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Abstract In this paper, we first derive the CR analogue of matrix Li—Yau—Hamilton
inequality for the positive solution to the CR heat equation in a closed pseudohermitian
(2n + 1)-manifold with nonnegative bisectional curvature and bitorsional tensor. We
then obtain the CR Li—Yau gradient estimate in the Heisenberg group. We apply this
CR gradient estimate and extend the CR matrix Li—Yau—Hamilton inequality to the
case of the Heisenberg group. As a consequence, we derive the Hessian comparison
property for the Heisenberg group.

1 Introduction
In the seminal paper, Li and Yau [34] established the parabolic Li—Yau Harnack esti-

mate for the positive solution u(x, t) of the time-independent heat equation

a
Eu (x,t) = Au (x,1)
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in a complete Riemannian /-manifold with nonnegative Ricci curvature. Here A is
the Laplace—Beltrami operator. Then Hamilton [24] extended the Li—Yau estimate
to the full matrix version of the Hessian estimate of the positive solution u# under the
stronger assumptions that M is Ricci parallel and with nonnegative sectional curvature.
Furthermore, Hamilton [23] proved the matrix Harnack inequality for solutions to the
Ricci flow when the curvature operator is nonnegative. This inequality is called the
“Li—Yau—Hamilton” type estimates. Since then, there were many additional works in
this direction which cover various different geometric evolution equations such as the
mean curvature flow [24], the Kdhler—Ricci flow [6], the Yamabe flow [16], etc.

Along this line with method of Li—Yau gradient estimate, Cao and Yau [8] studied
the heat equation

%u (x,t) = Lu(x,t) (1.1)

in a closed /-manifold with a positive measure and the subelliptic operator with respect
to the sum of squares of vector fields L = Zf‘zl Xl.2 —Y, h <[, withY = Zf‘zl i Xi
where X1, X», ..., Xj are smooth vector fields satisfying Hormander’s bracket gen-
erating condition: the vector fields together with their commutators of finite order span
the tangent space at every point of M. Suppose that [ X;, [X j, Xi]] can be expressed as
linear combinations of X1, X7, ..., X and their brackets [ X, X2, ..., [Xi—1, Xnl.
They showed that the gradient estimate for the positive solution u(x, #) of (1.1) on
M x [0, 00).

Recently, we [10] obtained the CR Cao—Yau type gradient estimate for the positive
solution u(x, t) of the CR heat equation

%u (x,1) = Apu(x,1) (1.2)

in a closed pseudohermitian (2n 4 1)-manifold (M, J, 6) with nonnegative Tanaka—
Webster curvature and vanishing torsion. Here A, is the time-independent sub-
Laplacian operator.

In this paper, we first derive the following CR analogue of Kihler version of the
matrix Li—Yau—-Hamilton inequality [7] for any positive solution u to (1.2).

Theorem 1 Let M be a closed pseudohermitian (2n + 1)-manifold with nonnegative
bisectional curvature and nonnegative bi-torsional tensor. Let u be the positive solution
of the CR heat equation (1.2). In addition if the positive solution u satisfies the purely
holomorphic Hessian operator P, gu = 0. Then

t luol? 4
EThaB + ;Ml’lag Z O

(1.3)

1
(it + 1) + 5 | (e Vs + 10 Vo) + Ve V| -

fort > 0 and any vector field V. = V*Z, of type (1,0) on M. Here P, g is the purely
holomorphic Hessian operator (Definition 1).
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Matrix Li—Yau—Hamilton inequality

Then we derived the Li—Yau—Hamilton inequality as a corollary of the above the-
orem.

Corollary 1 The CR matrix Li—Yau—Hamilton inequality (1.3) holds in a closed
pseudohermitian (2n + 1)-manifold with nonnegative bisectional curvature and van-
ishing torsion.

Remark 1 If we choose the optimal V = —V,u/u and take the trace of (1.3), we
recapture the following CR Li-Yau gradient estimate derived by Chang et al. in [10]
and [11]:

9 1 | Vpull? tlugl? 4
_u__ll pull”  nt |ugl LY (1.4)
ot 4 u 12 u t

When the manifold is complete and noncompact, we will need to use the CR Li—
Yau Harnack inequality (4.14) and the Li—-Tam mean value inequality (4.17) in the
proof of the CR matrix Li—Yau—Hamilton inequality (1.3). However, the proofs of
both inequalities rely on the CR Li-Yau gradient estimate (1.5). We refer to [7] for
more details.

As shown in the Sect. 4, the proof of the CR Li—Yau gradient estimate (1.5) relies on
the CR sub-Laplacian comparison property (4.12) and the extra ug-growth property
(6.20) with |ug| < %u that has no analogue in the Riemannian case. In particular,
both properties holds in the Heisenberg group H" which is flat and with vanishing
torsion. However, both properties are wild open for a general complete and noncompact
pseudohermitian (2n + 1)-manifold.

Then we are able to derive the CR Li—Yau gradient estimate on H".

Theorem 2 Let (H", J, 0) be the (2n + 1)-dimensional Heisenberg group. If u(x, t)
is the positive solution of the CR heat equation (1.2) on H" x [0, 00). Let ¢ = Inu,
and a < —1. Then there exists a positive constant C depending on « such that

2 2 c
IVogl™ + o + 195 = —. (1.5)
By applying Theorem 2, we have the following CR Liouville-type theorem for
any positive pseudoharmonic function # on (H", J, 6) which recaptured the Liouville
theorem due to Chang et al. [12] and Koranyi and Stanton [28] by the method of Kevin
transform.

Corollary 2 Let (H", J, 0) be the 2n + 1)-dimensional Heisenberg group. If u(x, t)
is any positive smooth function with Apu = 0, then u(x, t) is constant. That is, there
does not exist any positive nonconstant pseudoharmonic function in H".

From the previous discuss and Theorem 1, we have the CR matrix Li—Yau—Hamilton
inequality in (H", J, 0) (see Sect. 5. for details).

Theorem 3 Let (H", J, 0) be the (2n + 1)-dimensional Heisenberg group. If u(x, t)
is the positive solution of the CR heat equation (1.2) on H" x [0, 00). Then the CR
matrix Li-Yau—Hamilton inequality (1.3) holds.
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Remark 2 From the proof of Theorem 3 we observe that the CR matrix Li—Yau—
Hamilton inequality (1.3) still holds in a complete noncompact pseudohermitian man-
ifold whenever both the CR sub-Laplacian comparison property (4.12) and the ug-
growth property (6.20) hold. We should point out that the extra ug-growth property
(6.20) is equivalent to (5.2) that has no analogue in Kihler manifolds.

By applying Theorem 3 to the heat kernel H (x, y, t) with V = —%, we obtain

the well-known asymptotic of H (x, o, t) ([1,2,19,31,43,44], etc)
1,
—tlog H(x,0,t) — Zr (x), ast— 0.

Here r (x) be the Carnot—Carathéodory distance between x and the origino € H". We
have the following complex Hessian comparison theorem for » on H”. This Hessian
comparison property seems to be new even for the (2n + 1)-dimensional Heisenberg
group H".

Corollary 3 Let (H", J, 0) be the standard (2n + 1)-dimensional Heisenberg group.
Then in the sense of distribution, we have

[(rz(x))ag + (r2(x))ga] < (16 + Co)h 5 (x)

for some constant Cy. In particular, we recapture the sub-Laplacian comparison prop-

erty
Apr*(x) < (16 + Co)n

in the Heisenberg group.

The rest of the paper is organized as follows. In Sect. 2, we introduce the pseudoher-
mitian manifolds and some basic notations. In Sect. 3, we prove the CR matrix Li—Yau—
Hamilton inequality for the CR heat equation via methods developed in [10,34] and
[7]. In Sect. 4, we prove the CR Li—Yau gradient estimate in the (2n + 1)-dimensional
Heisenberg group. Combining this with Theorem 1, we obtain the CR matrix Li—Yau—
Hamilton inequality and the Hessian comparison property in the (2n + 1)-dimensional
Heisenberg group H" in Sect. 5. Finally, we give the proof of ug-growth property (6.20)
in the Heisenberg group in Sect. 6.

