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Abstract. We introduce and study an approximate solution of the p-Laplace equation,
and a linearlization L� of a perturbed p-Laplace operator. By deriving an L�-type Bochner�s
formula and Kato type inequalities, we prove a Liouville type theorem for weakly p-harmonic
functions with �nite p-energy on a complete noncompact manifold M which supports a
weighted Poincaré inequality and satis�es a curvature assumption. This nonexistence result,
when combined with an existence theorem, yields in turn some information on topology,
i.e. such an M has at most one p-hyperbolic end. Moreover, we prove a Liouville type
theorem for strongly p-harmonic functions with �nite q-energy on Riemannian manifolds.
As an application, we extend this theorem to some p-harmonic maps such as p-harmonic
morphisms and conformal maps between Riemannian manifolds. In particular, we obtain a
Picard-type Theorem for p-harmonic morphisms.

1. Introduction

The study of p-harmonic maps and in particular p-harmonic functions is central to p-
harmonic geometry and related problems.
A real-valued C3 function on a Riemannianm-manifoldM with a Riemannian metric h ; i

is said to be strongly p-harmonic if u is a (strong) solution of the p-Laplace equation (1.1),
p > 1;

(1.1) �pu := div (jrujp�2ru) = 0:

where ru is the gradient vector �eld of u on M ; and jruj = hru;rui 12 :
A function u 2 W 1;p

loc (M) is said to be weakly p-harmonic if u is a (Sobolev) weak solution
of the p-Laplace equation (1.1), i.e.R

M
jrujp�2 hru;r�i dv = 0

holds for every � 2 C10 (M) ; where dv is the volume element of M :
The p-Laplace equation (1.1) arises as the Euler-Lagrange equation of the p-energy Ep

functional given by Ep(u) =
R
M
jrujp dv : Ural�tseva [45], Evans [7] and Uhlenbeck [46]

proved that weak solutions of the equation (1.1) have Hölder continuous derivatives for
p � 2. Tolksdor¤ [43], Lewis [24] and DiBenedetto [5] extended the result to p > 1: In fact,
weak solutions of (1.1), in general do not have any regularity better than C1;�loc :
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When p = 2; p-harmonic functions are simply harmonic functions. Liouville type prop-
erties or topological end properties have been studied by a long list of authors. We refer
the reader to, for example [22], [27], [28], [29], [30], [32], [33], [34], [37], [42] for further
references. In particular, P. Li and J. Wang showed Liouville type properties and splitting
type properties on complete noncompact manifolds with positive spectrum � when the Ricci
curvature has a lower bound depending on �: They also extended their work to a complete
noncompact manifold with weighted Poincaré inequality (P�):
For p > 1; We refer the works, for example [3], [6], [9], [10], [11], [12], [13], [15], [16], [21],

[36], [38], [47], [49], to the reader. In particular, I. Holopainen [11] proved a sharp Lq-Liouville
properties for p-harmonic functions, i.e. if u 2 Lq (M) is p-harmonic (or more generally, A-
harmonic) in M with q > p� 1; then u is constant. For q = p� 1 and m � 2; there exist a
complete Riemannianm-manifoldM and a nonconstant positive p-harmonic function f with
kfkLp�1(M) <1: In [49][50], S.W.Wei, J.F. Li and L. Wu proved sharp Liouville Theorems for
A-harmonic function u with p-balanced growth (e.g. u 2 Lq(M) ; for q > p�1 ; cf. [47] 6.3).
In [15], I. Holopainen, S. Pigola and G. Veronelli showed that if u; v 2 W 1;p

loc (M) \ C0 (M)
satisfy �pu � �pv weakly and jruj ; jrvj 2 Lp (M) ; for p > 1; then u � v is constant
provided M is connected, possibly incomplete, p-parabolic Riemannian manifold. They
also discussed Lq comparison principles in the non-parabolic setting. In [38], S. Pigola, M.
Rigoli and A.G. Setti showed the constancy of p-harmonic map homotopic to a constant
and with �nite p-energy from p-parabolic manifolds to manifolds with non-positive sectional
curvature. Moreover, if manifold M has Poincaré-Sobolev inequality, and RicM � �k (x)
with k (x) � 0 and the integral type of k (x) has upper bound depending on Poincaré-Sobolev
constant, p � 2 and p � q; then they obtained constancy properties of p-harmonic map with
some �nite energy types from M to manifolds with non-positive sectional curvature. In [6],
by a conservation law originated from E. Noether and comparison theorems in Riemannian
Geometry, Y.X. Dong and S.W. Wei obtained some vanishing theorems for vector bundle
valued di¤erential forms. In particular, they prove some Liouville type Theorems for p-
harmonic maps with �nite p-energy under various curvature conditions.
In [21], B. Kotschwar and L. Ni use a Bochner�s formula on a neighborhood of the max-

imum point (i.e. the p-Laplace operator is neither degenerate nor singular elliptic on this
neighborhood) to prove a gradient estimate for positive p-harmonic functions. This also
implies Liouville type properties of positive p-harmonic functions on complete noncompact
manifolds with nonnegative Ricci curvature, and sectional curvature bounded below.
However, the approach of Kotschwar-Ni�s gradient estimate for positive p-harmonic func-

tions, does not seem to work in this paper, since we need a Bochner�s formula which is
unambiguously de�ned at every point in the manifold.
To overcome the di¢ culty, in this paper, we introduce and study an approximate solution

u� of the weakly p-harmonic function u: This u� is the Euler-Lagrange equation of the (p; �)-
energy

Ep;� =
R



�
jru�j2 + �

� p
2 dv
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with u � u� 2 W 1;p
0 (
) ; where 
 is a domain on M: That is, u� is the weak solution of a

perturbed p-Laplace equation

(1.2) �p;�u� = div
��
jru�j2 + �

� p�2
2 ru�

�
= 0:

Moreover, we consider a linearization L� of the perturbed operator �p;� ; given by

(1.3) L� (	) = div (fp�2� A� (r	)) ;

for 	 2 C2 (
) ; where p > 1; f� =
q
jru�j2 + � and

A� := id + (p� 2) ru�
ru�f2�
:

We observe that since �p;� is no longer degenerate, by the existence and �-Regularization
results (Proposition 6.1 and Proposition 6.2), u� exists and is in�nitely di¤erentiable. Then
we can derive an L�-type Bochner�s formula and a Kato type inequality, and apply them to
u�: Hence, using the convergence of the approximate solutions u� inW 1;p on every domain in
M , as �! 0; we prove a Liouville type property of weakly p-harmonic functions with �nite
p-energy. This nonexistence result, when combined with the result of Proposition 2.1, yields
in turn the topological information that such manifold has at most one p-hyperbolic end.
We also note that, the perturbation method we employed in studying the p-Laplace equa-

tion is in contrast to the methods in [41] for harmonic maps on surfaces, in [8] for the level-set
formulation of the mean curvature �ow, in [17] for the inverse mean curvature �ow, and in
[21] for certain parabolic equations associated to the p-Laplacian.

Theorem 1.1. LetM be a complete noncompact Riemannian m-manifold, m � 2 supporting
a weighted Poincaré inequality (P�) ; with Ricci curvature

(1.4) RicM(x) � ��� (x)
for all x 2M; where � is a constant such that

� < 4(p�1+�)
p2

;

in which p > 1; and

� =

(
max

n
1

m�1 ;min
n
(p�1)2
m

; 1
oo

if p > 2;
(p�1)2
m�1 if 1 < p � 2:

Then every weakly p-harmonic function u with �nite p-energy Ep is constant. Moreover,
M has at most one p-hyperbolic end.

In Theorem 1.1, we say that M supports a weighted Poincaré inequality (P�), if there
exists a positive function �(x) a.e. on M such that, for every 	 2 W 1:2

0 (M) ;

(1.5)
R
M
� (x)	2 (x) dv �

R
M
jr	(x)j2 dv:

If �(x) is no less than a positive constant � ; then M has positive spectrum. For example,
the hyperbolic space Hm has positive spectrum, and � (x) = (m�1)2

4
: In Rm; if we select

� (x) = (m�2)2
4jxj2 (x) ; then (1.5) is Hardy�s inequality. For more examples, see [4][34][48].



4 SHU-CHENG CHANG, JUI-TANG CHEN, AND SHIHSHU WALTER WEI

If u is a C3 strongly p-harmonic function with �nite q-energy, then we have a Liouville
type property as follows.

Theorem 1.2. LetM be a complete noncompact Riemannian m-manifold, m � 2; satisfying
(P�) ; with Ricci curvature

(1.6) RicM(x) � ���(x)
for all x 2M; where � is a constant such that

(1.7) � < 4(q�1+�+b)
q2

;

in which

� = minf (p�1)
2

m�1 ; 1g and b = minf0; (p� 2)(q � p)g; where p > 1:
Let u 2 C3 (M) be a strongly p-harmonic function with �nite q-energy Eq (u) <1:
(I). Then u is constant under each one of the following conditions:
(1) p = 2 and q > m�2

m�1 ;
(2) p = 4; q > max f1; 1� �� bg ;
(3) p > 2; p 6= 4; and either

max
n
1; p� 1� �

p�1

o
< q � min

n
2; p� (p�4)2m

4(p�2)

o
or

max f2; 1� �� bg < q;

(II) u does not exist for 1 < p < 2 and q > 2:

We remark that the curvature assumption (1.6) or the assumption (1.7) on the constant �
in (1.6) cannot be dropped, due to the nontrivial p-harmonic functions with �nite q-energy
that are constructed in Sect. 6.3.

As an application, we also extend Theorem 1.2 to p-harmonic morphisms and conformal
maps in Sections 5.3 and 5.4 respectively. In particular, we obtain a Picard-type Theorem for
p-harmonic morphisms. Some applications to such Picard-type Theorems on stable minimal
hypersurfaces in Riemannian manifolds can be found in [4].

The paper is organized as follows. In section 2, we recall some facts about p-hyperbolic
and p-parabolic ends from [27] and [10], and prove an existence theorem on manifolds with
two p-hyperbolic ends. In section 3, we introduce the linearization L� (1.3) of the perturbed
operator�p;� ; and derive the L�-type Bochner�s formula (3.8) and Kato type inequalities
(3.9)(3.13) for the solution u� of the perturbed equation (1.2). In section 4, by applying
Bochner�s formula and Kato�s inequality, we show a Liouville type theorem and one p-
hyperbolic end property for a weakly p-harmonic function with �nite p-energy in a complete
noncompact manifold which supports a weighted Poincaré inequality and satis�es a curvature
assumption. In section 5, we show Liouville type theorems for strongly p-harmonic functions
with �nite q-energy, and we also extend our results to some p-harmonic maps such as p-
harmonic morphisms and conformal maps between Riemannian manifolds. In section 6 of



LIOUVILLE PROPERTIES FOR p-HARMONIC MAPS 5

the Appendix, we prove the existence of the approximate solution u�; Proposition 6.2, and
volume estimate of complete noncompact manifolds with p-Poincaré inequality. We also
construct an example of non-trivial p-harmonic function with �nite q-energy on manifolds
with weighted Poincaré inequality.

