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Abstract. Let e be an arbitrary even nilpotent element in the general linear Lie super-

algebra glM |N and let We be the associated finite W -superalgebra. Let Ym|n be the super

Yangian associated to the Lie superalgebra glm|n. A subalgebra of Ym|n, called the shifted

super Yangian and denoted by Ym|n(σ), is defined and studied. Moreover, an explicit iso-

morphism between We and a quotient of Ym|n(σ) is established.
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1. Introduction

A finite W -algebra is an associative algebra determined by a pair (g, e), where g is a

finite dimensional semisimple or reductive Lie algebra and e is a nilpotent element in g. In

the extreme case when e = 0, the corresponding finite W -algebra is the universal enveloping

algebra U(g). In the other extreme case when e is the principal (also called regular) nilpotent

element, Kostant [25] proved that the associated finite W -algebra is isomorphic to the center

of the universal enveloping algebra.

The study of finite W -algebra for a general e was firstly developed systematically by

Premet [36], in which the modern terminologies were given and a proof of the long-standing
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Kac-Weisfeiler conjecture [44] was established. Moreover, finite W -algebras can be under-

stood as quantizations of Slodowy slices [20, 37]. Since then, finite W -algebras have appeared

in many branches of mathematics so that their behavior and properties can be explained from

different viewpoints. In recent years, the finite W -algebras have been intensively studied by

various approaches; see the survey articles [1, 26, 41] for details.

On the other hand, Yangians are certain non-commutative Hopf algebras that are impor-

tant examples of quantum groups. They first appeared in physics in the work of Faddeev

and his school around 80’s concerning the quantum inverse scattering method. The term

Yangian was given by Drinfeld [14] in honor of C.N. Yang and had been commonly used

since then. They were used to provide rational solutions of the Yang-Baxter equation; see

the book [27] for related topics and further applications of Yangians.

The connection between Yangians and finite W -algebras was firstly noticed by Ragoucy

and Sorba [38] for type A Lie algebras. Suppose that the nilpotent element e is rectangular,

which means that all the Jordan blocks of e are of the same size, say `. They showed that

the associated finite W -algebra is isomorphic to the Yangian of level `, which is a certain

quotient of the Yangian, considered by Cherednik [12, 13].

This observation is further generalized by Brundan and Kleshchev [8] to an arbitrary

nilpotent e ∈ glN . Their main result [8, Theorem 10.1] can be shortly described as follows:

the finite W -algebra associated to a nilpotent e ∈ glN is isomorphic to a quotient of some

subalgebra of the Yangian (called the shifted Yangian) associated to gln, where n is the

number of Jordan blocks of e. Moreover, an explicit realization, by generators and relations,

of type A finite W -algebra is obtained. This provides a powerful tool for the study of

finite W -algebras, including their representations and further applications [6, 9, 10]. It is

also observed recently that the shifted Yangian can also be defined by different approaches

together with new generalizations and applications; see [2, 17, 18, 24].

The finite W -superalgebras are defined in a very similar way as the Lie algebra case except

that the nilpotent element e ∈ g is assumed to be even (with respect to the Z2-grading of

the Lie superalgebra) with other modifications. In recent years, finite W -superalgebras and

their representations have been extensively studied [4, 6, 42, 43, 45, 46, 47] with different

emphases.

The super Yangian associated to glm|n, denoted by Ym|n, was defined by Nazarov [28]

in terms of the RTT presentation. It is natural to seek for connections between finite W -

superalgebras and super Yangians. The very first result is obtained by Briot and Ragoucy [3],

saying that if the nilpotent element e ∈ glM |N is rectangular, then the associated finite W -

superalgebra is isomorphic to a certain quotient of Ym|n called the truncated super Yangian,

where m and n are the numbers of Jordan blocks of e restricted to the even and odd spaces,

respectively. In recent years, there have been some results [4, 31, 32] generalizing the above
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observation when the nilpotent element e satisfies some assumptions, but for a general e the

problem remains to be open.

The goal of this article is to give a solution to this open problem, generally establishing

the connection between the finite W -superalgebras and super Yangians for type A. That is,

we explicitly give a superalgebra isomorphism between the finite W -superalgebra associated

to an arbitrary even nilpotent element e ∈ glM |N and a quotient of a certain subalgebra of

Ym|n, obtaining a super analogue of the main result of [8] for type A Lie superalgebras in

full generality.

We shortly explain our approach, which is basically generalizing the arguments in [8] to

the general linear Lie superalgebras with suitable modifications and trying to overcome all

of the difficulties along the way. Although there are similarities between glN and glM |N and

similarities between the associated (super) Yangians, some of the earlier approaches are no

longer available in the case of Lie superalgebras. Moreover, there are other technical or

conceptual obstacles that did not appear in the Lie algebra case, and the messy parities

make the computations rather complicated. Therefore, although the methods in [8] are

well-established, such a generalization is still by no means trivial.

Our first step is to define a subalgebra of Ym|n which we call the shifted super Yangian

and denote by Ym|n(σ). To obtain this subalgebra, we need to use certain presentations of

Ym|n called the parabolic presentations. Similar to the Lie algebra case [7, 15], the RTT

presentation and the Drinfeld’s presentation can be treated as special cases of the parabolic

presentations. There have been some results [22, 30] giving suitable presentations of Ym|n,

where the results [4, 32] are in fact heavily based on them. However, as noticed in [4, 32],

they are no longer suitable presentations for the general case. What we need is a further

generalized parabolic presentation which works for any 01-sequence [11, 19], which is a

parametrizing set controlling the parities of elements in Ym|n. Such a presentation was not

available until the recent paper [33]. As a consequence of [33], the shifted super Yangian

Ym|n(σ) can be defined as a subalgebra of Ym|n generated by a certain subset of the generating

set for the whole Ym|n.

However, to establish the desired connection, we need not only the subalgebra but also its

presentation. By suitably modifying the defining relations for Ym|n found in [33], we obtain

a set of defining relations and hence a presentation of the shifted super Yangian Ym|n(σ). It

should be emphasized that there are two extra series of defining relations, (5.17) and (5.18),

for Ym|n(σ) that did not appear in [4, 8, 32]. Although we are able to guess the suitable

modifications, it is highly non-trivial to check that our proposed relations actually hold in

Ym|n.

Inspired from an induction argument in [9], together with a recent observation [40, Re-

mark 2.13] which fulfills the initial step, one can eventually overcome this difficulty and a

presentation of Ym|n(σ) is obtained. This further allows one to define some homomorphisms
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called baby comultiplications that will play important roles when establishing the desired

connection.

We further define the shifted super Yangian of level `, denoted by Y `
m|n(σ), as a quotient of

Ym|n(σ) over some 2-sided ideal. Let’s explain the meaning of the parameters in our notation.

Roughly speaking, σ is a matrix recording the generating set for Ym|n(σ), while ` is a positive

integer recording the size of the ideal we quotient out. It turns out that the data σ and `

can be recorded by a diagram called pyramid [16, 23], which we denote by π, and it makes

sense to set the notation Yπ := Y `
m|n(σ). On the other hand, the diagram π also determines

a finite W -superalgebra which we denote by Wπ.

In §9, we introduce the notion of super column height so that one may explicitly write down

some distinguished elements in Wπ according to the diagram π by modifying the description

in [8, §9]. Our main result, Theorem 10.1, shows that the map sending the generators of Yπ
to some of these distinguished elements in Wπ is an isomorphism of (filtered) superalgebras,

obtaining a presentation of the finite W -superalgebra Wπ.

It is an interesting question to generalize the results in this article to other types of

Lie superalgebras. In particular, there have been some results in the case of queer Lie

superalgebras and their associated Yangians [29] when the even nilpotent element is regular

[34] or rectangular [35], but it is still open in general. We expect that the approaches in this

article can be suitably modified to deal with the queer Lie superalgebra case for a general

nilpotent element.

This article is organized as follows. In §2, we set up our notations and recall some necessary

background knowledge about finite W -superalgebras. In particular, the notion of pyramid

with respect to a 01-sequence is recalled. In §3, we recall some well-known facts about Ym|n.

The shifted super Yangian Ym|n(σ) is defined in §4 by generators and relations, with the

use of Drinfeld’s presentation for Ym|n, where some computations are relatively easier in this

setting. Then we show that Ym|n(σ) can be identified as a subalgebra of Ym|n. Some basic

properties of Ym|n(σ) are also derived.

In §5 we provide a more general approach, using the parabolic presentations for Ym|n, to

define Ym|n(σ) and establish the corresponding properties obtained in §4 to parabolic case.

In particular, the results in §4 serve as initial steps of some induction arguments in the

parabolic case.

§6 is devoted to define the baby comultiplications that will help us establish the main result

later. We explicitly write down their formulas and show that they are injective whenever

they are defined.

In §7, we introduce the canonical filtration of Ym|n(σ), which eventually corresponds to

the Kazhdan filtration of finite W -superalgebras. The shifted super Yangian of level ` is

defined in §8 as a quotient of Ym|n(σ).
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In §9, we explicitly define some distinguished elements in the universal enveloping algebra

U(glM |N) that will eventually be identified as generators of our finite W -superalgebra. Our

main result is stated and proved in §10.

In this article, our field is the field of complex numbers C, which can be replaced by any

algebraically closed field of characteristic zero. The terms subalgebra and subspace always

mean a sub-superalgebra and a sub-superspace, respectively. For homogeneous elements x

and y in an associative superalgebra A, the supercommutator of x and y is defined by[
x, y
]

= xy − (−1)|x||y|yx,

where |x| is the Z2-grading of x in A, called the parity of x. By convention, a homogeneous

element x is called even (resp. odd) if |x| = 0 (resp. 1). We let A0 and A1 denote the set

of even and odd elements in A, respectively. For associative superalgebras A and B, their

tensor product A⊗B is again considered as a superalgebra by the product

(x⊗ y)(a⊗ b) := (−1)|y||a|xa⊗ yb

for homogeneous x, a ∈ A and y, b ∈ B.
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2. Finite W -superalgebras and pyramids

In this section, we recall the definition of a finite W -superalgebra, which is determined

by an even nilpotent element e and a semisimple element h of glM |N . Also, a combinatorial

object called pyramid is recalled so that we may simultaneously encode e and h simply by a

diagram π.

Throughout this section, g = glM |N is identified with the set of (M + N) × (M + N)

matrices with the standard Z2-grading g = g0 ⊕ g1 and ( · , · ) means the non-degenerate

even supersymmetric g-invariant bilinear form on g defined by

(x, y) := str(xy)
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for all x, y ∈ g, where xy stands for the usual matrix product and str means the supertrace.

All elements of g appearing in any equations are considered homogeneous with respect to

the Z2-grading unless specifically mentioned.

2.1. Finite W -superalgebras of glM |N . Let e be an even nilpotent element in g. It is well-

known [23, 41] that there exists (not uniquely in general) a semisimple element h ∈ g such

that adh : g → g gives a good Z-grading of g for e, which means the following conditions

are satisfied:

(1) adh(e) = 2e,

(2) g =
⊕

j∈Z g(j), where g(j) := {x ∈ g| adh(x) = jx},
(3) the center of g is contained in g(0),

(4) ad e : g(j)→ g(j + 2) is injective for all j ≤ −1,

(5) ad e : g(j)→ g(j + 2) is surjective for all j ≥ −1.

In order to simplify the definition of finite W -superalgebras, throughout this article, we

assume in addition that the Z-grading is even; that is, g(j) = 0 for all j /∈ 2Z. We say 〈e, h〉
is a good pair if adh gives an even good Z-grading of g for e.

Remark 2.1. In general, a good pair may fail to exist in other types of classical Lie superal-

gebras [23]. But for any even nilpotent e ∈ glM |N we can always find some h such that 〈e, h〉
is a good pair; see Theorem 2.4.

Fix a good pair 〈e, h〉 in g. Define the following subalgebras of g by

p :=
⊕
j≥0

g(j), m :=
⊕
j<0

g(j). (2.1)

Define χ ∈ g∗ by

χ(y) := (y, e) ∀y ∈ g.

The restriction of χ on m extends to a one dimensional U(m)-module. Let Iχ be the left

ideal of U(g) generated by

{a− χ(a) | a ∈ m}.