2 Preliminary

First we introduce the basic concepts of the pseudohermitian (2n + 1)-manifold (see
[29,30] for more details). Let (M, &) be a (2n + 1)-dimensional, orientable, contact
manifold with contact structure £. A CR structure compatible with £ is an endo-
morphism J : & — £ such that J> = —1. We also assume that J satisfies the
integrability condition: If X and Y are in &, then so are [JX, Y] + [X, JY] and
JIX, Y1+ [X. JYD)=[JX, JY]—-[X, Y]
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Matrix Li—Yau—Hamilton inequality

_Let {T, Zy, Z5} be aframe of T M ® C, where Z,, is any local frame of Ty 0, Zg =
Zy € Tp,1 and T is the characteristic vector field. Then {9, oY, 9“}, the coframe dual
to{T, Z,, Z}, satisfies

do = ih,z0% A 6P 2.1)
for some positive definite hermitian matrix of functions (4, ﬁ-), if we have this contact

structure, we also call such M a strictly pseudoconvex CR (2n + 1)-manifold.
The Levi form (, ), is the Hermitian form on T} o defined by

(Z, W), =—i(d0,Z AW).
We can extend (, ), to Tp,; by defining (7, W)Lg =(Z, W), forall Z, W € Ty o.
The Levi form induces naturally a Hermitian form on the dual bundle of 77 o, denoted
by(, ) LEs and hence on all the induced tensor bundles. Integrating the Hermitian form
(when acting on sections) over M with respect to the volume form du = 6 A (d9)",
we get an inner product on the space of sections of each tensor bundle.

The pseudohermitian connection of (J, ) is the connection V on TM & C (and
extended to tensors) given in terms of a local frame Z, € T; o by

VZe=w ®Zp. VZi=wi® ®25 VT =0,
where w,” are the 1-forms uniquely determined by the following equations:

doP = 0% A w,? + 0 A TP,
0 =1, ABY,
Oza)aﬁ+a)/§6‘,

We can write (by Cartan lemma) 7, = Aqy 07 with Ay, = Ayq. The curvature of
Webster—Stanton connection, expressed in terms of the coframe {6 = 6, 6%, 0%}, is

Hﬂa = HBD_‘ = da)ﬁa — Cl)lgy /\Cl)ya,

My = M,° = 1oP = 11;° = 11,° = 0.
Webster showed that IT1g* can be written
g% = Rp®,50° AO7 + Wg%,0° N0 — W s50° AO +i6p AT —itg AO*
where the coefficients satisfy
Rpaps = Rypes = Rapsp = Rpaps. Wpay = Wyap.

Here R},‘s «f 15 the pseudohermitian curvature tensor, R,z = Ry, Y. 4 1s the pseudoher-
mitian Ricci curvature tensor and Aqp is the pseudohermitian torsion. Furthermore,
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we define the bi-sectional curvature
Ra&ﬂE(X’ Y) = Ra&ﬂgXaXaYﬁ YB
and the bi-torsion tensor
TQE(X, Y):= i(ABﬁXﬁYa — AapX”YE)
and the torsion tensor
Tor(X.Y) 1= h*PT5(X.Y) = i(Ags X YT — AgpXPY)
forany X = X%Z,, Y =Y%Zy in Ty .

We will denote the components of the covariant derivatives with indices preceded
by comma; thus write Ayg,,,. The indices {0, «, &} indicate derivatives with respect to
{T, Z,, Zg}. For derivatives of a scalar function, we will often omit the comma, for
instance, uy, = Zyut, Ugf = Z,gZau — wa”(Zlg)Zyu.

For any smooth real-valued function u, the subgradient V,, is defined by Vyu € &
and (Z, Vpu), = du(Z) for all vector fields Z tangent to the contact plane. Locally

Vpu =" ugZo + ug Zy. We also denote ug = Tu.
We can use the connection to define the subhessian as the complex linear map

VYU T o @ To1 — Tio® To
by
(VIY2u(Z) = VzVpu.

In particular,

|Vpul|? = ZZuaua, |V2u|? = 2Z(uaﬁu@ + Uy glizp)-

o a.p

Also

Apu=Tr ( vy ) Z(uaa + Uga)-

The Kohn—Rossi Laplacian [J;, on functions is defined by

Opg = 20,09 = (Ap + inT)p = —2¢5°
and on (p, g)-forms is defined by
Op = 2(5:5}7 + 5},52)
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Next we recall the following commutation relations [29]. Let ¢ be a scalar function
and 0 = 0,0% be a (1, 0) form, then we have

Pap = Ppas
Puf — Ppa = Lhyg90,
P00 — Pa0 = Agpe”,
0a,08 — Oa,f0 = O, )7A7ﬁ — 07 Aap.,

04,08 — %,p0 = 90, 1’ ,3 to A)’ﬂ a’

and
O‘a,ﬁy — O'a’y/g = iAayGﬁ — iAa/gO'y,
OBy ~ OB :ihaﬁAypO ll’layAﬂp s
00,67 — Ou,7p = ihp70u0 + Rappyo’.
Moreover for multi-index I = (ay,...,ap), J = (Bi.....By), we denote
Iy =) = (Ol],...,()lkfl,,u,()lk+1, ...,oap).Then
p
Npjw. = Mjop =1 Z (nl(o:k =y J A — nl(ak:A)fAOlkM)
k=1
q
iy (nlf(ﬁk AL = NGy i AL )
k=1
and

Mifaa — Mijan = thaangjo+ Z N (= y)JRozk it Z’hJ(ﬁk y) 5k i
k=1

Mifon = M0 = ALl Z Aaet M1 0=p)d T Z Ao BT (Be=r)
k=1

3 CR matrix Li-Yau-Hamilton inequality

Let u(x, t) be the positive solution of the CR heat equation (1.2). For the CR Li—Yau
gradient estimate as in the paper [10], we observe that one of difficulties is to deal
with CR Bochner formula (4.1) which involving a term (J V¢, Vpep) that has no
analogue in the Riemannian case. In order to overcome this difficulty, we introduce
a new scalar Harnack quantity G = 1[|V,¢|> 4+ agp, + t(po] with ¢ = Inu by adding
an extra term t(pg to |Vpe |2 ~+ o, which was appeared in Li—Yau estimate ([34]). We
refer to Sect. 4 for more details.
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Now we want to find the right quantity for the CR matrix Li—Yau—Hamilton inequal-
ity. By comparing the Harnack quantity in [7] in case of K& hler manifolds, we define
the matrix Harnack quantity

Ualty luo|?

1 u

|
u

be determined later (say a = ﬁ and b = JT).

by adding an extra term F := —at

h g in which the positive constants a and b to

Definition 1 (i) [20] Define the purely holomorphic Hessian operator P, ;:
P,gp = —2i(Aay9")g
and the purely holomorphic Poisson operator Q:
0y = h*P(Po3p) = ~2i(Aaye”)"

for any smooth function ¢. Note that P, gY = 0 = Qg for any smooth function ¢ if
Agg =0o0n M.

Lemma 1 Let u(x, t) be the positive solution of the CR heat equation (1.2). Then
%(”aﬁ + U gg) satisfies the following:

1 /0
E (E — Ab) (uag + uBOt) = 2Ra)78/§uy5 — RaS_MzSE — R(SE”aS + CO‘B’
where

Caﬁ =1 (Ay(s,gu); — A;?S,B”V) haﬁ +i (Ayau);g — A);gugy) haﬁ
+in (A);Buay - Ao,yu);g) +in (A);B’auy — Ayu,ﬁ“?)
= —(ReQu)haE + n(RePaﬁu).

