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Abstract In this paper, we develop, analyze and test the Fourier spectral methods for solving
the Degasperis–Procesi (DP) equation which contains nonlinear high order derivatives, and
possibly discontinuous or sharp transition solutions. The L2 stability is obtained for general
numerical solutions of the Fourier Galerkin method and Fourier collocation (pseudospectral)
method. By applying the Gegenbauer reconstruction technique as a post-processing method
to the Fourier spectral solution, we reduce the oscillations arising from the discontinuity
successfully. The numerical simulation results for different types of solutions of the nonlinear
DP equation are provided to illustrate the accuracy and capability of the methods.

Keywords Degasperis–Procesi equation · Discontinuous solution · Fourier Galerkin
method · Fourier collocation method · L2 stability · Gegenbauer reconstruction

1 Introduction

In this paper, we consider the Fourier spectral approximation to the Degasperis–Procesi(DP)
equation

ut − utxx + 4 f (u)x = f (u)xxx , (1)

for a real function u(x, t)of the two variables x and t , where f (u) = u2/2. DP equation
is a real nonlinear partial differential equation (PDE) which models propagation of non-
linear dispersive waves and is solvable by the methods of soliton theory. The DP equation
is very special because it belongs to the class of integrable equations, that is PDEs with
infinitely many conservation laws. Based on multiscale perturbation theory, Degasperis and
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Procesi [12] found there are only three PDEs, which satisfy the integrability conditions, of
the following family

ut + cux + κuxxx − ϵ2utxx − ϵ2d(uuxxx + bux uxx ) + auux = 0, (2)

namely, the Korteweg de Vries (KdV) equation for ϵ = 0, the Camassa–Holm (CH) equation
for b = 2 and a = 3d , and the DP equation for b = 3 and a = 4d . This is how the DP
equation has been first found while the other two equations, i.e. the KdV and CH equations,
were already known to be integrable by different arguments. The DP equation is covariant
under the group of transformations u(x, t) → u′(x, t) = αu(βx+γ t, t)+δ, and by a suitable
choice of the parameters α,β, γ , δ, the coefficients can be fixed as ϵ = 1, c = 0, κ = 0 and
d = 1. With this choice of the coefficients (after dropping the prime) the DP equation takes the
neat form of the Eq. (1). This PDE is not only of mathematical interest but it has also proved
to be an approximate model of shallow water wave propagation in the small amplitude and
long wavelength regime [11,14,24,25]. Indeed, in this approximation, waves are assumed
to propagate in one direction over a flat bottom with no viscosity, no shear stress and no
compressibility under the influence of gravity and surface tension. The dependent variable
u is the horizontal velocity field while the independent variables x and t are the space and
time coordinates. The coefficients in (2) have physical meaning, where c is the linear wave
velocity, the coefficients ϵ and κ are related to linear dispersion and d comes from the Euler
equation of motion.

The well-known KdV equation describes the unidirectional propagation of waves at free
surface of shallow water under the influence of the gravity. The solitary waves of the KdV
equation are solitons. The CH equation models the unidirectional propagation of shallow
water waves over a flat bottom or the propagation of axially symmetric waves in hyperelastic
rods. The advantage of the CH equation in comparison with the KdV equation lies in that
the CH equation has the peaked solitary wave (peakon) solutions [3] , which have the jumps
in its first order derivative, for example u(x, t) = ce−|x−ct |. Despite the similarities to the
CH equation, the DP equation is truly different from the CH equation. The DP equation
has not only peakon solutions [13], but also shock waves [8,28], for example u(x, t) =
− 1

t+c sign(x)e−|x |, c > 0. Also, the Lax pairs of the CH and DP equations are different.
Although the bi-Hamiltonian structures of the CH and DP equations provide an infinite
number of conservation laws, the conservation laws of DP equation are much weaker than
those of the CH equation. The first three conservation laws of the DP equation are

E1 =
∫

(u − uxx )dx, E2 =
∫

(u − uxx )vdx; E3 =
∫

u3dx,

where 4v − vxx = u. And the corresponding conservation laws of the CH equation are

H1 =
∫

(u − uxx )dx, H2 =
∫

(u2 + u2
x )dx; H3 =

∫
(u3 + uu2

x )dx .

