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Abstract This paper is concerned with an optimal strategy for simultaneously trading
of a pair of stocks. The idea of pairs trading is to monitor their price movements and
compare their relative strength over time. A pairs trade is triggered by their prices
divergence and consists of a pair of positions to short the strong stock and to long
the weak one. Such a strategy bets on the reversal of their price strengths. From
the viewpoint of technical tractability, typical pairs-trading models usually assume a
difference of the stock prices satisfies a mean-reversion equation. In this paper, we
consider the optimal pairs-trading problem by allowing the stock prices to follow
general geometric Brownian motions. The objective is to trade the pairs over time to
maximize an overall return with a fixed commission cost for each transaction. The
optimal policy is characterized by threshold curves obtained by solving the associated
HJB equations. Numerical examples are included to demonstrate the dependence of
our trading rules on various parameters and to illustrate how to implement the results
in practice.
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1 Introduction

This paper is about an optimal policy for simultaneously trading of a pair of stocks.
The idea of pairs trading is to track the price movements of these two securities over
time and compare their relative price strengths. A pairs trade is triggered when their
prices diverge, e.g., one stockmoves up substantially relative to the other. A pairs trade
is entered and consists of a short position in the stronger stock and a long position in
the weaker one. Such a strategy bets on the reversal of their price strength. A major
advantage of pairs trading is its ‘market neutral’ nature in the sense that it can be
profitable under any market conditions.

Pairs trading was initially introduced by Bamberger and followed by Tartaglia’s
quantitative group atMorganStanley in the 1980s; seeGatev et al. [1] for related history
and background details. There are many in-depth discussions in connection with the
cause of the divergence and subsequent convergence; see the book by Vidyamurthy
[2] and references therein. In addition to these studies, an advanced mathematical
method was developed in Song and Zhang [3] to address issues in connection with
pairs trading when the underlying pairs follow a mean-reversion model. It is shown in
[3] that the optimal trading rule can be determined by threshold levels. These levels
can be obtained by solving algebraic equations. A set of sufficient conditions are also
provided to establish the desired optimality.One of the key assumptions in [3] is that the
pairs value has to be a mean-reversion process. This clearly adds a severe limitation on
its potential applications. In order to meet the mean-reversion requirement, tradable
pairs are typically selected among stocks from the same industrial sector. From a
practical viewpoint, it is highly desirable to have a broad range of stock selections for
pairs trading. Mathematically speaking, this amounts to the possibility of extending
the pairs-trading results in [3] under traditional stock price models such as geometric
Brownian motions. To address the practical needs, in this paper, we develop a new
method to treat the pairs-trading problem under general geometric Brownian motions.

By and large, the optimal timing of investments in irreversible projects can also
be considered as a pairs-trading problem. Back in 1986, McDonald and Siegel [4]
considered optimal timing of investment in an irreversible project. Two factors are
included in their model: the growth of the investment capital and the change in project
cost. Greater capital growth potential and lesser future project cost will postpone the
transaction. Further studies along this line were carried out by Hu and Øksendal [5]
to specify precise optimality conditions and to provide a new proof of the following
variational inequalities among others. Their results can be easily interpreted in terms
of pairs trading. It is simply a pairs-trading selling rule! This is, assuming an existing
pairs position with a long position in one stock and a short position in another, the
problem is to determine when to exit and close the position, i.e., to sell the long posi-
tion and cover the short position. In this paper, we extend these results by allowing
sequentially and simultaneously trading of these pairs. We focus on simple and eas-
ily implementable pairs-trading strategy and its optimality and closed-form solution.
As expected, the value function incurred by the sequential decisions becomes more
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complicated comparing with that incurred by one-time decision (Hu and Øksendal
[5]).

Mathematical portfolio selection and trading rules have been studied for many
years. For example, Davis and Norman [6] studied Merton’s investment/consumption
problem with transaction costs and established wedge-shaped regions for the pair of
bank and stock holdings. In-depth studies and a complete solution to this problem
can be found in Shreve and Soner [7]. A basic assumption underlying these works
is that a fraction of shares can be traded and the performance is evaluated via a
hyperbolic absolute risk aversion utility function. A more realistic setting under a
regime switching model was considered in Zhang [8] in connection with stock selling
rule determined by two threshold levels, a target price and a stop-loss limit. In [8], such
optimal threshold levels are obtained by solving a set of two-point boundary value
problems. Guo and Zhang [9] studied the optimal selling rule under a model with
switching Geometric Brownian motion. Using a smooth-fit technique, they obtained
the optimal threshold levels by solving a set of algebraic equations. These papers are
concerned with the selling side of trading in which the underlying price models are
of GBM type. Recently, Dai et al. [10] developed a trend following rule based on a
conditional probability indicator. They showed that the optimal trading rule can be
determined by two threshold curves which can be obtained by solving the associated
Hamilton–Jacobi–Bellman (HJB) equations. Similar idea was developed following a
confidence interval approach by Iwarere and Barmish [11]. In addition, Merhi and
Zervos [12] studied an investment capacity expansion/reduction problem following a
dynamic programming approach under a geometric Brownian motion market model.
Similar problem under a more general market model was treated by Løkka and Zervos
[13]. In connection with mean-reversion trading, Zhang and Zhang [14] obtained a
buy-low and sell-high policy by characterizing the ‘low’ and ‘high’ levels in terms of
the mean-reversion parameters.

In this paper, we consider an optimal pairs-trading rule in which a pairs (long–short)
position consists of a long position of one stock and a short position of the other. The
objective is to initiate (buy) and close (sell) the pairs positions sequentially to maxi-
mize a discounted payoff function. Fixed proportional transaction (commission and/or
slippage) costs will be imposed to each transaction. We study the problem following
a dynamic programming approach and establish the associated HJB equations for the
value functions. We show that the corresponding optimal stopping times can be deter-
mined by two threshold curves (lines with slopes k1 and k2). These key levels are
given by the ratio of one-share long position to the one-share short position and can be
obtained in closed form. We also examine the dependence of these threshold levels on
various parameters in numerical examples. Finally, we demonstrate how to implement
the results using a pair of stocks and their historical prices. To conclude, we highlight
the main new features and contributions: (a) The typical mean-reversion requirement
for pairs trading is dropped, and traditional geometric Brownian motion models are
used to capture stock price movements. The one-time selling decision treated in [5] is
generalized to a sequence of trading decisions. (b) A set of new smooth-fit conditions
are provided by solving multi-variable partial differential equations, and new thresh-
old curves are obtained rather than typical constant threshold levels. (c) A closed-form
solution for the optimal pairs-trading problem is obtained.
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This paper is organized as follows. In Sect. 2, we formulate the pairs-trading prob-
lem under consideration. In Sect. 3, we study basic properties of the value functions.
In Sect. 4, we consider the associate HJB equations and their solutions. In Sect. 5,
we present a verification theorem. Finally, a numerical example is given in Sect. 6 to
illustrate the results.

2 Problem Formulation

We consider two stocks S1 and S2. Let {X1
t , t ≥ 0} denote the prices of stock S1

and {X2
t , t ≥ 0} that of stock S2. They satisfy the following stochastic differential

equation:

d

(
X1
t

X2
t

)
=
(
X1
t
X2
t

)[(
μ1
μ2

)
dt +

(
σ11 σ12
σ21 σ22

)
d

(
W 1

t
W 2

t

)]
, (1)

where μi , i = 1, 2, are the return rates, σi j , i, j = 1, 2, the volatility constants, and
(W 1

t ,W 2
t ) a 2-dimensional standard Brownian motion.