As a consequence of the PBW theorem for U(g), we have U(g) = Iχ⊕U(p) together with

the following identification

U(g)/Iχ ∼= U(p),

which is given by the natural projection prχ : U(g) → U(p). One defines the following

χ-twisted action of m on U(p) by

a · y := prχ([a, y]),

for all a ∈ m, y ∈ U(p).
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The associated finite W-superalgebra, which we will usually omit the prefix “finite” from

now on, is defined to be the space of m-invariants in U(p) under the χ-twisted action; to be

explicit,

We,h := U(p)m ={y ∈ U(p) | prχ([a, y]) = 0, ∀a ∈ m}

={y ∈ U(p) |
(
a− χ(a)

)
y ∈ Iχ, ∀a ∈ m}.

For example, if e = 0, then χ = 0, g = g(0) = p and m = 0, so the associated W -superalgebra

is exactly U(g).

It seems that We,h depends on both of e and h from the definition. In fact, the definition

is independent of the choices of h up to isomorphisms; see Remark 10.12.

2.2. Pyramids and W -superalgebras. We recall the notion of pyramid [16, 23] as a con-

venient tool to present a good pair 〈e, h〉. We will identify a partition λ = (λ1, λ2, . . .)

with its corresponding Young diagram in French style, which means that the diagrams are

left-justified and the longest row is located in the bottom.

Definition 2.2. Let λ be a Young diagram. A pyramid is a diagram obtained by horizontally

shifting the rows of λ such that each column of the shifted diagram is a connected vertical

strip which starts from the bottom row.

For example, only the left-most diagram is considered as a pyramid in this article, obtained

from shifting the Young diagram of λ = (3, 2, 1):

Let V = V0⊕V1 be a superspace with dimV0 = M and dimV1 = N . We identify g = glM |N
with EndV and one has the following identification for g0

g0
∼= EndV0 ⊕ EndV1.

As a result, an even nilpotent element e ∈ glM |N can be thought as a sum of two nilpotent

element e = e0 + e1, where ei ∈ EndVi for i ∈ {0, 1}. Thus we may describe e by two Young

diagrams µ and ν corresponding to the Jordan types of e0 and e1, respectively.

For example, the diagram

+ +
+ + +

⊕ − −− − − −
represents an even nilpotent element in gl5|6, which is a sum of a nilpotent element in EndC5

with Jordan type µ = (3, 2) and a nilpotent element in EndC6 with Jordan type ν = (4, 2).
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We put + and − in the boxes because we now stack the two diagrams together to obtain a

new Young diagram, and we need to track from which diagram the boxes originally are.

For example, there are two possibilities if we stack the above two Young diagrams together

to obtain one Young diagram:

+ +
− −
+ + +
− − − −

− −
+ +
+ + +
− − − −

(2.2)

Remark 2.3. The pyramids in this article correspond to certain even nilpotent elements in

glM |N , hence the following condition always holds:

all boxes in a row have the same + or − labeling.

As one may expect, we shift the rows of the stacked Young diagram to obtain a pyramid.

For example, we take the right diagram in (2.2) and list all possibilities below:

− − − −
+ + +
+ +
− −

− − − −
+ + +

+ +
− −

− − − −
+ + +
+ +
− −

− − − −
+ + +

+ +
− −

Soon we will see (Theorem 2.4) that each of these pyramids represents a good pair 〈e, h〉
in gl5|6. Moreover, these are in fact all good pairs we could have for that given e ∈ gl5|6.

Now we do the other way around: obtaining a good pair 〈e, h〉 from a given pyramid π

satisfying the condition described in Remark 2.3. Assume that we have M (resp. N) boxes

labeled with + (resp. −) in π, where they came from the Young diagram of e0 ∈ glM |0 (resp.

e1 ∈ gl0|N). We enumerate those “ + ” boxes by 1, 2, . . . ,M down columns from left to right,

and enumerate those “ − ” boxes by 1, 2, . . . , N by the same rule. In addition, we imagine

that each box of π is of size 2× 2 and our pyramid is built on the x-axis, where the center

of π is exactly located above the origin. For instance:

π =

x-coordinates:

1 3 5 6

2 4 5

1 3

2 4

•
1 3−1−3

(2.3)
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Let I = {1 < . . . < M < 1 < . . . < N} be an ordered index set and let {vi|i ∈ I} be the

standard basis of CM |N with respect to the following order

vi < vj if i < j in I.

Let {ei,j | i, j ∈ I} denote the elementary matrices in g = glM |N . Set pa (i) = 0 if 1 ≤ i ≤M

and pa (i) = 1 if 1 ≤ i ≤ N for i ∈ I with respect to the order given above. Then we

have ei,j ∈ g0 (resp. g1) if and only if pa (i) + pa (j) is even (resp. odd). Moreover, their

supercommutator can be explicitly given by

[ei,j, eh,k] = δj,hei,k − (−1)(pa (i)+pa (j))(pa (h)+pa (k))δk,ieh,j

One should note that the parity notation pa (i) used here (also used in §9) is for glM |N , while

another widely used parity notation |i| will be used later for super Yangian.

Define the element

eπ :=
∑
i j ∈π

ei,j ∈ g0, (2.4)

where the sum is taken over all adjacent pairs i j appeared in π.

Let colx(i) denote the x-coordinate of the center of the box numbered with i ∈ I, which

must be an integer by our construction. Define the following diagonal matrix

hπ := −diag
(
colx(1), . . . , colx(M), colx(1), . . . , colx(N)

)
(2.5)

For example, the elements eπ and hπ associated to the pyramid π in (2.3) are

eπ = e13 + e24 + e45 + e2 4 + e1 3 + e3 5 + e5 6,

hπ = diag(1, 1,−1,−1,−3, 3, 1, 1,−1,−1,−3).

It is easy to check that 〈eπ, hπ〉 forms a good pair.

Note that if we horizontally shift the rows of π to obtain another pyramid ~π, then eπ = e~π

but hπ 6= h~π. The following theorem implies that all even good Z-gradings for eπ can be

obtained by shifting the rows of π.

Theorem 2.4. [23, Theorem 7.2] Let π be a pyramid. Let e = eπ and h = hπ be the

elements in glM |N defined by (2.4) and (2.5), respectively. Then 〈e, h〉 forms a good pair for

e. Moreover, any good pair for e is of the form 〈e, h~π〉 where ~π is some pyramid obtained by

shifting rows of π horizontally.

In other words, Theorem 2.4 classifies all of the even good Z-gradings of glM |N for any

even nilpotent e. (In fact, [23, Theorem 7.2] classifies all good Z-gradings, not just those

even good Z-gradings considered in this article.) As a consequence, for a given pyramid π,

it makes sense to denote the W -superalgebra associated to the good pair 〈eπ, hπ〉 simply by

Wπ := Weπ ,hπ .
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Remark 2.5. If we permute the rows with the same length of π to obtain a new pyramid

π′, then we have eπ = eπ′, hπ = hπ′ and hence Wπ = Wπ′. For example, the two Young

diagrams in (2.2) give us exactly the same list of good pairs by shifting their rows.

We label the columns of π from left to right by 1, . . . , `. For any i ∈ I, let col(i) denote

the column in which i appear. The Kazhdan filtration of U(g)

· · · ⊆ FdU(g) ⊆ Fd+1U(g) ⊆ · · ·

is defined by setting

deg(ei,j) := col(j)− col(i) + 1 (2.6)

for each i, j ∈ I, where FdU(g) denotes the span of all supermonomials ei1,j1 · · · eis,js for

s ≥ 0 with
∑s

k=1 deg (eik,jk) ≤ d. Let grU(g) denote the graded superalgebra associated to

the Kazhdan filtration. A natural grading on Wπ is induced from the projection g � p and

we denote by grWπ the associated graded superalgebra.

Let ge denote the centralizer of e in g and let S(ge) denote the associated supersymmetric

superalgebra. The same setting (2.6) defines the Kazhdan filtration on S(ge). The following

result still holds in our case since our pyramid π satisfies the condition in Remark 2.3.

Proposition 2.6. [47, Remark 3.11] S(ge) and grWπ are isomorphic as graded superalge-

bras.

2.3. Shift matrix. We give an alternative way to describe a pyramid. An (m+n)×(m+n)

matrix σ = (si,j)1≤i,j≤m+n is called a shift matrix if its entries are non-negative integers

satisfying the following condition

si,j + sj,k = si,k, (2.7)

whenever |i− j|+|j − k|=|i− k|. For example, the following matrix is a shift matrix:

σ =



0 1 2 2 3 3

0 0 1 1 2 2

1 1 0 0 1 1

1 1 0 0 1 1

3 3 2 2 0 0

4 4 3 3 1 0


(2.8)

Lemma 2.7. The following facts hold for a shift matrix σ = (si,j)1≤i,j≤m+n.

(1) If the entries in the last column {si,m+n | 1 ≤ i ≤ m + n} are known, then the whole

upper-triangular part of σ is determined.

(2) If the entries in the upper-diagonal {si,i+1 | 1 ≤ i < m+n} are known, then the whole

upper-triangular part of σ is determined.

(3) If the entries in the last row {sm+n,i | 1 ≤ i ≤ m + n} are known, then the whole

lower-triangular part of σ is determined.
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(4) If the entries in the lower-diagonal {si+1,i | 1 ≤ i < m+n} are known, then the whole

lower-triangular part of σ is determined.

Proof. By (2.7). �

In our superalgebra setting, we need to record the ±-labeling of each row in our pyramid,

so we introduce the following terminology. Let m,n ∈ Z≥0. A 0m1n-sequence, or 01-sequence

for short, is an ordered sequence Υ consisting of m 0’s and n 1’s. For 1 ≤ i ≤ m + n, the

i-th digit of Υ is denoted by |i|.
Suppose that σ ∈ Mm+n(Z≥0) is a shift matrix. Let ` be an integer such that ` >

s1,m+n + sm+n,1 and let Υ be a fixed 0m1n-sequence. Then one can obtain a pyramid π, with

m (resp. n) rows labeled by “+” (resp. “−”) and the bottom row consisting of ` boxes, from

the triple (σ, `,Υ) by the following fashion.

Start with a rectangular Young diagram consisting of m + n rows and ` columns, which

we denote by Ξ. We number the rows of Ξ from top to bottom by 1, 2, . . . ,m+ n. For each

1 ≤ i ≤ m + n, we label all boxes in the i-th row of Ξ by “ + ” if |i| = 0, and by “ − ” if

|i| = 1.

Next we obtain our pyramid from this rectangle. Consider the entries in the last row and

the last column of σ: {sm+n,i | 1 ≤ i ≤ m + n} and {si,m+n | 1 ≤ i ≤ m + n}. For each

1 ≤ j ≤ m + n, we erase the leftmost sm+n,j boxes and the rightmost sj,m+n boxes in the

j-th row of Ξ. By (2.7), the resulted diagram is a pyramid which has ` boxes in the bottom

row and `− sm+n,1 − s1,m+n boxes in the top row. For example, take ` = 8 and let σ be the

one given in (2.8) with Υ = 101010, the resulted pyramid π is

−
+ +

− −− −
+ ++ +

− −− −− −
+ ++ ++ ++ +

Conversely, given a pyramid π which represents a good pair. Let ` be the number of

boxes in the bottom of π and let m and n be the numbers of rows of π labeled by + and

−, respectively. We number the rows of π from top to bottom by 1, 2, . . . ,m + n as before.

Since π satisfies the condition in Remark 2.3, we may obtain a 0m1n-sequence Υ by assigning

the i-th digit of Υ to be 0 (resp. 1) if the boxes in the i-th row are labeled by “ + ” (resp.

“− ”).

For each 1 ≤ i ≤ m + n, define the number sm+n,i (resp. si,m+n) to be the number

of missing boxes on the left-hand side (resp. right-hand side) of the i-th row of π in a
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rectangular diagram Ξ of size (m+ n)× `. This gives us the entries of the last row and the

last column of σ and hence we are able to recover the whole σ by Lemma 2.7. The discussion

above is summarized in the following proposition.

Proposition 2.8. Let S be the set of triples (σ, `,Υ) where σ is a shift matrix of size m+n,

` > sm+n,1 + s1,m+n is an integer and Υ is a 0m1n-sequence. Let P be the set of all pyramids

π such that π has m (resp. n) rows labeled by + (resp. −) and ` columns. Then there exists

a bijection between S and P .

Roughly speaking, σ determines the shape and height, ` determines the width and Υ

determines the ±-labeling of π and vice versa.

The following proposition is a super analogue of a well-known result about ge. Since our

pyramid π satisfies the condition described in Remark 2.3, its proof is similar to the Lie

algebra case as remarked in [4].