The conservation law H2 plays an important role in the analysis and development of numerical
schemes of the CH equation. But the conservation laws of the DP equation can not control the
H1 norm. Meanwhile, the lack of smoothness of the solution make it challenging to design
stable and high order accurate numerical schemes for the DP equation. Coclite and Karlsen
proved existence and uniqueness results for entropy weak solutions belonging to the class
L1 ∩ BV in [8] and uniqueness result for entropy weak solutions by replacing the Kružzkov-
type entropy inequalities by an Oleinik-type estimate in [9]. Coclite, Karlsen and Risebro
[10] constructed several operator splitting schemes and proved that solutions of these finite
difference schemes converge to entropy weak solutions. Moreover, they provided several
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numerical examples to show that shock solutions can form independently of the smoothness
of the initial data. Another operator splitting method was proposed for the DP equation in
[15], which is based on the second-order TVD scheme and linearized implicit finite difference
method. Miyatake and Matsuo [29] proposed two conservative finite difference schemes to
preserve two invariants E2 and E3 for the DP equation. And compact finite difference scheme
has been used by Yu et al. [34] with symplectic implicit Runge-Kutta time integration. In [23],
a particle method based on the multi-shock peakon solutions was investigated for entropy
weak solutions of the DP equation numerically. Local discontinuous Galerkin (LDG) and
direct DG finite element methods have been designed for the DP equation by Xu and Shu
[33] and Liu et al. [27], after developing the LDG methods for the CH equation [32].

The application of spectral methods for the solution of partial differential equation (PDE)
has traditionally been centered around problems with a certain amount of inherent regularity
of the solutions. When the solution of nonlinear PDE admits discontinuity, e.g., hyperbolic
conservation laws, the nonlinear mixing of Gibbs oscillations with approximate solution will
eventually cause the scheme to become unstable. Moreover, even if stability is maintained,
the computed solution appears only first-order accurate. However, many significant advances
have been made to establish the soundness of the spectral approach for such problem in last
decades, see Bernardi et al. [1], Boyd [2], Canuto et al.[4–6], Gottlieb and Orszag [19], Guo
[21], Hesthaven et al. [22], Karniadakis et al. [26] , Shen et al. [30] , and the reference therein.
It is confirmed that the superior behavior of these methods for smooth problems carries over
to problems involving nonsmooth solutions.

The remains of this paper is organized as follows. In Sect. 2 we develop the Fourier
Galerkin and collocation spectral methods for the DP equation. The L2 stability has also
been proved for both methods. The exponential filter is adopted to stable the methods when
the shock is formed in the DP equation. In Sect. 3 we resolve the shock sharply through
the Gegenbauer reconstruction of an exponentially convergent approximation to a piecewise
smooth function using the global information at the final time step. Also the shock location
is detected by using the generalized Fourier partial sum. Sect. 4 contains the numerical tests
to demonstrate the accuracy and capacity of the methods. Concluding remarks are given in
Sect. 5.

2 Fourier Spectral Method

Consider the DP Eq. (1) with the initial condition u(x, 0) = u0(x) in the interval [−L , L],
and assume the solution satisfies the periodic boundary condition. The inner product and the
associated norm of L2([−L , L]) space are denoted by

(u, w) :=
L∫

−L

u(x)w̄(x)dx, ∥u∥L2 =
√

(u, u).

An important tool in the proof of L2 norm stability of u is the quantity v, which has appeared
in the energy E2 of the DP equation. We can obtain the L2 norm bound on the solution u
in terms of the initial data u0, by noticing that the following energy stability of v has been
derived in [8]

d
dt

L∫

−L

(2v2 + 5
2
v2

x + 1
2
v2

xx )dx = 0. (3)
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It follows that u, v ∈ L∞(R+, L2([−L , L])). And then we can get the L2 stability of u that

∥u(x, t)∥L2 ≤ 2 ∥u0(x)∥L2 ,

which is the key to develop numerical schemes.
By introducing the auxiliary variable m, the DP equation is equivalent to the following

system of two coupled differential equations
{

mt + umx + 3ux m = 0,

u − uxx = m.
(4)

The DP equation can also be written in the following hyperbolic-elliptic system
{

ut + f (u)x + Px = 0,

−Pxx + P = 3
2 u2.

(5)

2.1 Fourier Galerkin Method

Based on these two different forms, we will develop Fourier Galerkin spectral methods for
the DP equation firstly and prove the corresponding numerical solutions are also L2 stable.

In the Fourier Galerkin method, we seek the approximation solution uh(x, t) from the
space

BN = span{eik π
L x }|k|≤N ,

i.e. uN (x, t) = ∑
|k|≤N ak(t)eik π

L x . Note that ak(t) are unknown coefficients which will be
determined by the method. In general, the coefficients ak(t) of the approximation are not
equivalent to the Fourier expansion coefficients ûk = 1

2L

∫ L
−L u(x, t)e−ik π

L x dx of the exact
solution u(x, t). In the Fourier Galerkin method, the coefficients ak(t) are determined by the
scheme I: Find uh ∈ BN , such that

{
(∂t mh + 3uh(mh)x + mh(uh)x , wh) = 0,

(uh − (uh)xx , qh) = (mh, qh)
(6)

for all test function wh, qh ∈ BN , in[−L , L], or the scheme II: Find uh, Ph ∈ BN , such that
{