In this paper, we consider a pairs-trading strategy. For simplicity, we assume the
corresponding pairs position consists of one-share long position in stock S1 and one-
share short position in stock S2. Also, the notation Si , i = 1, 2, are reserved for the
underlying stocks and Z the corresponding pairs position. One share in Z means the
combination of one-share long position in S1 and one-share short position in S2.

We consider the case that the net position at any time can be either long (with one
share of Z) or flat (no stock position of either S1 or S2). Let i = 0, 1 denote the initial
net position, and let τ0 ≤ τ1 ≤ τ2 ≤ · · · denote a sequence of stopping times. If
initially the net position is long (i = 1), then one should sell Z before acquiring any
future shares. That is, to first sell the pair at τ0, then buy at τ1, sell at τ2, buy at τ3, etc.
The corresponding trading sequence is denoted by Λ1 = (τ0, τ1, τ2, . . .). Likewise,
if initially the net position is flat (i = 0), then one should start to buy a share of Z.
That is, to first buy at τ1, sell at τ2, then buy at τ3, etc. The corresponding sequence
of stopping times is denoted by Λ0 = (τ1, τ2, . . .).

Let K denote the fixed percentage of transaction costs associated with buying or
selling of stocks Si , i = 1, 2. For example, the cost to establish the pairs position Z at
t = t1 is (1 + K )X1

t1 − (1 − K )X2
t2 and the proceeds to close it at a later time t = t2

is (1 − K )X1
t2 − (1 + K )X2

t2 . For ease of notation, let βb = 1 + K and βs = 1 − K .
Given the initial state (x1, x2), the initial net position i = 0, 1, and the decision

sequences Λ0 and Λ1, the corresponding reward functions

J0(x1, x2,Λ0)=E

{[
e−ρτ2

(
βsX

1
τ2

− βbX
2
τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1

− βsX
2
τ1

)
I{τ1<∞}

]

+
[
e−ρτ4

(
βsX

1
τ4

− βbX
2
τ4

)
I{τ4<∞} − e−ρτ3

(
βbX

1
τ3

− βsX
2
τ3

)
I{τ3<∞}

]
+ · · ·

}
,

J1(x1, x2,Λ1)=E

{
e−ρτ0

(
βsX

1
τ0

− βbX
2
τ0

)
I{τ0<∞}
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+
[
e−ρτ2

(
βsX

1
τ2

− βbX
2
τ2

)
I{τ2<∞}−e−ρτ1

(
βbX

1
τ1

− βsX
2
τ1

)
I{τ1<∞}

]

+
[
e−ρτ4

(
βsX

1
τ4

− βbX
2
τ4

)
I{τ4<∞}−e−ρτ3

(
βbX

1
τ3

− βsX
2
τ3

)
I{τ3<∞}

]
+ · · ·

}
, (2)

where ρ > 0 is a given discount factor and IA is the indicator function of an event A.
For i = 0, 1, let Vi (x1, x2) denote the value functions with (X1

0, X
2
0) = (x1, x2)

and initial net positions i = 0, 1. That is, Vi (x1, x2) = supΛi
Ji (x1, x2,Λi ), i = 0, 1.

Remark 2.1 Note that the ‘one-share’ assumption can be easily relaxed. For example,
one can consider any pairs Z consisting of n1 shares of long position in S1 and n2
shares of short position in S2. This case can be treated by changing the state variables
(X1

t , X
2
t ) → (n1X1

t , n2X
2
t ). Due to the nature of GBMs, the corresponding system

equation in (1) will stay the same. The new allocations will only affect the reward
function in (2) implicitly. In addition, we only focus on the ‘long’ side of pairs trading
and note that the ‘short’ side of trading can also be treated by simply switching the
roles of the two stocks S1 and S2.

Example 2.1 In this example, we consider stock prices of Target Corp. (TGT) and
Wal-Mart Stores Inc. (WMT). In Fig. 1, daily closing prices of both stocks from 1985
to 2014 are plotted. The data are divided into two parts. The first part (1985–1999)
will be used to calibrate the model and the second part (2000–2014) to backtest the
performance of our results. Using the prices (1985–1999) and following the traditional

Fig. 1 Daily closing prices of TGT and WMT from 1985 to 2014
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least squares method, we obtain μ1 = 0.2059, μ2 = 0.2459, σ11 = 0.3112, σ12 =
0.0729, σ21 = 0.0729, σ22 = 0.2943.

In this paper, we will assume that the discount factor ρ is greater than the return
rates of each stock prices., i.e., ρ > μ1 and ρ > μ2.

Remark 2.2 Note that ρ serves as a combined discounting and risk aversion rate. The
above inequalities are often imposed when treating related decision-making problems
(see, e.g., Hu and Øksendal [5] and McDonald and Siegel [4]). They are also used to
ensure that the corresponding value functions are finite. If some of these conditions are
violated, e.g., taking μ1 = 0.20, μ2 = 0.10, and ρ = 0.15, it can be seen that, for all
(x1, x2) > 0, V1(x1, x2) ≥ Ee−0.15n(βsX1

n − βbX2
n) = βsx1e0.05n − βbx2e−0.05n →

∞, as n → ∞.

3 Properties of the Value Functions

In this section, we establish basic properties of the value functions. First, for any
given sequence of stopping times τ0 ≤ τ1 ≤ τ2, . . ., let Λ1 = (τ0, τ1, τ2, . . .) and
Λ0 = (τ1, τ2, . . .). Note that J1(x1, x2,Λ1) = E

[
e−ρτ0

(
βsX1

τ0
− βbX2

τ0

)
I{τ0<∞}

]+
J0(x1, x2,Λ0). In particular, if τ0 = 0, a.s., then J1(x1, x2,Λ1) = βsx1 − βbx2 +
J0(x1, x2,Λ0). It follows that

V1(x1, x2) ≥ βsx1 − βbx2 + V0(x1, x2). (3)

Similarly, let Λ0 = (τ1, τ2, . . .) and the subsequent Λ1 = (τ2, . . .). Then, we
have J0(x1, x2,Λ0) = −E

[
e−ρτ1

(
βbX1

τ1
− βsX2

τ1

)
I{τ1<∞}

] + J1(x1, x2,Λ1). Set-
ting τ1 = 0, a.s., leads to

V0(x1, x2) ≥ −βbx1 + βsx2 + V1(x1, x2). (4)

Lemma 3.1 For all x1, x2 > 0, we have

0 ≤ V0(x1, x2) ≤ x2, and βsx1 − βbx2 ≤ V1(x1, x2) ≤ βbx1 + Kx2.