Proposition 2.9. [4, Lemma 4.2] Let π be a pyramid with row lengths {pi | 1 ≤ i ≤ m+n},
where the rows are labeled from top to bottom. Let σ = (si,j)1≤i,j≤m+n be the associated shift

matrix of π in the triple (σ, `,Υ). Let e = eπ be the nilpotent element defined by (2.4). Let

M (resp. N) be the number of boxes of π labeled in + (resp. −). For all 1 ≤ i, j ≤ m + n

and r > 0, define

c
(r)
i,j :=

∑
h,k∈I

row(h)=i, row(k)=j
col(k)−col(h)=r−1

eh,k ∈ g = glM |N .

Then {c(r)
i,j | 1 ≤ i, j ≤ m+ n, si,j < r ≤ si,j + pmin(i,j)} forms a linear basis for ge.

3. The super Yangian Ym|n

In this section, we recall some well-known facts about the super Yangian associated to the

general linear Lie superalgebra.

3.1. RTT presentations of Ym|n.

Definition 3.1. [28] For a given 01-sequence Υ, the Yangian associated to the general lin-

ear Lie superalgebra glm|n, denoted by Ym|n, is the associative Z2-graded algebra with unity

generated over C by the RTT generators{
t
(r)
i,j | 1 ≤ i, j ≤ m+ n; r ≥ 1

}
, (3.1)

subject to following RTT relations:

[
t
(r)
i,j , t

(s)
h,k

]
= (−1)|i| |j|+|i| |h|+|j| |h|

min(r,s)−1∑
g=0

(
t
(g)
h,j t

(r+s−1−g)
i,k − t(r+s−1−g)

h,j t
(g)
i,k

)
, (3.2)

where the parity of t
(r)
i,j is defined by |i|+ |j| (mod 2). By convention, we set t

(0)
i,j := δij.
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The original definition in [28] corresponds to the case when Υ is the standard 01-sequence,

which is defined as

Υst :=

m︷ ︸︸ ︷
0 . . . 0

n︷ ︸︸ ︷
1 . . . 1 .

As observed in [31, 40], up to isomorphism, the definition of Ym|n is independent of the

choices of Υ so we often omit it in our notation when appropriate.

For each 1 ≤ i, j ≤ m+ n, define the formal series

ti,j(u) :=
∑
r≥0

t
(r)
i,j u

−r ∈ Ym|n[[u−1]].

It is well-known [28] that Ym|n is a Hopf-superalgebra. In particular, the comultiplication

∆ : Ym|n → Ym|n ⊗ Ym|n can be nicely described as

∆(t
(r)
i,j ) =

r∑
s=0

m+n∑
k=1

t
(r−s)
i,k ⊗ t(s)k,j. (3.3)

Moreover, there exists a surjective homomorphism

ev : Ym|n → U(glm|n)

called the evaluation homomorphism, defined by

ev
(
ti,j(u)

)
:= δij + (−1)|i|eiju

−1, (3.4)

where eij ∈ glm|n means the elementary matrix.

The following proposition gives a PBW basis for Ym|n in terms of the RTT generators.

Proposition 3.2. [22, Theorem 1] The set of supermonomials in the following elements{
t
(r)
i,j | 1 ≤ i, j ≤ m+ n, r ≥ 1

}
taken in some fixed order forms a linear basis for Ym|n.

Define the loop filtration on Ym|n

L0Ym|n ⊆ L1Ym|n ⊆ L2Ym|n ⊆ · · ·

by setting deg t
(r)
ij = r−1 for each r ≥ 1 and letting LkYm|n be the span of all supermonomials

of the form

t
(r1)
i1j1
t
(r2)
i2j2
· · · t(rs)isjs

with total degree not greater than k. We denote by grL Ym|n the associated graded superal-

gebra.

Let glm|n[x] denote the loop superalgebra glm|n ⊗ C[x], where a basis is given by

{eijxr | 1 ≤ i, j ≤ m+ n, r ≥ 0}.



14 YUNG-NING PENG

Let U(glm|n[x]) denote its universal enveloping algebra with the natural filtration and grading

given by

deg eijx
r := r.

The following corollary is a consequence of Proposition 3.2.

Corollary 3.3. [22, Corollary 1] The assignment

t
(r)
ij 7→ (−1)|i|eijx

r−1

gives rise to an isomorphism grL Ym|n ∼= U(glm|n[x]) of graded superalgebras.

3.2. Parabolic generators of Ym|n. In this subsection, we give another generating set for

Ym|n. Eventually it will allow us to define a certain subalgebra of Ym|n which can not be

observed by the earlier RTT-presentation.

Firstly we introduce a convenient shorthand notation which will be frequently used in this

article. Let µ = (µ1, . . . , µz) be a given composition of m + n with length z and let Υ be a

fixed 0m1n-sequence. We break Υ into z subsequences according to µ; that is,

Υ = Υ1Υ2 . . .Υz,

where Υ1 is the subsequence consisting of the first µ1 digits of Υ, Υ2 is the subsequence

consisting of the next µ2 digits of Υ, and so on. For example, if we have Υ = 011100011 and

µ = (2, 4, 3), then

Υ =

Υ1︷︸︸︷
01

Υ2︷︸︸︷
1100

Υ3︷︸︸︷
011 .

For each 1 ≤ a ≤ z, let pa and qa denote the number of 0’s and 1’s in Υa, respectively. For

a fixed 1 ≤ a ≤ z and each value of i = 1, 2, . . . , µa, we define the restricted parity |i|a by

|i|a:= the i-th digits of Υa,

or equivalently

|i|a = |
a−1∑
j=1

µj + i|. (3.5)

Define the (m+ n)× (m+ n) matrix with entries in Ym|n[[u−1]] by

T (u) :=
(
ti,j(u)

)
1≤i,j≤m+n

Remark 3.4. Following [22], the matrix T (u) is identified with the following operator

m+n∑
i,j=1

ti,j(u)⊗ (−1)|j|(|i|+1)Ei,j ∈ Ym|n[[u−1]]⊗ EndCm|n

where Ei,j denotes the elementary matrix in EndCm|n. The term (−1)|j|(|i|+1) ensures that

the matrix product can be calculated in the usual way.
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Note that the leading minors of the matrix T (u) are always invertible and hence the matrix

T (u) possesses a Gauss decomposition [21] with respect to µ. To be explicit, we have

T (u) = F (u)D(u)E(u) (3.6)

for unique block matrices D(u), E(u) and F (u) of the form

D(u) =


D1(u) 0 · · · 0

0 D2(u) · · · 0
...

...
. . .

...

0 0 · · · Dz(u)

 ,

E(u) =


Iµ1 E1,2(u) · · · E1,z(u)

0 Iµ2 · · · E2,z(u)
...

...
. . .

...

0 0 · · · Iµz

 ,

F (u) =


Iµ1 0 · · · 0

F2,1(u) Iµ2 · · · 0
...

...
. . .

...

Fz,1(u) Fz,2(u) · · · Iµz

 ,

where

Da(u) =
(
Da;i,j(u)

)
1≤i,j≤µa

, (3.7)

Ea,b(u) =
(
Ea,b;h,k(u)

)
1≤h≤µa,1≤k≤µb

, (3.8)

Fb,a(u) =
(
Fb,a;k,h(u)

)
1≤k≤µb,1≤h≤µa

, (3.9)

are µa × µa, µa × µb and µb × µa matrices, respectively, for all 1 ≤ a ≤ z in (3.7) and all

1 ≤ a < b ≤ z in (3.8) and (3.9). In fact, these matrices can be explicitly obtained by

quasideterminants (cf. [21], [33, Proposition 3.1]).

Since all of the submatrices Da(u)’s are invertible, it allows one to define the µa × µa
matrix D′a(u) =

(
D′a;i,j(u)

)
1≤i,j≤µa

by

D′a(u) :=
(
Da(u)

)−1
.

The entries of these matrices give us some formal series with coefficients in Ym|n:

Da;i,j(u) =
∑

r≥0D
(r)
a;i,ju

−r, D′a;i,j(u) =
∑
r≥0

D
′(r)
a;i,ju

−r, (3.10)

Ea,b;h,k(u) =
∑

r≥1E
(r)
a,b;h,ku

−r, Fb,a;k,h(u) =
∑
r≥1

F
(r)
b,a;k,hu

−r. (3.11)
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Actually we only need the diagonal, upper-diagonal and lower-diagonal blocks. Hence we set

Eb;h,k(u) := Eb,b+1;h,k(u) =
∑
r≥1

E
(r)
b;h,ku

−r, Fb;k,h(u) := Fb+1,b;k,h(u) =
∑
r≥1

F
(r)
b;k,hu

−r,

(3.12)

for 1 ≤ b ≤ z − 1. As proved in [33], these coefficients

{D(r)
a;i,j, D

′(r)
a;i,j | 1 ≤ a ≤ z, 1 ≤ i, j ≤ µa, r ≥ 0}

{E(r)
b;h,k | 1 ≤ b < z, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1, r ≥ 1}

{F (r)
b;k,h | 1 ≤ b < z, 1 ≤ k ≤ µb+1, 1 ≤ h ≤ µb, r ≥ 1}

form a generating set for Ym|n, called the parabolic generators of Ym|n, which will be denoted

by Pµ. By [33, Lemma 4.2], their parities can be explicitly determined by the following rule:

parity of D
(r)
a;i,j = |i|a + |j|a (mod 2), (3.13)

parity of E
(r)
b;h,k = |h|b + |k|b+1 (mod 2), (3.14)

parity of F
(r)
b;k,h = |k|b+1 + |h|b (mod 2). (3.15)

In the special case when µ = (1m+n) := (

m+n︷ ︸︸ ︷
1, . . . , 1 ), the generating set, which will be

denoted by PD, appeared in an analogue of the Drinfeld presentation for Ym|n [7, 15, 22, 33,

39, 40]. We list PD explicitly here since it will be used right away:

{D(r)
a , D′(r)a | 1 ≤ a ≤ m+ n, r ≥ 0}, (3.16)

{E(r)
b | 1 ≤ b < m+ n, r ≥ 1}, (3.17)

{F (r)
b | 1 ≤ b < m+ n, r ≥ 1}, (3.18)

and their parities are given by

|D(r)
a | = |D′(r)a | = 0, |E(r)

b | = |F
(r)
b | = |b|+ |b+ 1| (mod 2). (3.19)

4. Shifted super Yangian: Drinfeld’s presentation

Recall from §2 that a pyramid π can be uniquely recorded by a triple (σ, `,Υ) where σ is

a shift matrix of size m+ n, ` is a positive integer and Υ is a 01-sequence. Following [8, §2],

we use σ and Υ to define the following structure, which is one of the main objects studied

in this article.