(∂t uh + ( f (uh) + Ph)x , wh) = 0,

(Ph − (Ph)xx , qh) = (3 f (uh), qh)
(7)

for all test functions wh, qh ∈ BN , in [−L , L]. It is equivalent to set the test functions
wh, qh = eik π

L x for |k| ≤ N . Then it leads to 2N + 1 ordinary differential equations for the
coefficients ak(t), and the initial conditions are ak(0) = 1

2L

∫ L
−L u0(x)e−ik π

L x dx .
In order to prove the L2 bound of the numerical solution uh of two schemes, similarly we

will introduce the auxiliary variable vh ∈ BN in projection form, such that

(4vh − (vh)xx , wh) = (uh, wh) (8)

for all wh ∈ BN . Then we have the following energy stability relation lemma.

Lemma 2.1

d
dt

L∫

−L

(
2v2

h + 5
2
(vh)2

x + 1
2
(vh)2

xx

)
dx =

∫
(uh)t (vh − (vh)xx )dx, (9)
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Proof It follows by taking the time derivative of the Eq. (8) and choosing the test function
wh = vh − (vh)xx which belongs to the space BN . ⊓*

Using this lemma, we can prove the following energy conservation of vh for both scheme
I and II.

Proposition 2.2 For the Fourier Galerkin scheme I and II, the following energy of vh is
conserved

d
dt

L∫

−L

(
2v2

h + 5
2
(vh)2

x + 1
2
(vh)2

xx

)
dx = 0. (10)

Proof In scheme I, by the integration by parts firstly and choosing the test function wh = vh ,
we have

(∂t uh, vh − (vh)xx ) − ( f (uh), (4vh − (vh)xx )x ) = 0.

From the Eq. (8), we can get

(4vh − (vh)xx , f (uh)x ) = (uh, f (uh)x ).

Substituting the last equation and the Eq. (9) in the lemma 2.1, yields

d
dt

L∫

−L

(
2v2

h + 5
2
(vh)2

x + 1
2
(vh)2

xx

)
dx − ( f (uh), (uh)x ) = 0.

It shows that the quantity
∫ L
−L

(
2v2

h + 5
2 (vh)2

x + 1
2 (vh)2

xx

)
dx is conserved and the energy

conservation of vh (10) is obtained.
In scheme II, by the definition of the space BN , we can choose the test function

wh = vh − (vh)xx ∈ BN and qh = (vh)x ∈ BN . Then we get

(∂t uh + ( f (uh) + Ph)x , vh − (vh)xx ) = 0,

(Ph − (Ph)xx , (vh)x ) = (3 f (uh), (vh)x ).

Summing up these two equation, we can obtain the similar conservation laws as in the
scheme I

(∂t uh, vh − (vh)xx ) + ( f (uh)x , 4vh − (vh)xx ) = 0,

which implies the energy conservation of vh of the scheme II by using the lemma 2.1. ⊓*

It follows from this proposition that the L2 norm uh is stable for both schemes.

Proposition 2.3 For the Fourier Galerkin scheme I and II, the L2 norm of uh is stable,

∥uh(·, t)∥L2 ≤ 2 ∥uh(·, 0)∥L2 .

Proof Using the projection in the Eq. (8), we find

(uh, uh) = (4vh − (vh)xx , 4vh − (vh)xx )

= 16(vh, vh) + 8((vh)x , (vh)x ) + ((vh)xx , (vh)xx ).
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It implies the following two inequalities,

(uh, uh) ≤ 8
(

2(vh, vh) + 5
2 ((vh)x , (vh)x ) + 1

2 ((vh)xx , (vh)xx )
)

,

(uh, uh) ≥ 2
(

2(vh, vh) + 5
2 ((vh)x , (vh)x ) + 1

2 ((vh)xx , (vh)xx )
)

.

From the energy conservation of vh in the proposition 2.2, we can derive

∥uh(·, t)∥2
L2 ≤ 8

(
2(vh, vh) + 5

2 ((vh)x , (vh)x ) + 1
2 ((vh)xx , (vh)xx )

)
(t)

= 8
(

2(vh, vh) + 5
2 ((vh)x , (vh)x ) + 1

2 ((vh)xx , (vh)xx )
)

(0)

≤ 4 ∥uh(·, 0)∥2
L2 .

Thus, the L2 norm stability of uh is obtained. ⊓*

2.2 Fourier Collocation Method

Rather than requiring that the orthogonal projection of the DP equation onto BN vanishes,
one can require that the equation is satisfied on some set of grid points x j . We refer to this grid
as the collocation grid. And this kind of method is known as the Fourier collocation spectral
method or pseudospectral method. In the following, we deal with approximation base on the
grid

x j = 2L j
2N + 1

, j = −N , · · · , N .