NotethattrC,z = heb Cyp = 0. Inparticular we have C,1 = 0 forn = 1. In addition
if the positive solution u satisfies P, zu = 0 which is the case when the torsion is
vanishing, then u,, j satisfies the following CR Lichnerowicz—Laplacian heat equation

[9]:
d
Frie Ap Ugf = 2R0¢775Bu)/5 — RaS”SB — R(SB”aS'
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Proof Note that

(% - Ab) (uﬂX + ”Xu)

a
) )
= [(Ahu);d — Ab”m] + [(Ab”)iﬂ - Ab”iu]-

(i) We first compute [(Apu) ST Abum]: By definition, we have
n

(Apu) 5 = (Uaa + Uaa) 45 = Ugaui + Uaaui- (3.2)
Compute

Ugaur = (ua;,ui — ihpata0 — Raﬁu&“p)i
Ugpar — lhﬂ&uaOX - Raﬁu&,i”p - Raﬁu&up):
=Upoar — ’hwft”aoi - Raﬁu&,iu[) - Rotﬁ,u&tulg)_L
= tyaia + i (toahisAss = toah,1 Asa)
+Hi (nitug Azz — Upohys Asa)
_’hu&“aoi - Raﬁu&,xu/} - Ram&”pi
= (uuia + lhaiuﬂo + Ruﬁaiu/’)&
+i (ugahM&AE,X — uo'ahMXA&&)
+i (”“MA&I\ - “;whaiAé&)
—ihuaugo; — Raﬁu&,i“p - Rot,éu.&upx
= U jaa + lhaX”MO& - lhu&”aoi
_Raﬁué,iup - Raﬁﬂ&upi + Ruﬁai,&uﬂ + Ruba)_\up‘i

+i (umhﬂ&A&; - umhﬂXA;,&) Fi (nupo Ags — uuohy;Ass) . (3.3)
Here we have use commutation relations

u;wz&i = uuai& +1i (”Uth&A(}X - uaahMXA&&)

+i (nutpe Az — tpohy; Asa)
and

u;wti& = (Mp):a + lha)_uuﬂo + Ruﬁa)_uup)

= uuia& + lh(xiuﬂoal + R,uﬁai,&uﬂ + Ruﬁaiu/)&'

a
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Similar, we have

Ugapr = Upian + th&Aiﬁ,auP + th&Aiﬁ,auPU
- ’thA&ﬁ,a“p - thXA&ﬁ“pa —1 (”Aup”ﬁ),‘\ +1 (h&MAap”ﬁ)x

+ Ruﬁaqu& + R&paiuﬂﬁ - ihlﬂiu()ax + ihaXuM&O (B4

It follow from (3.2), (3.3) and (3.4) that

(Apu) 5 — Aput 5
= 2Ruﬁaiu/0& - Rpiullﬁ - Rﬁ#”pX + (Rp,ﬁai,o_t - Raﬁu&,i) Up
Fihgiupoa — thpattyos — thpattoys + iheituao
i (Moahpg Ass — touh, 3 Asa) + i (Mo Ass — tyohe; Asa)
+ihM&AX,5,aMP + ihM&Aiﬁ,a”PtX — ihMXA&ﬁ,aup

—ih,;Agppe — i (MALpup);5 + i (hapAaptts); (3.5)

By the CR Bianchi identity [29] and the commutation relation, the third line of
RHS in (3.5) reduces to

R - Raﬁ/}.&,X

—R

Wpan,a
= Ra,bu)_»,& a,b/ui,i
= Rﬁaiu,& - Rﬁa&u,i
= _iAﬁ&,ahﬂ)'L —iAsa uh,; + iAﬁX,ahlt& + iAﬁX,uhOl&

= —iApaahyy — iAjauhes + 1A Jhua +inAgs ),
and the fourth line reduces to
ihysupoa — ihuatteos — thuattoes + ihyiupao
=1l 05 — 1,05 — Tlg,5 + 50

=1iu,50 — lg,;

= —ZAW,;\M/; — lAWuﬁ; — zAﬁiuW) — zAﬁX’Mup

(i1) We compute [(Ab“)iu — Abum] by take the conjugate of [(Apu) . — Abuu:]
s »

and then switch index A and .
Now we finish the proof of the lemma by arranging all the torsion terms together
in (i) and (ii). O

Note that it follows from commutation relation [10] that
Apug = (Ap)g +2 [ (Aapu®)” + (Aggu®F .
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Hence

[Ap, Tu = —2ImQu.

Proof of Theorem 1 As in [24], it suffices to prove that the Hermitian symmetric
(1, 1)-tensor

N__

u uaug
i = (uaf;—i-uﬁa)—kZ?haf;—b L — Fhy5 =0

N =

for t > 0 and some constants a and b to be determined. Here

2
u
F::at| ol

Now we first compute

9 Ugl 7 9 [UgUz Ugl 7
A ot _ 9 (ZeTB — A v
ot u Jt u u

—1 1
= ?Abu Ugllg + - (Apu), ug

1 1
+;ua (Abu)g — Ap (;uau‘g)

and
1 —Aplt 4 1
Ap ;uau/g = I + ;u);uy Ugllg + ;Ab (uau/;)
2 2
_ ;uy (”auﬁ)? — ;u); (uau}g)y .
Hence

(E—Ab) tallp :—zua Uz —zu SU G —£|Vbu|2u Uz

or u w VTBy T By 3 a”p
2 2

+ iy (wag) 3y (nag),

+ % (Apu)g = Ap (ua)) ug + % (ca0s = 25 (u5))
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Then we apply Lemma 1 and obtain

9 Ap | N,
o ) Tep
= 2Ra)78/§uy3 - Ra{;uag — Raﬁum; + Caﬁ

2 2 2 ) 2
+b uayuﬂy + uayuﬂy i [Vpu| Uglly — ;uy (ua);u/g + uauﬁ);)

u 1
_bﬁ“? (uo,,,ulg + uaug,,) - 2t_2h°"§ - b; ((Apu)g — Ap (ug)) ug
1 ad
—b; ((Abu)/g — Ap (uﬁ)) Uy — (5 - Ab) Fhag

Next we observe that

1
- ((Apt)q = Ap (ua)) up

1
= — (uyja + tjya = Uayy = ayy) up

1 . . :

= - (uya); —ihgpuyo — Rypquy +ugyy — ihqpuoy — inAgyuy
+ih)7aAyo'u6' — Uayy — ua,;y) ug
1

= — | —iugouz — Ryquyuz —iugguz — inAgyuyuz +iA u-u-)
M( alllg yallyg U g ayUylg aclglp

Uoall g

. 1
= —;R);auyug —2i —(n— 2)1;Aapu/3u5. 3.6)

u
Thus

9 A N
ot b) Nap

= 2Ra]76/§NVS R, Naﬂ RUEN‘X5 + CaB

Uy U 1 1
+2bRa?5ET +b(n— 2)1;Aapu5uﬁ- —b(n— 2)1;A/§ﬁupua

2b uauy) i Uyig
+ p (uay p ugy »

1 1 1
+2b( Uajlly,§ — 2 —SlylUgpUg — 2 —Ujlqlt yﬁ)

U d
+2bl uo[u/S 2b17ua/§— E_Ab FhaB

Uoall g Upglla

— 2bi

Ugl g 2u .
b IVoul =35 = 5+ 2bi
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We can rewrite N, 5 as following:

Ugll g

1. u
NB:uaﬁ_EluohaB+2?haB_b _Fhaﬁ

u

iughgy
Then we replace gy = Nyj + —5%

line of RHS as above, and this yields

—2%hgp + b= + Fh,; into third and forth

1ugqug u? 2uguy Ul
2 B 0, _ 2 <Uply _ 2 “Ually _

2u
2 2 ab 2%
_bﬁuyuBNa}; —b—zu);uaNyB—}—;FNaB—i— —F h

Fuqu 4 9
+4(b2_b) °‘2 ~2b-Fh, —(E—Ab)Fhalg

Finally one obtains
0 Ap )| N
ar ") eb
=2Ray8ﬂN — Ry N, i nﬁNa5+CozB

Us 1 1
+2me755yT’3 +b (= 2)i—Agpuigug — b —2)i~Agguyuq

2b UglUy uplg 2b 8b
+7(uay— ) Upy — ——— +7Na77Nﬂ77_7N<¥B

u u

22143 uy 2b i 2b i
+b T 2 —N VB~ 2uyuﬁNo”; — u_zuf”“Nyﬁ
FuauB
2

4b 0 2b
+—FNaﬁ—(§—Ab)Fhaﬁ+—F2haﬁ+4(b2_b) .

1 Ug
+ (85 —2) 5hys+b Ohaﬁ—i-(Sb—sz)t ==

UnplU
—opi B

8b UaU g
(b‘ —on? + b) (V2 2elE ”“”‘3 ]
u

Fha/§+2bi ”

3.7

Note the first and second line of RHS are positive by curvature assumption. The third
and fourth line are nonnegative while we apply on null vector of N, 5.

@ Springer



S.-C. Chang et al.