Proof Recall inequalities (3) and (4). It suffices to show the bounds for V0(x1, x2). It is
clear that V0(x1, x2) ≥ 0 by definition and taking τ1 = ∞. To show V0(x1, x2) ≤ x2,
note that βb > 1 and βs < 1. It follows that

J0(x1, x2, Λ0) ≤ E

{[
e−ρτ2

(
X1

τ2
− X2

τ2

)
I{τ2<∞} − e−ρτ1

(
X1

τ1
− X2

τ1

)
I{τ1<∞}

]

+
[
e−ρτ4

(
X1

τ4
− X2

τ4

)
I{τ4<∞} − e−ρτ3

(
X1

τ3
− X2

τ3

)
I{τ3<∞}

]
+ · · ·

}
.
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Regroup the above terms to obtain

J0(x1, x2,Λ0)

≤E

{(
e−ρτ2X1

τ2
I{τ2<∞}−e−ρτ1X1

τ1
I{τ1<∞}

)
+
(
e−ρτ4X1

τ4
I{τ4<∞}

− e−ρτ3X1
τ3
I{τ3<∞}

)+· · ·
}

− E

{(
e−ρτ2X2

τ2
I{τ2<∞}− e−ρτ1X2

τ1
I{τ1<∞}

)
+
(
e−ρτ4X2

τ4
I{τ4<∞}

− e−ρτ3X2
τ3
I{τ3<∞}

)+· · ·
}
.

We first consider the term E
[
(e−ρτ2X1

τ2
I{τ2<∞} − e−ρτ1X1

τ1
I{τ1<∞}

]
. For each m =

1, 2, . . . and n = 1, 2, . . ., let τ nm = τm ∧ n. Recall that ρ > μ1. Then Dynkin’s
formula implies

E
[
e−ρτ n2 X1

τ n2
− e−ρτ n1 X1

τ n1

]
= E

∫ τ n2

τ n1

e−ρt X1
t (−ρ + μ1)dt ≤ 0.

In addition, the uniform integrability of {e−ρτ n1 X1
τ n1

} can be proved by show-

ing the existence of a γ0 > 1 such that supn E
(
e−ρτ n1 X1

τ n1

)γ0
< ∞. Sending

n → ∞, we have Ee−ρτ nm X1
τ nm

→ Ee−ρτm X1
τm
I{τm<∞}, m = 1, 2. It follows that

E
[
e−ρτ2X1

τ2
I{τ2<∞} − e−ρτ1X1

τ1
I{τ1<∞}

] ≤ 0. Repeat this on each term below to
obtain

E

{(
e−ρτ2X1

τ2
I{τ2<∞}−e−ρτ1X1

τ1
I{τ1<∞}

)
+
(
e−ρτ4X1

τ4
I{τ4<∞}

− e−ρτ3X1
τ3
I{τ3<∞}

)
+· · ·

}
≤ 0.

Similarly, we can show, for each m = 1, 2, . . .,

−E
[
e−ρτm+1X2

τm+1
I{τm+1<∞} − e−ρτm X2

τm
I{τm<∞}

]
= E

∫ τm+1

τm

e−ρt X2
t (ρ − μ2)dt,

by noticing the monotone convergence of E
∫ τ nm
0 e−ρt X2

t (ρ − μ2)dt to E
∫ τm
0 e−ρt X2

t

(ρ − μ2)dt and, therefore, the convergence of E
∫ τ nm+1
τ nm

e−ρt X2
t (ρ − μ2)dt to

E
∫ τm+1
τm

e−ρt X2
t (ρ − μ2)dt as n → ∞. It follows that
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−E

{(
e−ρτ2 X2

τ2
I{τ2<∞}−e−ρτ1 X2

τ1
I{τ1<∞}

)+(e−ρτ4 X2
τ4
I{τ4<∞}−e−ρτ3 X2

τ3
I{τ3<∞}

)+ · · ·
}

= −E

{∫ τ2

τ1

(−ρ + μ2)e
−ρt X2

t dt +
∫ τ4

τ3

(−ρ + μ2)e
−ρt X2

t dt + · · ·
}

= E

{∫ τ2

τ1

(ρ − μ2)e
−ρt X2

t dt +
∫ τ4

τ3

(ρ − μ2)e
−ρt X2

t dt + · · ·
}

≤ (ρ − μ2)E
∫ ∞

0
e−ρt X2

t dt = (ρ − μ2)

∫ ∞

0
e−ρt (x2e

μ2t )dt = x2.

��

4 HJB Equations

In this section, we study the associated HJB equations. Let

A = 1

2

{
a11x

2
1

∂2

∂x21
+ 2a12x1x2

∂2

∂x1∂x2
+ a22x

2
2

∂2

∂x22

}
+ μ1x1

∂

∂x1
+ μ2x2

∂

∂x2
,

where a11 = σ 2
11 + σ 2

12, a12 = σ11σ21 + σ12σ22, and a22 = σ 2
21 + σ 2

22. Formally, the
associated HJB equations have the form: For x1, x2 > 0,

min
{
ρv0(x1, x2) − Av0(x1, x2), v0(x1, x2) − v1(x1, x2) + βbx1 − βsx2

}
= 0,

min
{
ρv1(x1, x2) − Av1(x1, x2), v1(x1, x2) − v0(x1, x2) − βsx1 + βbx2

}
= 0.

(5)
To solve the aboveHJB equations, we first convert them into single-variable equations.
Let y = x2/x1 and vi (x1, x2) = x1wi (x2/x1), for some function wi (y) and i = 0, 1.
Then we have by direct calculation that

∂vi

∂x1
= wi (y) − yw′

i (y),
∂vi

∂x2
= w′

i (y),

∂2vi

∂x21
= y2w′′

i (y)

x1
,

∂2vi

∂x22
= w′′

i (y)

x1
, and

∂2v1

∂x1∂x2
= − yw′′

i (y)

x1
.

Write Avi in terms of wi to obtain

Avi = x1

{
1

2
[a11 − 2a12 + a22] y

2w′′
i (y) + (μ2 − μ1)yw

′
i (y) + μ1wi (y)

}
.

Then, the HJB equations can be given in terms of y and wi as follows:

min
{
ρw0(y) − Lw0(y), w0(y) − w1(y) + βb − βsy

}
= 0,

min
{
ρw1(y) − Lw1(y), w1(y) − w0(y) − βs + βby

}
= 0,

(6)

where L[wi (y)] = λy2w′′
i (y) + (μ2 − μ1)yw′

i (y) + μ1wi (y) and λ = (a11 − 2a12 +
a22)/2. In this paper, we only consider the case when λ 
= 0. If λ = 0, the problem
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x1

x2

O

x2 = k1x1

x2 = k2x1

Γ1

Γ2

Γ3
(ρ − A)v0 = 0
v1 = v0 + βsx1 − βbx2

(ρ − A)v0 = 0
(ρ − A)v1 = 0

(ρ − A)v1 = 0
v0 = v1 − βbx1 + βsx2

Buy S1 and Sell Short S2

Hold

Sell S1 and Buy Back S2

Fig. 2 Regions Γ1, Γ2, and Γ3

reduces to a first-order case and can be treated in a similar way. To solve the above HJB
equations, we first consider the equations (ρ − L)wi (y) = 0, i = 0, 1. Clearly, these
are the Euler equations and their solutions are of the form yδ , for some δ. Substitute this
into the equation (ρ−L)wi = 0 to obtain δ2−(1 + (μ1 − μ2)/λ) δ−(ρ − μ1)/λ = 0.
There are two real roots δ1 and δ2 (by direct calculation δ1 > 1 and δ2 < 0) given by

δ1 = 1

2

⎛
⎝1 + μ1 − μ2

λ
+
√(

1 + μ1 − μ2

λ

)2

+ 4ρ − 4μ1

λ

⎞
⎠ > 1,

δ2 = 1

2

⎛
⎝1 + μ1 − μ2

λ
−
√(

1 + μ1 − μ2

λ

)2

+ 4ρ − 4μ1

λ

⎞
⎠ < 0.