In the Fourier collocation method we seek solution, uh ∈ BN , of the form

uh(x, t) =
∑

| j |≤N

uh(x j , t)g j (x), (11)

where g j (x) is the Lagrange interpolation trigonometric polynomial for the collocation grid.
Here we will introduce the notation IN u(x, t) to represent the interpolation operator, i.e.,

IN u(x, t) =
∑

| j |≤N

u(x j , t)g j (x),

based on the collocation grid. Note that the derivative of the interpolation is not the interpo-
lation of the derivative, i.e.,

IN (ux ) ̸= (IN u)x ,

unless u(x) ∈ BN . But the quadrature formula is highly accurate, that

1
2L

L∫

−L

u(x)dx = 1
2N + 1

∑

| j |≤N

u(x j ) (12)

is exact for all u(x) ∈ B2N . Let us define the discrete inner product and L2 equivalent norm
as

(u, w)h = 2L
2N + 1

∑

| j |≤N

u(x j )w(x j ), ∥u∥h =
√

(u, u)h .
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As a consequence of the exactness of the quadrature formula for trigonometric function we
have

(u, w)h = (u, w), ∥u∥h = ∥u∥L2 , ∀u, w ∈ BN . (13)

To obtain the similar discrete L2 stability for the Fourier collocation method as for the
Fourier Galerkin method, we write down the following collocation scheme. In the Fourier
collocation scheme III, the approximation solution uh of the DP equation satisfies the equa-
tion

∂(uh − (uh)xx )

∂t
(x j , t) + 4

(
2
3

∂ IN f (uh)

∂x
+ 1

3
IN (uh(uh)x )

)
(x j , t)

−
(

2
3

∂ IN f (uh)

∂x
+ 1

3
IN (uh(uh)x )

)

xx
(x j , t)=0. j =−N , · · · , N .

(14)

Due to the aliasing errors and the mixing of these through the nonlinear term, the approx-
imations ∂ IN f (uh)

∂x and IN (uh(uh)x ) are not equivalent and will in general yield different
results. It is the key to obtain L2 stability for the collocation method by splitting f (u)x into
2
3

∂ IN f (uh)
∂x + 1

3 IN (uh(uh)x form.
Similar to the Fourier Galerkin method, we introduce the auxiliary variable vh ∈ BN in

the collocation form, such that

(4vh − (vh)xx )(x j , t) = uh(x j , t), j = −N , · · · , N . (15)

Since BN is a finite dimensional space, this equation is exactly the same as the Eq. (8). Thus
the Lemma 2.1 is also true for the collocation scheme III.

Proposition 2.4 For the Fourier collocation scheme III, the following energy of vh is
conserved

d
dt

L∫

−L

(
2v2

h + 5
2
(vh)2

x + 1
2
(vh)2

xx

)
dx = 0. (16)

Proof Multiplying by 2L
2N+1vh(x j , t) to the scheme III and summing over all the collocation

points we obtain
(

∂(uh − (uh)xx )

∂t
, vh

)

h
+

(
4

(
2
3

∂ IN f (uh)

∂x
+ 1

3
IN (uh(uh)x )

)
, vh

)

h

−
((

2
3

∂ IN f (uh)

∂x
+ 1

3
IN (uh(uh)x )

)

xx
, vh

)

h
= 0.

Observe that the term ∂ IN f (uh)
∂x , IN (uh(uh)x ) ∈ BN , so the quadrature rule (12) is exact.

Thus,
((

2
3

∂ IN f (uh)

∂x
+ 1

3
IN (uh(uh)x )

)

xx
, vh

)

h
=

((
2
3

∂ IN f (uh)

∂x
+ 1

3
IN (uh(uh)x )

)

xx
, vh

)

=
((

2
3

∂ IN f (uh)

∂x
+ 1

3
IN (uh(uh)x )

)
, (vh)xx

)

=
((

2
3

∂ IN f (uh)

∂x
+ 1

3
IN (uh(uh)x )

)
,(vh)xx

)

h
.
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Hence
(

∂(uh −(uh)xx )

∂t
, vh

)

h
+

(
2
3

∂ IN f (uh)

∂x
, 4vh −(vh)xx

)
+

(
1
3

IN (uh(uh)x ), 4vh − (vh)xx

)

h
=0.

Substituting the equality 4vh − (vh)xx = uh , we have
(

∂(uh − (uh)xx )

∂t
, vh

)

h
+

(
2
3

∂ IN f (uh)

∂x
, uh

)
+

(
1
3

IN (uh(uh)x ), uh

)

h
= 0.