In the rest of the proof we will determine F so the rest terms are nonnegative. First
we observe that

B uz  2u 2 Vpuoll>  4ug (Vpug, Vpu Vpul?
( A)—O:—O[TA] I Vpuoll L 0 b20 b >—2u%” b3||
ot u u u u

1 3 2
= -2 Hu‘fvbuo — u_fuovbuH ,

here we have used the fact that [T, ApJu = 2ImQu = 0 if PaE“ = (. The last four
lines of (3.7) is reduced to

b ug _1 _3 2
3~ a(l+8b) Iha/‘} + 2at Hu 2Vpug — u” ZugVpu ha,é
4 (b2 ) u M Uz (bZ_b)2 |V 2y ua
u o bu| atpg
2 a226=2n ; +2 atb-22F 4
+ (a u3 01/3+ \/_ \/_ b 2 u3
UQqU 7 UpzU Uyl
+(8b—2) %ha,§+2bi P opi %Y L gp (1 — by 2E (3.8)
1t u u tu

Note that the second line above is a complete square. To handle the last term, we have
the following calculation

UoglU § UggU Ugll g
2bi— b i BT g (1 — )
u u tu
uoUy B B uou g
LMo — =, Up Mo — Ty Ua
=2hi——4——— —2bi—————— +8bh (1 —
i T
b(“oa_% 2. uq ”03_u0:ﬁ+2 “p
=ble———"——--i—|le———+-i—
Ju e Ju Ju e Ju
0 1y ot 4b Ugl
U — 08~ "u o allp
—be t - = 8b (1 —b) —=. 39
Ji NG R LUy
By choosing ¢2 = b , we have

. N 5 Uy — Uy o5 — uou
—_a —_2 (04
2at Hu 2Vpuog — u Zu()VbuH hep — be? U b “
Vu N
uou
_1 _3 2 Uow — "L Uog — —
= 2at ||u”2Vyug — u" 2ugVpu ha3—4at
Ju Ju

> 0.
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Next we combine (3.8) and (3.9), and this yields

b g, _1 _3 2
5—a(l+8b) _haﬂ + 2at Hu 2Vpug — u 2robuH haﬁ

+2( b0, ,3+2(b2 ) tf”ouauﬂ (bz_b)zwbulz”a”ﬁ)
e

Vb b 2 W
UQgU 5 UnzU Ugl 7
+ (8b —2) ghys+2bi—— —2bi P g (1 —b) =L
t u u tu

(2 uavsm “5, + -2 % -+ (s —b) b\ Halts
=\ u P 12 B a tu
—0

when we choose a and b so that

b
3 —a(l+8h) =0,

8 —2 =0,

b2
8b (1 —b) — — = 0.
a

This implies
1
a=— and b= -.
4

Hence (3.7) yields

1
> 2Ra;765N — Rys N, o~ JﬂNag + — o ozy(SBu)’MS

1 UgUy Uyig 1 2
m(“w u )(“ﬁf‘ w ) er Moy = e

1 uguy 1 uquy 1

1 1

+§_u2 N“’7+§_u2 VB~ o S Uy uﬁNay 2u2u uaNyﬂ—}- FNﬁ
1 .

+Co 3 (1 =) [Aapuﬁug - ABﬁupua]. (3.10)

which is nonnegative after applying on the null vectors of N, 5 if we assume that the
bisectional curvature, bi-torsion tensor and C,, j are nonnegative. O
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4 The CR gradient estimate and Harnack inequality in Heisenberg groups

In this section, we will apply the method of the CR Li—Yau gradient estimate [10,34]
and the CR Bochner formula (4.1) to derive the CR gradient estimate and the CR
Harnack inequality for the positive solution of the CR heat equation (1.2) in the
(2n 4 1)-dimensional Heisenberg group.

We first recall the following CR version of the Bochner formula in a complete
pseudohermitian (27 + 1)-manifold.

Lemma 2 ([21]) For any smooth real-valued function ¢,

1
54 IVogl? = (V2012 + (Vog, Vi Apg) + 2 (J Ve, Vo)
+2Ric — (n — 2)Torl (Vs@)c » (Vb@)C) - 4.1

Here (V) = 9% Z, is the corresponding complex (1, 0)-vector of V.

Since
1 n
H\2 2 _ 2 2 2 2, .2
(V) ol —ZaEﬂ(lwaﬁl + 1@u5l7) =2 Ea (7% z = (App) +2<po

and for any v > 0,
2(J Vb9, Vowo) < 2|Vpel Vool < v~ [Voel® + v Vool
Therefore, for any real-valued function ¢ and any v > 0, we have the Bochner inequal-

ity

1 V02 i 2, 2 _ 2
2Abl po|” = o (App) +2(P0+(Vb¢»vbﬂb§0> v | Vpeol

+[2Ric — (n = 2)Tor — 20" ' 1(Vo@)c . (Vo@)o) . (4.2)
Now let u(x, t) be a positive solution of the CR heat equation (1.2) and
o, t) =Inu(x,1).
Then ¢ (x, t) satisfies

0
(Ab - —) ¢ = —|Vpol? (4.3)
Jt

and from Lemma 3.5 in [10]
d
Ap — — ) wo = =2(Vpe, Vigo) + 2V (¢) , (4.4)
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where the operator V is defined by
— By P @ @, B %P
V(@) = (Aap9”)." + (Agge")." + Aupp” @ + Agge™e”.
Therefore, if Ayg = 0 then one obtains V (¢) = 0.

Lemma 3 Let (H", J, 0) be the 2n + 1)-dimensional Heisenberg group. If u(x, t)
is a positive solution of (1.2 ) on H" x [0, 00). Let ¢ (x,t) = Inu (x, t), then for any
given a < —1, the function

G (x.1) = 1[IV (6, 1)+ @@y (1) + 195 (v, 1)
satisfies the inequality

d
(Ab - 5) G>-2(Vpp,VpG) =t 'G+a2n " 1t71G? + o« 2n L + D? |Vpo!*

— 20l 2@ + 1) [Vpol? + 19316 + 2[a 20 @ + Di%gd — 111 Vel
4.5)

Proof We first rewrite G as
G=t [lngo|2 + ap; + t(pg] =t{(a+1) |V1,<,0|2 +alApp + t(pg].
By taking v = ¢ into the inequality (4.2), we compute
MG =114 [Vhpl® + adpgs + 1 Apg]]
>t [% (A69)* + 1y + 2 (Yo, Vi Apg)
+aApgp; + 2tp0 Appo — 27 IVb<P|2] ,
and (4.4) yields that
ad 1 2
G =17'G+1 (2@ + 1) (V0. Vor) + a2pgi + 05 + 210000 |

= 7G4 1|2+ 1) (Vop, Vo) +adogs + 93

+ 2tpo Appo + 2t <Vb<ﬂ, Vb903>] )

Thus, we have

0
(Ab - 5) G = =2(Vog. VyG) — 171G + 1 [n7! (Ap0)* = 27 [V

(4.6)
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where we have used
(Vog, VbG) = tl(e + 1) (Y@, Vb@r) + t{Vo9. Vo) — (V. Vb Apg)].
However, since
App = = IVogl + 90 = o7 [171G = @+ 1) 1Vol? — 13 ]

This implies

(Mp9)? = a 272G = 207217 Gl + 1) |Vipl? + 192]

+a 2@+ D Vel + 20 + Digg Vsel].

The Lemma is proved by substituting this inequality into (4.6). O

Next we apply the lemma to prove prove Theorem 2.

Proof Let Bag be a ball of radius 2R center at O € H" with R > 1. Let ¥ € C;j°(R)
be a cut-off function such that 0 < ¢ < 1, ¥(¢r) = 1 fort € [0, 1], ¥ () = O for
t > 2. We also require that

[y

w/ S 09 w// Z _Cls and S C27 (4'7)

where C and C are positive constants. Let d. (x) be the Carnot—Carathéodory distance
from O to x in H". Then we define n(x) = (%) . It is clear that suppn C Bag
and n|p, = 1. For

G=t [IVb<p|2 +ap + w%]

we consider the function nG with support on Bag x (0, T]. Let (xq, o) € Bag x (0, T]
be the point where G attains its maximum. Note that at (x, #p) we have the following
properties

Vy(nG) = GVpn + VG =0, 4.8)
Ap(nG) <0, 4.9)
and
0
E(HG) =nG,; > 0. (4.10)

In the sequel, all computations will be at the point (xo, #p) and we may assume that
(nG)(xo, to) > 0,
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otherwise (nG)(xo, fp) < 0, and the theorem is obviously true. By (4.8), V;,G =
—GVpn/n, and from (4.9)

0> Ay(nG) = GApn + nApG + 2(Vpn, Vi, G)

= GApn + 4G — 207G |Vyn|?. 4.11)
(4.7) implies
Vonl® _ W PIVede? WP _ Co
n v R? Y R? ~ R*
and
Apn = 1//”|:,;dc|2 + w/ibdc = 11/;—;/ + %Abdv > —% - ?Abdc.