2. p-Hyperbolicity

We recall some basic facts about capacities from [9], [10] and [44].
Let M be a Riemannian manifold, G � M a connected open set in M: If D and 
 are

nonempty, disjoint, and closed sets contained in the closure of G: A triple (
; D;G) is called
a condenser. The p-capacity of (
; D;G) is de�ned by

Capp (
; D;G) = inf
u

Z
G

jrujp dv;

for 1 � p < 1 ; where the in�mum is taken over all u 2 W 1;p (G) \ C0(G) with u = 1 in 

and u = 0 in D:
Above and in what follows, W 1;p (M) is the Sobolev space of all function u 2 Lp (M) and

whose distributional gradient ru also belongs to Lp (M) ; with respect to the Sobolev norm
kuk1;p = kukLp + krukLp :

The spaceW 1;p
0 (M) is the closure of C10 (M) inW

1;p (M) ; with respect to the k k1;p norm.
The following properties of capacities are well known (see e.g. [44]).
� 
2 � 
1 =) Capp (
2; D;G) � Capp (
1; D;G) ;
� D2 � D1 =) Capp (
; D2;G) � Capp (
; D1;G) ;
� If 
1 � 
2 � � � � \i
i = 
 and D1 � D2 � � � � \iDi = D; then

Capp (
; D;G) = lim
i!1

Capp (
i; Di;G) :

� If Gn (
 [D) is compact, then there exists a unique weak solution u : Gn (
 [D)!
R to the Dirichlet problem8<: �pu = 0 on Gn (
 [D) ;

u = 1 on 
;
u = 0 on D;

with Capp (
; D;G) =
R
G
jdujp dv:

Given a compact set 
 in M , an end E
 with respect to 
 is an unbounded connected
component of Mn
 : By a compactness argument, it is readily seen that the number of ends
with respect to 
 is �nite, it is also clear that if 
 � 
0 , then every end E
0 is contained in
E
, so that the number of ends increases as the compact 
 enlarges. Let x0 2 
:We denote
E
 (R) = Bx0 (R) \ E
; @E
 (R) = @Bx0 (R) \ E
 and @E
 = @
 \ E
:
In [27] (or see e.g. [22], [28]-[30], [37]), 2-parabolic and 2-nonparabolic manifolds and ends

are introduced. In [10], I. Holopainen de�ned the p-parabolic end as follows:

De�nition 2.1. Let E be an end of M with respect to 
: E is p-parabolic, or, equivalently,
has zero p-capacity at in�nity if,

Capp (
;1;E) := limi!1Capp
�

; En
i;E

�
= 0;
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where f
ig1i=1 is an exhaustion of M by relatively compact open domains with smooth bound-
ary and 
i �� 
i+1; for every integer i :

This de�nition also implies: if E is an end with respect to 
; there are sequence of weakly
p-harmonic functions fuig ; ui 2 W 1;p; de�ned on E; satisfying

(2.1) �pui = 0 on E (ri)

with boundary conditions

(2.2) ui =

�
1 on 
;
0 on En
i;

then fuig converges (converges uniformly on each compact set of E) to the constant function
u = 1 on E as i!1:

De�nition 2.2. An end E is p-hyperbolic (or p-nonparabolic) if E is not p-parabolic.

If hi is a weakly p-harmonic function satisfying (2.1) and (2.2), then E is p-hyperbolic if
and only if fhig converges to a weakly p-harmonic function h with h = 1 on @E, infE h = 0
and �nite p-energy.

De�nition 2.3. A manifoldM is p-parabolic, or, equivalently, has zero p-capacity at in�nity
if, for each compact set 
 �M;

Capp (
;1;M) := limi!1Capp (
;Mn
i;M) = 0;

where f
ig1i=1 is an exhaustion of M by domains with smooth boundary and 
i �� 
i+1; for
every integer i :

De�nition 2.4. A manifold M is p-hyperbolic (or p-nonparabolic) if M is not p-parabolic.

This de�nition also implies that a manifoldM is p-parabolic if each end ofM is p-parabolic,
M is p-hyperbolic if M has at least one p-hyperbolic end.
Now we focus on manifold M with two p-hyperbolic ends (cf. [9]).

Proposition 2.1. Let M be a complete noncompact manifold, and assume M has two p-
hyperbolic ends E1 and E2: Then there exists a weakly p-harmonic function h :M ! R with
�nite p-energy such that 0 < h < 1; supE1 h = 1 and infE2 h = 0: Moreover, h is C

1;�.

Proof. Given 
 � M; we �x an exhaustion f
ig of M by domains with smooth boundary
and 
i �� 
i+1 for every integer i :
Denote by EA the p-hyperbolic ends of M with respect to A : For every A, let uEAi be the

p-harmonic function satisfying8<:
�pu

EA
i = 0 in EA \ 
i;

uEAi = 1 on @EA;
uEAi = 0 on @EA;
i = @ (EA \ 
i) n@EA:

By the monotone property, uEAi converges uniformly to uEA on every compact subset of EA:
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For every i, let hi be the weak solution of the boundary value problem8<: �phi = 0 in 
i;
hi = 1 on @
i \ E1;
hi = 0 on @
i \ (MnE1) :

Then, 0 � hi � 1, and by gradient estimate ([21]), there are subsequence, say fhig ; con-
verges, locally uniformly, to a weakly p-harmonic function h on M , satisfying 0 � h � 1:
On E1, the maximum principle implies 1 � uE1i � hi < 1: Hence 1 � uE1 � h < 1 on E1,

so that supE1
�
1� uE1

�
� supEA h = 1 gives supE1 h = 1 since infE1 u

E1 = 0:

On E2; the maximum principle implies 0 < hi � uE2i : Hence we have 0 < h � uE2 on E2,
so that 0 � infE2 h � infE2 uE2 = 0.
Now we have supE1 h = 1 and infE2 h = 0; so h is a nonconstant p-harmonic function on

M:
Finally, h has �nite p-energy by

Capp (E1n
i;Mn (
i [ E1) ;M) =
R
M
jrhijp dv 6= 0;

and the monotonic properties of capacities. �

3. Bochner�s formula and Kato�s inequality

First of all, we de�ne N =M � R with metric gN = gM + dt2; and let

(3.1) v� (x; t) = u� (x) +
p
�t

for x 2 
 � M; t 2 R; and � > 0; where u� is the solution of the perturbed p-Laplace
equation (1.2). Then v� 2 C1 is a strongly p-harmonic function on 
N = 
 � R; i.e. if
�N
p is the p-Laplace operator on (
N ; gN) ; we have �

N
p v� = 0 with

��rNv�
��2 � � > 0 and

RicN
�
rNv�;rNv�

�
= Ric (ru�;ru�) : Moreover, if f = jru�j ; then f� =

��rNv�
�� =pf 2 + �

which is independent of t: Hence, we have rNf� = rf� and �Nf� = �f�:
According to the argument of Kotschwar-Ni [21], we de�ne the linearized operator LN0 of

the p-Laplace operator �N
p on (
N ; gN) as follows:

LN0 (	) = divN
�
fp�2� A0

�
rN	

��
;

for 	 2 C2 (
N) ; where divN is the divergence on (
N ; gN) and

A0 := id + (p� 2) r
Nv�
rNv�

f2"
:

Now we show Bochner�s formula as the following:

Lemma 3.1. Let v� be the p-harmonic function on (
N ; gN) ; and (rd)N v� be the Hessian
of v� on (
N ; gN) : Then for every p > 1;

(3.2) 1
2
LN0 (f 2� ) = p�2

4
fp�4�

��rNf 2�
��2 + fp�2�

����(rd)N v����2 +RicN
�
rNv�;rNv�

��
:
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Proof. Since f� > 0 ; for every p > 1 ; the p-harmonic equation �N
p v� = 0 is equivalent to

(3.3) p�2
2



rNf 2� ;rNv�

�
= �f 2��Nv�

which implies

(3.4) p�2
2
fp�6�



rNv�;rNf 2�

�2
= �fp�4�



rNv�;rNf 2�

�
�Nv�:

On the other hand, taking the gradient of both sides of (3.3), and then taking the inner
product with rNv� ; we have

(3.5)
p�2
2



rN



rNf 2� ;rNv�

�
;rNv�

�
= �



rNf 2� ;rNv�

�
�Nv�

�f 2�


rN

�
�Nv�

�
;rNv�

�
:

Now we compute

(3.6)

1
2
LN0 (f 2� ) = 1

2
divN

�
fp�2� rNf 2� + (p� 2) fp�4�



rNv�;rNf 2�

�
rNv�

�
= p�2

4
fp�4�

��rNf 2�
��2 + 1

2
fp�2� �Nf 2� +

(p�2)(p�4)
4

fp�6�



rNv�;rNf 2�

�2
+p�2

2
fp�4�



rN



rNv�;rNf 2�

�
;rNv�

�
+p�2

2
fp�4�



rNv�;rNf 2�

�
�Nv�:

Substituting (3.5) into (3.6), one gets

(3.7)

1
2
LN0 (f 2� ) = p�2

4
fp�4�

��rNf 2�
��2 + p�4

2
fp�4�



rNv�;rNf 2�

�
�Nv�

+1
2
fp�2� �Nf 2� � fp�2�



rN

�
�Nv�

�
;rNv�

�
+ (p�2)(p�4)

4
fp�6�



rNv�;rNf 2�

�2
:

Applying Bochner�s formula

1
2
�Nf 2� =

���(rd)N v����2 + 
rNv�;rN
�
�Nv�

��
+RicN

�
rNv�;rNv�

�
and the equation (3.4) to the third term and the last term of right hand side of (3.7)
respectively, one obtains the desired formula (3.2). �

If 	 is independent of t; then

LN0 (	) = divN
�
fp�2� rN	+ (p� 2)



rNv�;rN	

�
rNv�

�
= div (fp�2� r	+ (p� 2) fp�4� hru�;r	iru�)
= L� (	)

where L� is de�ned by (1.3). Hence Lemma 3.1 implies the following Lemma.

Lemma 3.2. Let u� be a solution of (1.2) on 
 � M ; f� =
q
jru�j2 + � ; and rdu� be the

Hessian of u� on M : Then for every p > 1;

(3.8) 1
2
L� (f 2� ) = p�2

4
fp�4� jrf 2� j

2
+ fp�2�

�
jrdu�j2 +Ric (ru�;ru�)

�
:

Next, we derive the following Kato type inequalities for the approximate solution u� :
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Lemma 3.3. Let u� be a solution of (1.2) on 
 � Mm; p > 1: Then the Hessian of u�
satis�es

(3.9) jdu�j2 jrdu�j2 � 1+�1
4

��r jdu�j2��2
at x 2 
; where

�1 =

(
1

m�1 if p � 2;
(p�1)2
m�1 if 1 < p < 2:

Proof. Fix x 2 
 �M with du� 6= 0; we select a local orthonormal frame �eld fe1; e2; : : : emg
such that at x; reiej = 0; ru� = jru�j e1; u�;1 = f ; and u�;� = 0 for all i; j = 1; : : : ;m;
� = 2; : : : ;m where u�;� = hru�; e�i :
Let f = jru�j ; f� =

q
jru�j2 + � and the directional derivative f�;i = hrf�; eii : Denote

the directional derivative hru�;i; eji by u�;ij : Then (3.3) implies
�u� = �p�2

2f2�
hrf 2� ;ru�i = �p�2

2f2�

Pm
i=1 (f

2
� );i u�;i

= �p�2
2f2�
(f 2� );1 u�;1

= �p�2
2f2�
(f 2� );1 f:

Moreover, by using the following property

(f 2� );j = (f 2) ;j =
Pm

i=1

�
u2�;i
�
;j = 2

Pm
i=1 u�;iu�;ij

= 2u�;1u�;1j
= 2fu�;1j:

We have

(3.10) �u� =
�(p�2)f2

f2�
u�;11;

and

(3.11) u�;1j = f;j:

On the other hand,

(3.12)

Pm
i;j=1 (u�;ij)

2 � (u�;11)
2 + 2

Pm
�=2 (u�;1�)

2 +
Pm

�=2 (u�;��)
2

� (u�;11)
2 + 2

Pm
�=2 (u�;1�)

2 +
(
Pm
�=2 u�;��)

2

m�1

= (u�;11)
2 + 2

Pm
�=2 (u�;1�)

2 + (�u��u�;11)2
m�1 :

Therefore, by using (3.10) and (3.11), the inequality (3.12) implies

Pm
i;j=1 (u�;ij)

2 � (u�;11)
2 + 2

Pm
�=2 (u�;1�)