Notice that
(

2
3

∂ IN f (uh)

∂x
, uh

)
= −

(
2
3

IN f (uh), (uh)x

)

= −
(

2
3

IN f (uh), (uh)x

)

h
,

and
(

∂(uh − (uh)xx )

∂t
, vh

)

h
=

(
∂(uh − (uh)xx )

∂t
, vh

)

=
(

∂uh

∂t
, vh − (vh)xx

)

=
(

∂uh

∂t
, vh − (vh)xx

)

h

due to the exactness of the quadrature rule, so we get
(

∂uh

∂t
, vh − (vh)xx

)

h
−

(
2
3

IN f (uh), (uh)x

)

h
+

(
1
3

IN (uh(uh)x ), uh

)

h
= 0.

And by the definition of the discrete L2 norm and f (u) = u2

2 , it implies
(

∂uh

∂t
, vh − (vh)xx

)

h
= 0.

Recalling the Lemma 2.1, it leads to the stability results of vh . ⊓*

Similarly, L2 norm stability theorem for the numerical solution of the collocation scheme
III follow directly from the Eq. (13).

Proposition 2.5 For the Fourier collocation scheme III, the L2 norm of uh is stable,

∥uh(·, t)∥h ≤ 2 ∥uh(·, 0)∥h .

In the collocation method the only use of the Fourier approximation is in obtaining the
derivative of the numerical approximation in physical space. There are two ways to do the
derivative operation. One way uses the Fourier series and possibly a fast Fourier transforma-
tion (FFT), while the other employs the direct matrix-vector multiplication. Mathematically
they are identical, but computationally different. The computational cost of the matrix-vector
product is an O(N 2), rather than the cost of O(Nlog(N )) in the method using expansion
coefficients and FFT.

The application of the Fourier collocation method is easier for nonlinear problems, com-
paring to the Fourier Galerkin method. This is due to the fact that we can easily evaluate the
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nonlinear function f (u) in terms of points values of u, while it may be very complicated to
express the Fourier coefficients of f (u) in terms of the expansion coefficients of u.

Since the DP equation could admit shock solutions even for very smooth initial condition,
it is well known that spectral methods will result in the formation of the Gibbs phenomenon.
These spurious oscillations will in turn lead to loss of resolution and render the spectral
approximations unstable. The existence of entropy solutions is proved in [8], which can be
viewed as vanishing viscosity solutions of the DP equation. Similar to the spectral method
for the nonlinear conservation laws, this suggest a way to stabilize the spectral method by
adding artificial dissipation as

ut + f (u)x + px = ϵ(−1)s+1 ∂2su
∂x2s .

A direct implementation of this approach may be costly and could introduce additional
stiffness which could limit the stable time step. Without extra cost, this can also be done
through the use of the exponential spectral filter σ e(η) = exp(−αη2s) at each time step,
where η = k

N , k = −N , · · · N .

FN uh(x, t) =
N∑

k=−N

σ e(
k
N

)ak(t)eik π
L x . (17)

While the use of filters has a stabilizing effect and improves the global approximation to a
discontinuous function, such technique is unable to improve on the quality of the approxi-
mation as one approaches the point of discontinuity. Filtering attempts to remove the Gibbs
oscillations. In fact, the Gibbs oscillations contain sufficient information to reconstruct an
exponentially convergent approximation everywhere provided only that the location of the
discontinuity is known.

3 Gegenbauer Reconstruction

In the following, we outline the procedure of Gegenbauer reconstruction to recover a piece-
wise exponentially convergent series to a piecewise analytic function. The spectral projec-
tion of the piecewise smooth function yields poor results. Only first order convergence is
obtained away from the discontinuities and O(1) spurious Gibbs oscillations are exhibited at
the discontinuities. In [20], it has been shown that one can reconstruct a rapidly converging
Gegenbauer expansion based on the first 2N + 1 Fourier coefficients of a function f (x).
The point values of f (x) can be recovered with exponential accurate in the maximum norm
up to the discontinuity or the boundary. This methodology has also been extended to handle
the piecewise analytic functions with singularities in [7]. Here we use the Gegenbauer post-
processing method to eliminate the Gibbs phenomenon and recover the piecewise smooth
functions with spectral accuracy.

The Gegenbauer polynomials Cλ
k (x), for λ ≥ 0, are orthogonal with respect to the weight

function (1−x2)λ− 1
2 over the interval [−1, 1]. They can be expressed by Rodrigues’s formula,

or conveniently computed by the following recurrence formula

kCλ
k (x) = 2(k + λ − 1)xCλ

k−1(x) − (k + 2λ − 2)Cλ
k−2(x).