The CR sub-Laplacian comparison property in [14] yields

C
Apde < —, (4.12)
de
for some constant C, and hence
Apn = =&
b = R

Substituting these into (4.11) and then applying the inequality (4.5), (6.20) yields the
following estimate

2.2

for some constant C5 > (. Combining these estimates, we obtain

0 > Ay(nG) > —C3R™'G —2C,R™'G + n4,G

—C4R™'G +1 [Gz —2(Vip, VbG) =1y ' G + "_1“_2’51(;2]

v

IV

—2mm~'a 2 [(@+ DIVl + 1003 | G +n7'a @ + 1 nio | Vigl
+21 [n_lot_z(ot +1)Cs — 1] Vool
where C4 = C3 + 2C>.
Since nG; = (nG); > 0, n(Vpp, ViG) = G(Vpe, Vpn), then by the following
inequality
n_lot_z(a + 1)2to Ingpl4 +2 [n_la_z(a +1)Cs5 — 1] |ng0|2
> —2t0_1 |:n710l72C52 + na® (o + 1)72] )
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the above inequality can be reduced to
0>n"lat;'nG* — (C4aR™" + 15 )G — 2G (Vip, Vi)
— 27102 (@ + 1) Vgl + 1003 | G

—2nt0_1 [n_loz_ng + naz(a + 1)—2] .

Next we multiply the above inequality by nty, since 0 < n < 1 and (Vpe, Vpn) <
Vool [Vpnl, we get

0> n"'a2(nG)? — (C4R™ 10 + DG — 210 |Vpo! |Vin| nG
— 27l 20 [ (@ + 1) V0l + 1003 G

—2[n*‘or20§ + ne(a + 1)*2]. (4.13)

Observe that there exists a constant Cg > 0 such that
—2nla @ + D Ve l? — 20/ R0V Vol = Coa @+ DR
Hence combining this with (4.13) and using tggpg < Cs again, we can conclude that
0>n"la20G)? + [c7toa2(a DR - Zn_la_2C5] nG
-2 [n71a72C52 + naz(a + 1)72]
for some constant C7 > 0. This implies that at the maximum point (xg, #y)
nG < Cya® [Cs — @+ D)7+ aztoR*‘)]

for some constant Cg > 0. In particular since 7y < T, when restricted on Bog x {T}
we have

IVpol? + oy + Tl < Cga? [(Cs — @+ D HT ' P+ l)’lR’l] .

Theorem 2 follows by letting ¢+ = T and taking R — oo. O

The first application of the theorem is the Harnack inequality on the Heisenberg
group.

Corollary 4 Let (H", J, 0) be the (2n + 1)-dimensional Heisenberg group. If u(x, t)
is the positive solution of the CR heat equation (1.2) on H" x [0, 00), we have the
Harnack inequality

u(xy, ty) _ (t_z)cz exp (dc(XI,XZ)z) (4.14)

u(xz, ) — \u 2(t; — 1)
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for any xi1,xp in H" and 0 < t| < t < 0o, where d.(x1, x3) is the Carnot—
Carathéodory distance between x1 and x;.

Proof Let y be a horizontal curve with y(¢;) = x; and y(fz) = xp. We define
n:ln, ]l — H" x 11, 2] by

n(®) = (y (), 1.

Clearly, n(t1) = (x1, t1) and n(t2) = (x2, 7). Integrating along n, we get

%) d
—/—lnudt
dt
141
%)

/[—(;’x, V,(Inu)) — (In u),] dt.  (4.15)

1

lnu(xla tl) - lnu(xzs tz)

On the other hand, Theorem 2 implies that
—(nu); < At7' + a7 | Vpnuw))?

where A = —C1a[C] — (a + 1)~1] for some constant C; depending only on . Hence
(4.15) is reduced to

5}

/ [m IVy(nu)| + o~ |Vy(nu)|* + At‘l} dt.

n

u(xy,t
p YEL I
u(xz, 1)

Applying the inequality
-1 2 ) a s
o V)" + [y [IVp(Inw)| < —ly|

and choosing

© o de(xy, x2)
ly| = ———

h—n
we conclude that

u(xl’tl) < _gdc(XI,.XQ)Z
u(xz, ) — 4 nH-—n

t
+AIln2.
1

By taking exponential of both sides, we have
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M()C],l]) - (t_z)—CIOt[Cl_(OH-l)_l]eXp (_OldC(XI,X2)2>
u(xz, ) — \1 4ty —1n) )

The result follows by choosing o = —2. O

As a consequence of Corollary 4 and [8], we have the following upper bound
estimate for the heat kernel of (1.2).

Corollary 5 Let (H", J,0) be the (2n + 1)-dimensional Heisenberg group and
H(x, y,t) be the heat kernel of (1.2) on M x [0, 00). Then for some constant § > 1
and 0 <€ < 1, H(x, y, t) satisfies the estimate

_di(x,y)
4+ex

Hx,y.0) = €@V (B(vD) v (By (W) exp( ) (4.16)

with C(¢) — oo as € — 0.

Once we have the upper bound estimate for the heat kernel and the sub-Laplacian
comparison property (4.12), we can then apply the arguments of Li—Tam as in [33] or
[32] and obtain the following mean value inequality.

Corollary 6 Let (H", J, 0) be the (2n 4 1)-dimensional Heisenberg group and g be
subsolution of the CR heat equation such that

(% —Ab)g(x,t) <0.

Then for some constant C depend on §, t,n, suchthat0 <§ <1,0<1 < T, 0 <
n < % the following inequality holds for any p > 2T,

T
sup gSC/ /g(y,s)dyds. 4.17)
B,((1-6 T
PO (e By

5 Complete noncompact case

In [7], Cao and Ni derived the matrix Harnack estimates for the positive solution of the
heat equation on a complete noncompact Kédhler manifold with nonnegative bisectional
curvature by using the key estimate (5.1) which is derived from the result of the Li—
Yau heat kernel estimate [34]. For a general complete noncompact pseudohermitian
manifold, we do not have the Li—Yau type heat kernel estimates. However, we do have
the CR corresponding result of the Li—Yau heat kernel on the Heisenberg group as in
Corollary 5. Comparing the method of Cao—Ni, we should point out that we also need
the extra ug-growth property (5.2) that has no analogue in Kihler manifolds.

@ Springer



Matrix Li—Yau—Hamilton inequality

Lemma 4 Let (H", J, 0) be the 2n + 1)-dimensional Heisenberg group. u(x,t) is
a positive solution of the CR heat equation (1.2) on H" x [0, 00). Then for 0 < § <
t <2 — 6, there exists a constant b > 0 (might depends on §) such that

u(x,t) <exp (b (r2 (x) + 1)) 5.1
and
luo| (x, 1) < exp (b (r2 ) + 1)) . (5.2)

Proof Leto € M be a fixed point. Since our focus here is to obtain an upper bound on
u for positive time, we may assume that u(x, t) is defined on M x [0, 2]. By Harnack
inequality in Corollary 4, we have, for 0 < ¢ < 2

ux,t) < t%u(o, 2) exp(ar2 (x)).

Here a is a constant and 2 (x) is the Carnot—Carathé odory distance d. (o, x). In
particular, for 0 < § <t <2 — §, there exists a constant b > 0 such that

u(x,t) <exp (b(r2 (x) + 1)) .
But applying (6.20) in next section, we obtain
o, 1 = S, 1),
Hence this implies
luol (x, 1) < exp (b (r2 () + 1)) .

O

Lemma 5 Let M be a complete pseudohermitian (2n + 1)-manifold with nonnegative
bisectional curvature and nonnegative bi-torsion tensor. Let u be any positive solution
of the CR heat equation (1.2). Then

2
+41Ve o)l I Vpull .