(7)

Therefore, the general solution of (ρ − L)wi (y) = 0 should be of the form: wi (y) =
ci1yδ1 + ci2yδ2 , for some constants ci1 and ci2, i = 1, 2.

Intuitively, if X1
t is small and X2

t is large, then one should buy S1 and sell (short)
S2. That is to open a pairs position Z. If, on the other hand, X1

t is large and X2
t is

small, then one should close the position Z by selling S1 and buying back S2. In view
of this, we divide the first quadrant P = {(x1, x2) : x1 > 0 and x2 > 0} into three
regions Γ1, Γ2, and Γ3 where Γ1 = {(x1, x2) ∈ P : x2 ≤ k1x1}, Γ2 = {(x1, x2) ∈
P : k1x1 < x2 < k2x1}, and Γ3 = {(x1, x2) ∈ P : x2 ≥ k2x1}. This is illustrated in
Fig. 2.

123

Author's personal copy



J Optim Theory Appl

Recall y = x2/x1. With a little bit abuse of notation, we write the corresponding
Γi , i = 1, 2, 3, in terms of y: Γ1 = {y : 0 < y ≤ k1}, Γ2 = {y : k1 < y < k2}, and
Γ3 = {y : y ≥ k2}. Here 0 < k1 < k2 are thresholds to be determined so that on

Γ1 : (ρ − L)w0 = 0, w1 = w0 + βs − βby;
Γ2 : (ρ − L)w0 = 0, (ρ − L)w1 = 0;
Γ3 : w0 = w1 − βb + βsy, (ρ − L)w1 = 0.

(8)

In view of Lemma 3.1, the value functions have to be bounded near the origin.
Recall that δ2 < 0. In order to have bounded value function w0 on Γ1, the coefficient
of the term yδ2 in its general form has to be zero. Therefore, w0 = C0yδ1 for some
constantC0 onΓ1. Likewise, onΓ3, the coefficient of yδ1 must be zero because δ1 > 1.
The solution w1 = C1yδ2 for some C1 on Γ3. Finally, these functions are extended to
Γ2 and are given by w0 = C0yδ1 and w1 = C1yδ2 . Therefore, the solutions on each
region should have the form:

Γ1 : w0 = C0yδ1 , w1 = C0yδ1 + βs − βby;
Γ2 : w0 = C0yδ1 , w1 = C1yδ2;
Γ3 : w0 = C1yδ2 − βb + βsy, w1 = C1yδ2 .

Remark 4.1 Note that the assumptions ρ > μ1 and ρ > μ2 play a key role in the
above analysis. In order to eliminate some constants in the general solutions w0 and
w1, one needs δ1 > 1 and δ2 < 0. It can be shown by direct computation that these
inequalities hold iff both ρ > μ1 and ρ > μ2 are satisfied.

Smooth-fit conditions. Next we develop smooth-fit conditions and determine the
values for parameters: k1, k2, C0, and C1. In particular, we are to find C1 solutions on
the entire region {y > 0}. Necessarily, the continuity ofw1 and its first-order derivative
at y = k1 imply C1k

δ2
1 = C0k

δ1
1 + βs − βbk1 and C1δ2k

δ2−1
1 = C0δ1k

δ1−1
1 − βb. We

write them in matrix form:

(
kδ1
1 −kδ2

1
δ1k

δ1−1
1 −δ2k

δ2−1
1

)(
C0
C1

)
=
(

βbk1 − βs
βb

)
. (9)

Similarly, the smooth-fit conditions for w0 at y = k2 yield the equations:

(
kδ1
2 −kδ2

2
δ1k

δ1−1
2 −δ2k

δ2−1
2

)(
C0
C1

)
=
(

βsk2 − βb
βs

)
. (10)

We can solve for C0 and C1 and express the corresponding inverse matrices in terms
of k1 and k2 to obtain

(
C0
C1

)
= 1

δ1 − δ2

(
βb(1 − δ2)k

1−δ1
1 + βsδ2k

−δ1
1

βb(1 − δ1)k
1−δ2
1 + βsδ1k

−δ2
1

)
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= 1

δ1 − δ2

(
βs(1 − δ2)k

1−δ1
2 + βbδ2k

−δ1
2

βs(1 − δ1)k
1−δ2
2 + βbδ1k

−δ2
2

)
. (11)

The second equality yields two equations of k1 and k2. Simplify them and write

(1 − δ2)
(
βbk

1−δ1
1 − βsk

1−δ1
2

)
= δ2

(
βbk

−δ1
2 − βsk

−δ1
1

)
,

(1 − δ1)
(
βbk

1−δ2
1 − βsk

1−δ2
2

)
= δ1

(
βbk

−δ2
2 − βsk

−δ2
1

)
.

Let r = k2/k1. Replace k2 by rk1 to obtain (1−δ2)(βb−βsr1−δ1)k1 = δ2(βbr−δ1−βs)

and (1 − δ1)(βb − βsr1−δ2)k1 = δ1(βbr−δ2 − βs). It follows that

k1 = δ2(βbr
−δ1 − βs)/[(1 − δ2)(βb − βsr

1−δ1)]
= δ1(βbr

−δ2 − βs)/[(1 − δ1)(βb − βsr
1−δ2)].

The second equality yields an equation in terms of r : δ2(βbr−δ1 − βs)/[(1 − δ2)

(βb − βsr1−δ1)] = δ1(βbr−δ2 − βs)/[(1− δ1)(βb − βsr1−δ2)]. To show the existence
of solution r0, we let β = βb/βs(>1) and

f (r) = δ1(1 − δ2)(βbr
−δ2 − βs)(βb − βsr

1−δ1)

−δ2(1 − δ1)(βbr
−δ1 − βs)(βb − βsr

1−δ2).

Then we can show f (β2) = (δ1 − δ2)β
2
s β(β1−2δ2 − 1)(1− β1−2δ1) > 0 and f (r) ≈

−(1 − δ1)δ2β
2
s r

1−δ2 → −∞ as r → ∞ by taking the leading terms in f (r).
Therefore, there exists r0 > β2 so that f (r0) = 0. Using this r0, we can write k1 and
k2:

k1 = δ2(βbr
−δ1
0 − βs)

(1 − δ2)(βb − βsr
1−δ1
0 )

= δ1(βbr
−δ2
0 − βs)

(1 − δ1)(βb − βsr
1−δ2
0 )

,

k2 = δ2(βbr
1−δ1
0 − βsr0)

(1 − δ2)(βb − βsr
1−δ1
0 )

= δ1(βbr
1−δ2
0 − βsr0)

(1 − δ1)(βb − βsr
1−δ2
0 )

.

(12)

Finally, we can use these k1 and k2 to express C0 and C1 given in (11).

Theorem 4.1 Let δi be given by (7) and ki be given by (12). Then, the following
functions w0 and w1 satisfy the HJB Eq. (6):

w0(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
βb(1 − δ2)k

1−δ1
1 + βsδ2k

−δ1
1

δ1 − δ2

)
yδ1 , if 0 < y < k2,(

βb(1 − δ1)k
1−δ2
1 + βsδ1k

−δ2
1

δ1 − δ2

)
yδ2 + βsy − βb, if y ≥ k2,

w1(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
βb(1 − δ2)k

1−δ1
1 + βsδ2k

−δ1
1

δ1 − δ2

)
yδ1 + βs − βby, if 0 < y ≤ k1,(

βb(1 − δ1)k
1−δ2
1 + βsδ1k

−δ2
1

δ1 − δ2

)
yδ2 , if y > k1.
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In view of this theorem, v0(x1, x2) = x1w0(x2/x1) and v1(x1, x2) = x1w1(x2/x1)
satisfy the original HJB Eq. (5). Next, we first show a lemma needed in the proof.