The maximum of the Gegenbauer polynomial is achieved at the boundary
∣∣Cλ

k (x)
∣∣ ≤ Cλ

k (1), −1 ≤ x ≤ 1,
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and Cλ
k (1) = ,(2λ+n)

n!,(2λ) . The Gegenbauer polynomial series of the function f (x) is defined by

f (x) =
∞∑

k=0

f̃ λ
k Cλ

k (x),

where the Gegenbauer coefficient is defined by

f̃ λ
k = 1

hλ
k

1∫

−1

(1 − x2)λ− 1
2 Cλ

k (x) f (x)dx,

with the normalized constant

hλ
k = √

πCλ
k (1)

,(λ + 1
2 )

(λ + k),(λ)
.

The first M + 1 terms of the Gegenbauer expansion

fM (x) =
M∑

k=0

f̃ λ
k Cλ

k (x),

converges exponentially to an analytic function f (x) in [−1, 1].
From the first 2N+1 Fourier coefficients of the piecewise smooth function, the Gegenbauer

post-processing method can recover the exponential accuracy by the Gegenbauer expansion in
the smooth region of the function, provided that the M and λ in the expansion is proportional
to the number of the Fourier mode N . To perform the Gegenbauer post-processing method,
it is critical to identify the smooth region of function from its finite Fourier partial expansion.
We will use the approach developed in [16–18] to detect the discontinuity or the edge of the
piecewise smooth function from its Fourier partial sum, which is based on the fact that the

conjugate Fourier partial sum SN [ f ] =
N∑

k=1
(ak sin kx − bk cos kx) approaches the singular

support of the function as N approaches infinity. However, the convergence rate of the conju-
gate Fourier partial sum is so slow at the rate O(1/ log N ). To accelerate the convergence rate,

the generalized conjugate partial sum S̃N [ f ] =
N∑

k=1
σ ( k

N )(ak sin kx − bk cos kx) is formed,

where σ (k/N ) is the concentration factor. If the concentration factor σ (·) is a non-decreasing

C2 function satisfying
∫ 1

1/N
σ (x)

x dx
N→∞−→ −π with N approaches infinity, then S̃N [ f ] con-

verges to the jump of the function f (x) with the rate
∣∣S̃N [ f ](x)

∣∣ ≤ Const ( log N
N +

∣∣σ ( 1
N )

∣∣)
when x is away from the discontinuities. When the admissible polynomial concentration fac-
tor σ p(x) = −πpx p is employed, the generalized conjugate Fourier partial sum is equivalent
to the differential Fourier partial sum for odd p = 2q + 1

S̃N [ f ] =
N∑

k=1

σ p(
k
N

)(ak sin kx − bk cos kx) = (−1)q πp
N p

d p

dx p fN (x).

By amplifying the scales T = Nr/2(S̃N [ f ])r , the enhanced generalized Fourier partial
sum was developed in [18] to detect the discontinuities as

S̃e
N [ f ] =

{
S̃N [ f ], T > Jcri t

0 T < Jcri t .
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Table 1 Accuracy test for smooth soliton solutions in Example 4.1: L2 and L∞ errors of u, at time t = 1 in
the domain [−75, 75]
N 36 48 60 72 84 96 108

∥u − uh∥L2 7.42E-04 1.12E-04 1.28E-5 2.19E-6 3.81E-7 5.48E-8 9.55E-9

∥u − uh∥L∞ 3.11E-03 5.69E-04 3.20E-5 9.92E-6 1.59E-6 2.68E-7 3.81E-8

Fig. 1 Numerical results of the peakon solitons at different times t = 4, 8, 12 and 16 with N = 256 in the
domain [−40, 40], comparing with the exact solution

Noticing thatσ r (1/N ) ∼ (N−r ), T converges to the discontinuities at the rateO(Nr/2([ f ])r )

and O(N−r/2) in the smooth region, which separates the scales significantly. And Jcri t is an
O(1) threshold parameter for the jump discontinuities. The discontinuity detection method
is crucial for us to pinpoint the discontinuity and perform the Gegenbauer post-processing
method in the smooth region.

4 Numerical Examples

With the post-processing method from the last section, we will implement the Fourier spectral
methods that yields high accuracy to the DP equation and resolves the shock discontinuity.
The steps of the full Fourier spectral method are:
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Fig. 2 Numerical results of the anti-peakon solitons at different times t = 4, 8, 12 and 16 with N = 256 in
the domain [−40, 40], comparing with the exact solution

• Compute the approximation of uh(x, T ) by the Fourier spectral scheme I, II or III, coupled
with the explicit TVD Runge-Kutta time discretization.

• Locate the shock discontinuities and determine the smooth intervals by employing the
discontinuity detect method.

• If there are discontinuities, perform the Gegebauer reconstruction to obtain (uh)M (x, T )

in each identified smooth interval.

We emphasize that only the first step, the Fourier spectral approximation, is time-
implemented. And subsequence steps are only performed once, at the final time T .