94 IVpull® < =2 ||u ||2—l U,z +us
ar )R = N

Furthermore if we assume the positive solution u satisfies the purely holomorphic
Hessian operator P, gU = 0.
ad A ‘
ar 0

2
ua5+u5a <0.
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Proof We calculate

O A 1Vl
— = u
9t b b
d
= (5 — Ab) 2uqlty

=2(Apu)g ug + 2 (Apu)g e — Quauz)gg — Qualta) gg
=2 (Zuﬂﬁa — inu()a) ug +conj. — (2uaua)ﬁ5 — conj
= 4uaﬁ/§u5[ — 4ihw§uﬁou& —4Rjqupug — 2inugqlig
+4u&/§ﬂua + 4ih5,'3u/§0ua — 4R qupuy + 2inugg ity
_ (2140“35% + 2uaﬁu&3 + 2”a,§”5tﬁ + 2uau&ﬁl§)
_ (ZM&Bﬁua + ZM&BM(Xﬂ + 2u5,/5ua5 + 2u5lua/§ﬂ)
= —4iha5uﬁou5[ —4ARjqupus — 2inug s
+4ih&5u50ua —4Rpgu Uy + 2inuogity — 4uaﬁu&ﬁ- — 4ua5uaﬂ
+2ug (inuao + Rapup) —2uqy (inu&o — R&pup)
= —dugpuys — 4uyzuap — ARzl ol
—diugqug + 4inogug +2i (n —2) A&Euﬂua —2i(n—2) Aaﬂu/gu&.

Then the curvature assumptions yield

2
+ 4Vp (o) [ | Vpull

ad 1
(3 = 20) 1500 = =2t = 5 s + 5

and this implies

ay&ﬁ ys — 5’453 — R(;f}uag + Cw}) (u&ﬂ + uﬁ&) + conj

=2
[ wop (15 15,) = Ras (usg + ugs) = Ryg (g5 +us,) + Cop |-
X (uaﬁ + uﬁa) + conj < 0.
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Here we have used [Ap, T]u =0, C, j= 0 and the following inequality:

(2Rupsp (15 + 15,) = Ras (103 + ups) = Rag (g5 + 5, ) (e + pa)
2
= 2Ra/§ﬂ5¢)‘0€)‘5 —2Ryy ()‘V)
= —Ra,éﬁ&(’\a - A/3)2
<0.

Here We'denote Uyy + Upy = Ay (since u, 5 + ug, is symmetric and then can be
diagonalized). O

Combining Lemma 4 and Lemma 5, we are able to obtain the following integral
estimate.

Lemma 6 Let (H", J, 0) be the standard (2n + 1)-dimensional Heisenberg group. If
u(x,t) is the positive solution of the CR heat equation (1.2) on H" x [0, 00) . There
exists a constant b > 0, depending only on b such that

T
//e";rz (nvbuon2 +IVpull? + e |* +

26 M

2
Ugp+Ug, )dudt < 00.

Proof Let ¢ be a cut-off function such that ¢ = 0 for d.(x, p) > 2R, t < §, and
¢ =1asd.(x,p) <R, t>25and|Vpp| < %. We multiply 452 on both sides of the
following equation

0
—— A < 2| Vpul?
(m b)u IVpull”.

Then we integrate

T

/ / I Vpul2 ¢2dpuds < O/T IZ (( b——) uz) Pduds

0

T
// Apu?® 2dudt+/u (x,0) ¢ (x,0)dp
0

M M

/uz(x Ty ¢ (x, T)du—l—//u (x, 1) ¢> )td,u,dt
M

T T
5//u2 (x, t) d,udt //2¢ v,,uz, Vb¢>dudt. (5.3)
0O M 0 M
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Young’s inequality yields
T
//2¢<Vbu2,v;,¢>dudt
0 M

T T
1 2,2 2 2
=3 IVpull” ¢°dpdr + 8 u” | Vppll” dpdt.
0 M 0 M

Then (5.3) is reduced to

T T
/ / |Voull? $2dpds <2 / / @ (8195912 + (9?) ) dyudr.
286 M S M

That is, there exists a positive constant C independent of R such that

T T
//IlVbqududth/ / u’dudt.

28 Bp(R) § Bp(2R)

By choosing R = 2" and b > 4b, we obtain

T 0o T
//(fl’lr2 IVpull® dudt < Ze*’”@")z/ / I Vpull? dudt
§

2 M n=l By (2 )\B)(2")

o N T

< CZ:e_b‘(2 ) / / uzd,udt
n=1 ) B, (2n+1)
e 2 o242 r 2

n n+"

< CZ:e_bl(2 )72 / / e br uzdudt

n=1 5 B,(2nt1)

41

z N o €4b
—br= 2
< C//e u-dudt - E (eTI) < 00, 5.4)
5 M n=1

where in the last inequality we use the growth rate of u as in Lemma 4, i.e.,

T
//e—W IVpull? dudt < oco. (5.5)

26 M
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Again [Ap, Tlu = 0 implies

_B - I ||2
A u =2 |IVpu .
; b 0= 12200)

Applying Lemma 4, we have, for some positive constant b, > 0, the following equality
holds

T
//e—bﬂz I Vpuol® dpdt < oco. (5.6)
s M
Lemma 5 and [Ap, T]u = 0 imply

2
Ugp + UGy (5.7)

)
(E—Ab) (195l + 3 %) = =2 Jueg | 5 [

Next we multiply the test function ¢ and integrate as in (5.3), and obtain

]/(|wﬂ
A[ ((Ab - %) (Ilvl,ull2 +ud+ MZ)) Sdud

/ (V51 + 4 + u?) (@)

2
Ugg T Ugg ) ¢2d/Ldt

IA

o\'\] o\’*]

T
_//2¢<Vb(||vbu||2+u%+u2),Vb¢>dpLdt.
0o M

Young’s inequality again yields

T
2
//(||uaﬁ||2+‘uaﬁ+uﬁa )¢2d,udt
0 M
<€ [ (190uol? + 195l + i +4%) (19501 + (87), ) i

M
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Now apply the same argument as in (5.4), for some positive constant b3 > 0, we have

/T e (-0ar%) (||uaﬁ I+

26 M

2
Ugf + UG )d,udt < 00. (5.8)

Finally Choose b = max {b1, by, b3}, and combine (5.6), (5.5) and (5.8), we have
proved the estimate. O

The result of Lemma 6 can be improved to the following pointwise estimate by the
mean valued inequality.

Lemma 7 Let (H", J, 0) be the (2n + 1)-dimensional Heisenberg group. If u(x, t) is

the positive solution of the CR heat equation (1.2) on H" x [0, 00). For t > §, there
exists b > 0 such that

IVpull? (x, 1) < exp (15 (ﬂ + 1))

2 (x,1) <exp (5 (r2 + 1)) . (5.9

Uyg + Up,

Proof Wedenote @ = ||Vyu ||2 + u(z) +u?. It follows from (5.7) that @ is a subsolution

of the CR heat equation. We multiple factor e > (P>+1) on both sides of the mean value
inequality (4.17), we have

2
e~ +1) sup D (x,1)
Bp((1=8)p)x[7,T]
T

< Ce~b(0*+) / / @ (y,s)dyds

(I=mz By(p)

=¢ / / PO @ (y, ) dyds

(1=m7 Bp(p)
< 00,

where r (y) is the Carnot—Carathéodory distance between p and y. The last inequality
is followed from Lemma 4 and Lemma 6. Now we substitute p = ﬁr (x), we have

for any x € B, (11T5r (x)), t<t<T,
b(i)z(rz(x)ﬂ)
@ (x,1) <C'e \179 )

The other inequality in (5.9) can be proved similarly. O
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Lemma 8 Let (H", J, 0) be the standard (2n + 1)-dimensional Heisenberg group
and ¢ be a smooth function on H" such that

(b (41)) =0 e o +1)

for some constant ko > k1 > 0, then there exists T,, > 0 depending only on ky such
that the Cauchy problem

[(%—Ab)g=0
gx,0)=09

has a solution g on H" x [0, T]. Moreover, there exist constants C1, Co > 0 such that

k
C1 exp (erz) <gx,1) <Crexp (3k2r2)

on H" x [0, T,,,] .