Lemma 4.1 Let k1 and k2 be given as in (12) with r = r0. Then

k1 <
βs(ρ − μ1)

βb(ρ − μ2)
and k2 >

βb(ρ − μ1)

βs(ρ − μ2)
. (13)

Proof First, we note that δ1 + δ2 = 1 + (μ1 − μ2)/λ and δ1δ2 = −(ρ − μ1)/λ. It
follows that

ρ − μ1

ρ − μ2
= δ1(−δ2)

(δ1 − 1)(1 − δ2)
. (14)

Use this equality and recall that r0 > β2 to obtain

k1 <
βs(ρ − μ1)

βb(ρ − μ2)
⇐⇒

δ2

(
βbr

−δ1
0 − βs

)

(1 − δ2)
(
βb − βsr

1−δ1
0

) <
δ1(−δ2)

(δ1 − 1)(1 − δ2)
· βs

βb

⇐⇒ βs − βbr
−δ1
0

βb − βsr
1−δ1
0

<
δ1

δ1 − 1
· βs

βb
(∵ δ1 > 1, δ2 < 0)

⇐⇒ 1 − βr−δ1
0

β − r1−δ1
0

<
δ1

δ1 − 1
· 1
β

(∵ β = βb/βs > 1)

⇐⇒ (δ1 − 1)β(1 − βr−δ1
0 ) < δ1(β − r1−δ1

0 ) (∵ β − r1−δ1
0 > 0)

⇐⇒ 1

δ1
βr δ1−1

0 +
(
1 − 1

δ1

)
β2r−1

0 > 1 (simple algebra).

Apply the arithmetic–geometric mean inequality (θ A + (1− θ)B ≥ Aθ B1−θ for any
nonnegative A and B and 0 ≤ θ ≤ 1) to obtain

1

δ1
βr δ1−1

0 +
(
1 − 1

δ1

)
β2r−1

0 ≥
(
βr δ1−1

0

) 1
δ1 ·
(
β2r−1

0

)1− 1
δ1 = β

2− 1
δ1 > 1,

because β > 1 and 2 − 1/δ1 > 1. So the first inequality in (13) holds.
Similarly, we have

k2 >
βb(ρ − μ1)

βs(ρ − μ2)
⇐⇒

δ1

(
βbr

1−δ2
0 − βsr0

)

(1 − δ1)(βb − βsr
1−δ2
0 )

>
δ1(−δ2)

(δ1 − 1)(1 − δ2)
· βb

βs

⇐⇒ βbr
1−δ2
0 − βsr0

βsr
1−δ2
0 − βb

>
(−δ2)

1 − δ2
· βb

βs

⇐⇒ βr1−δ2
0 − r0

r1−δ2
0 − β

>
−δ2

1 − δ2
· β

⇐⇒ (1 − δ2)(βr
1−δ2
0 − r0)>(−δ2)β(r1−δ2

0 − β) (∵ r1−δ2
0 >β)

⇐⇒ 1

1 − δ2
βr−δ2

0 + −δ2

1 − δ2
β2r−1

0 > 1(simple algebra).
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Again, the AG mean inequality yields:

1

1 − δ2
βr−δ2

0 + −δ2

1 − δ2
β2r−1

0 > (βr−δ2
0 )

1
1−δ2 · (β2r−1

0 )
−δ2
1−δ2 = β

2− 1
1−δ2 > 1,

because β > 1 and (2−1/(1 − δ2)) > 1. Hence, the second inequality in (13) follows.
��

Proof of Theorem 4.1 Note that the functionsw0 andw1 have to satisfy all inequalities
in (6). That is, for all y > 0, we need

(ρ −L)w0(y) ≥ 0, (ρ −L)w1(y) ≥ 0, −βb +βsy ≤ w0(y)−w1(y) ≤ −βs +βby.
(15)

Recall the equalities in (8). We have

(ρ − L)w0 = 0 on Γ1 ∪ Γ2, (ρ − L)w1 = 0 on Γ2 ∪ Γ3,

w0 − w1 + βb − βsy = 0 on Γ3, w1 − w0 + βby − βs = 0 on Γ1.

It is sufficient to show the following inequalities

On Γ1 : (ρ − L)w1 ≥ 0, w0 − w1 + βb − βsy ≥ 0,
On Γ2 : w0 − w1 + βb − βsy ≥ 0, w1 − w0 + βby − βs ≥ 0,
On Γ3 : (ρ − L)w0 ≥ 0, w1 − w0 + βby − βs ≥ 0.

Variational inequalities on Γ1 and Γ3. We first consider these inequalities on Γ1.
Using (ρ − L)w0 = 0 and w0 − w1 = −βs + βby, we have

w0 − w1 + βb − βsy = −βs + βby + βb − βsy = (βb − βs)(y + 1) > 0.

Note also that

(ρ − L)w1 = (ρ − L)(w0 − βby + βs) = (ρ − L)w0 + (ρ − L)(βs − βby)

= (ρ − μ1)βs + βb(μ2 − ρ)y.

So, (ρ − L)w1 ≥ 0 on Γ1 iff y ≤ βs(ρ − μ1)/(βb(ρ − μ2)), ∀y ≤ k1, iff k1 ≤
βs(ρ − μ1)/(βb(ρ − μ2)). The last inequality follows from the first inequality in
Lemma 4.1,

Similarly, on Γ3, we have w1 − w0 + βby − βs ≥ 0. Also, (ρ − L)w0 ≥ 0 is
equivalent to y ≥ βb(ρ −μ1)/(βs(ρ − μ2)), ∀y ≥ k2, which follows from the second
inequality in Lemma 4.1.
Variational inequalities on Γ2. Finally, we show these inequalities on Γ2. Let

φa(y) = w1 − w0 + βby − βs, φb(y) = w0 − w1 + βb − βsy.

Recall that w0 = C0yδ1 and w1 = C1yδ2 on Γ2. We have

φa(y) = C1y
δ2 − C0y

δ1 + βby − βs, φb(y) = C0y
δ1 − C1y

δ2 + βsy − βb.
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In view of our smooth-fit selections of C0 and C1, it follows that

φa(k1) = φ′
a(k1) = 0 and φb(k2) = φ′

b(k2) = 0. (16)

In addition, the variational inequalities on Γ1 and Γ3 and the continuity of w0 and w1
imply

φa(k2) ≥ 0 and φb(k1) ≥ 0. (17)

Using the expressions of C0 and C1 in terms of k1 in (11), we have

φ′′
a (y) = C1δ2(δ2 − 1)yδ2−2 − C0δ1(δ1 − 1)yδ1−2

= βb(1−δ1)k
1−δ2
1 +βsδ1k

−δ2
1

δ1 − δ2
δ2(δ2−1)yδ2−2

− βb(1−δ2)k
1−δ1
1 +βsδ2k

−δ1
1

δ1 − δ2
δ1(δ1−1)yδ1−2

= δ1(−δ2)βs

(δ1 − δ2)k21

[
(1 − δ2)

(
y

k1

)δ2−2

+ (δ1 − 1)

(
y

k1

)δ1−2
]

− (δ1 − 1)(1 − δ2)βb

(δ1 − δ2)k1

[
(−δ2)

(
y

k1

)δ2−2

+ δ1

(
y

k1

)δ1−2
]

Take y = k1 and use (14) to obtain

φ′′
a (k1) = (δ1 − 1)(1 − δ2)βb

k21

[
ρ − μ1

ρ − μ2
· βs

βb
− k1

]
> 0.