2 +

��
(p�2)f2

f2�
+1

�
u�;11

�2
m�1

=

�
1 +

((p�1)f2+�)
2

(m�1)f4�

�
(u�;11)

2 + 2
Pm

�=2 (u�;1�)
2

� (1 + �) jrf j2

which can be written as

jdu�j2 jrdu�j2 � 1+�1
4

��r jdu�j2��2
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for all x 2 
: This completes the proof. �

Lemma 3.4. Let u� be a solution of (1.2) on 
 � Mm; p > 1: Then the Hessian of u�
satis�es

(3.13)
�
jdu�j2 + �

�
jrdu�j2 � 1+�2

4

��r jdu�j2��2
at x 2 
; where �2 = min

n
(p�1)2
m

; 1
o
:

Proof. Since v� 2 C1 (N) is the strongly p-harmonic function on (
N ; gN) ; then Kato�s
inequality for strongly p-harmonic function on (
N ; gN) (see Lemma 5.3) implies

(3.14)
���(rd)N v����2 � (1 + �2) ��rN

��dNv�����2
where (rd)N is the Hessian on (
N ; gN) ; and �2 = min

n
(p�1)2
m

; 1
o
: Moreover, (3.14) can be

rewritten as �
jdu�j2 + �

�
jrdu�j2 � (1 + �2)

�
jdu�j2 + �

� ����rqjdu�j2 + �

����2
= 1+�2

4

��r jdu�j2��2 :
for all x 2 
: �

4. The Proof of Theorem 1.1

Now we use Lemmas 3.2 - 3.4 and weighted Poincaré inequality (1.5) to obtain the following
inequality (4.1):

Lemma 4.1. Let M be a manifold satisfying the hypothesis of Theorem 1.1. Let u� be a
solution of (1.2) on B (2R) �M: Then we have

(4.1) C
R
B(R)

� jru�jp dv � 100�B
R2

R
B(2R)nB(R)

�
jru�j2 + �

� p
2 dv;

where C (p;m; �; �; �1; �2) > 0 and B (p;m; �; �1; �2) > 0 are positive constants for su¢ ciently
small constants �1; �2 > 0 :

Proof. Let 
 = B (2R) be a geodesic ball of radius 2R centered at a �xed point.
Let f = jru�j and f� =

p
f 2 + �: In view of Lemma 3.3 and Lemma 3.4,

f 2� jrdu�j
2 � 1+�

4
jrf 2j2

holds for all on M; where � = max f�1; �2g : Then by Lemma 3.2, we rewrite Bochner�s
formula as

(4.2) 1
2
L� (f 2� ) � (p� 1 + �) fp�2� jrf�j2 + fp�2� Ric (ru�;ru�) ;

here we use rf 2� = rf 2 :
We multiply both sides of (4.2) by �2 and integrate over M;

(4.3)
1
2

R
M
�2L� (f 2� ) dv � (p� 1 + �)

R
M
�2fp�2� jrf�j2 dv

+
R
M
�2fp�2� Ric (ru�;ru�) dv
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where � 2 C10 (M) is a cut-o¤ function with 0 � � (x) � 1 on M satisfying8<: � (x) = 1 if x 2 B (R);
jr� (x)j � 10

R
if x 2 B (2R) nB (R);

� (x) = 0 if x 2MnB (2R) :
On the other hand, applying integration by parts and Cauchy-Schwarz inequality one has

1
2

R
M
�2L� (f 2� ) dv = �1

2

R
M
hr�2; fp�2� rf 2� + (p� 2) fp�4� hru�;rf 2� iru�i dv

� 2
R
M
� jr�j (fp�1� jrf�j+ jp� 2j fp�3� f 2 jrf�j) dv

� 2 (1 + jp� 2j)
R
M
� jr�j fp�1� jrf�j dv

� �1
R
M
�2fp�2� jrf�j2 dv + (1+jp�2j)2

�1

R
M
jr�j2 fp� dv;

where �1 is a positive constant satisfying

p� 1� �1 > 0:

Then (4.3) implies

(4.4)
(1+jp�2j)2

�1

R
M
jr�j2 fp� dv �

R
M
(p� 1 + �� �1) �

2fp�2� jrf�j2 dv
+
R
M
�2fp�2� Ric (ru�;ru�) dv:

Besides, we may rewrite the �rst term in the right hand side of (4.4) by

(p� 1 + �� �1)
R
M
�2fp�2� jrf�j2 dv

= 4(p�1+���1)
p2

R
M
�2
���rf p

2
�

���2 dv
= 4(p�1+���1)

p2

R
M

���r��f p
2
�

�
� (r�) f

p
2
�

���2 dv
= 4(p�1+���1)

p2

R
M

����r��f p
2
�

����2 � 2Dr��f p
2
�

�
; f

p
2
� r�

E
+ jr�j2 fp�

�
dv

� 4(1��2)(p�1+���1)
p2

R
M

���r��f p
2
�

����2 + 4
�
1� 1

�2

�
(p�1+���1)
p2

R
M
jr�j2 fp� dv:

where �2 is a positive constant satisfying �2 < 1: Thus, we have

(4.5)

4(1��2)(p�1+���1)
p2

R
M

���r��f p
2
�

����2 dv + RM �2fp�2� Ric (ru�;ru�) dv

�
�
(1+jp�2j)2

�1
+

4
�
1
�2
�1
�
(p�1+���1)
p2

�R
M
jr�j2 fp� dv:

According to the weighted Poincaré inequality (1.5)R
M
�	2dv �

R
M
jr	j2 dv

with 	 = �f
p
2
� ; then (4.5) implies

(4.6)
R
B(R)

Afp�2� dv � 100�B
R2

R
B(2R)nB(R) f

p
� dv;

for all �xed R > 0; where

A = 4(1��2)(p�1+���1)
p2

�f 2� +Ric (ru�;ru�) ;
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and

B =

�
(1+jp�2j)2

�1
+

4
�
1
�2
�1
�
(p�1+���1)
p2

�
:

Since the curvature condition (1.4) means that there exists a constant 0 < � < 4(p�1+�)
p2

such that
RicM � ���;

Then
A � C (p;m; �; �; �1; �2) �f

2

with C > 0 whenever we select �1 and �2 small enough.
Hence, (4.6) gives

C
R
B(R)

� jru�jp dv � 100�B
R2

R
B(2R)nB(R)

�
jru�j2 + �

� p
2 dv;

where C (p;m; �; �; �1; �2) > 0; and B (p;m; �; �1; �2) > 0:
�

Proof of Theorem 1.1.

Proof. Given B (R0) �M; for every a > 0; we let 
a = fx 2 B (R0) : � (x) > 1=ag : It is clear
the measure of 
a tends to zero as a ! 0+: If we are able to show

R
B(R0)n
a � jruj

p dv < �

for any � > 0 ; then it implies ru = 0 on B (R0) almost everywhere. This also infers ru = 0
on B (R0) by the fact u 2 C1;�loc (M) : Moreover, since B (R0) is arbitrary, u must be constant
on M:
Moreover, if we assume M has at least two p-hyperbolic ends. By Proposition 2.1, one

may construct a nontrivial bounded p-harmonic function with �nite p-energy on M , this
gives a contradiction to our conclusion, hence M has only one p-hyperbolic end.
Now we prove the claim. By using the �nite p-energy of u; we may select 0 << R < 1

large enough such that B (R0) � B (R) and
100B
R2C

R
B(2R)nB(R) jruj

p dv < �

where B and C are de�ned as (4.1).
Now we construct u� 2 C1 (B (2R)) such that u� = u on @B (2R) and u� satis�es (1.2).

Then (4.1) implies

C
R
B(R0)n
a � jruj

p dv � 100�B
R2

R
B(2R)nB(R) jruj

p dv;

as �! 0; we may therefore conclude thatR
B(R0)n
a � jruj

p dv < �:

�

If M has positive spectrum � > 0; then M has p-Poincaré inequality

�p
R
M
	p �

R
M
jr	jp ; �p > 0
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for all 	 2 W 1;p
0 (M) and p � 2 (cf. [14] Theorem 1.8). Since p-Poincaré inequality and

Caccioppoli type estimate imply decay estimate (see Lemma 6.4 which is similar to the work
of [32] Lemma 1.1 and Lemma 1.2), then p-Poincaré inequality infers that M must be a
p-hyperbolic manifold (see Theorem 6.1). So we have the following:

Corollary 4.1. Let Mm;m � 2; be a complete noncompact Riemannian manifold with
positive spectrum � > 0 and

RicM � ���
where p � 2; and constant � is the same as in Theorem 1.1. Then every weakly p-harmonic
function u with �nite p-energy is constant. Moreover, M has only one p-hyperbolic end.

Remark 4.1. Similarly, if M has p-Poincaré inequality, 1 < p < 2; then M has positive
spectrum � > 0: Hence, if M is a complete noncompact Riemannian manifold with p-
Poincaré inequality, 1 < p < 2; and RicM � ��� where � < 4(p�1)(p+m�2)

p2(m�1) : Then M has only
one p-hyperbolic end.

5. Strongly p-harmonic functions with applications

5.1. Bochner�s formula. Let u be a C3 strongly p-harmonic function for p > 1 on M :
Then jrujp�2ru must be C1 on M; and hence u is a solution of (5.1) as follows:

Lemma 5.1. If u 2 C3(M) is a strongly p-harmonic function for p > 1, then u is a solution
of

(5.1) f 2�u+ p�2
2
hrf 2;rui = 0;

on M ; where f = jruj :

Proof. First, we multiply both side of (1.1) by f 4; because of f 4 2 C2 (M) ; then

f 4div(fp�2ru) = 0

implies
0 = div(fp+2ru)� 2fp hrf 2;rui
= fp+2�u+ hrfp+2;rui � 2fp hrf 2;rui :

Since p > 1 and

rfp+2 = r
�
(f 2)

p+2
2

�
= p+2

2
fprf 2;

so we have
fp+2�u+ p�2

2
fp hrf 2;rui = 0:

which implies
f 2�u+ p�2

2
hrf 2;rui = 0

on all of M:
�
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Remark 5.1. (1). If u is a solution of (5.1), u may be not a strongly p-harmonic function.
For example, any constant function is a solution of (5.1), but it is not a strongly p-harmonic
function for 1 < p < 2:
(2). For p � 4; u 2 C2 (M) is a solution of (5.1) if and only if u is a strongly p-harmonic
function.