Proof Similar argument as in Lemma 1.1 in [41], where the proof only using the heat
kernel estimate (4.16) and the sub-Laplacian comparison property (4.12). O

Proof of Theorem 3 1t follows from Lemma 8 with ¢ = es! g fort > §, we have
a A K "
ot ')V T

¢ (x,1) > Cjexp (215 (r2 4 1))

and

for a positive constant C| and a positive constant ¥ which needs to be determined later.
Let N, K be the matrix Harnack quantity in (3.1) We consider the following (1, 1)-
tensor

Nyj=1*N,j + eph,z. (5.10)

We only need to prove that Na g > Oforanye > 0. We shall prove this by contradiction.
Suppose it is not true, then by the growth rate of ¢ and the fact that N, j> Oatr =0,
there exists a first time 79 and by Lemma 7, a point xo € H" and a unit vector v at xo
such that 1\7a K (xo, o) v¥v? = 0. Now we choose a normal coordinate around xo and
extend v to a local unit vector field near x¢. Then at xg

Ap (Nalgv“vﬁ) =Ap (NM}) vl
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Since Nagv“ P > 0 for all (x, t) with ¢t < 9 and x close to xg, we see that at (xg, #g),

3
0> (5 —Ab) (N, gvv By. (5.11)

On the other hand, (3.10) implies, at (xg, fy)

t (2Ray5ﬂN — RasNyj — nBNa6+Ca5) NN

\Y 1 g
+12 (Rm — Tor) (%, v) + tZENa);Nﬂ];vavﬁ

ugu 5 A 1 A 1 A g
2 “B7Y Uglhy o o ) Y., B
+1 ( 2 Nay + ™ Nyﬁ — m"{yuﬂNay — m”y”al\’yﬁ) v
3 uzu, v’ vP F =
+Z§t28¢ﬁ2—2 +t2;Na/§v"‘vﬁ +8§¢|v|2. (5.12)

Since ]\Alaﬁ (x0, tp) V¥ P = 0, it follows from (5.10) that at (xq, #p)

)1 3 F
t —FN ﬂv VP = ——£¢|v|2.
u

Now £ = L @9 404 (6.20) yield

u

51 C C
2= FNogo“ v = ——ep |’ = —Zeq o]’
for some constant C. Hence
21 ;
t—FNﬁvv +e— ¢|v| /<—— e¢|v|

if we choose

C
K> —.
8
That is ( Ab) v*vP > 0. This contradicts to (5.11).
Th1ssh0wsthatN >0forall0 <6 <t <2—4.Takinge — Oand 6 — 0 and
repeating the argument to the later time, we prove the lemma. O
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Proof of Corollary 3 Applying Theorem 3 to the heat kernel H(x, y,t) with V =
— %, we have

—t [Gog H(x, y,0),5 + (log H(x, ¥, D),
3
— 5t [Gog Hx,y. )atlog Hx. v, 15| < 4h ;.

But —tlog H(x,0,t) — %rz(x) as t — 0. Therefore

1 2 2
—t [(log H(x,0,1),5 + (log H(x, 0, t))Ba] >3 [(r ()ez + (r (x))ga]

in the sense of distribution. On the other hand,
3 2
§t|Vb(10g H(x,0,0)|" < Co

for some constant C in a Heisenberg group H" due to the dilation §, in H" as in [27,
Theorem 1]. Therefore,

(2005 + 2005, | = 16+ Coh; (0.

6 The T-derivative of heat kernel of the sub-Laplacian in Heisenberg groups
6.1 The Heisenberg group
We start with the most general definition of the Heisenberg group. In the end, what
we need is the special case of n = 1. The non-isotropic Heisenberg group H" is the
Lie group with underlying manifold
C"xR={[z,t]:zeC", t e R}
and multiplication law
n
[z.1] (W, s]= |z+Ww.t+5+2Im D ajzji; | (6.1)
j=1

where a = (ay, az, ..., a,) € R}.

It is easy to check that the multiplication (6.1) does indeed make C" x R into

a group whose identity is the origin ¢ = [0, 0], and where the inverse is given by
[z, 117" = [z, —1].
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The Lie algebra of H" is a vector space which, together with a Lie bracket operation
defined on it, represents the infinitesimal action of H". Let b, denote the vector space
of left-invariant vector fields on H". Note that this linear space is closed with respect
to the bracket operation

[V, V2] =V 1V, =V, V.
The space h,, equipped with this bracket, is referred to as the Lie algebra of H".

Lie algebra structure of b, is most readily understood by describing it in terms of the
following basis:

0 B 0 ad B
X;=—+2ajyj—, Yj=-——2a;x;— and T=—; 6.2
= xR N =gy TNy o1 62
where j =1,2,...,n, 2= (21,22,...,2,) € C" withz; = x; +iy;;t € R.

Note that we have the commutation relations
[Yj’Xk]=4aj5jkT for j, k=1,2,...,l’l. (63)

Next, we define the complex vector fields

_ 1 ) d . 0
ZA/:E(XJ—FZYA/):E_laijg and
Z,= i x,—iv) = 2 gz 6.4)
i==-X;—iY))=—+ia;z;i— .
R
for j =1,2,...,n. Here, as usual,

0 l( K] .0 ) 0 l( 0 .0 )

—_— == — - — and —=-|—+i—

dz; 2 \dx; dy; 0z; 2\ 0x; 0y;

The commutation relations (6.3) then become
(Z;,Z] = 2ia;3 ;T

with all other commutators among the Z;, Z; and T vanishing.
The Heisenberg sub-Laplacian is the differential operator

l — - , 1 — ,
o= Z(zjz,- +2;Z)) +irT =~ Z(Xﬁ +YH+iAT  (65)
j=1 j=1

withZ; and Z j givenby (6.4). Inthe case of a; = 1 forall j's, the operator £, was first
introduced by Folland* and Stein [18] in the study of 8, complex on a non-degenerate
CR manifold. They found the fundamental solution of £, . Beals and Greiner [4] solved
the case that a}s may be different.
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Let functions f, g € S(H"), the Heisenberg convolution is given by

frgx) = / FWMey ' xdv(y); (6.6)
H)l

here dV (y) is the Haar measure on H" and is exactly the Euclidean measure on R+
Twisted Convolution. We focus our attention on the phase space R” x R”, which
we identify with C" via¢ € C", ¢ =u +iv < (u,v) € R" x R".
On it, we consider the symplectic form (-, -) given by the Heisenberg group multi-
plication law (6.1) and defined by

n
(z, w) = 2Im(Az - w) = 2Im Zajzj-u")j ,
j=1

where z, w € C". With 7 a fixed real constant, we can define the twisted convolution
of two functions F and G by

(F %, G)(z) = / e ITEW F (7 — w)G(W)dw; (6.7)
(Cn

here dw is the Euclidean measure on C". Notice that, in view of the antisymmetry of
(-,-), we have that (z — w, w) = — (w, z); thus

Gx F=F=x_; G,
so the twisted convolution is not commutative.
The twisted convolution arises when we analyze the convolution of functions on

the Heisenberg group in terms of the Fourier transform in the ¢-variable. To see this,
let f(z,t) be a test function on H". Define

fr@ = f(, Jo) = / [z, ne " dt. (6.8)
R

Similarly define g; when g is another test function on H". Suppose f * g is the
convolution of f and g on H". Then

(f*8): = fr % &r. (6.9)

Integration by parts also yields

/e—”'f%d; =itf (6.10)

R

—

¥

N——"
I
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We take the partial Fourier transform of the complex vector fields Z; and Z j with
respect to ¢ and obtain

~ J =
Zi=——ajz;t and Z; = — +a;z;T.
i 9z, J<J i 3z, J%i

The fundamental solution and heat kernel of £, ; can be derived via the Laguerre
calculus. Here we give the basic definitions of Laguerre functions.

Laguerre Functions. The generalized Laguerre polynomials L,((a) (x) are defined by
their usual generating function formula:

ad (@) K 1 o Xw
;Lk wh = G exp[ ] (6.11)

fora« =0,1,2,..., x >0,and |w| < 1.

