.02, 0.04 and 0.08, from the most left 
to the right.

Fig. 4.3. Semi-log plots of the temporal evolution of the energy E(t) for the parameter ε = 0.02, 0.04 and 0.08, from the most left to the right. The blue 
lines represent the energy plot obtained by the simulations, while the red lines are obtained by least squares approximations to the energy data. The black 
lines are the lower bound of the energy predicted in the formula (4.38).

Fig. 4.4. Log-log plots of the temporal evolution of the roughness R(t) for the parameter ε = 0.02, 0.04 and 0.08, from the most left to the right. The blue 
lines represent the roughness plot obtained by the simulations, while the red lines are obtained by least squares approximations to the roughness data.

law for each case, and the lowest energy meets the predicted lower bound within 3.5% deviation. In Fig. 4.4, the decay rate 
of the roughness has been shown for three cases respectively in the log–log plots. In which, the blue lines represent the 
roughness plots obtained by the simulations, while the red lines are obtained by the least square linear approximation to 
the roughness data till time T = 400 with artbr . In all three cases, br meets 1/2 approximately within 5% deviation, which 
indicates the roughness decay rate is approximately O(t− 1

2 ). From Figs. 4.3 and 4.4, we can also see the decay rates of the 
energy and roughness change dramatically when the mound size is close to the saturated mound size.
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This long time simulation example shows the capability of the fully-discrete DG scheme. The SDC scheme coupled with 
the unconditionally stable convex splitting scheme is well suited to the thin film epitaxy model without slope selection. 
The stability property of the scheme is important in developing the numerical scheme for these type of calculations. Even 
though we did not give the simulation on the irregular and complex domain, naturally the DG scheme is capable of dealing 
with these situations.

5. Concluding remarks

We developed the discontinuous Galerkin method for the thin film epitaxy model without slope selection and proved 
the energy stability for the semi-discrete and fully-discrete schemes. The convex splitting temporal discretization method 
was adopted to get the fully-discrete scheme, which is proved to be unconditionally stable and linearly implicit. But the 
convex splitting method is only first order accurate in time. To achieve higher order temporal accuracy, the spectral de-
ferred correction method was employed by combining with the low order unconditionally stable convex splitting method. 
Numerically we showed the stability and high order accuracy of the resulting fully-discrete DG scheme, in both time and 
space. Also, the long time simulations showed the capacity and efficiency of the scheme. The technique presented in this 
paper, combining the low order unconditionally stable scheme with the high order SDC method, can be easily generalized to 
the other gradient flow problems, e.g. Cahn–Hilliard type equation [22,17] and phase field crystal type equations. The result-
ing fully-discrete DG scheme can be stable, high order accurate and easy to handle the complicated domain and boundary 
conditions.
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