Definition 4.1. Let m,n ∈ Z≥0, σ = (si,j) be a shift matrix of size m + n with a fixed

0m1n-sequence Υ. The shifted super Yangian of glm|n associated to σ, denoted by Ym|n(σ), is



FINITE W -SUPERALGEBRAS VIA SUPER YANGIANS 17

the superalgebra over C generated by following symbols{
D(r)
a , D′(r)a | 1 ≤ a ≤ m+ n, r ≥ 0

}
,{

E
(r)
b | 1 ≤ b < m+ n, r > sb,b+1

}
,{

F
(r)
b | 1 ≤ b < m+ n, r > sb+1,b

}
,

where their parities are defined by (3.19), subject to the following relations:

D(0)
a = D′(0)

a = 1 , (4.1)
r∑
t=0

D(t)
a D

′(r−t)
a = δr0, (4.2)

[
D(r)
a , D

(s)
b

]
= 0, (4.3)

[D(r)
a , E

(s)
b ] = (−1)|a|

(
δa,b − δa,b+1

) r−1∑
t=0

D(t)
a E

(r+s−1−t)
b , (4.4)

[D(r)
a , F

(s)
b ] = (−1)|a|

(
δa,b+1 − δa,b

) r−1∑
t=0

F
(r+s−1−t)
b D(t)

a , (4.5)

[E(r)
a , F

(s)
b ] = δa,b(−1)|a+1|+1

r+s−1∑
t=0

D′(r+s−1−t)
a D

(t)
a+1, (4.6)

[E(r)
a , E(s)

a ] = (−1)|a+1|( s−1∑
t=sa,a+1+1

E(r+s−1−t)
a E(t)

a −
r−1∑

t=sa,a+1+1

E(r+s−1−t)
a E(t)

a

)
, (4.7)

[F (r)
a , F (s)

a ] = (−1)|a|
( r−1∑
t=sa+1,a+1

F (r+s−1−t)
a F (t)

a −
s−1∑

t=sa+1,a+1

F (r+s−1−t)
a F (t)

a

)
, (4.8)

[E(r+1)
a , E

(s)
a+1]− [E(r)

a , E
(s+1)
a+1 ] = (−1)|a+1|E(r)

a E
(s)
a+1 , (4.9)

[F (r+1)
a , F

(s)
a+1]− [F (r)

a , F
(s+1)
a+1 ] = (−1)1+|a||a+1|+|a+1||a+2|+|a||a+2|F

(s)
a+1F

(r)
a , (4.10)

[E(r)
a , E

(s)
b ] = 0 if |b− a| > 1, (4.11)

[F (r)
a , F

(s)
b ] = 0 if |b− a| > 1, (4.12)[

E(r)
a , [E(s)

a , E
(t)
b ]
]

+
[
E(s)
a , [E(r)

a , E
(t)
b ]
]

= 0 if |a− b| = 1, (4.13)[
F (r)
a , [F (s)

a , F
(t)
b ]
]

+
[
F (s)
a , [F (r)

a , F
(t)
b ]
]

= 0 if |a− b| = 1, (4.14)
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[E

(r)
a−1, E

(t)
a ] , [E(t)

a , E
(s)
a+1]

]
= 0 when m+ n ≥ 4 and |a|+ |a+ 1| = 1, (4.15)[

[F
(r)
a−1, F

(t)
a ] , [F (t)

a , F
(s)
a+1]

]
= 0 when m+ n ≥ 4 and |a|+ |a+ 1| = 1, (4.16)

for all admissible indices a, b, r, s, t. For example, (4.4) is meant to hold for all r ≥ 0,

s > sb,b+1, 1 ≤ a ≤ m+ n and 1 ≤ b < m+ n.

Note that when σ is the zero matrix, the presentation above coincides1 with the pre-

sentation of Ym|n given in [33] by taking µ = (1m+n) therein (in this special case, such a

presentation for Ym|n is also obtained in [40]). As a result, we may identify Ym|n(0) = Ym|n.

In the remaining part of this section, we will show that Ym|n(σ) can be identified as a

subalgebra of Ym|n in general (Corollary 4.5). Let PD,σ be the generating set of Ym|n(σ) in

Definition 4.1. Let Γ : PD,σ → PD be the map sending elements in PD,σ to the elements with

the same name (3.16)–(3.18) in PD obtained by Gauss decomposition.

Proposition 4.2. The map Γ induces a canonical homomorphism Γ : Ym|n(σ)→ Ym|n.

Proof. By setting µ = (1m+n) in [33, Proposition 7.1], or simply by [40, (2.2)–(2.10)], we see

that the relations (4.1)–(4.14) are preserved by Γ. Setting k = l in the generalized quartic

Serre relations in [40, (2.14), (2.15)], we see that (4.15) and (4.16) are preserved by Γ as

well. �

It remains to show that Γ is injective. We introduce the loop filtration on Ym|n(σ)

L0Ym|n(σ) ⊆ L1Ym|n(σ) ⊆ L2Ym|n(σ) ⊆ · · ·

by setting the degrees of the generators D
(r)
a , E

(r)
b , and F

(r)
b to be (r−1) and setting LkYm|n(σ)

to be the span of all supermonomials in the generators of total degree not greater than k.

Let grL Ym|n(σ) denote the associated graded superalgebra.

For 1 ≤ a < b ≤ m + n, r > sa,b and t > sb,a, define the following higher root elements

E
(r)
a,b , F

(t)
b,a ∈ Ym|n(σ) recursively by

E
(r)
a,a+1 := E(r)

a , E
(r)
a,b := (−1)|b−1|[E

(r−sb−1,b)

a,b−1 , E
(sb−1,b+1)

b−1 ], (4.17)

F
(t)
a+1,a := F (t)

a , F
(t)
b,a := (−1)|b−1|[F

(sb,b−1+1)

b−1 , F
(t−sb,b−1)

b−1,a ]. (4.18)

By definition, we have E
(r)
a,b ∈ Lr−1Ym|n(σ) and F

(t)
b,a ∈ Lt−1Ym|n(σ).

1 Note that some relations given in Definition 4.1 are redundant, which is fine for our purpose. In [33],

which studied the case σ = 0 under our current setting, the relations (4.15)–(4.16) were given only for t = 1.

As noticed in [40, Remark 2.13], by relations (4.1)–(4.14), the case t = 1 implies that they actually hold for

all t ≥ 1. In addition, (4.15)–(4.16) hold for |a| + |a+ 1| = 0 as well but they can also be deduced from

(4.1)–(4.14).
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Define the elements {e(r)
a,b | 1 ≤ a, b ≤ m+ n, r ≥ sa,b} ⊆ grL Ym|n(σ) by

e
(r)
a,b :=


grLr D

(r+1)
a if a = b,

grLr E
(r+1)
a,b if a < b,

grLr F
(r+1)
a,b if a > b.

(4.19)

Using the same argument as in [33, Lemma 7.5], except that one uses the defining relations

of Ym|n(σ) listed in Definition 4.1, we deduce the following result.

Proposition 4.3. [8, (2.21)][22, (51)] For all 1 ≤ a, b, c, d ≤ m + n, r ≥ sa,b, t ≥ sc,d, the

following identity holds in grL Ym|n(σ):

[e
(r)
a,b, e

(t)
c,d] = (−1)|b|δb,ce

(r+t)
a,d − (−1)|a||b|+|a||c|+|b||c|δa,de

(r+t)
c,b (4.20)

Let glm|n[x](σ) be the subalgebra of the loop superalgebra glm|n[x] generated by the fol-

lowing elements

{eijxr | 1 ≤ i, j ≤ m+ n, r ≥ si,j}.
By (2.7), glm|n[x](σ) is indeed a subalgebra of glm|n[x]. Let the universal enveloping algebra

U
(
glm|n[x](σ)

)
be equipped with the natural grading induced by the grading on glm|n[x].

Theorem 4.4. [8, Theorem 2.1] The map

γ : U
(
glm|n[x](σ)

)
−→ grL Ym|n(σ)

defined by

γ(ea,bx
r) = (−1)|a|e

(r)
a,b,

for all 1 ≤ a, b ≤ m+ n, r ≥ sa,b, is an isomorphism of graded superalgebras.

Proof. γ is a homomorphism by (4.20). Since the image of γ contains the image of PD,σ in

grL Ym|n(σ), γ is surjective.

It remains to show the injectivity. Consider firstly the special case when σ = 0, where we

can identify Ym|n(0) = Ym|n. By [33, Proposition 7.9], the ordered supermonomials in the

elements {e(r)
a,b | 1 ≤ a, b ≤ m+ n, r ≥ 0} are linearly independent in grL Ym|n. It follows that

γ is injective.

For the general case, observe that the canonical map Γ : Ym|n(σ) → Ym|n is a homo-

morphism of filtered superalgebras. It induces a map grL Ym|n(σ) → grL Ym|n, sending

e
(r)
a,b ∈ grL Ym|n(σ) to e

(r)
a,b ∈ grL Ym|n. By the previous paragraph, the ordered supermonomi-

als in the elements {e(r)
a,b | 1 ≤ a, b ≤ m+ n, r ≥ sa,b} are linearly independent in grL Ym|n(σ)

as well, which implies that γ is injective by the PBW theorem for U
(
glm|n[x](σ)

)
. �

Corollary 4.5. [8, Corollary 2.2] The canonical homomorphism Γ : Ym|n(σ) → Ym|n is

injective. As a consequence, the structure Ym|n(σ) defined in Definition 4.1 can be identified

as a subalgebra of Ym|n.
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5. Shifted super Yangian: Parabolic presentations

In this section, we provide a more sophisticated definition for Ym|n(σ) together with cor-

responding results obtained in § 4. For the sake of the purpose, we first introduce some

terminologies and notations.

Let σ = (si,j) be a shift matrix of size m + n. We say a composition µ = (µ1, . . . , µz) of

m+ n of length z is admissible to σ if

sµ1+µ2+···+µa−1+i,µ1+µ2+···+µa−1+j = 0

for all 1 ≤ a ≤ z, 1 ≤ i, j ≤ µa. In addition, µ is called minimal admissible if it is admissible

to σ and its length is minimal among all compositions admissible to σ. Clearly, for a shift

matrix σ, its minimal admissible shape uniquely exists. Moreover, (1m+n) is admissible for

any σ of size m+ n.

Remark 5.1. The notion of admissibility can be intuitively explained in terms of pyramid.

Note that one can decompose a pyramid horizontally into a number of rectangles. An admis-

sible shape µ records the heights of these rectangles from top to bottom, while the minimal

admissible shape records such a decomposition with the least number of rectangles.

When µ = (µ1, µ2, . . . , µz) is admissible to σ, we will use a shorthand notation

sµa,b := sµ1+...+µa,µ1+...+µb , ∀ 1 ≤ a, b ≤ z. (5.1)

Note that one can recover the original matrix σ if an admissible shape µ and the num-

bers {sµa,b|1 ≤ a, b ≤ z} are known. Moreover, under the assumption (2.7), the admissible

condition implies that for any 1 ≤ a, b ≤ z, we have

sµ1+···+µa−1+i,µ1+···+µb−1+j = sµa,b, ∀1 ≤ i ≤ µa, 1 ≤ j ≤ µb. (5.2)

Let Υ be a fixed 0m1n-sequence. We decompose Υ into z subsequences according to µ

Υ = Υ1Υ2 · · ·Υz,

and define the restricted parity |i|a as in (3.5). Now we give the following presentation for

Ym|n(σ), which is a super analogue of the shifted Yangian given in [8, §3].

Definition 5.2. Let σ = (si,j) be a shift matrix of size m + n with a fixed 0m1n-sequence

Υ. Let µ = (µ1, . . . , µz) be an admissible shape to σ. The shifted super Yangian of glm|n
associated to σ and µ, denoted by Yµ(σ), is the superalgebra over C generated by the following

symbols {
D

(r)
a;i,j, D

′(r)
a;i,j | 1 ≤ a ≤ z, 1 ≤ i, j ≤ µa, r ≥ 0

}
,{

E
(r)
b;h,k | 1 ≤ b < z, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1, r > sµb,b+1

}
,{

F
(r)
b;k,h | 1 ≤ b < z, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1, r > sµb+1,b

}
,
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where their parities are defined by (3.13)–(3.15), subject to the following relations:

D
(0)
a;i,j = D

′(0)
a;i,j = δij , (5.3)

µa∑
p=1

r∑
t=0

D
(t)
a;i,pD

′(r−t)
a;p,j = δr0δij , (5.4)

[
D

(r)
a;i,j, D

(s)
b;h,k

]
= δab(−1)|i|a|j|a+|i|a|h|a+|j|a|h|a ×

min(r,s)−1∑
t=0

(
D

(t)
a;h,jD

(r+s−1−t)
a;i,k −D(r+s−1−t)

a;h,j D
(t)
a;i,k

)
, (5.5)

[D
(r)
a;i,j, E

(s)
b;h,k] = δa,bδhj(−1)|h|a|j|a

µa∑
p=1

r−1∑
t=0

D
(t)
a;i,pE

(r+s−1−t)
b;p,k

− δa,b+1(−1)|h|b|k|a+|h|b|j|a+|j|a|k|a
r−1∑
t=0

D
(t)
a;i,kE

(r+s−1−t)
b;h,j , (5.6)

[D
(r)
a;i,j, F

(s)
b;h,k] = −δa,bδik(−1)|i|a|j|a+|h|a+1|i|a+|h|a+1|j|a

µa∑
p=1

r−1∑
t=0

F
(r+s−1−t)
b;h,p D

(t)
a;p,j

+ δa,b+1(−1)|h|a|k|b+|h|a|j|a+|j|a|k|b
r−1∑
t=0

F
(r+s−1−t)
b;i,k D

(t)
a;h,j, (5.7)

[E
(r)
a;i,j, F

(s)
b;h,k] = δa,b(−1)|h|a+1|k|a+|j|a+1|k|a+|h|a+1|j|a+1+1

r+s−1∑
t=0

D
′(r+s−1−t)
a;i,k D

(t)
a+1;h,j, (5.8)