In this section we provide numerical examples to illustrate the accuracy and capability of
the proposed algorithm. For the time discretization method, we adopt the explicit TVD Runge-
Kutta method [31], due to the total variation bounded property of the DP equation. Even with
the third order spatial derivative, the time step for both schemes is -t ≈ 1/N , because
the inverse operator of I − ∂xx is applied at each time step. In the following simulations,
the Fourier Galerkin and collocation schemes perform very similarly. So we only show
the numerical results from the Fourier collocation scheme for simplicity. For the problems
without the analytic solutions, the numerical results are shown to be numerically convergent,
with the aid of successive mesh refinement. These numerical simulation mainly comes from
the paper of Xu and Shu [33] for easily comparison. When the discontinuity occurs in the
test, we need the exponential filter to stabilize the scheme, but small enough not to ruin the
accuracy of the scheme. We choose the parameters in the filter as s = 16 and α = − log ϵM ,
with ϵM represents the machine accuracy. The effect of the filter is thus similar to add a small
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Fig. 3 Numerical results of two-peakon interaction at different times t = 4, 8, 12 and 16 with N = 256 in
the domain [−40, 40]

dissipative term with ϵ = α
-t N 2s . Based on Theorem 4.1 in the paper [20], the parameters

λ = αN and M = βN in the unit domain for the Gegenbauer reconstruction are chosen
by setting α = β = 1

16 which is less than the bound 2
27 in the case of N = 256. We also

choose the computational domain large enough, such that the solution at the boundary is small
enough for the periodic boundary condition holds approximately at the truncation error level.
All these numerical results can be obtained efficiently in seconds owe to FFT.

Example 4.1 Accuracy test for smooth soliton solutions

Consider the traveling wave solution u(x, t) = U (x − ct) of the DP equation, where c is
the wave speed. Let ξ = x − ct , and assume lim

ξ→∞
U (ξ) = A. The smooth soliton solutions

have been constructed explicitly in [35]. When we set A = 1 and c = 5, an explicit formula
of the smooth soliton solution can be obtained as

U (ξ) = A

(

(4 −
√

5) − 2
√

5
X (ξ)2 − 1

)

,

123



J Sci Comput (2014) 61:584–603 597

Fig. 4 Numerical results of anti-two-peakon interaction at different times t = 4, 8, 12 and 16 with N = 256
in the domain [−40, 40]

where X (ξ) is defined by

X (ξ)=

⎛

⎝−7+3
√

5
3

b+ 38+17
√

5
27

b3+

√
2+

√
5

27
+ 517+231

√
5

54
b2 − 521 + 233

√
5

54
b4

⎞

⎠

1
3

+

⎛

⎝−7+3
√

5
3

b+ 38+17
√

5
27

b3−

√
2+

√
5

27
+ 517+231

√
5

54
b2− 521+233

√
5

54
b4

⎞

⎠

1
3

+2 +
√

5
3

b,

with b = 1+e|ξ |
1−e|ξ | . The L2 and L∞ errors and the numerical orders of accuracy for the numerical

solution uh at time t = 1 in the domain [−75, 75] are contained in Table 1. The numerical
solution uh is obtained by the Fourier collocation scheme with the exponential filter, even
the filter is not necessary for this test. We also set the time step small enough so that the
spatial discretization error is dominated in the simulation. From the table, it shows that
the method can achieve the spectral accuracy. As we expected, the filter does not ruin the
accuracy.
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Example 4.2 Single peakon and anti-peakon traveling solutions

In this example, we present the traveling waves of peakon and anti-peakon solutions u(x, t) =
ce−|x−ct |, and u(x, t) = −ce−|x+ct |. The peakon and anti-peakon solutions do not have
enough regularity, so the DP equation is satisfied in the distribution sense. We choose the
traveling speed c = 1 and the computational domain [−40, 40] with N = 256. In Figs. 1 and
2, the peakon and anti-peakon profiles are shown at times t = 4, 8, 12 and 16 with the exact
solutions. These traveling waves are smooth everywhere except the wave crest. We can see
that the moving peakon and anti-peakon are well resolved without any numerical oscillation.

Example 4.3 Two-peakons interaction and two-anti-peakons interaction:

In this example, we consider the two-peakons interaction of the DP equation with the initial
condition

u = c1e−|x−x1| + c2e−|x−x2|.

where the parameters c1 = 2, c2 = 1, x1 = −13.792 and x2 = −4. The same parameters
are used in the two-anti-peakons interaction, with the initial condition

u = −c1e−|x+x1| − c2e−|x+x2|.