Now we de�ne an operator Ls;" by
Ls;" (	) = div (f s"A" (r	)) ;

for 	 2 C2 (M) ; where s 2 R; p > 1; " > 0; f" =
p
f 2 + " and

A" := id + (p� 2) ru
ruf2"
:

Note that Ls;" is a linearized operator of the nonlinear equation (1.1), and Ls;" (f 2" ) (x) is
well de�ne for all x 2M since f" > 0 and f 2" 2 C2 (M) :

Next we use the operator Ls;" to derive the Bochner�s formula for the solution of (5.1).
Lemma 5.2 (Bochner�s formula). If u 2 C3 (M) is a strongly p-harmonic function. Let
f = jruj and f" =

p
f 2 + "; then for all p > 1 and s 2 R; the formula

1
2
Ls;" (f 2" ) = s

4
f s�2" jrf 2" j

2
+ f s"

Pm
i;j=1

�
u2ij +Rijuiuj

�
+ (p�2)(s�p+2)

4
f s�4" hru;rf 2" i

2

+"
�
f s�2" hru;r�ui+ p�4

2
f s�4" hru;rf 2" i�u

�
holds on all of M ; where Rij =

Pm
k=1hR(ei; ek)ek; eji is the Ricci curvature tensor of M : In

particular, if p = 2; then
1
2
Ls;" (f 2" ) = s

4
f s�2" jrf 2" j

2
+ f s"

Pm
i;j=1

�
u2ij +Rijuiuj

�
holds on all of M and for all s 2 R:
Proof. By Lemma 5.1, u must be a solution of (5.1). Taking the gradient of both sides of
(5.1), and then taking the inner product with ru ; we have

(5.2)
0 = p�2

2
hr hrf 2;rui ;rui+ hrf 2;rui�u

+f 2 hr (�u) ;rui :
Now we rewrite Ls;" (f 2" ) as the following formula,

(5.3)

1
2
Ls;" (f 2" ) = 1

2
div (f s"rf 2" + (p� 2) f s�2" hru;rf 2" iru)

= s
4
f s�2" jrf 2" j

2
+ 1

2
f s"�f

2
"

+ (p�2)(s�2)
4

f s�4" hru;rf 2" i
2

+p�2
2
f s�2" hr hru;rf 2" i ;rui

+p�2
2
f s�2" hru;rf 2" i�u:

Combining (5.2), one has

(5.4)

1
2
Ls;" (f 2" ) = s

4
f s�2" jrf 2" j

2
+ 1

2
f s"�f

2
"

+ (p�2)(s�2)
4

f s�4" hru;rf 2" i
2

�f s�2" f 2 hr (�u) ;rui
+p�4

2
f s�2" hru;rf 2" i�u;
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here we use the fact rf 2" = rf 2:
According to (5.1), the last term of right hand side can be rewritten as

f s�2" hru;rf 2" i�u = f s�4" (f 2 + ") hru;rf 2" i�u
= f s�4" f 2 hru;rf 2" i�u+ "f s�4" hru;rf 2" i�u
= �p�2

2
f s�4" hru;rf 2" i

2
+ "f s�4" hru;rf 2" i�u:

Using Bochner�s formula
1
2
�f 2 =

Pm
i;j=1 u

2
ij + hru;r�ui+

Pm
i;j=1Rijuiuj

and the equality �f 2 = �f 2" ; then (5.4) gives the desired
1
2
Ls;" (f 2" ) = s

4
f s�2" jrf 2" j

2
+ f s"

Pm
i;j=1

�
u2ij +Rijuiuj

�
+ (p�2)(s�p+2)

4
f s�4" hru;rf 2" i

2

+"
�
f s�2" hru;r�ui+ p�4

2
f s�4" hru;rf 2" i�u

�
:

�
Lemma 5.3 (Re�ned Kato�s inequality). Let u 2 C2 (M) be p-harmonic function on a

complete manifold Mm; p > 1 and � = min
n
(p�1)2
m�1 ; 1

o
: Then at any x 2M with du (x) 6= 0;

(5.5) jr (du)j2 � (1 + �) jr jdujj2 ;
and "=" holds if and only if8><>:

u�� = 0 and u11 = �m�1
p�1 u��; for (p� 1)2 = m� 1;

u�� = 0; u1� = 0 and u11 = �m�1
p�1 u��; for (p� 1)2 < m� 1;

u�� = 0 and uii = 0; for (p� 1)2 > m� 1;
for all �; � = 2; : : : ;m; � 6= � and i = 1; : : : ;m:

Proof. Fix a point x 2M: If du 6= 0 at x; we are able to select a local orthonormal frame �eld
fe1; e2; : : : emg such that, at x; reiej = 0; ru = jruj e1; and u� = 0 for all i; j = 1; : : : ;m;
� = 2; : : : ;m: Here we use the convenient notation ui = hru; eii :
Observing that

(5.6)

Pm
i;j=1 (uij)

2 � (u11)
2 + 2

Pm
�=2 (u1�)

2 +
Pm

�=2 (u��)
2

� (u11)
2 + 2

Pm
�=2 (u1�)

2 +
(
Pm
�=2 u��)

2

m�1
= (u11)

2 + 2
Pm

�=2 (u1�)
2 + (�u�u11)2

m�1 :

However, letting f = jruj and using f = u1 ; f1 = hrf; e1i ;
0 = div (fp�2ru)
= fp�2�u+ (p� 2) fp�3 hrf;rui
= up�21 �u+ (p� 2)up�21 f1;

and

(5.7) fj =
(f2)

;j

2f
=
(
Pm
i=1 u

2
i );j

2f
=

Pm
i=1 uiuij
f

=
u1u1j
f

= u1j;
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we then obtain

(5.8) �u = � (p� 2)u11:
Therefore the inequality (5.6) can be written as

(5.9)

Pm
i;j=1 (uij)

2 � (u11)
2 + 2

Pm
�=2 (u1�)

2 + (p�1)2
m�1 (u11)

2

=
�
1 + (p�1)2

m�1

�
(u11)

2 + 2
Pm

�=2 (u1�)
2

� (1 + �)
Pm

j=1 (u1j)
2

= (1 + �) jrf j2 :
Then (5.5) follows.
When "=" holds in the inequality (5.5), then by (5.6), we have

u�� = 0 for all � 6= �; where �; � = 2; : : :m

and

(5.10) u�� = u�� for all �; � = 2; : : :m:

Using (5.8), (5.10) then gives

u11 = �m�1
p�1 u�� for all � = 2; : : :m:

Moreover, by (5.9),

� If (p� 1)2 < m� 1; then u1� = 0 for all � = 2; : : :m:
� If (p� 1)2 > m� 1; then u11 = 0; i.e. uii = 0 for all i = 1; : : :m:

Hence we complete the proof.
�

Next, we show two examples to verify Lemma 5.3 is sharp.

Example 5.1. If u (x) = log jxj in Rmn f0g ; then it is easy to check that �mu = 0 for all
m � 2: Since

jrduj2 =
Pm

i;j=1

�
�ij

jxj2 �
2xixj

jxj4

�2
and jr jrujj2 = 1

jxj4 ;

we obtain
jrduj2 = m jr jrujj2

for m � 2: This example implies Lemma 5.3 is sharp in the case of p = m = 2:

Example 5.2. Let u (x) = jxj
p�m
p�1 in Rmn f0g ; p 6= m; then u is a p-harmonic function.

Since

jrduj2 =
�
p�m
p�1

�2
jxj

2(1�m)
p�1 �2Pm

i;j=1

n
�ij +

�
1�m
p�1 � 1

�
xixj

jxj2

o2
and

jr jrujj2 =
�
(p�m)(1�m)

(p�1)2

�2
jxj

2(1�m)
p�1 �2 ;

we have
jrduj2 =

�
1 + (p�1)2

m�1

�
jr jrujj2 :
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This example implies Lemma 5.3 is sharp in the case of (p� 1)2 � m� 1:

5.2. The Proof of Theorem 1.2. We need several Lemmas:

Lemma 5.4. Suppose Mm is a complete noncompact Riemannian manifold satisfying (P�)
and (1.6). Let u 2 C3 (Mm) be a strongly p-harmonic function, p > 1; p 6= 2: Then, for
every 0 < " < 1;

(5.11)
R
B(R)

A2f
q�2
" dv + "B0 � 100�B1

R2

R
B(2R)nB(R) f

q
" dv;

where f = jruj ; f" =
p
f 2 + "; q = s+ 2; q � 1 + �+ b > "1; b = min f0; (p� 2) (q � p)g ;

(5.12)
B0 =

R
M
�2
�
f s�2"

Pm
i;j=1 u

2
ij + f s�2" hru;r�ui

+p�4
2
f s�4" hru;rf 2" i�u� bf s�2" jrf"j2

�
dv ;

A2 =
4(1�"2)(q�1+�+b�"1)

q2
�f 2" +

Pm
i;j=1Rijuiuj ;

and

B1 =
(1+jp�2j)2

"1
+

4
�
1
"2
�1
�
(q�1+�+b�"1)
q2

;

for some 0 < "1; "2 < 1:

Proof. Combining Lemma 5.3 and Lemma 5.2, and using the formula

f 2 jr (du)j2 � 1+�
4

��r jduj2��2
holds on all of M , we have the following.

(5.13)

1
2
Ls;" (f 2" ) � (s+ 1 + �) f s" jrf"j

2 + f s"
Pm

i;j=1Rijuiuj
+ (p�2)(s�p+2)

4
f s�4" hru;rf 2" i

2

+"

�
f s�2"

Pm
i;j=1 u

2
ij + f s�2" hru;r�ui

+p�4
2
f s�4" hru;rf 2" i�u

�
:

We multiply both sides of (5.13) by a cut o¤ function �2 2 C10 (M) and integrate overM;

(5.14)

1
2

R
M
�2Ls;" (f 2" ) dv

�
R
M
�2f s"

�
(s+ 1 + �) jrf"j2 +

Pm
i;j=1Rijuiuj

�
dv

+ (p�2)(s�p+2)
4

R
M
�2f s�4" hru;rf 2" i

2
dv

+"
R
M
�2
�
f s�2"

Pm
i;j=1 u

2
ij + f s�2" hru;r�ui

+p�4
2
f s�4" hru;rf 2" i�u

�
dv
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where � is a cut-o¤ function on M satisfying8<: � (x) = 1 if x 2 B (R);
0 < � (x) < 1 if x 2 B (2R) nB (R);
� (x) = 0 if x 2MnB (2R) ;

and �
jr� (x)j = 0 if x 2 B (R) or x 2MnB (2R) ;
jr� (x)j � 10

R
if x 2 B (2R) nB (R);

Since integration by parts and Cauchy-Schwarz inequality assert that
1
2

R
M
�2Ls;" (f 2" ) dv = �1

2

R
M
hr�2; f s"rf 2" + (p� 2) f s�2" hru;rf 2" irui dv

� 2
R
M
� jr�j (f s+1" jrf"j+ (p� 2) f s�1" f 2 jrf"j) dv

� 2 (1 + jp� 2j)
R
M
� jr�j f s+1" jrf"j dv

� "1
R
M
�2f s" jrf"j

2 dv + (1+jp�2j)2
"1

R
M
jr�j2 f s+2" dv;

where 0 < "1 < 1 is a positive constant such that q � 1 + �+ b > "1:
On the other hand,

(p�2)(s�p+2)
4

R
M
�2f s�4" hru;rf 2" i

2
dv

� b
4

R
M
�2f s�4" jruj2 jrf 2" j

2
dv

= b
R
M
�2f s�2" f 2 jrf"j2 dv

= b
R
M
�2f s" jrf"j

2 dv � b"
R
M
�2f s�2" jrf"j2 dv

where
b = min f0; (p� 2) (s� p+ 2)g :

Then (5.14) implies

(5.15)
A1
R
M
�2f s" jrf"j

2 dv +
R
M
�2f s"

Pm
i;j=1Rijuiujdv + "B0

� (1+jp�2j)2
"1

R
M
jr�j2 f s+2" dv;

where A1 = s+ 1 + �+ b� "1 > 0 :
Now we compute the �rst term in the left hand side of (5.15). Since q = s+ 2 ;R

M
�2f s" jrf"j

2 dv

= 4
q2

R
M
�2
���rf q

2
"

���2 dv
= 4

q2

R
M

���r��f q
2
"

�
� (r�) f

q
2
"

���2 dv
= 4

q2

R
M

���r��f q
2
"

����2 � 2Dr��f q
2
"

�
; f

q
2
" r�

E
+ jr�j2 f q" dv

� 4(1�"2)
q2

R
M

���r��f q
2
"

����2 + 4
�
1� 1

"2

�
q2

R
Mm jr�j2 f q" dv:

where "2 is a positive constant satisfying 0 < "2 < 1: Thus, we have

(5.16)

4(1�"2)A1
q2

R
M

���r��f q
2
"

����2 dv + RM �2f q�2"

Pm
i;j=1Rijuiuj dv + "B0

�
�
(1+jp�2j)2

"1
+

4
�
1
"2
�1
�
A1

q2

�R
M
jr�j2 f q" dv:
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According to weighted Poincaré inequalityR
M
�	2dv �

R
M
jr	j2 dv;

if we select 	 = �f
q
2
� ; then (5.16) impliesR

B(R)
A2f

q�2
" dv + "B0 � 100�B1

R2

R
B(2R)nB(R) f

q
" dv;

for all �xed R > 0: �

Lemma 5.5. Let B0 be as in (5:12), p > 1; p 6= 2; q = s+ 2 and

b = min f0; (p� 2) (q � p)g :
Then
(i) if q > 2; then "B0 ! 0 as "! 0;

(ii) if 1 < q � 2 and b � � (p�4)2m
4

; then "B0 � 0 as "! 0:

Proof. First of all, we derive some properties.
For s � 2; it is easy to check that

(5.17) "f s�2" ! 0 as "! 0:

If 0 < s < 2; then we also have

(5.18) "f s�2" = "
f2�s"

� "
"1�s=2

= "s=2 ! 0 as "! 0;

By using the estimates

"f s�4" hru;rf 2" i = 2"f s�4"

Pm
i;j=1 uijuiuj

� 2"f s�4" supi;j=1;��� ;m juijj
Pm

i;j=1 juiujj
� 2m"f s�4" f 2 supi;j=1;��� ;m juijj
� 2m"f s�2" supi;j=1;��� ;m juijj

and
"f s�2" jrf"j2 = "

4
f s�4" jrf 2" j

2

= "f s�4"

Pm
i;j;k=1 uikukjuiuj

� 2m"f s�4" f 2 supi;j;k=1;��� ;m juikj jukjj
� 2m"f s�2" supi;j;k=1;��� ;m juikj jukjj

then (5.17) and (5.18) imply

(5.19)
�
"f s�4" jhru;rf 2" ij ! 0;

"f s�2" jrf"j2 ! 0;

as "! 0; for all s > 0:
In the case �1 < s � 0;

(5.20) "ff s�2" � "

(f2+")1=2�s=2
� "1=2+s=2 ! 0 as "! 0:

Now we prove Lemma as follows.
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For any �xed s > 0; by (5.17), (5.18) and (5.19), then we obtain,

j"B0j = "

���� RM �2
�
f s�2"

Pm
i;j=1 u

2
ij + f s�2" hru;r�ui

+p�4
2
f s�4" hru;rf 2" i�u� bf s�2" jrf"j2

�
dv

����
�

R
M
�2
�
("f s�2" )

Pm
i;j=1 u

2
ij + ("f

s�2
" ) jhru;r�uij

+ jp�4j
2
("f s�4" jhru;rf 2" ij) j�uj � b

�
"f s�2" jrf"j2

��
dv

! 0; as "! 0:

If s > �1; since b � � (p�4)2m
4

; then

f s�2"

Pm
i;j=1 u

2
ij � bf s�2" jrf"j2 + p�4

2
f s�4" hru;rf 2" i�u

� f s�2"

Pm
i;j=1 u

2
ij � bf s�2" jrf"j2 � jp� 4j f s�2" jrf"j j�uj

� f s�2"

Pm
i;j=1 u

2
ij � bf s�2" jrf"j2 � fs�2" (�u)2

m
� (p�4)2m

4
f s�2" jrf"j2

� 0;

here we use
Pm

i;j=1 u
2
ij �

(�u)2

m
: Hence by (5.17), (5.18) and (5.20),

"B0 = "
R
M
�2
�
f s�2"

Pm
i;j=1 u

2
ij + f s�2" hru;r�ui

+p�4
2
f s�4" hru;rf 2" i�u� bf s�2" jrf"j2

�
dv

� "
R
M
�2f s�2" hru;r�ui

� �
R
M
�2 ("f s�2" f) jr�uj

! 0 whenever s > �1 and "! 0:

In particular, if s > �1 and p = 4; by applying (5.17), (5.18), (5.20) and b � 0, then

"B0 = "
R
M
�2
�
f s�2"

Pm
i;j=1 u

2
ij + f s�2" hru;r�ui � bf s�2" jrf"j2

�
dv

� �
R
M
�2 ("f s�2" f) jr�uj dv

! 0 whenever s > �1 and "! 0:

�

Remark 5.2. In Lemma 5.5, if p = 4 and q > 1; then "B0 � 0 as "! 0:

Proof of Theorem 1.2. Since we assume q�1+�+b > 0; the curvature condition (1.6) means
that there exists a constant 0 < � < 1 such that

(5.21) RicM(ru;ru) =
Pm

i;j=1Rijuiuj � �4(q�1+�+b)
q2

��f 2:

To apply Lemmas 5.4 and 5.5, we need the following conditions:

(�)
�
q > 2 and q � 1 + �+ b > 0;

or 1 < q � 2 and q � 1 + �+ b > 0; where b � � (p�4)2m
4

:
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We �rst assume p 6= 2:
For p > 2 ; the expression 1 < q � 2 implies that q < p : Hence b = (p� 2)(q � p) : Then

q � 1 + �+ b > 0 () q > p� 1� �

p� 1
(cf. Remark 5.3), and

b � �(p� 4)
2m

4
() q � p� (p� 4)

2m

4 (p� 2) :

That is, for p > 2 ; (�) can be rewritten as

(�1)
(
max f2; 1� �� bg < q

or max
n
1; p� 1� �

p�1

o
< q � min

n
2; p� (p�4)2m

4(p�2)

o
For p = 4 ; b � � (p�4)2m

4
= 0 holds and (�) can be simpli�ed as follows:

(�2) max f1; 1� �� bg < q :

For 1 < p < 2; the expression 1 < q � 2 implies that p < q : Or q � p (< 2) would lead to
0 = b � � (p�4)2m

4
< 0 ; a contradiction. Hence b = (p�2)(q�p) : Then q�1+�+b > 0

�
()

q > p� 1� �
p�1
�

holds : However, b � � (p�4)2m
4

�
() q � p� (p�4)2m

4(p�2)
�

is invalid :

What remains is the following:
For 1 < p < 2; the expression 2 < q implies that b = (p � 2)(q � p) : Then q � 1 + � + b >
0
�
() q > p� 1� �

p�1
�

holds :

Thus, for 1 < p < 2; (�) can be rewritten as
(�3) 2 < q:

Similarly, for p = 2 ; we have b = 0 and � = 1
m�1 : It follows that q � 1 + � + b > 0 holds if

and only if

(�4)
m� 2
m� 1 < q :

In view of (�1); (�2); (�3); (�4) ; Lemmas 5.4 and 5.5, we obtain (5.11). As � ! 0 ; (5.11),
via (5.21) tends to

(5.22)
R
B(R)

A3f
qdv � 100�B1

R2

R
B(2R)nB(R) f

qdv;

where
A3 =

�
4(1�"2)(q�1+�+b�"1)

q2
� 4(q�1+�+b)�

q2

�
�:

Hence one has A3 > 0 whenever we select "1 and "2 small enough. Suppose f 2 Lq (M), then
the right hand side of (5.22) tends to zero as R ! 1, and then we conclude that f(x) = 0
for all x 2M and for some 0 < � < 1; i.e. u (x) is a constant on M for some 0 < � < 1.
In particular, if 1 < p < 2; since constant function is not a strongly p-harmonic function,

then such u does not exist. �
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Remark 5.3. If p > 2 and p � q; then

q � 1 + �+ b = q � 1 + �+ (p� 2) (q � p)

= (p� 1) q � (p� 1)2 + � > 0;

whenever q > p� 1� �
p�1 :

Remark 5.4. If we replace the �nite q-energy by
R
B(2R)nB(R) jruj

q dv = o (R2) as R ! 1;

then Theorem 1.2 is still valid.

Remark 5.5. Since
�
P�q
�
implies

�
P�p
�
for all p > q (cf. [14]). If M satis�es (P�2) ; by using

Lemma 6.5, then 2-hyperbolic end is equality to p-hyperbolic end since this end has in�nite
volume. Hence we may use the method of Theorem 2.1 of [32] to re�ne the conditions of
Theorem 1.2 whenever M satis�es (P�2) : But we omit it in this paper.

Corollary 5.1. Let Mm be a complete noncompact Riemannian manifold satisfying (P�)
and (1.6), where

� <
4((p�1)q�(p�1)2+�)

q2
;

� = minf (p�1)
2

m�1 ; 1g; p > 2; p � q: Let u 2 C3 (Mm) be a strongly p-harmonic function, with
�nite q-energy Eq (u) : Then u is a constant if p and q satisfy one of the following:
(1) p = 4; q > 9��

3
;

(2) p 6= 4; and either

max
n
1; p� 1� �

p�1

o
< q � min

n
2; p� (p�4)2m

4(p�2)

o
or

maxf2; p� 1� �
p�1g < q:

In particular, if p = q; then every strongly p-harmonic function u with �nite p-energy is
constant.

Corollary 5.2. Let Mm be a complete noncompact Riemannian manifold satisfying (P�)
and (1.6), where

� < 4(p�1+�)
p2

;

� = minf (p�1)
2

m�1 ; 1g: If u 2 C3 (Mm) is a strongly p-harmonic function for p � 2; with
Ep (u) <1; then u is a constant.

Remark 5.6. According to the following Lemma 5.6, we can replace �Let u 2 C3 (Mm) be a
strongly p-harmonic function for 1 < p < 1 :" in Theorem 1.2 by �Let u 2 C2 (Mm) be a
weakly p-harmonic function for p 2 f2g[ [4;1); and u 2 C3 (Mm) be a strongly p-harmonic
function for p 2 (1; 2) [ (2; 4) :" Theorem 1.2 remains to be true.

Lemma 5.6. If u 2 C2 (M) (resp. u 2 C0 (M) ) is a weakly p-harmonic function for
p 2 [4;1) (resp. p = 2 ) ; then u is a strongly p-harmonic function.

Proof. By assumption, u satis�es R
M
hfp�2ru;r�i dv = 0
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for every � 2 C10 (M) ; where f = jruj : Since u 2 C2 (M) ; and either p = 2 ; or p � 4; we
have fp�2 2 C1 (M) : Hence fp�2ru 2 C1 (M) ; and the divergence theorem implies

0 =
R
M
hfp�2ru;r�i dv = �

R
M
div (fp�2ru) � dv

for every � 2 C10 (M) : This completes the proof. �

5.3. Application to p-harmonic morphism. AC2 map u :M ! N is called a p-harmonic
morphism if for any p-harmonic function f de�ned on an open set V ofN , the composition f�
u is p-harmonic on u�1(V ). Examples of p-harmonic morphisms include the Hopf �brations.
E. Loubeau and J. M. Burel ([2]) and E. Loubeau([23]) prove that a C2 map u : M ! N
is a p-harmonic morphism with p 2 (1;1) if and only if u is a p-harmonic and horizontally
weak conformal map. We recall a C2 map u : M ! N is horizontally weak conformal if for
any x such that du(x) 6= 0, the restriction of du(x) to the orthogonal complement of Ker
du(x) is conformal and surjective.

Theorem 5.1. Let Mm be a complete noncompact Riemannian manifold, satisfying (P�)
and (1.6), where

� <
4 (q � 1 + �+ b)

q2
; � = minf(p� 1)

2

m� 1 ; 1g; and b = minf0; (p� 2)(q � p)g:

Let u 2 C3
�
Mm;Rk

�
is a p-harmonic morphism u : Mm ! Rk; k > 0 of �nite q-energy

Eq (u) <1:
(I). Then u is constant under one of the following:
(1) p = 2 and q > m�2

m�1 ;
(2) p = 4; q > 1 and q � 1 + �+ b > 0;
(3) p > 2; p 6= 4; and either

max
n
1; p� 1� �

p�1

o
< q � min

n
2; p� (p�4)2m

4(p�2)

o
or

max f2; 1� �� bg < q:

(II). Then u does not exit under
(4) 1 < p < 2; q > 2:

Lemma 5.7. [49]Let M;N and K be manifolds of dimension m; n; and k respectively,
and u : M ! N , and w : N ! K be C2. If u is horizontally weak conformal, then
jd(w � u)jp�2 = ( 1

n
)
p�2
2 jdwjp�2jdujp�2:

Proof of Theorem 5.1. Let ui = �i � u ; where �i : Rk ! R is the i-th projection. Then the
linear function �i is a p-harmonic function (cf. 2.2 in [47] ). Hence ui ; a composition of a
p-harmonic morphism and a p-harmonic function is p-harmonic. Since u is horizontally weak
conformal, it follows from Lemma 5.7 that Ep(u) < 1 implies Ep(ui) < 1 : Now apply ui

to Theorem 1.2, the assertion follows. �

These results are in contrast to the following:
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Theorem 5.2. [49] If u : Mm ! Rk; k > 0; is a p-harmonic morphism, and if there exists
i, such that ui = �i � u is p-�nite, i.e.

lim infr!1
1
rp

R
B(r)

juijq dv <1

where B (r) is a geodesic ball of radius r, for some q > p� 1: Then u must be constant.