[E
(r)
a;i,j, E

(s)
a;h,k] = (−1)|h|a|j|a+1+|j|a+1|k|a+1+|h|a|k|a+1×( s−1∑

t=sµa,a+1+1

E
(r+s−1−t)
a;i,k E

(t)
a;h,j −

r−1∑
t=sµa,a+1+1

E
(r+s−1−t)
a;i,k E

(t)
a;h,j

)
, (5.9)

[F
(r)
a;i,j, F

(s)
a;h,k] = (−1)|h|a+1|j|a+|j|a|k|a+|h|a+1|k|a×( r−1∑

t=sµa+1,a+1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j −

s−1∑
t=sµa+1,a+1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j

)
, (5.10)

[E
(r+1)
a;i,j , E

(s)
a+1;h,k]− [E

(r)
a;i,j, E

(s+1)
a+1;h,k] = (−1)|j|a+1|h|a+1δh,j

µa+1∑
q=1

E
(r)
a;i,qE

(s)
a+1;q,k , (5.11)

[F
(r+1)
a;i,j , F

(s)
a+1;h,k]− [F

(r)
a;i,j, F

(s+1)
a+1;h,k] =
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(−1)|i|a+1(|j|a+|h|a+2)+|j|a|h|a+2+1δi,k

µa+1∑
q=1

F
(s)
a+1;h,qF

(r)
a;q,j , (5.12)

[E
(r)
a;i,j, E

(s)
b;h,k] = 0 if |b− a| > 1 or if b = a+ 1 and h 6= j, (5.13)

[F
(r)
a;i,j, F

(s)
b;h,k] = 0 if |b− a| > 1 or if b = a+ 1 and i 6= k, (5.14)[

E
(r)
a;i,j, [E

(s)
a;h,k, E

(t)
b;f,g]

]
+
[
E

(s)
a;i,j, [E

(r)
a;h,k, E

(t)
b;f,g]

]
= 0 if |a− b| ≥ 1, (5.15)[

F
(r)
a;i,j, [F

(s)
a;h,k, F

(t)
b;f,g]

]
+
[
F

(s)
a;i,j, [F

(r)
a;h,k, F

(t)
b;f,g]

]
= 0 if |a− b| ≥ 1, (5.16)[

[E
(r)
a−1;i,f1

, E
(t)
a;f2,j

] , [E
(t)
a;h,g1

, E
(s)
a+1;g2,k

]
]

= 0 if z ≥ 4 and |h|a + |j|a+1 = 1, (5.17)[
[F

(r)
a−1;i,f1

, F
(t)
a;f2,j

] , [F
(t)
a;h,g1

, F
(s)
a+1;g2,k

]
]

= 0 if z ≥ 4 and |j|a + |h|a+1 = 1, (5.18)

for all indices a, b, f, f1, f2, g, g1, g2, h, i, j, k, r, s, t that make sense. For example, (5.11) is

supposed to hold for all 1 ≤ a ≤ z − 2, 1 ≤ i ≤ µa, 1 ≤ h, j ≤ µa+1, 1 ≤ k ≤ µa+2,

r ≥ sµa,a+1 + 1, s ≥ sµa+1,a+2 + 1.

In the special case where σ is the zero matrix, the above relations are precisely2 the defining

relations of Ym|n with respect to the parabolic generators Pµ introduced in §3. As a result, we

may simply write Yµ = Yµ(0) instead of Ym|n to emphasize that we are using the parabolic

presentation to define Ym|n. The generators of Yµ(σ), denoted by Pµ,σ, will be called the

parabolic generators of Yµ(σ). Later we will identify Pµ,σ as subset of Pµ.

Remark 5.3. As noticed in [31, 40], up to isomorphism, the definition of Yµ is independent

of the choice of the 01-sequence Υ since the RTT presentation of Ym|n is. For Yµ(σ), we have

a similar but slightly weaker phenomenon. Write Yµ(σ,Υ) for the shifted super Yangian to

emphasize the choice of Υ. Let Sm+n be the symmetric group on m + n objects, which acts

on Υ by permutation, and let Sµ denote its Young subgroup associated to µ. We have

Yµ(σ,Υ) ∼= Yµ(σ, ρ ·Υ) ∀ρ ∈ Sµ,

which is an immediate consequence of Remark 8.5 and Theorem 10.1.

Fix an admissible shape µ. Similar to §3, we will show that Yµ(σ) can be identified as a

subalgebra of Yµ. Let Γ : Pµ,σ → Pµ be the map sending elements in Pµ,σ to the elements

(3.10) and (3.12) with the same name in Pµ that are obtained by Gauss decomposition with

respect to µ.

2Similar to Definition 4.1, when σ = 0 the relations (5.17)–(5.18) are assumed to hold only for t = 1 in [33],

which suffices to imply that they in fact hold for all t ≥ 1; see Proposition 5.15. In addition, (5.17)–(5.18)

also hold when |j|a + |h|a+1 = 1.
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Proposition 5.4. The map Γ induces a canonical homomorphism Γ : Yµ(σ)→ Yµ.

Proof. By [33], the relations (5.3)–(5.16) hold in Yµ whenever the indices make sense. It

remains to show that (5.17) and (5.18) also hold in Yµ. These relations are crucial differences

from the Lie algebra case in [8] and earlier partial results in [4, 32]. Checking these relations

turns out to be very technical and involved. As a result, we postpone the proof to the end

of this section; see Proposition 5.15. �

For 1 ≤ a < b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, r > sµa,b and a fixed 1 ≤ k ≤ µb−1, we define

the higher root elements E
(r)
a,b;i,j ∈ Yµ(σ) recursively by

E
(r)
a,a+1;i,j := E

(r)
a;i,j, E

(r)
a,b;i,j := (−1)|k|b−1 [E

(r−sµb−1,b)

a,b−1;i,k , E
(sµb−1,b+1)

b−1;k,j ]. (5.19)

Similarly, using the same indices except for r > sµb,a, we define F
(r)
b,a;j,i ∈ Yµ(σ) by

F
(r)
a+1,a;j,i := F

(r)
a;j,i, F

(r)
b,a;j,i := (−1)|k|b−1 [F

(sµb,b−1+1)

b−1;j,k , F
(r−sµb,b−1)

b−1,a;k,i ]. (5.20)

It turns out that the above definitions are independent of the choice of k; see Remark 5.8.

We introduce the loop filtration on Yµ(σ)

L0Yµ(σ) ⊆ L1Yµ(σ) ⊆ L2Yµ(σ) ⊆ · · ·

by setting the degrees of the generators D
(r)
a;i,j, E

(r)
a;i,j, and F

(r)
a;i,j to be r − 1 and setting

LkYµ(σ) to be the span of all supermonomials in the generators of total degree not greater

than k. We let grL Yµ(σ) denote the associated graded superalgebra and define the elements

{e(r)
a,b;i,j | 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, r ≥ sµa,b} ⊆ grL Yµ(σ) by

e
(r)
a,b;i,j :=


grLr D

(r+1)
a;i,j if a = b,

grLr E
(r+1)
a,b;i,j if a < b,

grLr F
(r+1)
a,b;i,j if a > b.

The following is a parabolic version of Proposition 4.3, which can be proved by a similar

argument.

Proposition 5.5. [7, Lemma 6.7][33, Lemma 7.5] For all 1 ≤ a, b, c, d ≤ z, 1 ≤ i ≤ µa,

1 ≤ j ≤ µb, r ≥ sµa,b, t ≥ sµc,d, the following identity holds in grL Yµ(σ):

[e
(r)
a,b;i,j, e

(t)
c,d;h,k] = (−1)|j|bδb,cδh,je

(r+t)
a,d;i,k − (−1)|i|a|j|b+|i|a|h|c+|j|b|h|cδa,dδi,ke

(r+t)
c,b;h,j. (5.21)

Theorem 5.6. The map

γ : U
(
glm|n[x](σ)

)
−→ grL Yµ(σ)

defined by

γ(eµ1+···+µa−1+i,µ1+···+µb−1+jx
r) = (−1)|i|ae

(r)
a,b;i,j,
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for all 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, r ≥ sµa,b, is an isomorphism of graded

superalgebras.

Proof. γ is a surjective homomorphism by (5.21). For injectivity, we start with the case σ = 0,

where we already know that Yµ(0) = Yµ, and the statement follows from Corollary 3.3. For

the general case, observe that the canonical map Γ : Yµ(σ) → Yµ is a homomorphism of

filtered superalgebras (under loop filtration), and its induced map grL Yµ(σ)→ grL Yµ sends

e
(r)
a,b;i,j ∈ grL Yµ(σ) to e

(r)
a,b;i,j ∈ grL Yµ. By the previous paragraph, the ordered supermonomi-

als in the elements {e(r)
a,b;i,j | 1 ≤ a, b ≤ m+n, r ≥ sµa,b} are linearly independent in grL Yµ(σ),

hence γ is injective by the PBW theorem for U
(
glm|n[x](σ)

)
. �

Theorem 5.7. Let Yµ(σ) be the subalgebra of Yµ generated by the union of the following

subsets of Pµ: {
D

(r)
a;i,j, D

′(r)
a;i,j | 1 ≤ a ≤ z, 1 ≤ i, j ≤ µa, r ≥ 0

}
,{

E
(r)
b;h,k | 1 ≤ b < z, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1, r > sµb,b+1

}
,{

F
(r)
b;k,h | 1 ≤ b < z, 1 ≤ k ≤ µb+1, 1 ≤ h ≤ µb, r > sµb+1,b

}
.

Then the relations (5.3)–(5.18) form a set of defining relations for Yµ(σ). In other words,

Yµ(σ) defined in Definition 5.2 can be realized as a subalgebra of the super Yangian Yµ.

Proof. We slightly change the notation in this proof to avoid possible confusion. Let Ỹµ(σ)

denote the abstract superalgebra generated by elements in Pµ,σ with defining relations given

in Definition 5.2 and let Yµ(σ) denote the concrete subalgebra of Yµ as stated in the theorem.

Let Γ : Ỹµ(σ) → Yµ(σ) be the canonical homomorphism in Proposition 5.4. Γ is clearly

surjective, and it is injective as well by Theorem 5.6. �

Remark 5.8. By Theorem 5.7, E
(r)
b;h,k and F

(r)
b;k,h are now concrete elements in Yµ. Using the

same argument as in [7, (6.9)] together with the admissible condition (5.2), one can show

that the higher root elements defined recursively by (5.19) and (5.20) are independent of the

choices of k.

Let Y 0
µ (σ) denote the subalgebra of Yµ(σ) generated by all of the D

(r)
a;i,j’s , Y +

µ (σ) denote

the subalgebra generated by all of the E
(r)
b;h,k’s and Y −µ (σ) denote the subalgebra generated

by all of the F
(r)
b;k,h’s. The following corollary give PBW bases for these subalgebras.

Corollary 5.9. [8, Theorem 3.2]

(1) The set of supermonomials in the elements

{D(r)
a;i,j | 1 ≤ a ≤ z, 1 ≤ i, j ≤ µa, r > 0}

taken in some fixed order forms a basis for Y 0
µ (σ).
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(2) The set of supermonomials in the elements

{E(r)
a,b;h,k | 1 ≤ a < b ≤ z, 1 ≤ h ≤ µa, 1 ≤ k ≤ µb, r > sµa,b}

taken in some fixed order forms a basis for Y +
µ (σ).

(3) The set of supermonomials in the elements

{F (r)
b,a;k,h | 1 ≤ a < b ≤ z, 1 ≤ k ≤ µb, 1 ≤ h ≤ µa, r > sµb,a}

taken in some fixed order forms a basis for Y −µ (σ).

(4) The set of supermonomials in the union of the elements listed in (1)–(3) taken in

some fixed order forms a basis for Yµ(σ).

Proof. (4) follows from Theorem 5.6 and the PBW theorem for U
(
glm|n[x](σ)

)
. The others

can be deduced by the same argument together with (5.21). �

Corollary 5.10. [8, Corollary 3.4] The multiplicative map Y −µ (σ)⊗Y 0
µ (σ)⊗Y +

µ (σ) −→ Yµ(σ)

is an isomorphism of superspaces.

Now we show that the definition of Yµ(σ) is independent of the choice of the admissible

shape µ. It suffices to show that Yµ(σ) = Y(1m+n)(σ). Assume that µ = (µ1, . . . , µz) is

admissible to σ. If µj = 1 for all j, then we have done. Otherwise, suppose that µp > 1 for

some 1 ≤ p ≤ z and we decompose µp = x+ y for some positive integers x, y.