Next we write φ′′
a (y) using the expression of C0 and C1 in terms of k2:

φ′′
a (y) = δ1(−δ2)βb

(δ1 − δ2)k22

[
(1 − δ2)

(
y

k2

)δ2−2

+ (δ1 − 1)

(
y

k2

)δ1−2
]

− (δ1 − 1)(1 − δ2)βs

(δ1 − δ2)k2

[
(−δ2)

(
y

k2

)δ2−2

+ δ1

(
y

k2

)δ1−2
]

.

Set y = k2 to obtain

φ′′
a (k2) = (δ1 − 1)(1 − δ2)βs

k22

[
ρ − μ1

ρ − μ2
· βb

βs
− k2

]
< 0.

Note also that φ′′
a has a unique zero in [k1, k2]. This together with (16) and (17) implies

φa ≥ 0 on Γ2. In addition, note that φ′′
b (y) = −φ′′

a (y). It follows that φ′′
b (k1) < 0 and

φ′′
b (k2) > 0. Combining with the boundary conditions for φb in (16) and (17), we can

show φb ≥ 0 on Γ2. This completes the proof. ��
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5 A Verification Theorem

Theorem 5.1 We have vi (x1, x2) = x1wi (x2/x1) = Vi (x1, x2), i = 0, 1. Moreover, if
initially i = 0, let Λ∗

0 = (τ ∗
1 , τ ∗

2 , τ ∗
3 , . . .) such that τ ∗

1 = inf{t ≥ 0 : (X1
t , X

2
t ) ∈ Γ3},

τ ∗
2 = inf{t ≥ τ ∗

1 : (X1
t , X

2
t ) ∈ Γ1}, τ ∗

3 = inf{t ≥ τ ∗
2 : (X1

t , X
2
t ) ∈ Γ3}, and so

on. Similarly, if initially i = 1, let Λ∗
1 = (τ ∗

0 , τ ∗
1 , τ ∗

2 , . . .) such that τ ∗
0 = inf{t ≥ 0 :

(X1
t , X

2
t ) ∈ Γ1}, τ ∗

1 = inf{t ≥ τ ∗
0 : (X1

t , X
2
t ) ∈ Γ3}, τ ∗

2 = inf{t ≥ τ ∗
1 : (X1

t , X
2
t ) ∈

Γ1}, and so on. Then Λ∗
0 and Λ∗

1 are optimal.

Proof The proof is divided into five steps.
Step 1. C0 > 0, C1 > 0, and v0(x1, x2) ≥ 0.

In view of the definition ofC0 andC1 in (11), we haveC0 > 0 ⇐⇒ βs(1−δ2)k2+
βbδ2 > 0 ⇐⇒ k2 > βb(−δ2)/(βs(1 − δ2)). On the other hand, in view of (13) and
(14), we have k2 > βb(ρ − μ1)/(βs(ρ − μ2)) > βbδ1(−δ2)/(βs(δ1 − 1)(1 − δ2)) >

βb(−δ2)/(βs(1 − δ2)). So C0 > 0. Similarly, we can show C1 > 0. To see v0 ≥ 0,
it suffices to show w0 ≥ 0 on Γ3. It can be seen that w0(k2) > 0, w′

0(k2) > 0, and
w′′
0(k2) = C1δ2(δ2 −1)yδ2−2 > 0. It follows thatw′

0 is increasing on Γ3 and therefore
w′
0 > 0. This implies in turn that w0 is increasing on Γ3. Hence, w0 > 0 on Γ3.

Step 2. −Ax1 − Bx2 ≤ vi (x1, x2) ≤ Ax1 + Bx2, i = 0, 1, for some A and B.
We only show the case when i = 0. The proof for the other case is similar. First, on

Γ1∪Γ2,wehave 0 ≤ v0(x1, x2) = C0x
1−δ1
1 xδ1

2 = C0x1(x2/x1)δ1 ≤ C0x1(k2)δ1 .Next,
on Γ3, −βbx1 + βsx2 ≤ v0(x1, x2) = C1x1(x2/x1)δ2 − βbx1 + βsx2 ≤ C1x1(k2)δ2 −
βbx1 + βsx2. Hence, we can choose suitable A and B so that the inequalities hold.
Step 3. Let dYt = μ0dt + σ0dWt , Y0 = y, with constants μ0, σ0 and a standard
Brownian motion Wt . For any given l1 < l2, define a sequence of stopping times

τ01 = inf{t ≥ 0 : Yt = l1}, τ02 = inf{t ≥ τ01 : Yt = l2}, τ03 = inf{t ≥ τ02 : Yt = l1}, . . .

Then, for any given ρ0 > 0, Ee−ρ0τ
0
n → 0, as n → ∞.

Note that

Ee−ρ0τ
0
2 = Ee−ρ0τ

0
2 I{τ 01 <∞} + Ee−ρ0τ

0
2 I{τ 01 =∞}

= E[e−ρ0τ
0
2 |τ 01 < ∞]P(τ 01 < ∞) + 0

= E[e−ρ0(τ
0
2 −τ 01 ) · e−ρ0τ

0
1 |τ 01 < ∞]P(τ 01 < ∞)

= E[e−ρ0(τ
0
2 −τ 01 )|τ 01 < ∞]E[e−ρ0τ

0
1 |τ 01 < ∞]P(τ 01 < ∞)

= E[e−ρ0(τ
0
2 −τ 01 )|τ 01 < ∞]E[e−ρ0τ

0
1 ],

whereweused independence of (τ 02 −τ 01 ) and τ 01 on {τ 01 < ∞} and E[e−ρ0(τ
0
2 −τ 01 )|τ 01 <

∞] = e
(l2−l1)

(
μ0−

√
2ρ0+μ2

0

)
. Let η0 = max

⎧⎨
⎩e

(l2−l1)

(
μ0−

√
2ρ0+μ2

0

)
,
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e
(l2−l1)

(
−μ0−

√
2ρ0+μ2

0

)⎫⎬
⎭. Then, 0 < η0 < 1 and Ee−ρ0τ

0
2 ≤ η0Ee−ρ0τ

0
1 . Repeat

this procedure to obtain Ee−ρ0τ
0
n+1 ≤ ηn0Ee

−ρ0τ
0
1 . It follows that Ee−ρ0τ

0
n → 0, as

n → ∞.
Step 4. vi (x1, x2) ≥ Ji (x1, x2,Λi ).