As further applications, one obtains

Theorem 5.3. Let Mm be a complete noncompact Riemannian manifold, satisfying (P�)
and (1.6), where

� <
4 (q � 1 + �+ b)

q2
; � = minf(p� 1)

2

m� 1 ; 1g and b = minf0; (p� 2)(q � p)g :

Let u 2 C3
�
Mm;Rk

�
be a p-harmonic morphism u : Mm ! Rk; k > 0; and f : u (Mm) �

Rk ! R be a nonconstant p-harmonic function. Assume f �u has �nite q-energy Eq (f � u) <
1:
(I). Then u is constant under one of the following:
(1) p = 2 and q > m�2

m�1 ;
(2) p = 4; q > 1 and q � 1 + �+ b > 0;
(3) p > 2; p 6= 4; and either

max
n
1; p� 1� �

p�1

o
< q � min

n
2; p� (p�4)2m

4(p�2)

o
or

max f2; 1� �� bg < q:

(II). Then u does not exit under
(4) 1 < p < 2; q > 2:

Lemma 5.8. A nonconstant p-harmonic morphism u :Mm ! Rk is an open map.

Proof of Theorem 5.3. Since u is a p-harmonic morphism, then f �u is a p-harmonic function
on Mm: According to Theorem 1.2, then f � u is a constant c. On the other hand, due to
Lemma 5.8, u and f are open maps whenever they are not constant. Now we assume that u
is not constant, then the image of u is an open set u (M) � Rk. Hence f �u (Mm) is an open
set. This gives a contradiction to f �u (Mm) = c: Then we conclude that u is a constant. �
Theorem 5.4. (Picard Theorem for p-harmonic morphisms). Let Mm be as in Theorem
5.3. Suppose that u 2 C3

�
Mm;Rknfy0g

�
is a p-harmonic morphism u : Mm ! Rknfy0g;

and the function x 7! ju(x)� y0j
p�k
p�1 has �nite q-energy where p 6= k, for p and q satisfying

one of the following: (1), (2), and (3) as in Theorem 5.3. Then u is constant. For p and q
satisfying (4) as in Theorem 5.3, then u does not exist.

Proof. Since y 7! jyj
p�k
p�1 is a p-harmonic function from Rknf0g to R ; the composite map

ju(x) � y0j
p�k
p�1 : M ! R is a p-harmonic function with �nite q-energy. By Theorem 5.3, in

which p 6= k, we obtain the conclusion. �
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5.4. Application to Conformal Maps. Our previous result can be applied to weakly
conformal maps between equal dimensional manifolds based on the following:

Theorem A ([35]) u : M ! N is an m-harmonic morphism, if and only if u is weakly
conformal, where m = dimM = dimN :

For instance, stereographic projections u : Rm ! Sm are m-harmonic maps and m-harmonic
morphisms, for all m � 1 :

Theorem 5.5. Let Mm be a complete noncompact m-manifold satisfying (P�) and (1.6),
where � < 4(q+b)

q2
and b = minf0; (m � 2)(q �m)g: If u : Mm ! Rm is a weakly conformal

map of �nite q-energy Eq (u) < 1: Then u is a constant if m and q satisfy one of the fol-
lowing:
(1) m = 2 and q > 0;
(2) m = 4; q > 1 and q + b > 0;

(3) m > 2; m 6= 4; and either m(m�2)
m�1 < q � min

n
2;m� (m�4)2m

4(m�2)

o
or q > maxf2;�bg:

Proof. By Theorem A ([35]), u is an m-harmonic morphism. Now the result follows im-
mediately from Theorem 5.1 in which p = m: Since log jxj is an m-harmonic function,
log ju(x)� y0j :M ! R is an m-harmonic function with �nite q-energy. By Theorem 5.3, in
which p = m, we obtain the conclusion. �

6. Appendix

6.1. The existence of the approximate solution. In this subsection, we study an ap-
proximate solution u� of the p-Laplace equation or a solution u� of a perturbed p-Laplace
equation

(6.1) �p;�u� = div
��
jru�j2 + �

� p�2
2 ru�

�
= 0

on a domain 
 �M with boundary condition u� = u on @
: That is, u� is the Euler-Lagrange
equation of the (p; �)-energy Ep;� functional given by

(6.2) Ep;�(	) =
R


(jr	j2 + �)

p
2 dv

with 	 2 W 1;p (
) ; and 	 = u on @
:

Proposition 6.1 ( The existence of u�). Let u be a W 1;p function on the closure �
 of a
domain 
 �M :Then there is a solution u� 2 W 1;p (
) of the Euler-Lagrange equation of the
(p; �)-energy Ep;� with u� = u on the boundary of 
 in the trace sense.

Proof. Let H be the set of functions v 2 W 1;p (
) such that v = u on the boundary of 
 in
the trace sense, and I = inffEp;�(v) : v 2 Hg: Then by assumption, u 2 H, H is nonempty,
and I exists. Furthermore I � Ep;�(u):
Take a minimizing sequence fvig1i=1 such that Ep;�(vi) tends to I as i tends to 1.
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Then fvig1i=1 is a bounded sequence in W 1;p (
). Hence there exists a subsequence, say
fuig1i=1 ; converges weakly to u� in W 1;p (
), strongly in Lp (
), and pointwise almost every-
where. We infer u� is in H since H is closed. Thus I � Ep;� (u�) :

To prove I � Ep;� (u�) ; it su¢ ces to prove the lower semi-continuity of Ep;� (two methods).
Method 1:
Since Banach-saks Theorem (see, e.g. [51] p. 120, [39] p. 80) asserts there exists some

subsequence, say it again vi for simplicity, such that the average

wn =
v1+v2+���+vn

n

converges strongly to u� in W 1;p (
). Combining this property and Lemma 6.1, we have
Ep;� (wn)! Ep;� (u�) as n!1:
Moreover, according to the convexity of Ep;�; one has

Ep;� (wn) �
Pn
i=1 Ep;�(vi)

n
:

This implies Ep;� (u�) � I as n!1:
So we obtain lower semi-continuity of Ep;�:
Method 2:
If dimM > 2 ; we denote Tx
 the tangent space to 
 � M at x. Let �i(x) 2 Tx
 be

a unit vector perpendicular to rui(x) ;ru�(x) 2 Tx
 ; for a.e. x 2 
 : If dimM = 2 ; we
isometrically embedM into N =M �R with the standard product metric h ; iN and choose
�i(x) to be a unit vector in R :
In either case, we set b(x) = rui(x)+

p
��i(x) and a(x) = ru�(x)+

p
��i(x). Then on 
 ;

jbj =
p
jruij2 + � and jaj =

p
jru�j2 + �:

If m = 2, applying the inequality

jbjp � jajp + phjajp�2a; b� aiN
and integrating it over 
, we have via �i(x)?ru� ; and �i(x)?rui ; for a.e. x 2 
 ;

Ep;�(ui) � Ep;�(u�) +
R


h(jru�j2 + �)

p�2
2 (ru� +

p
��i);rui �ru�iNdv

= Ep;�(u�) +
R


h(jru�j2 + �)

p�2
2 ru�;rui �ru�iMdv

We note that in the last term, (jru�j2+�)
p�2
2 ru� is in L

p
p�1 (
) ;rui�ru� is in Lp(
) : Thus,

h(jru�j2 + �)
p�2
2 ru�;rui � ru�iM is in L1(
) : Since rui converges weakly to ru� in Lp,

the last term tends to 0 as i tends to 1. It follows that Ep;�(u�) � lim infi!1Ep;�(ui) = I.
Similarly, if dimM > 2 ; we obtain directly

Ep;�(ui) � Ep;�(u�) +

Z



h(jru�j2 + �)
p�2
2 ru�;rui �ru�iMdv:

Proceed in the same way, the assertion follows.

�

Lemma 6.1. If vi converges strongly to v0 in W 1;p; then Ep;� (vi) converges to Ep;� (v0) :
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Proof. Step 1: Since vi converges strongly to v0 in W 1;p i.e.
R


jrvi �rv0jp dv ! 0 as

i!1: ThenR
jrvij�jrv0j jrvi �rv0j

p dv ! 0 and
R
jrvij<jrv0j jrvi �rv0j

p dv ! 0

as i!1: By using Minkowski�s inequality, these also implyR
jrvij�jrv0j (jrvij

p � jrv0jp) dv ! 0 and
R
jrvij<jrv0j (jrv0j

p � jrvijp) dv ! 0

as i!1: That is,
R


jjrv0jp � jrvijpj dv ! 0 as i!1:

Step 2: If we show that, for any positive constant � > 0;

(6.3)
����jrvij2 + �

� p
2 �

�
jrv0j2 + �

� p
2

��� � a jjrvijp � jrv0jpj+ �

where a is a positive constant independent of i; vi and v0: Then we have, by step 1,

jEp;� (vi)� Ep;� (v0)j �
R



����jrvij2 + �
� p
2 �

�
jrv0j2 + �

� p
2

��� dv
� a

R


jjrvijp � jrv0jpj dv + � j
j

! � j
j as i!1:

This implies Ep;� (vi)! Ep;� (v0) :
To show (6.3), we only claim that, X;Y 2 Rn with jXj � jY j ;

(6.4)
�
jXj2 + �

� p
2 �

�
jY j2 + �

� p
2 � a (jXjp � jY jp) + �:

Let f(t) =
�
jXj2 + t

� p
2 �

�
jY j2 + t

� p
2 ; t � 0: Then we have f(0) = jXjp � jY jp and

f(�) =
�
jXj2 + �

� p
2 �

�
jY j2 + �

� p
2 :

Since

f 0(t) = p
2

��
jXj2 + t

� p�2
2 �

�
jY j2 + t

� p�2
2

�
;

then f(t) is a decreasing function for 1 � p � 2: Hence we have f(�) � f(0) whenever
1 � p � 2:
If 2 < p � 4; then, for s > 0;

(6.5)

f(s)� f(0) =
R s
0
f 0(t)dt

= p
2

R s
0

�
jXj2 + t

� p�2
2 �

�
jY j2 + t

� p�2
2 dt;

� ps
2

�
jXjp�2 � jY jp�2

�
;

since 1 < p� 2 � 2:
For any �1 > 0;

jXjp�2 � jY jp�2 �
(
jXjp�2 if jXj+ jY j < �1;
(jXj+jY j)2(jXjp�2�jY jp�2)

�21
if jXj+ jY j � �1:

Since (
jXjp�2 � �p�21 if jXj+ jY j < �1;
(jXj+jY j)2(jXjp�2�jY jp�2)

�21
� 2

�21
(jXjp � jY jp) if jXj+ jY j � �1:
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So we have

(6.6) jXjp�2 � jY jp�2 � 2
�21
(jXjp � jY jp + �p1) ;

and then (6.5) can be rewritten as

(6.7)
�
jXj2 + s

� p
2 �

�
jY j2 + s

� p
2 �

�
1 + ps

�21

�
(jXjp � jY jp) +

�
ps
�21

�
�p1 :

Hence we have �
jXj2 + �

� p
2 �

�
jY j2 + �

� p
2 � a (jXjp � jY jp) + �;

where a = 1 + p�
�21
and � =

�
p�
�21

�
�p1 :

If 4 < p � 6; then one has 2 < p� 2 � 4; so (6.6) and (6.7) imply

f(s)� f(0) = p
2

R s
0

�
jXj2 + t

� p�2
2 �

�
jY j2 + t

� p�2
2 dt

� p
2

R s
0

�
1 + pt

�21

� �
jXjp�2 � jY jp�2

�
+
�
pt
�21

�
�p�21 dt

� p
2

�
s+ ps2

2�21

��
2
�21
(jXjp � jY jp + �p1)

�
+ p

2

�
ps2

2�21

�
�p�21

�
�
ps
�21
+ 1

2

�
ps
�21

�2�
(jXjp � jY jp) +

�
ps
�21
+
�
ps
�21

�2�
�p1 :

Hence �
jXj2 + s

� p
2 �

�
jY j2 + s

� p
2 �

�
1 + ps

�21
+ 1

2

�
ps
�21

�2�
(jXjp � jY jp)

+

�
ps
�21
+
�
ps
�21

�2�
�p1 :

In particular, we obtain�
jXj2 + �

� p
2 �

�
jY j2 + �

� p
2 � a (jXjp � jY jp) + �;

where a = 1 + p�
�21
+ 1

2

�
p�
�21

�2
and � =

�
p�
�21
+
�
p�
�21

�2�
�p1 :

By mathematical induction, we conclude that, for any p > 2 satisfying 2q < p � 2q + 2;
q 2 Z+; �

jXj2 + �
� p
2 �

�
jY j2 + �

� p
2 �

�
1 +

Pq
n=1

1
n!