Define a finer composition ν of length z+1 by setting νi = µi for all 1 ≤ i ≤ p−1, νp = x,

νp+1 = y, νj+1 = µj for all p+ 1 ≤ j ≤ z; that is,

ν = (µ1, . . . , µp−1, x, y, µp+1, . . . , µz),

which is also admissible to σ by definition. We claim that

Yµ(σ) = Yν(σ).

Now we prove our claim. Consider the Gauss decomposition of the matrix T (u) with respect

to µ and ν, respectively:

T (u) = µE(u)µD(u)µF (u) = νE(u)νD(u)νF (u),

where the matrices are block matrices as described in §3.

Denote by µDa and νDa the a-th diagonal matrices in µD(u) and νD(u) with respect to

the compositions µ and ν, respectively. Similarly, let µEa and µFa denote the matrices in

the a-th upper and the a-th lower diagonal of µE(u) and µF (u), respectively; νEa and νFa
are defined to be the matrices in the a-th upper and the a-th lower diagonal of νE(u) and
νF (u), respectively.
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Lemma 5.11. [8, Lemma 3.1] Using the above notation, define an (x × x)-matrix A, an

(x× y)-matrix B, a (y × x)-matrix C and a (y × y)-matrix D from the equation

µDp =

(
Ix 0

C Iy

)(
A 0

0 D

)(
Ix B

0 Iy

)
.

Then

(i) νDa = µDa for a < p, νDp = A, νDp+1 = D, and νDc = µDc−1 for c > p+ 1;

(ii) νEa = µEa for a < p − 1, νEp−1 is the submatrix consisting of the first x columns

of µEp−1, νEp = B, νEp+1 is the submatrix consisting of the last p rows of µEp, and
νEc = µEc−1 for c > p+ 1;

(iii) νFa = µFa for a < p − 1, νFp−1 is the submatrix consisting of the first x rows of
µFp−1, νFp = C, µFp+1 is the submatrix consisting of the last y columns of µFp, and
νFc = µFc−1 for c > p+ 1.

Proof. Matrix multiplication. �

As a consequence of Lemma 5.11, we see that Yν(σ) ⊆ Yµ(σ). Now the equality follows

from the fact that the isomorphism U
(
glm|n[x](σ)

) ∼= grL Yµ(σ) is independent of the choice

of µ. Applying induction on the length of the admissible shape µ, we have deduced the

desired result.

Corollary 5.12. Yµ(σ) is independent of the choice of the admissible shape µ.

Let σ be a shift matrix with an admissible shape µ. Note that the transpose matrix σt

is again a shift matrix while µ is still admissible for σt. On the other hand, suppose that

~σ = (~si,j)1≤i,j≤m+n is another shift matrix satisfying (2.7) and the condition

~si,i+1 + ~si+1,i = si,i+1 + si+1,i

holds for all 1 ≤ i ≤ m + n − 1. As a result, if µ is an admissible shape for σ then it is

also admissible for ~σ. Denote by ~D
(r)
a;i,j,

~E
(r)
b;h,k and ~F

(r)
b;k,h the parabolic generators of Yµ(~σ) to

avoid confusion. The following results can be easily deduced from the presentation of Yµ(σ).

Proposition 5.13. The map τ : Yµ(σ)→ Yµ(σt) defined by

τ(D
(r)
a;i,j) = D

(r)
a;j,i, τ(E

(r)
b;h,k) = F

(r)
b;k,h, τ(F

(r)
b;k,h) = E

(r)
b;h,k (5.22)

is a superalgebra anti-isomorphism of order 2.

Proposition 5.14. The map ι : Yµ(σ)→ Yµ(~σ) defined by

ι(D
(r)
a;i,j) = ~D

(r)
a;i,j, ι(E

(r)
b;h,k) = ~E

(r−sµb,b+1+~sµb,b+1)

b;h,k , ι(F
(r)
b;k,h) = ~F

(r−sµb+1,b+~s
µ
b+1,b)

b;k,h , (5.23)

is a superalgebra isomorphism.

Now we prove the missing piece in the proof of Proposition 5.4.
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Proposition 5.15. The relations (5.17) and (5.18) hold in Yµ, where E
(r)
b;h,k and F

(r)
b;k,h are

the elements in Yµ defined by (3.12).

Proof. We only provide the detail for proving (5.17), while (5.18) is similar. Inspired by [9,

§2.4], the proof is given by downward induction on the length of the admissible shape µ.

Our initial step is the case µ = (1m+n), where (5.17) reduces to (4.15), which holds due to

[40, (2.14)].

Assume now µ = (µ1, . . . , µz) with z < m+ n. Following the same notations given in the

proof of Corollary 5.12, we may choose some 1 ≤ p ≤ z and decompose µp = x+ y to obtain

a new composition ν = (µ1, . . . , µp−1, x, y, µp+1, . . . , µz). Now (5.17) and (5.18) hold in Yν by

induction, which further implies that Theorem 5.7 holds for ν and hence we may identify

Yν(σ) as a subalgebra of Yν . The key idea is to describe the relations between the elements
µE

(r)
b;h,k and νE

(r)
b;h,k.

Recall the set Pµ,σ consisting of the following elements in Yµ{µ
D

(r)
a;i,j | 1 ≤ a ≤ z, 1 ≤ i, j ≤ µa, r ≥ 0

}
{µ
E

(r)
b;h,k | 1 ≤ b < z, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1, r > sµb,b+1

}
{µ
F

(r)
b;k,h | 1 ≤ b < z, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1, r > sµb+1,b

}
obtained by applying the Gauss decomposition to T (u) with respect to µ. Similarly, replacing

µ by ν, we have the following elements in Yν as well

{ν
D

(r)
a;i,j | 1 ≤ a ≤ z + 1, 1 ≤ i, j ≤ νa, r ≥ 0

}
{ν
E

(r)
b;h,k | 1 ≤ b ≤ z, 1 ≤ h ≤ νb, 1 ≤ k ≤ νb+1, r > sνb,b+1

}
{ν
F

(r)
b;k,h | 1 ≤ b ≤ z, 1 ≤ h ≤ νb, 1 ≤ k ≤ νb+1, r > sνb+1,b

}
For every 1 ≤ a < b ≤ z + 1, 1 ≤ i ≤ νa, 1 ≤ j ≤ νb, we inductively define higher root

elements νE
(r)
a,b;i,j for r > sνa,b by equation (5.19) and similarly define νF

(r)
b,a;j,i for r > sνb,a by

equation (5.20). We further define the following formal series in Yν(σ)[[u−1]]:

νEa,b;i,j(u) :=
∑
r>sνa,b

νE
(r)
a,b;i,ju

−r, νFb,a;j,i(u) :=
∑
r>sνb,a

νF
(r)
b,a;j,iu

−r, (5.24)

and let νDa;i,j(u) be given as in (3.7) with respect to ν. Note that the value of k in (5.19) and

(5.20) can be arbitrarily chosen between 1 and νb−1 due to Remark 5.8. Moreover, one should

be careful that the series (5.24) are in general different from those series in Yν [[u
−1]] given

by (3.11) so that we have to slightly modify the argument in the proof of Corollary 5.12.
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Using these series, one defines the following matrices

νDa(u) =
(
νDa;i,j(u)

)
1≤i,j≤νa

νEa,b(u) =
(
νEa,b;h,k(u)

)
1≤h≤νa,1≤k≤νb

νFb,a(u) =
(
νFb,a;k,h(u)

)
1≤k≤νb,1≤h≤νa

One further defines the block matrices νD(u), νE(u) and νF (u) exactly the same way as

(3.6)–(3.9), except that we use their product to define the following matrix

νG(u) := νF (u)νD(u)νE(u)

By exactly the same way, one defines the higher root elements µE
(r)
a,b;i,j,

µF
(r)
b,a;j,i, formal

series µEa,b;i,j(u), µFb,a;j,i(u), µDa;i,j(u), block matrices µD(u), µE(u) and µF (u) and hence

their product µG(u) := µF (u)µD(u)µE(u). A key observation from [9, §2.4] is that these

two matrices are in fact the same and hence we have

νF (u)νD(u)νE(u) = νG(u) = µG(u) = µF (u)µD(u)µE(u)

As a consequence of Lemma 5.11, for each 1 ≤ a < b ≤ z, 1 ≤ i ≤ µa and 1 ≤ j ≤ µb, we

have the following relation

µEa,b;i,j(u) =



νEa,b;i,j(u) if b < p;
νEa,b;i,j(u) if b = p, j ≤ x;
νEa,b+1;i,j−x(u) if b = p, j > x;
νEa,b+1;i,j(u) if a < p < b;
νEa,b+1;i,j(u)

−
∑y

q=1
νEa,a+1;i,q(u)νEa+1,b+1;q,j(u) if a = p, i ≤ x;

νEa+1,b+1;i−x,j(u) if a = p, i > x;
νEa+1,b+1;i,j(u) if a > p.

(5.25)

Now let us back to the proof of (5.17). We may assume that f1 = f2 = f and g1 = g2 = g

by (5.11). Moreover, by (5.25), µE
(r)
a;i,j = νE

(r)
a;i,j except for a ∈ {p−1, p, p+ 1} so the general

case is further reduced to the special case µ = (µ1, µ2, µ3, µ4) since (5.17) holds for ν by

induction. Therefore, it suffices to check the following relation holds in Yµ for any t > sµ2,3:[
[µE

(r)
1;i,f ,

µE
(t)
2;f,j] , [µE

(t)
2;h,g,

µE
(s)
3;g,k]

]
= 0 (5.26)

This can be checked by a case-by-case discussion. We list all possibilities below:

p = 1, 1 ≤ i ≤ x (5.27)

p = 1, 1 ≤ i− x ≤ y (5.28)

p = 2, 1 ≤ f ≤ x, 1 ≤ h ≤ x (5.29)

p = 2, 1 ≤ f − x ≤ y, 1 ≤ h ≤ x (5.30)
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p = 2, 1 ≤ f ≤ x, 1 ≤ h− x ≤ y (5.31)

p = 2, 1 ≤ f − x ≤ y, 1 ≤ h− x ≤ y (5.32)

p = 3, 1 ≤ g ≤ x, 1 ≤ j ≤ x (5.33)

p = 3, 1 ≤ g − x ≤ y, 1 ≤ j ≤ x (5.34)

p = 3, 1 ≤ g ≤ x, 1 ≤ j − x ≤ y (5.35)

p = 3, 1 ≤ g − x ≤ y, 1 ≤ j − x ≤ y (5.36)

p = 4, 1 ≤ k ≤ x (5.37)

p = 4, 1 ≤ k − x ≤ y (5.38)

We will check some of them in detail here and the remaining ones can be deduced similarly.

Suppose that (5.27) holds. By (5.25), we have

µE
(r)
1;i,f = νE

(r)
1,3;i,f −

∑
sν2,3<q<r

y∑
`=1

νE
(r−q)
1;i,`

νE
(q)
2;`,f

Note that the admissible condition implies sµ1,2 = sν2,3 so the indices q and r− q make sense.

Then relation (5.26) becomes

[
[νE

(r)
1,3;i,f −

∑
sν2,3<q<r

y∑
`=1

νE
(r−q)
1;i,`

νE
(q)
2;`,f ,

νE
(t)
3;f,j] , [νE

(t)
3;h,g,

νE
(s)
4;g,k]

]
=

[
[νE

(r)
1,3;i,f ,

νE
(t)
3;f,j] , [νE

(t)
3;h,g,

νE
(s)
4;g,k]

]
−
[

[
∑

sν2,3<q<r

y∑
`=1

νE
(r−q)
1;i,`

νE
(q)
2;`,f ,

νE
(t)
3;f,j] , [νE

(t)
3;h,g,

νE
(s)
4;g,k]

]
We first use the relation (5.19) to rewrite νE

(r)
1,3;i,f = (−1)|`|[νE

(r−sν2,3)

1;i,` , νE
(sν2,3+1)

2;`,f ]. Then we use

super Jacobi identity twice together with the fact that νE
(r−sν2,3)

1;i,` and νE
(t)
3;f,j supercommute

to rewrite the first term into

(−1)|`|
[
νE

(r−sν2,3)

1;i,` ,
[

[νE
(sν2,3+1)

2;`,f , νE
(t)
3;f,j] , [νE

(t)
3;h,g,

νE
(s)
4;g,k]

] ]
Similarly, up to an irrelevant sign factor, one can rewrite the second term as∑

sν2,3<q<r

y∑
`=1

νE
(r−q)
1;i,`

[
[ νE

(q)
2;`,f ,

νE
(t)
3;f,j] , [νE

(t)
3;h,g,

νE
(s)
4;g,k]

]
Now both of them are zero since (5.17) holds for ν by induction and the case (5.27) is proved.