Note that the functions v0 and v1 are continuously differentiable on the entire region
{x1 > 0, x2 > 0} and twice continuously differentiable in the interior ofΓi , i = 1, 2, 3.
In addition, they satisfy the quasi-variational inequalities in (15). In particular,ρvi (x)−
Avi (x) ≥ 0, i = 0, 1, whenever they are twice continuously differentiable. Using
these inequalities, Dynkin’s formula, and Fatou’s lemma as in Øksendal [15, p. 226],

we have, E
(
e−ρ(θ1∧N )vi

(
X1

θ1∧N , X2
θ1∧N

))
≥ E

(
e−ρ(θ2∧N )vi

(
X1

θ2∧N , X2
θ2∧N

))
,

for any stopping times 0 ≤ θ1 ≤ θ2, a.s., and any N . Note that, for each j = 1, 2,

E
(
e−ρ(θ j∧N )vi

(
X1

θ j∧N , X2
θ j∧N

))
= E

(
e−ρ(θ j∧N )vi

(
X1

θ j∧N , X2
θ j∧N

))
I{θ j<∞}

+E
(
e−ρ(θ j∧N )vi

(
X1

θ j∧N , X2
θ j∧N

))
I{θ j=∞}

= E
(
e−ρ(θ j∧N )vi

(
X1

θ j∧N , X2
θ j∧N

))
I{θ j<∞}

+E
(
e−ρNvi (X

1
N , X2

N )
)
I{θ j=∞}.

In view of Step 2, the second term on the right-hand side converges to zero because
both Ee−ρN X1

N and Ee−ρN X2
N go to zero as N → ∞. Note also that

e−ρ(θ j∧N )vi

(
X1

θ j∧N , X2
θ j∧N

)
I{θ j<∞} → e−ρθ j vi

(
X1

θ j
, X2

θ j

)
I{θ j<∞}, a.s. (18)

as N → ∞. Moreover, we can show as in the proof of Lemma 3.1 that both
{e−ρ(θ j∧N )X1

θ j∧N } and {e−ρ(θ j∧N )X2
θ j∧N } are uniformly integrable. This togetherwith

Step 2 implies the uniform integrability of
{
e−ρ(θ j∧N )vi

(
X1

θ j∧N , X2
θ j∧N

)}
. Sending

N → ∞ in (18), we have

E
(
e−ρθ1vi

(
X1

θ1
, X2

θ1

)
I{θ1<∞}

)
≥ E

(
e−ρθ2vi

(
X1

θ2
, X2

θ2

)
I{θ2<∞}

)
, for i = 0, 1.

(19)
Given Λ0 = (τ1, τ2, . . .), using the third inequalities in (15) and (19), we have

v0(x1, x2)≥ E
(
e−ρτ1v0

(
X1

τ1
, X2

τ1

)
I{τ1<∞}

)
≥ E

(
e−ρτ1

(
v1
(
X1

τ1
, X2

τ1

)− βbX
1
τ1

+ βsX
2
τ1

)
I{τ1<∞}

)
= E

(
e−ρτ1v1

(
X1

τ1
, X2

τ1

)
I{τ1<∞} − e−ρτ1

(
βbX

1
τ1

− βsX
2
τ1

)
I{τ1<∞}

)
≥ E

(
e−ρτ2v1

(
X1

τ2
, X2

τ2

)
I{τ2<∞} − e−ρτ1

(
βbX

1
τ1

− βsX
2
τ1

)
I{τ1<∞}

)
≥ E

(
e−ρτ2

(
v0
(
X1

τ2
, X2

τ2

)+βsX
1
τ2
−βbX

2
τ2

)
)I{τ2<∞}−e−ρτ1

(
βbX

1
τ1

−βsX
2
τ1

)
I{τ1<∞}

)
= E

(
e−ρτ2v0

(
X1

τ2
, X2

τ2

)
I{τ2<∞}

)
+E

(
e−ρτ2

(
βsX1

τ2
− βbX2

τ2

)
)I{τ2<∞} − e−ρτ1

(
βbX1

τ1
− βsX2

τ1

)
I{τ1<∞}

)
.
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Repeat this process and recall that v0(x1, x2) ≥ 0 to obtain

v0(x1, x2) ≥ E
(
e−ρτ2(βsX

1
τ2

− βbX
2
τ2

))I{τ2<∞} − e−ρτ1(βbX
1
τ1

− βsX
2
τ1

)I{τ1<∞}
)

+ · · · + E
(
e−ρτ2n (βsX1

τ2n
− βbX2

τ2n
))I{τ2n<∞}

−e−ρτ2n−1(βbX
1
τ2n−1

− βsX
2
τ2n−1

)I{τ2n−1<∞}
)
.

Sending n → ∞ to obtain v0(x1, x2) ≥ J0(x1, x2,Λ0) for all Λ0. So, v0(x1, x2) ≥
V0(x1, x2). Similarly, we can show that v1(x1, x2) ≥ V1(x1, x2).
Step 5. vi (x1, x2) = Ji (x1, x2,Λ∗

i ). Define τ ∗
1 = inf{t ≥ 0 : (X1

t , X
2
t ) ∈

Γ3}. Using again Dynkin’s formula and noticing that, for each n, v0(x1, x2) =
E[e−ρ(τ∗

1 ∧n)v0(X1
τ∗
1 ∧n, X

2
τ∗
1 ∧n)]. Note also that limn→∞ E[e−ρ(τ∗

1 ∧n)v0

(X1
τ∗
1 ∧n, X

2
τ∗
1 ∧n)] = E[e−ρτ∗

1 v0(X1
τ∗
1
, X2

τ∗
1
)I{τ∗

1 <∞}]. It follows that v0(x1, x2) =
E[e−ρτ∗

1 v0(X1
τ∗
1
, X1

τ∗
1
)I{τ∗

1 <∞}] = E[e−ρτ∗
1 (v1(X1

τ∗
1
, X1

τ∗
1
)−βbX1

τ∗
1
+βsX2

τ∗
2
)I{τ∗

1 <∞}].
Let τ ∗

2 = inf{t ≥ τ ∗
1 : (X1

t , X
2
t ) ∈ Γ1}. We have also

E
(
e−ρτ∗

1 v1(X
1
τ∗
1
, X2

τ∗
1
)I{τ∗

1 <∞}
)

= E
(
e−ρτ∗

2 v1(X
1
τ∗
2
, X2

τ∗
2
)I{τ∗

2 <∞}
)

= E
(
e−ρτ∗

2

(
v0(X

1
τ∗
2
, X2

τ∗
2
) + βsX

1
τ∗
2

− βbX
2
τ∗
2

)
I{τ∗

2 <∞}
)

.

Combine these to obtain

v0(x1, x2) = E

[
e−ρτ∗

2 v0

(
X1

τ∗
2
, X2

τ∗
2

)
I{τ∗

2 <∞}

+ e−ρτ∗
2

(
βsX

1
τ∗
2

− βbX
2
τ∗
2

)
I{τ∗

2 <∞} − e−ρτ∗
1

(
βbX

1
τ∗
1

− βsX
2
τ∗
1

)
I{τ∗

1 <∞}
]
.

Continue this way to obtain

v0(x1, x2) =E
(
e−ρτ∗

2nv0

(
X1

τ∗
2n

, X2
τ∗
2n

)
I{τ∗

2n<∞}
)

+E
(
e−ρτ∗

2 (βsX
1
τ∗
2
−βbX

2
τ∗
2
))I{τ∗

2 <∞} − e−ρτ∗
1 (βbX

1
τ∗
1
−βsX

2
τ∗
1
)I{τ∗

1 <∞}
)

+ · · · + E
(
e−ρτ∗

2n (βsX1
τ∗
2n

−βbX2
τ∗
2n

))I{τ∗
2n<∞}

−e−ρτ∗
2n−1

(
βbX

1
τ∗
2n−1

−βsX
2
τ∗
2n−1

)
I{τ∗

2n−1<∞}
)
.