�
p�
�21

�n�
(jXjp � jY jp)

+
�Pq

n=1

�
p�
�21

�n�
�p1 :

If we select �1 small enough such that
�Pq

n=1

�
p�
2�21

�n�
�p1 = �; then we have (6.4) with

a =
�
1 +

Pq
n=1

�
p�
2�21

�n�
:

�
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6.2. �-regularization of p-Laplacian.

Proposition 6.2. Let u be a weak solution of the p-Laplace equation (1.1). For every � > 0;
let u� be a solution of the Euler-Lagrange equation (6.1) with u� u� 2 W 1;p

0 (
) ; where 
 is
a domain in M : Then u� 2 C1loc (
) is a strong solution of (6.1), and u� converges strongly
to u in W 1;p (
) as �! 0 :

Proof. Such solution u� exists (Proposition 6.1), and u� 2 C1loc (
) by the usual arguments
of boot-strap (see, e.g. [31] Chapter 4, [40] Theorem 3.3, [20] Theorem 14.2, [19]). That is,
u� is the strong solution of the partial di¤erential equation (1.2).
Since u� and u are the minimizers of the energy functionsR




��jr�j2 + �
��p=2 dv and R



jr�jp dv;

respectively, over all functions � 2 W 1;p (
) and � = u on @
: Then one has

(6.8)
R


jrujp dv �

R


jru�jp dv

and

(6.9)
R



��jru�j2 + �
��p=2 dv �

R



��jruj2 + �
��p=2 dv:

Combining (6.8) and (6.9),R


jrujp dv �

R


jru�jp dv �

R



��jru�j2 + �
��p=2 dv �

R



��jruj2 + �
��p=2 dv;

one has kru�kp ! krukp as �! 0:Moreover, by Lemma 6.2 ru� ! ru a.e. on 
 for p > 1;
we have ru� ! ru in Lp (
) ; and then p-Poincaré inequality implies u� ! u in W 1;p (
) :

�
Lemma 6.2. ru� ! ru a.e. on 
 for p > 1:

First, we recall the following inequality (cf. [26] Chapter 10, or [15] Lemma 4)

Proposition 6.3. Let X and Y be vector �elds on 
: Then

(6.10)


X � Y; jXjp�2X � jY jp�2 Y

�
� C	(X; Y ) ;

where

(6.11) 	(X; Y ) =

8<: jX � Y jp if p � 2;
(p�1)jX�Y j2

(1+jXj2+jY j2)
2�p
2

if 1 < p < 2:

Proof. Since u� u� 2 W 1;p
0 (
) ; one hasR



jrujp�2 hru;r (u� u�)i dv = 0

and R



��jru�j2 + �
�� p�22 hru�;r (u� u�)i dv = 0:
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Then

0 =
R


jrujp�2 hru;r (u� u�)i �

��jru�j2 + �
�� p�22 hru�;r (u� u�)i dv

=
R


jrujp � jrujp�2 hru;ru�i

�
��jru�j2 + �

�� p�22 hru�;rui+ ��jru�j2 + �
�� p�22 jru�j2 dv:

This equality can be rewritten as LHS1 = RHS; where

LHS1 =
R


jrujp � jrujp�2 hru;ru�i � jru�jp�2 hru�;rui+

��jru�j2 + �
�� p2 dv

and

RHS =
R



���jru�j2 + �
�� p�22 � jru�jp�2

�
hru�;rui+ �

��jru�j2 + �
�� p�22 dv:

It is easy to see that LHS1 � LHS2 where

LHS2 =
R


jrujp � jrujp�2 hru;ru�i � jru�jp�2 hru�;rui+ jru�jp dv:

So, we select X = ru and Y = ru�, then Proposition 6.3 implies
LHS2 � C

R


	(ru;ru�) dv � 0

where

	(ru;ru�) =

8<: jru�ru�jp if p � 2;
(p�1)jru�ru�j2

(1+jruj2+jru�j2)
2�p
2

if 1 < p < 2:

If we can show that
RHS ! 0 as �! 0;

Then we have R


	(ru;ru�) dv ! 0 as �! 0:

Therefore ru� ! ru a.e. on 
:
Now we claim that

RHS = RHS1 +RHS2! 0

as �! 0; where

RHS1 =
R


�
��jru�j2 + �

�� p�22 dv

and

RHS2 =
R



���jru�j2 + �
�� p�22 � jru�jp�2

�
hru�;rui dv:

It is easy to see that, if jru�j2 � 1;R


�
��jru�j2 + �

�� p�22 dv �
R


� jru�j2

��jru�j2 + �
�� p�22 dv

� �
R



��jru�j2 + �
�� p2 dv;

and if jru�j2 < 1;R


�
��jru�j2 + �

�� p�22 dv �
(
� (1 + �)

p�2
2 � vol (
) if p � 2

�
p
2 � vol (
) if p < 2:

So we have RHS1! 0 as �! 0:
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Now we focus on the term RHS2,

RHS2 =
R



���jru�j2 + �
�� p�22 � jru�jp�2

�
hru�;rui dv

�
R



������jru�j2 + �
�� p�22 � jru�jp�2

���� jru�j jruj dv:
In the case p � 2; one may rewrite it as

RHS2 �
R



���jru�j2 + �
�� p�22 � jru�jp�2

�
jru�j jruj dv

�
R



���jru�j2 + �
�� p�12 � jru�jp�1

�
jruj dv:

If p � 3; using mean value theorem, we have the inequality

(x+ �)q � xq = q� (x+ �1)
q�1 � q� (x+ �)q�1

here q = p�1
2
� 1; x � 0 and �1 2 (0; �) : Hence

RHS2 � (p�1)�
2

R



��jru�j2 + �
�� p�32 jruj dv

�
(

(p�1)�
2

R



��jru�j2 + �
�� p�12 jruj dv if jru�j2 > 1

(p�1)�
2
(1 + �)

p�3
2
R


jruj dv if jru�j2 � 1

�

8<: (p�1)�
2

�R



��jru�j2 + �
�� p2� p�1

p �R


jrujp

� 1
p dv if jru�j2 > 1

(p�1)�
2
(1 + �)

p�3
2 (vol (
))

p�1
p
�R


jrujp

� 1
p dv if jru�j2 � 1

! 0 as �! 0:

If 2 � p � 3; using the inequality

(x+ �)q � xq � �q

here 1
2
� q = p�1

2
� 1; x � 0; then

RHS2 �
R



���jru�j2 + �
�� p�12 � jru�jp�1

�
jruj

� �
p�1
2

R


jruj

� �
p�1
2 (vol (
))

p�1
p
�R


jrujp

� 1
p

! 0 as �! 0:

In the case 1 < p < 2; one may rewrite RHS2 as

RHS2 �
R



�
jru�jp�2 �

��jru�j2 + �
�� p�22 � jru�j jruj :
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Since 0 < 2�p
2
< 1; then we have

RHS2 =
R



jjru�j2+�j
2�p
2 �jru�j2�p

jjru�j2+�j
2�p
2

jru�jp�1 jruj dv

�
R



�
2�p
2

jjru�j2+�j
3�2p
2
� jru�jp�1

jjru�j2+�j
p�1
2
jruj

� �
p�1
2

R


jruj dv

� �
p�1
2 (vol (
))

p�1
p
�R


jrujp dv

� 1
p

! 0 as �! 0:

Hence we conclude that

RHS = RHS1 +RHS2! 0 as �! 0:

�

6.3. Non-trivial p-harmonic function with �nite q-energy. In this subsection, we con-
struct an example of non-trivial p-harmonic function u with �nite q-energy, q > p� 1; on a
complete noncompact manifold with weighted Poincaré inequality (P�) :
Let M = R�Nm�1; m � 3; with a metric ds2 = dt2 + �2 (t) gN ; where � (t) : R! (0;1)

is a smooth function with �00 > 0; (m� 2) (log �)00 + ��2RicN � 0; and (N; gN) is a compact
Riemannian manifold with vol (Nm�1) = 1:
According to [34] Proposition 6.1, M satis�es weighted Poincaré inequality (P�) and

RicM � �m�1
m�2� with � = (m� 2) �

00��1:

Let A (t) be the volume of ftg �Nm�1; then A (t) = �m�1 (t) :
Now we select � (t) such that each end of M is p-hyperbolic, and

A (t) � d1 jtj
p�1

q�p+1�� ; if jtj � 1;
where d1 > 0 and 0 < � < q � p+ 1 are positive constants.
By using [44] Proposition 5.3,

Capp ((�1; a)�Nm�1; (b;1)�Nm�1;M) =

�R b
a

�
1
A(t)

�1=(p�1)
dt

�1�p
;

for any �1 < a < b <1: If we de�ne u by

u (t) =
R t
�1

�
1

A(s)

�1=(p�1)
ds

then
Capp ((�1; a)�Nn�1; (b;1)�Nn�1;M) = (u (b)� u (a))1�p ;

u (t)! 0 as t! �1, and u is uniformly bounded for all t 2 (�1;1) :
Moreover, de�ne a function v as follows,

v (t) =

8<:
0; if t � a;
u(t)�u(a)
u(b)�u(a) ; if a < t < b;

1; if t � b:
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then R
M
jrvjp dv =

R b
a

(u0(t))p

(u(b)�u(a))pA (t) dt = (u (b)� u (a))1�p

which implies v is extremal of p-energy for every�1 < a < b <1: Hence u (t) is p-harmonic
in M with �nite q energy R

M
jrujq dv =

R1
�1A

p�1�q
p�1 (t) dt <1

for all q > p� 1: Moreover, by [34] Proposition 6.1, we have

RicM (ru;ru) = �m�1
m�2� jruj

2 :

6.4. Volume estimate and p-Poincaré inequality. In this subsection, we study a com-
plete noncompact manifold M with the p-Poincaré inequality

�
P�p
�
; p > 1; that is, the

inequality

(6.12) �p
R
M
j	jp �

R
M
jr	jp

holds for every 	 2 W 1;p
0 (M) ; where �p > 0 : In particular, if p = 2; this formula is the

general Poincaré inequality, and �2 is the spectrum of M: In [14], they show that a complete
manifold M with positive spectrum �2 > 0; then it must have �p > 0 for all p � 2: In fact,
the following inequality

p (�p)
1=p � 2 (�2)1=2

holds on M for all p � 2:

Lemma 6.3. Let M be a complete noncompact manifold satisfying
�
P�p
�
; p > 1. Suppose

w is a positive, p-subharmonic function with a �nite p-energy on M: If w satis�es

(6.13)
R
B(2R)nB(R) exp(�

(�p)
1=pr(x)

p+1
) jwjp dv = o (R) ;

where R � R0 + 1: Then,

(1� �)



exp( �(�p)1=pr(x)p+1

)w




Lp(MnB(R0+1))

� C;

and

(1� �)



exp( �(�p)1=pr(x)p+1

)rw




Lp(MnB(R0+1))

� C;

for all 0 < � < 1; and for some constant C depending on p and �p:
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Proof. Let  be a non-negative cut-o¤ function, then we have

(6.14)

0 �
R
M
 pw (��pw)

=
R
M



r( pw); jrwjp�2rw

�
=

R
M
 p jrwjp + pw jrwjp�2  p�1 hr ;rwi

�
R
M
 p jrwjp � p

R
M
w p�1 jrwjp�1 jr j :

By using Hölder inequalityR
M
w p�1 jrwjp�1 jr j �

�R
M
jrwjp  p

�(p�1)=p �R
M
wp jr jp

�1=p
;

then (6.14) can be rewritten as

(6.15) k rwkLp � p kr � wkLp ;

and this inequality is the Caccioppoli type estimate.
Since Minkowski inequality yields

kr( w)kLp � kr � wkLp + k rwkLp ;

then (6.15) implies

(6.16) kr( w)kLp � (p+ 1) kr � wkLp :

This inequality is not sharp enough whenever p = 2: In fact, if p = 2; one can easy to show
kr ( w)kL2 � kr wkL2 by the similar method (cf. [32][34]).
By scaling the metric, we may assume �p = 1: Combining (6.16) and (6.12), then

(6.17) k wkLp � (p+ 1) kr � wkLp ;

where  is a cut o¤ function on M:
Now we select  = �(r(x)) exp(a (r(x))), then

(6.18)
1
p+1

k wkLp � k(r�+ �ra) exp(a(x))wkLp
� k(r�) exp(a(x))wkLp + k(ra)� exp(a(x))wkLp

where � is a non-negative cut-o¤ function de�ned by � = �+ + �� where

�+(r) =

8<:
r �R0 for R0 � r � R0 + 1;

1 for r > R0 + 1;
��(r) =

(
R�r
R

for R � r � 2R;

�1 for r > 2R;

and we also choose a = a+(r(x)) + a�(r(x)) as

a+(r) =

8<:
�r(x)
p+1

for r � K
1+�

;

�K
(1+�)(p+1)

for r > K
1+�

;

a�(r) =

(
0 for r � K

1+�
;

1
p+1

�
2K
1+�

� r (x)
�
for r > K

1+�
;
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for some �xed K > (R0 + 1) (1 + �) ; 0 < � < 1; and R � K
1+�

; it�s easy to check that

jr�j2 (x) =

8>>><>>>:
1 on B(R0 + 1)nB(R0);

0 on B (R0) ; B (R) nB(R0 + 1) and MnB (2R) ;
1
R2

on B (2R) nB (R) ;

and

jraj2 (x) =

8<:
�2

(p+1)2
for r < K

1+�
;

1
(p+1)2

for r > K
1+�

:

Substituting into (6.18), we obtain
1
p+1

k� exp(a(x))wkLp(M)

� k(r�+) exp(a(x))wkLp(M) + k(r��) exp(a(x))wkLp(M)

+ k(ra+)� exp(a(x))wkLp(M) + k(ra�)� exp(a(x))wkLp(M)

� kexp(a(x))wkLp(B(R0+1)nB(R0)) +
1
R
kexp(a(x))wkLp(B(2R)nB(R))

+ �
p+1

k� exp(a(x))wkLp(B( K
1+� ))

+ 1
p+1

k� exp(a(x))wkLp(MnB( K
1+� ))

;

hence �
1��
p+1

�
k� exp(a(x))wkLp(B( K

1+� )nB(R0+1))
� kexp(a(x))wkLp(B(R0+1)nB(R0)) +

1
R
kexp(a(x))wkLp(B(2R)nB(R)) :

The de�nition of a(x) and the growth condition (6.13) imply that the last term on the right
hand side tends to 0 as R!1. Thus one has the following inequality,

(6.19)

�
1��
p+1

�
kexp(a(x))wkLp(B( K

1+� )nB(R0+1))
� kexp(a(x))wkLp(B(R0+1)nB(R0)) :

Since the right hand side of (6.19) is independent of K and 0 < � < 1; by letting K ! 1
we obtain that

(6.20) (1� �) kexp(a(x))wkLp(MnB(R0+1)) � C1;

for some constant 0 < C1 = C1 (p) <1:
Moreover, by (6.15) and similar process as above, we have

1
p
k rwkLp(M)

� kr � wkLp(M)

� kexp(a(x))wkLp(B(R0+1)nB(R0)) +
1
R
kexp(a(x))wkLp(B(2R)nB(R))

+ �
p+1

k� exp(a(x))wkLp(B( K
1+� ))

+ 1
p+1

k� exp(a(x))wkLp(B(2R)nB( K
1+� ))

� 2 kexp(a(x))wkLp(B(R0+1)nB(R0)) + 3 k� exp(a(x))wkLp(B(2R)nB(R0+1))
� C2 +

3C1
1�� :

Hence, by letting R!1 and then letting K !1; we conclude

(1� �) kexp(�r (x))rwkLp(MnB(R0+1)) � C3
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for some constant 0 < C3 = C2 +
3C1
1�� <1:

Then lemma now follows.
�

Lemma 6.4. Let M be a complete noncompact manifold satisfying
�
P�p
�
; p > 1. Suppose E

is an end of M respective to a compact set, wi is a positive, p-harmonic function with a �nite
p-energy on E (Ri) and wi = 1 on @E and wi = 0 on S (Ri) = @E (Ri) n@E: If Ri !1 and
wi ! w as i!1: Then,

(6.21)
R
EnE(R) jrwj

p dv � C3R
p exp(�(�p)

1=p(R�1)
(p+1)

);

and

(6.22)
R
E(kR)nE(R) jwj

p dv � C1R
p exp(�(�p)

1=p(R�1)
p+1

);

for some constant C depending on p:

Proof. As in the proof of Lemma 6.3. If � is a non-negative cut-o¤ function de�ned by

�(r(x)) =

8<:
r(x)�R0 on E(R0 + 1)nE(R0);

1 on EnE(R0 + 1);

and we choose a = �r(x)
p+1

for 0 < � < 1: It�s easy to check that

jr�j2 (x) =
(
1 on E(R0 + 1)nE(R0);

0 on EnE (R0 + 1) ;
and jraj2 (x) = �2

(p+1)2
:

By the formula (6.18), we obtain
1
p+1

k� exp(a(x))wkLp
� k(r�) exp(a(x))wkLp + k(ra)� exp(a(x))wkLp
� kexp(a(x))wkLp(E(R0+1)nE(R0)) +

�
p+1

k� exp(a(x))wkLp(E)
hence �

1��
p+1

�
k� exp(a(x))wkLp(EnE(R0+1)) � kexp(a(x))wkLp(E(R0+1)nE(R0)) :

Then we obtain that

(6.23) (1� �) kexp(�r)wkLp(EnE(R0+1)) � C1;

for some constant 0 < C1 = C1 (p) <1:
Moreover, since

1
p
k rwkLp � kr wkLp

� kexp(a(x))wkLp(E(R0+1)nE(R0)) + � k� exp(a(x))wkLp(E)
� C2 +

�C1
1�� :
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Hence, we conclude

(6.24) (1� �) kexp(�r (x))rwkLp(EnE(R0+1)) � C3

for some constant 0 < C3 = C3 (p) <1:
If we select � =

�
1� 1

R

�
and R0 > 1; then 6.23) gives

C3 � 1
Rp

R
EnE(R0+1) exp

�
(1� 1

R
) (�p)

1=pr

p+1

�
jrwjp dv

� 1
Rp

R
E(kR)nE(R0+1) exp

�
(1� 1

R
) (�p)

1=pr

p+1

�
jrwjp dv:

Hence R
E(kR)

exp( (�p)
1=p(R�1)r
(p+1)R

) jrwjp dv � C3R
p;

and then we have R
E(kR)nE(R) jrwj

p dv � C3R
p exp(�(�p)

1=p(R�1)
(p+1)

);

for all constant k > 1:
Similarly, 6.24 implies R

E(kR)
exp( (�p)

1=p(R�1)r
(p+1)R

) jwjp dv � C1R
p

and R
E(kR)nE(R) jwj

p dv � C1R
p exp(�(�p)

1=p(R�1)
p+1

);

for any constant k > 1:
�

Lemma 6.5. Let M be a complete noncompact manifold satisfying
�
P�p
�
; p > 1. If E is a

p-hyperbolic end of Mn, then

V (E(R + 1))� V (E (R)) � CR�p(p�1) exp( (p�1)(�p)
1=p(R�1)

p+1
):

for some constant C > 0; and for R su¢ ciently large. If E is p-parabolic, then

V (E) <1

and

V (E)� V (E (R)) � CRp exp(�(�p)
1=p(R�1)
p+1

)

for some constant C > 0; for any 0 < � < 1; and for R su¢ ciently large.

Proof. If E is p-parabolic, we select the barrier function w = 1 on E; then (6.22) impliesR
EnE(R) dv � CRp exp(�(�p)

1=p(R�1)
p+1

)

for all R large enough and for any � satisfying 0 < � < 1: This implies V (E) <1:
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If E is p-hyperbolic. Let w be the barrier function on E, and S (R) = @E (R) n@E; then

(6.25)

C =
R
@E
jrwjp�2 @w

@�
dA

�
R
S(r)

jrwjp�1 dA

�
�R

S(r)
jrwjp dA

�(p�1)=p �R
S(r)

dA
�1=p

:

Then (6.25) implyR R+1
R

�R
S(r)

dA
��1=(p�1)

dr � C
R R+1
R

R
S(r)

jrwjp dAdr
= C

R
E(R+1)nE(R) jrwj

p dv:

By using Schwarz inequality,

1 =
R R+1
R

�R
S(r)

dA
�� 1

p
�R

S(r)
dA
� 1
p
dr

�
�R R+1

R

�R
S(r)

dA
�� 1

p�1
dr

� p�1
p

�
�R R+1

R

R
S(r)

dAdr
� 1
p

� C
�R

E(R+1)nE(R) jrwj
p dv

� p�1
p �

�R R+1
R

R
S(R)

dAdr
� 1
p
:

Then co-area formula and (6.21) giveR
E(R+1)nE(R) dv � CR�p(p�1) exp( (p�1)(�p)

1=p(R�1)
p+1

):

�

Since
�
P�p
�
implies the volume of M is in�nity, then Lemma 6.5 implies the following

property.

Theorem 6.1. If M is a complete noncompact manifold satisfying
�
P�p
�
; then M must be

p-hyperbolic.

Remark 6.1. One can also prove the above theorem by contradiction. That is, if M were
p-parabolic, then �p would be zero, a contradiction by a di¤erent approach (cf. e.g. [49]
proof of Theorem 6.1).
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[51] Kôsaku Yosida, Functional analysis. 6th ed., Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences], vol. 123. Springer-Verlag, Berlin-New York, 1980.
MR0617913 (82i:46002)

Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan, R.O.C.
E-mail address: scchang@math.ntu.edu.tw

Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan,
R.O.C.
E-mail address: jtchen@ntnu.edu.tw

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019-0315,
U.S.A.
E-mail address: wwei@ou.edu