Definition 2 Let z = |z|¢ and k, p =0, 1,2, .... Then we define

W,Ep)(L )

= % [mi(i—:rl)]l/z Qltllz)PPei? e P LP o)) 122)  (6.12)
Wé—p)(z’ )

=y [F(l;(f—;fl)}]/z QlelfzPyP/2e=ip P L) 2] 22)

(6.13)
We define the n-dimensional version of the exponential Laguerre functions on H”
by the n-fold product:
“ (P))
W@ o) = [[aW) (ajz;,
j=1
() S .
where ij (Jajzj, t)’s are given by (6.12) and (6.13).

6.2 The fundamental solution of £, »

Let K, (z, t) € C*°(H"\{0}) be the fundamental solution of £, ,, i.e.,
Larlf(z, 1) *Ky] = La / fow, K ([w, s17 [z, tdwds | = f(z,1)
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for any f € S(H"). The result from Laguerre calculus (see [5,21]) yields that

o0 n n
(0
HajWIEj)(a/aij, 7).

Ki(z,7) = |7|”! Z Z(ij + a; — A sgn(t)
ki=0 \j=1 j=1
(6.14)

We can apply the generating formula of Laguerre function to compute the sum in the
right hand side. First we introduce the following integral representation of A~

o0
1 —As
— = [ e ds for Re(A) > 0.
0
Then we can write (6.14) in the following form:

Ki(z,7) = —
7| i

o0
1 & " Qkj+Daj—h
> e (Zjtrsben)eg [ 0 FO e, o,
=079

(0)

Next we interchange the summation and integration, and use the definitions of W

o0 o0 n
K, (z, 1) =/ Z ef(zj=‘<2kj+1)a"‘7ksgn(r))sds H@W,ﬁ?(@g, 7)
0 =0

j=1
o
_1/
=T
0

et Gk i)y HZa e TP L0 Qajl 1z 1)

€
j=1

0

M8

k

9]
-1 n 00
Iz|" A —ais—a:tlzi 2 —2a:ssk; 7 (0)
| O [[ajem T Y @Y L Qajlellz s
k;j=0
0 J

Jj=1

Apply the generating formula for the Laguerre polynomials

(p) XZ
ZLP(’C)Z )P+1 p[_l—z]

to the last formula for I~((z, 7), we obtain
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n

o

~ |l , 2a;e* 2¢724)8

K, (z, 1) = %/ehgn(m H I exp [—aj|f||Zj|2 [H—“ ds
0

1 _efZajS l_ef2ujs
J=

|r|n71 n

o0
n
_ asgn(t)s aj 2
=—— e ————exp 1 —|T ailzi|” coth(a;s) ¢ ds
pr / Hsmh(ajs) P —Itl 2o ajle; I cothias)
0 = /:l
Then one can take the inverse Fourier transform and find the fundamental solution
K (z, t) at the origin and other points by translation via the group law.

6.3 The Heat Kernel

In the isotropic case, the heat kernel was independently studied by Gaveau [19] via
probability method and Hulanicki [26] using the Fourier transform on H" and the
basis of Laguerre functions. Later, Beals and Greiner [4] solved the general case by a
different method. /4(z, t) can be derived easily via the Laguerre calculus.

Taking the Fourier transform with respect to the 7-variable, we can write the Fourier
transform of the heat kernel /i (z,1) as

ﬁs(z, 7)

o0 n
=exp {—sﬁa,k}i: Z exp{—sLa.r} H ajWIE?)(«/a_jz.;, 7)
j=1

k|=0
00 n
—s > " _ai|t|(2ki+1)+siT 5(0)
= Z oS 2j=14;lTlkj+1) Hajij (Vajzj, t).
k|=0 =1

Next, a similar computation as in the computation of the fundamental solution leads
to

_ P n (1j|‘L'| n )
hs(z,T) = _— — iz th(a;
(o) =— ,U] Stae) |0 |r|;a,|z,| coth(aj|z|s)
(6.15)
Since
“ ajlt| “ a;t
j j
= and |t]|coth(a;|t|s) = T coth(a;ts),
,H] sinh(a;|t|s) ]Ul sinh(a; Ts) Il cothlaj[zls) (@jzs)
we can simplify (6.15) by removing the absolute sign for T and have
P a;t z
hy Z,T) = — e —T |zi|? coth(a;t . 6.16
s 1) =— ]Ul St | P lea,w (a;Ts) (6.16)
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Taking the inverse Fourier transform, we can get the heat kernel

)

1 . a;t itt+rts—Y1_ L‘z 12

hs(Z, t) == —1 H ]— e j=1 tanh(a]m) J d'L'.
2t | sinh(a;Ts)

—00

We substitute the variable 7 by t/s in the integral and obtain

o
1 u ait it gLy T2
he(z, 1) = ———— — e~ e A (Y
5@ 1) 2(7TS)"+1/ li[]sinh(ajt) ¢ ( )

We are interested in the case of n = 1 and A = 0, and the estimates of the derivative
of the heat kernel along the Reed vector field % In this case, we seta; = a, n = 1
and A = 1 in (6.17) and the heat kernel have the form:

_ 1 ya art S N
hs(z,t) = 20 / Snh(aD) exp[ p |:tanh(ar) 1| ll:”d‘(. (6.18)

—00

Take the derivative of the heat kernel with respect to ¢, we have

o0
a\" i" ar"t! T a
—) hs(z,t) = —— | ——— 2> —ir| | dr.
(8t> (2. 1) 2 2sm+2 / sinh(at) exp[ s [tanh(ar)IZI l:“ ‘

—00

First the following simple estimates:

1< <c(l+|z]) and 0 < <c(l+|zDe !

~ tanht sinh t

imply
o
a\" ¢ " —a |z
9 —alt| Iz
‘(m) I )| = s /(1+a|r|>|r| e exp[ - ]dr
—00
Km 7¢
— 27.[2Sm+28 ’

for K,, = ffooo(l +alt|)|t|™e " ldT when z # 0. Here c is a constant. This implies
the integral is absolutely convergent when z # 0. In the case of z = 0, we need to
change the contour of the integral.

In order to get some better estimates, we need to introduce the Carnot—Caratheodory
distance. We first introduce two following function to simplify the notations:

f(z,t, 1) = lel2 —itt and v(r) = _ar
» 777 tanh(ar) " sinh(at)’
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Then the unique critical point of f(z, ¢, T) as a function of t in the strip {|Smzt| < 7w /a}
is the point 7, = i6.(z, t), where 0, is the solution of

t = alz)*u(ab), here u(p) = d; — cot ¢.
sin“ ¢

The Carnot-Caratheodory distance d(z, t) between (0, 0) and (z, #) and the value of
f(z,t, .) has the relation

flzt, ) = ldz(z, 1) = v(ab,) (ﬂ
2 a
¢2

- ¢ +sin® ¢ —singcosp

+ |z|2) with v(¢)

Then the heat kernel satisfies the upper estimate [3]:

1

C 2 u 2
h 1) < — —d(z,t) /2Sm' 1’ - , 1, c Hl xR
s(z,1) = e in A (z.1,5) +

(6.19)

The heat kernel also satisfies:

e—d(z,t)z/Zs TS 172 ' o sarts

2
where f”(if.) = % |z=ig,. Combine these two estimates, we have

ﬁefd(z,t)z/%

2 _d(z,0)?)2s
e
$2

C
<hs(z,1) = —
N

Then we can apply the same method to derive the upper estimate of the derivative of
the heat kernel and get
a m
— ) hs(z,t
‘ ( P) l) s(z, 1)

We want to bound the derivative of the heat kernel by the heat kernel when s is large,
i.e., we want to find M > 0 so that

a m
‘ (5) hg(z, 1)
C3

2 C 2 C
—ze_d(”) /25 < M—zle_d(z”) /25 this implies M > 3
sm+ s Cos™

< C3 —d(z.1)%/2s
—Fe
— sm+2

< Mhy(z,1).

It suffices that
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C3 .
;> then we will have

9\™
‘(5) hg(z,t)

In the case of z = 0, the integral in the heat kernel can be computed explicitly and
has been done in [3]. In this case, we assume that s > 0 and

Hence, if we fix s > 0 and take M >

< Mhy(z,t) (6.20)

1 efns/Zaz 1
4at? (1 +e—ns/2at)2 = 4at?

h;(O, S) = e*TrS/Zul{l + O(efns/Zat)}'

In this case d(0, 5)> = 7|s|/2. So the upper estimate (6.19) also holds in this case.
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