Suppose that (5.34) holds. Using (5.25), we rewrite (5.26) into[
[νE

(r)
1;i,f ,

νE
(t)
2;f,j], [

νE
(t)
2,4;h,g,

νE
(s)
4;g,k]

]
By relation (5.19), we have

νE
(t)
2,4;h,g = (−1)|`|[νE

(t)
2;h,`,

νE
(1)
3;`,g], (5.39)
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where it is crucial to use the fact that sν3,4 = 0 due to the admissible condition. Following

the same argument given in the case (5.27), one easily deduces that (5.26) is indeed zero in

the case (5.34).

Now we prove the case (5.35). By (5.25), equation (5.26) becomes[[
νE

(r)
1;i,f ,

νE
(t)
2,4;f,j

]
,
[
νE

(t)
2;h,g,

νE
(s)
3,5;g,k −

∑
sν4,5<q<s

ν4∑
`=1

νE
(s−q)
3;g,`

νE
(q)
4;`,k

]]
(5.40)

For convenience, write

B = νE
(s)
3,5;g,k −

∑
sν4,5<q<s

ν4∑
`=1

νE
(s−q)
3;g,`

νE
(q)
4;`,k.

We need an extra relation before moving on. Applying the shift map ψν1 in [33, Lemma 4.2]

to the equation [33, (6.31)], one deduces the following relation in Yν [[u
−1, v−1]][

E2,4;f,j(u), E3,5;g,k(v)−
ν4∑
`=1

E3;g,`(v)E4;`,k(v)
]

= 0 (5.41)

We emphasize again that the series E2,4;f,j(u) and E3,5;g,k(v) in (5.41) are given by (3.8) and

they are in general different from νE2,4;f,j(u) and νE3,5;g,k(v) defined by (5.24). Fortunately,

sν3,4 = 0 due to the admissible condition so that we do have νE2,4;f,j(u) = E2,4;f,j(u). By

using (5.11) in the case σ = 0 multiple times, one deduces that

E
(s)
3,5;g,k = νE

(s)
3,5;g,k +

sν4,5∑
j=1

ν4∑
`=1

E
(s+j−1)
3;g,` E

(j)
4;`,k.

As a result, we may rewrite (5.41) into the following identity in Yν(σ)[
νE

(t)
2,4;f,j,

νE
(s)
3,5;g,k −

∑
sν4,5<q<s

ν4∑
`=1

νE
(s−q)
3;g,`

νE
(q)
4;`,k

]
=
[
νE

(t)
2,4;f,j, B

]
= 0 (5.42)

By super Jacobi identity and (5.39), we rewrite (5.40) into[[
νE

(r)
1;i,f ,

νE
(t)
2,4;f,j

]
,
[
νE

(t)
2;h,g, B

]]
=
[[

[ νE
(r)
1;i,f ,

νE
(t)
2,4;f,j ] , νE

(t)
2;h,g

]
, B
]
±
[
νE

(t)
2;h,g ,

[
[νE

(r)
1;i,f ,

νE
(t)
2,4;f,j ] , B

]]
The second term is zero due to (5.42) and the fact that νE

(r)
1;i,f supercommute with B, which

is a consequence of equation (5.13). Using (5.39) and super Jacobi identity, we rewrite the

term inside the bracket of the first term as follows[
[ νE

(r)
1;i,f ,

νE
(t)
2,4;f,j ] , νE

(t)
2;h,g

]
=
[ [

νE
(r)
1;i,f , (−1)|`|[νE

(t)
2;f,`,

νE
(1)
3;`,j]

]
, νE

(t)
2;h,g

]
= ±

[
νE

(r)
1;i,f ,

[
νE

(t)
2;h,g, [

νE
(t)
2;f,`,

νE
(1)
3;`,j]

] ]
±
[ [

νE
(r)
1;i,f ,

νE
(t)
2;h,g

]
,
[
νE

(t)
2;f,`,

νE
(1)
3;`,j

] ]
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The first term is zero due to equation (5.15) while the second term is zero since (5.17) holds

for ν by induction. This completes the proof of (5.26) in the case (5.35).

The cases (5.32) and (5.36) are similar to (5.34); the cases (5.28), (5.37) and (5.38) are

immediate results of the induction hypothesis; the cases (5.31) and (5.33) are similar to

(5.27); the cases (5.29) and (5.30) are similar to (5.35). �

Remark 5.16. During the proof, one may observe that the index t in the middle two terms

of (5.17) and (5.18) must be the same. In fact, for the special case µ = (1m+n) and σ = 0,

their equivalent relations were firstly proposed in [39] with mistakes, allowing different t.

However, such relations are too strong and the resulted structure collapses to trivial. The

relations were noticed and corrected by Gow [22] and were generalized in [33, 40], eventually

suggested the current forms of (5.17) and (5.18).

6. Baby comultiplications

Although Ym|n is a Hopf-superalgebra, the shifted super Yangian Yµ(σ) is not closed under

the comultiplication defined by (3.3) in general; that is,

∆(Yµ(σ)) * Yµ(σ)⊗ Yµ(σ).

As compensation, we define some comultiplication-like maps on Yµ(σ) as in [8, §4].

We first set up our assumptions and notations throughout this section. Let σ be a non-

zero shift matrix of size m+ n with minimal admissible shape µ = (µ1, . . . , µz). Let Υ be a

fixed 0m1n-sequence and let Yµ(σ) be the shifted super Yangian defined in §5. Suppose that

there are p 0’s and q 1’s in the very last µz digits of Υ; that is, Υz is a 0p1q-sequence and

µz = p + q. Since µ is minimal admissible and σ 6= 0, we have that 1 ≤ µz < m + n and

either sm+n−µz ,m+n+1−µz 6= 0 or sm+n+1−µz ,m+n−µz 6= 0.

Theorem 6.1. Let µ = (µ1, µ2, . . . , µz) be minimal admissible to σ. For 1 ≤ i, j ≤ µz,

define

ẽi,j := ei,j + δi,j((m− p)− (n− q)) ∈ U(glp|q).

Here ei,j is the elementary matrix identified with the element in glp|q and its parity is deter-

mined by the 0p1q-sequence Υz.

(1) Suppose that sm+n−µz ,m+n+1−µz 6= 0. Define σ̇ = (ṡi,j)1≤i,j≤m+n by

ṡi,j =

{
si,j − 1 if i ≤ m+ n− µz < j,

si,j otherwise.
(6.1)
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Then the map ∆R : Yµ(σ)→ Yµ(σ̇)⊗ U(glp|q) defined by

D
(r)
a;i,j 7→ Ḋ

(r)
a;i,j ⊗ 1 + δa,z

µz∑
f=1

(−1)|f |zḊ
(r−1)
a;i,f ⊗ ẽf,j,

E
(r)
b;h,k 7→ Ė

(r)
b;h,k ⊗ 1 + δb,z−1

µz∑
f=1

(−1)|f |zĖ
(r−1)
b;h,f ⊗ ẽf,k,

F
(r)
b;k,h 7→ Ḟ

(r)
b;k,h ⊗ 1,

is a superalgebra homomorphism.

(2) Suppose that sm+n+1−µz ,m+n−µz 6= 0. Define σ̇ = (ṡi,j)1≤i,j≤m+n by

ṡi,j =

{
si,j − 1 if j ≤ m+ n− µz < i,

si,j otherwise.
(6.2)

Then the map ∆L : Yµ(σ)→ U(glp|q)⊗ Yµ(σ̇) defined by

D
(r)
a;i,j 7→ 1⊗ Ḋ(r)

a;i,j + δa,z(−1)|i|z
µz∑
k=1

ẽi,k ⊗ Ḋ(r−1)
a;k,j ,

E
(r)
b;h,k 7→ 1⊗ Ė(r)

b;h,k,

F
(r)
b;k,h 7→ 1⊗ Ḟ (r)

b;k,h + δb,z−1(−1)|k|z
µz∑
f=1

ẽk,f ⊗ Ḟ (r−1)
b;f,h ,

is a superalgebra homomorphism.

To avoid possible confusion, in the above description and hereafter, the parabolic generators

of Yµ(σ̇) are denoted by Ḋ
(r)
a;i,j, Ė

(r)
a;i,j, and Ḟ

(r)
a;i,j, where σ̇ is the shift matrix defined by either

(6.1) or (6.2), with respect to the same shape µ which is also admissible to σ̇.

Proof. It is straightforward to check that ∆R and ∆L preserve the defining relations in

Definition 5.2. Note that it suffices to check the special case z = 4 since the non-trivial

situations only happen in the very last block. Similar to [8, Theorem 4.2], to check (5.15)

and (5.16), one needs to use (5.9), (5.10), (5.11) and (5.12) multiple times.

We check (5.18) here as an illustrating example since it is a super phenomenon which

does not appear in [8]. Assume z = 4 and (6.2) holds. Applying ∆L to the left-hand-side of

(5.18), we have

[
[1⊗ Ḟ (r)

1;i,f1
, 1⊗ Ḟ (t)

2;f2,j
] , [1⊗ Ḟ (t)

2;h,g1
, 1⊗ Ḟ (s)

3;g2,k
+ (−1)|g2|4

µ4∑
x=1

ẽg2,x ⊗ Ḟ
(s−1)
3;x,k ]

]
(6.3)
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Recall that for associative superalgebras A and B, their tensor product A ⊗ B is naturally

a superalgebra where |a⊗ b| := |a| + |b| for homogeneous a ∈ A, b ∈ B. Given x ⊗ y and

a⊗ b in A⊗B, their supercommutator is explicitly given by

[x⊗ y, a⊗ b] = (x⊗ y)(a⊗ b)− (−1)(|x|+|y|)(|a|+|b|)(a⊗ b)(x⊗ y)

= (−1)|a||y|(xa⊗ yb)− (−1)(|x|+|y|)(|a|+|b|)+|x||b|(ax⊗ by)

By the formula above, (6.3) equals to

1 ⊗
[

[Ḟ
(r)
1;i,f1

, Ḟ
(t)
2;f2,j

] , [Ḟ
(t)
2;h,g1

, Ḟ
(s)
3;g2,k

]
]

+ θ

µ4∑
x=1

ẽg2,x ⊗
[

[Ḟ
(r)
1;i,f1

, Ḟ
(t)
2;f2,j

] , [Ḟ
(t)
2;h,g1

, Ḟ
(s−1)
3;x,k ]

]
,

where θ = ±1 is an irrelevant sign. It vanishes due to (5.18) in Ym|n(σ̇). �

The next lemma computes the images of higher root elements E
(r)
a,b;i,j and F

(r)
b,a;i,j under ∆R

and ∆L.

Lemma 6.2. (1) Suppose the assumption of Theorem 6.1(1) holds. For all admissible

indices i, j, r and 1 ≤ a < b− 1 < z, we have

∆R(F
(r)
b,a;i,j) = Ḟ

(r)
b,a;i,j ⊗ 1,

∆R(E
(r)
a,b;i,j) = Ė

(r)
a,b;i,j ⊗ 1 if b < z,

and

∆R(E
(r)
a,z;i,j) = (−1)|h|z−1 [Ė

(r−sµz−1,z)

a,z−1;i,h , Ė
(sµz−1,z+1)

z−1;h,j ] ⊗ 1 +

µz∑
k=1

(−1)|k|zĖ
(r−1)
a,z;i,k ⊗ ẽk,j,

for any 1 ≤ h ≤ µz−1.

(2) Suppose the assumption of Theorem 6.1(2) holds. For all admissible indices i, j, r and

1 ≤ a < b− 1 < z, we have

∆L(E
(r)
a,b;i,j) = 1⊗ Ė(r)

a,b;i,j,

∆L(F
(r)
b,a;i,j) = 1⊗Ḟ (r)

b,a;i,j if b < z,

and

∆L(F
(r)
z,a;i,j) = (−1)|h|z−1

(
1 ⊗ [Ḟ

(sµz,z−1+1)

z−1;i,h , Ḟ
(r−sµz,z−1)

z−1,a;h,j ]
)

+ (−1)|i|z
µz∑
k=1

ẽi,k ⊗ Ḟ
(r−1)
z−1,a;k,j,

for any 1 ≤ h ≤ µz−1.