(a) (b)

(c) (d)

Fig. 5 Numerical results of shock peakon solution at time T = 6 with N = 256 in the domain [−25, 25],
before and after the Gegenbauer post-processing, comparing with the exact solution
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Fig. 6 The comparison of the errors before and after the Gegenbauer post-processing, in the Example 4.4

(a) (b)

(c) (d)

Fig. 7 Numerical results of of shock peakon solution at time T = 7 with N = 256 in the domain [−20, 20],
before and after the Gegenbauer post-processing
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(a) (b)

(c) (d)

Fig. 8 Numerical results of the interaction among peakon, anti-peakon and one stationary shock peakon, at
time t = 7 with N = 256 in the domain [−20, 20]

In these interactions, the soliton should preserve its shape and velocity before and after
encountering a nonlinear interaction with other similar soliton. In Figs. 3 and 4, the inter-
actions profiles show at times t = 0, 4, 8 and 12 in the domain [−40, 40] with N = 256.
We can see that the moving peakons interactions are resolved very well. And numerically it
shows that these interactions are elastic processes.

Example 4.4 Shock peakon solution

The DP equation also admits shock peakon solution

u(x, t) = − 1
t + 1

sign(x)e−|x |,

which contains a discontinuity at x = 0. The presence of shock peakon solutions means that
the DP equation admits solution that is less regular than the CH equation, which makes the
difference between the DP and CH equations. In this example, the simulation is performed
in the domain [−25, 25] with N = 256. Because of the shock discontinuity in the solution,
the Gegenbauer reconstruction is used at the final time step to remove the numerical oscil-
lations. In the Fig. 5, the numerical results uh and post-processed (uh)M have been showed
comparing with the exact solution. We can see that there are some spurious oscillations near
the discontinuity of the numerical solution uh due to the Gibbs phenomenon. But after the

123



J Sci Comput (2014) 61:584–603 601

(a) (b)

(c) (d)

Fig. 9 Numerical results of shock formation at time t = 1.1 with N = 256, in the domain [−2, 2]

Gegenbauer post-processing, the solution can be resolved very well by the post-processed
solution (uh)M as we expected. Also, Fig. 6 shows the numerical errors before and after
the post-precessing. We find that the post-processing step reduces the error and recovers the
accuracy near the discontinuity digitally.

Example 4.5 Peakon and anti-peakon interaction

For the DP equation, the shock can also be formed between the peakon and anti-peakon
interaction, with the initial condition

u(x, 0) = c1e−|x−x1| − c2e−|x−x2|;
where c1 = 1, c2 = 1, x1 = −5 and x2 = 5. In the CH equation, the peakon and anti-
peakon will pass through each other after the collision. But the DP equation will generate
shocks in the collision. Figure 7 shows the numerical solution uh and the post-processed
solution (uh)M with0.31 N = 256 in the domain [−20, 20]. Similarly, the shock causes
artificial oscillations in the numerical result uh . With the help of Gegenbauer post-processing,
these oscillation can be eliminated and the shock is fully resolved in the numerical result
(uh)M .
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Example 4.6 Triple interaction

In this example, we consider the interaction among peakon, anti-peakon and one stationary
shock peakon of the DP equation, with the initial condition

u(x, 0) = e−|x+5| + sign(x)e−|x | − e−|x−5|.

The computational domain is [−20, 20]. Figure 8 shows the numerical results at time t = 7
with N = 256. From the figure, it shows that there are two shocks formed at this time. Using
the shock detector method described in the last section, we can identify the shock locations
clearly. Then, the Gegebauer reconstruction method is adopted to eliminated the artificial
oscillation in the numerical solution uh caused by the shocks efficiently. Then the solution
with multiple shocks are resolved very well by the numerical solution (uh)M .

Example 4.7 Shock formation

In this example, we consider the shock formation with the smooth initial condition:

u(x, 0) = e0.5x2
sin(πx).

Figure 9 shows the numerical results uh and (uh)M at time t = 1.1 with N = 256 in the
domain [−2, 2]. To remove the spurious oscillation in the numerical solution uh , Gegenbauer
post-processing is applied to uh and then the sharp shock detecting numerical result (uh)M is
obtained. We can see that even with the smooth initial condition shock appears in finite time.
These numerical tests show that the Fourier spectral methods coupled with the Gegenbauer
reconstruction can resolve the solution of the DP equation very well, with or without the
discontinuity.

5 Conclusion

We developed the Fourier Galerkin and collocation spectral methods for the DP equation.
L2 stability is proved for both methods. The DP equation are prone to develop discontinuous
solutions in finite time even with smooth initial condition. To deal with the Gibbs phenomenon
for the discontinuous solution, Gegenbauer reconstruction is adopted to resolve the shock
successfully. Numerical examples are given to show the accuracy and the capacity of these
methods. These methods are also very efficient, especially for the collocation method. This
approach has been applied to some other PDE admitting the discontinuous solution [17],
after the stable Fourier spectral method has been developed. Also, the Chebyshev collocation
can also be applied to the DP equation with different kind of boundary conditions in future.
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