It remains to show that Ee−ρτ∗
2nv0

(
X1

τ∗
2n

, X2
τ∗
2n

)
I{τ∗

2n<∞} → 0. In view of the linear

upper and lower bound functions in Step 2, it suffices to show Ee−ρτ∗
2n Xi

τ∗
2n
I{τ∗

2n<∞} →
0, i = 1, 2. Note that Ee−ρτ∗

2n Xi
τ∗
2n
I{τ∗

2n<∞} = limN→∞ Ee−ρ(τ∗
2n∧N )Xi

τ∗
2n∧N =

Ee−(ρ−μi )τ
∗
2n . It suffices to show the right-hand term above Ee−(ρ−μi )τ

∗
2n → 0,

i = 1, 2. Let Yt = log(X1
t /X

2
t ). Then, dYt = (

μ2 − μ1 − a22
2 + a11

2

)
dt + (σ21 −

σ11)dW 1
t + (σ22 −σ12)dW 2

t . Note that {τ ∗
k } can be defined in terms of Yt hitting times
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Fig. 3 Value functions
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of l1 = log k1 and l2 = log k2. In view of this and Step 3, the desired convergence
Ee−(ρ−μi )τ

∗
2n → 0 follows. This completes the proof. ��

6 A Numerical Example

In this section, we use the parameters of the TGT-WMT example, i.e., μ1 = 0.2059,
μ2 = 0.2459, σ11 = 0.3112, σ12 = 0.0729, σ21 = 0.0729, σ22 = 0.2943. In
addition, we take K = 0.001 and ρ = 0.5. Using (12), we can solve for k1 and k2 and
obtain k1 = 1.03905 and k2 = 1.28219. The corresponding value functions are given
in Fig. 3.
Dependence of (k1, k2) on parameters.Next, we vary one of the parameters at a time
and examine the dependence of (k1, k2) on these parameters. First we consider how
the pair (k1, k2) changes with μ1. A larger μ1 implies greater potential of growth in
S1. It can be seen in Table 1 that both k1 and k2 decrease in μ1 leading to more buying
opportunities. Also, if we vary μ2, the pair (k1, k2) increases in μ2. This is because
larger μ2 means bigger growth potential in S2 which discourages establishing pairs
position Z and encourages its early exit. In Table 2, we vary the volatility σ11 and
σ22. Larger volatility leads higher risk, which translates to smaller buying zone Γ3.
On the other hand, larger volatility gives more room for the price to move. This leads
to smaller selling zone Γ1 (Table 3).

Table 1 (k1, k2) with varying
μ1 and μ2

μ1 0.1059 0.1559 0.2059 0.2559 0.3059

k1 1.38860 1.21356 1.03905 0.86272 0.68532

k2 1.70104 1.49268 1.28219 1.07150 0.86008

μ2 0.1459 0.1959 0.2459 0.2959 0.3459

k1 0.75424 0.87372 1.03905 1.28131 1.67831

k2 0.92168 1.07205 1.28219 1.59780 2.11803

Table 2 (k1, k2) with varying
σ11 and σ22

σ11 0.2112 0.2612 0.3112 0.3612 0.4112

k1 1.05320 1.04598 1.03905 1.02997 1.02008

k2 1.26384 1.27295 1.28219 1.29364 1.30417

σ22 0.1943 0.2443 0.2943 0.3443 0.3943

k1 1.05147 1.04511 1.03905 1.03224 1.02469

k2 1.26597 1.27399 1.28219 1.29133 1.30136

Table 3 (k1, k2) with varying σ12(= σ21)

σ12(= σ21) −0.0271 0.0229 0.0729 0.1229 0.1729

k1 1.00965 1.02318 1.03905 1.05546 1.07276

k2 1.32062 1.30251 1.28219 1.26127 1.23904
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Table 4 (k1, k2) with varying ρ
ρ 0.40 0.45 0.50 0.55 0.60

k1 1.10935 1.06547 1.03905 1.02291 1.00997

k2 1.41886 1.33396 1.28219 1.24591 1.22105

Table 5 (k1, k2) with varying
K K 0.0001 0.0005 0.001 0.002 0.003

k1 1.07951 1.06318 1.03905 1.00787 0.98627

k2 1.23819 1.25562 1.28219 1.31728 1.34231

Fig. 4 S1=TGT, S2=WMT: the threshold levels k1, k2 and the corresponding equity curve

Next, we vary σ12 which equals σ21. Note that this parameter dictates the correlation
between X1

t and X2
t . Larger σ12 leads to greater correlation, which encourages more

buying opportunities (larger Γ3) and more selling as well (larger Γ1).
In Table 4, we vary the discount rate ρ. Larger ρ encourages quicker profits, which

leads to more buying and shorter holding. This is confirmed in Table 4. It shows that
larger ρ leads to a smaller k2 and smaller (k2 − k1).

Finally, we examine the dependence on K . Clearly, a larger K discourages trading
transactions. This results smaller buying zoneΓ3 and smaller selling zoneΓ1 (Table 5).
Backtesting (TGT–WMT).We backtest our pairs-trading rule using the stock prices
of TGT and WMT from 2000 to 2014. Using the parameters obtained in Exam-
ple 2.1 based on the historical prices from 1985 to 1999, we found the pair (k1, k2) =
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Fig. 5 S1=WMT, S2=TGT: the threshold levels k1, k2 and the corresponding equity curve

(1.03905, 1.28219). A pairs trading (long S1 and short S2) is triggered when (X1
t , X

2
t )

enters Γ3. The position is closed when (X1
t , X

2
t ) enters Γ1. Initially, we allocate trad-

ing the capital $100K. When the first long signal is triggered, buy $50K TGT stocks
and short the same amount of WMT. Such half-and-half capital allocation between
long and short applies to all trades. In addition, each pairs transaction is charged $5
commission. In Fig. 5, the corresponding ratio X2

t /X
1
t , the threshold levels k1 and k2,

and the corresponding equity curve are plotted. There are total 3 trades, and the end
balance is $155.914K (Fig. 4).

We can also switch the roles of S1 and S2, i.e., to long WMT and short TGT
by taking S1=WMT and S2=TGT. In this case, the new (k̃1, k̃2) = (1/k2, 1/k1) =
(1/1.28219, 1/1.03905). These levels and the corresponding equity curve are given
in Fig. 5. Such trade leads to the end balance $132.340K. Note that both types of
trades have no overlap, i.e., they do not compete for the same capital. The grand total
profit is $88254 which is a 88.25% gain. Note also that there are only 5 trades in
the fifteen-year period leaving the capital in cash most of the time. This is desirable
because the cash sitting in the account can be used for other types of shorter-term
trading in between, at least drawing interest over time.

7 Conclusions

In this paper, we have studied the pairs-trading problem following geometric Brownian
motions and obtained a closed-form solution. The major advantage of pairs trading is
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its risk neutral nature, i.e., it can be profitable regardless of general market directions.
It would be interesting to examine how the method works for a larger selection of
stocks. In addition, it would also be interesting to study the problem under more
realistic models, e.g., GBM’s with regime switching.
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