Proof. We compute ∆R(E
(r)
a,z;i,j) for 1 ≤ a < z− 1 in detail here, while others are similar. By

definition, for any 1 ≤ h ≤ µz−1, we have

E
(r)
a,z;i,j = (−1)|h|z−1 [E

(r−sµz−1,z)

a,z−1;i,h , E
(sµz−1,z+1)

z−1;h,j ].
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Also, ∆R(E
(r−sµz−1,z)

a,z−1;i,h ) = Ė
(r−sµz−1,z)

a,z−1;i,h ⊗ 1. Hence

∆R(E
(r)
a,z;i,j) = (−1)|h|z−1

[
Ė

(r−sµz−1,z)

a,z−1;i,h ⊗ 1, Ė
(sµz−1,z+1)

z−1;h,j ⊗ 1
]

+ (−1)|h|z−1

[
Ė

(r−sµz−1,z)

a,z−1;i,h ⊗ 1,

µz∑
k=1

(−1)|k|zĖ
(sµz−1,z)

z−1;h,k ⊗ ẽk,j

]

= (−1)|h|z−1

[
Ė

(r−sµz−1,z)

a,z−1;i,h , Ė
(sµz−1,z+1)

z−1;h,j

]
⊗ 1 +

µz∑
k=1

(−1)|k|zĖ
(r−1)
a,z;i,k ⊗ ẽk,j.

�

Proposition 6.3. If the assumption of Theorem 6.1(1) holds, then ∆R is injective. Similarly,

if the assumption of Theorem 6.1(2) holds, then ∆L is injective.

Proof. Let ε : U(glp|q)→ C be the homomorphism such that

ε(ẽi,j) = 0

for 1 ≤ i, j ≤ µz. By definition, Yµ(σ) ⊆ Yµ(σ̇) ⊆ Yµ is a chain of subalgebras. Note that

the compositions m ◦ (id⊗ε) ◦∆R and m ◦ (ε⊗ id) ◦∆L coincide with the natural embedding

Yµ(σ) ↪→ Yµ(σ̇), where m(a⊗ b) := ab is the usual multiplication map. This implies that the

maps ∆R and ∆L are injective whenever they are defined. �

7. Canonical filtration

There is another filtration on Ym|n, called the canonical filtration

F0Ym|n ⊆ F1Ym|n ⊂ F2Ym|n ⊆ · · ·

defined by deg t
(r)
ij := r where FdYm|n is defined to be the span of all supermonomials in t

(r)
ij

of total degree not greater than d. Let grYm|n denote the associated superalgebra, which is

supercommutative by (3.2).

Now we describe the canonical filtration using parabolic presentations. Let µ = (µ1, . . . , µz)

be a composition of m + n. By [33, Proposition 3.1], the parabolic generators D
(r)
a;i,j E

(r)
a,b;i,j

and F
(r)
b,a;i,j of Yµ are linear combinations of supermonomials in t

(s)
i,j of total degree r.

On the other hand, if we setD
(r)
a;i,j, E

(r)
a,b;i,j and F

(r)
b,a;i,j all to be of degree r, by multiplying the

matrix equation T (u) = F (u)D(u)E(u), each t
(r)
ij is a linear combination of supermonomials

in the parabolic generators of total degree r as well. Thus FdYm|n can be alternatively defined

as the span of all supermonomials in the parabolic generators D
(r)
a;i,j E

(r)
a,b;i,j and F

(r)
b,a;i,j of total

degree ≤ d.
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For 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb and r > 0, define the following elements in grYµ
by

e
(r)
a,b;i,j :=


grrD

(r)
a;i,j if a = b,

grr E
(r)
a,b;i,j if a < b,

grr F
(r)
a,b;i,j if a > b.

(7.1)

Since grYµ is supercommutative, together with Corollary 5.9 (4), the following result can be

deduced immediately.

Proposition 7.1. [8, Theorem 5.1] For any shape µ = (µ1, . . . , µz), grYµ is the free super-

commutative superalgebra on generators {e(r)
a,b;i,j | 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, r > 0}.

Suppose now σ is a shift matrix of size m+ n and µ = (µ1, . . . , µz) is an admissible shape

to σ. We induce the canonical filtration of Yµ to the subalgebra Yµ(σ) by defining

FdYµ(σ) := FdYµ ∩ Yµ(σ).

The natural embedding Yµ(σ) ↪→ Yµ is a filtered map and the induced map grYµ(σ)→ grYµ
is injective as well, so that we may identify grYµ(σ) as a subalgebra of grYµ. The next

theorem gives a set of generators of grYµ(σ).

Theorem 7.2. [8, Theorem 5.2] For an admissible shape µ = (µ1, . . . , µz), grYµ(σ) is the

subalgebra of grYµ generated by the elements

{e(r)
a,b;i,j | 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, r > sµa,b}.

Proof. By relations (5.11) and (5.12), the elements e
(r)
a,b;i,j of grYµ(σ) can be identified as the

elements of the same notation in grYµ defined in (7.1) by the embedding grYµ(σ) → grYµ.

Now the statement follows from Corollary 5.9 (4) and Proposition 7.1. �

Similar to [8, Remark 5.3], one consequence of Theorem 7.2 is that we may define the

canonical filtration on Yµ(σ) intrinsically by setting the degree of the elements D
(r)
a;i,j, E

(r)
a,b;i,j

and F
(r)
ab,a;j,i in Yµ(σ) to be r. By Corollary 5.12, such a definition is independent of the choice

of admissible shape µ.

By definition, the comultiplication ∆ : Yµ → Yµ ⊗ Yµ is a filtered map with respect to

the canonical filtration. If we extend the canonical filtration of Yµ(σ̇) to Yµ(σ̇)⊗U(glp|q) by

declaring the degree of the matrix unit eij ∈ glp|q to be 1, then the baby comultiplications

∆R and ∆L defined in Theorem 6.1, as long as they are defined, are filtered maps as well.

Moreover, the same argument as in the proof of Proposition 6.3 implies that the associated

graded maps

gr ∆L : grYµ(σ̇)→ gr
(
Yµ(σ̇)⊗ U(glp|q)

)
gr ∆R : grYµ(σ̇)→ gr

(
U(glp|q)⊗ Yµ(σ̇)

)
are injective as well. We state this fact as a proposition.



36 YUNG-NING PENG

Proposition 7.3. [8, Remark 5.4] The induced maps gr ∆R and gr ∆L are injective whenever

they are defined,

8. Truncation

Let σ be a fixed shift matrix of size m+ n. Choose an integer ` > s1,m+n + sm+n,1, which

will be called level later. For each 1 ≤ i ≤ m+ n, set

pi := `− si,m+n − sm+n,i. (8.1)

This defines a tuple (p1, . . . , pm+n) of integers such that 0 < p1 ≤ · · · ≤ pm+n = `. Let

µ = (µ1, . . . , µz) be an admissible shape for σ. For each 1 ≤ a ≤ z, set

pµa := pµ1+...+µa . (8.2)

Since µ is admissible, together with (2.7), for any 1 ≤ a ≤ z, we have pi = pµa for any value

of i such that 1 ≤ i−
a−1∑
k=1

µk ≤ µa.

Following [8, §6], we define the shifted super Yangian of level `, denoted by Y `
µ (σ), to be

the quotient of Yµ(σ) by the two-side ideal of Yµ(σ) generated by

{D(r)
1;i,j | 1 ≤ i, j ≤ µ1, r > p1}.

We claim that the definition of Y `
µ (σ) is independent of the choice of the admissible shape

µ so that we may simply write Y `
m|n(σ) when appropriate. Let Iµ denote the two-sided ideal

associated to µ as in the definition. Since ν = (1m+n) is admissible for any σ, it suffices to

prove that Iµ = Iν .

By definition, we have νD
(r)
1 = t

(r)
1,1. Assume µ is an arbitrary admissible shape. By [33,

(3.10)], we have µD
(r)
1;1,1 = t

(r)
1,1 = νD

(r)
1 and hence Iν ⊆ Iµ. On the other hand, one may

deduce from (5.5) that µD
(r)
1;i,j ∈ Iν for all 1 ≤ i, j ≤ µ1, r > p1, and our claim follows.

When σ = 0, the two-sided ideal is generated by {t(r)i,j | 1 ≤ i, j ≤ m + n, r > `}. In this

special case, the quotient is exactly the truncated super Yangian in [3, 31], which is a super

analogy of Yangian of level ` due to Cherednik [12, 13]. It should be clear from the context

that we are dealing with Yµ(σ) or the quotient Y `
µ (σ) and hence, by abusing notation, we

will use the same symbols D
(r)
a;i,j, E

(r)
a,b;i,j and F

(r)
b,a;i,j to denote the elements in Yµ(σ) and their

images in the quotient Y `
µ (σ).

It is obvious that the anti-isomorphism τ defined in (5.22) factors through the quotient

and induces an anti-isomorphism

τ : Y `
µ (σ)→ Y `

µ (σt). (8.3)
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Similarly, let ~σ be another shift matrix satisfying that ~si,i+1 + ~si+1,i = si,i+1 + si+1,i for all

1 ≤ i ≤ m+ n− 1. Then the isomorphism ι defined by (5.23) also induces an isomorphism

ι : Y `
µ (σ)→ Y `

µ (~σ). (8.4)

Recall the canonical filtration defined in §7. We obtain a filtration

F0Y
`
µ (σ) ⊆ F1Y

`
µ (σ) ⊆ · · ·

induced from the quotient map Yµ(σ) → Y `
µ (σ), where we define the elements D

(r)
a;i,j, E

(r)
a,b;i,j

and F
(r)
b,a;i,j of Y `

µ (σ) to be of degree r and FdY
`
µ (σ) is the span of all supermonomials in these

elements of total degree ≤ d.

For 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb and r > sµa,b, define element e
(r)
a,b;i,j (by abusing

notation again) in the associative graded superalgebra grY `
µ (σ) according to exactly the

same formula (7.1), except that now our D’s, E’s and F ’s here are in the quotient. By

Proposition 7.1 and Theorem 7.2, grY `
µ (σ) is also supercommutative and is generated by the

elements

{e(r)
a,b;i,j ∈ grY `

µ (σ) | 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, r > sµa,b}

Following the same argument in [8, Lemma 6.1], one may deduce that grY `
µ (σ) is in fact

finitely generated.

Lemma 8.1. For any admissible shape µ = (µ1, . . . , µz), grY `
µ (σ) is generated only by the

elements

{e(r)
a,b;i,j | 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, s

µ
a,b < r ≤ sµa,b + pµmin(a,b)}.

Let σ = (sij)1≤i,j≤m+n be a non-zero shift matrix with minimal admissible shape µ =

(µ1, . . . , µz) and let Υ be a 0m1n-sequence. Then µz equals to the size of the largest zero

square matrix in the southeastern corner of σ. Hence we have 1 ≤ µz < m + n and either

sm+n−µz ,m+n+1−µz 6= 0 or sm+n+1−µz ,m+n−µz 6= 0. Let p and q denote the the number of 0’s

and 1’s respectively in the last µz digits of the 0m1n-sequence Υ.

Suppose that sm+n−µz ,m+n+1−µz 6= 0. By definition, for all 1 ≤ i, j ≤ µ1, we have

∆R(D
(r)
1;i,j) = Ḋ

(r)
1;i,j ⊗ 1. If in addition r > p1, then clearly Ḋ

(r)
1;i,j equals to zero in the

quotient Y `−1
µ (σ̇). It implies that the baby comultiplication ∆R defined in Theorem 6.1

factors through the quotient and we obtain an induced map

∆R : Y `
µ (σ)→ Y `−1

µ (σ̇)⊗ U(glp|q) (8.5)

where σ̇ is given by (6.1).

Similarly, if sm+n+1−µz ,m+n−µz 6= 0, then ∆L induces a map

∆L : Y `
µ (σ)→ U(glp|q)⊗ Y `−1

µ (σ̇) (8.6)

where σ̇ is given by (6.2).
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Recall that ∆R and ∆L are filtered maps with respect to the canonical filtration, so they

induce the following homomorphisms of graded superalgebras

gr ∆R : grY `
µ (σ)→ gr

(
Y `−1
µ (σ̇)⊗ U(glp|q)

)
, (8.7)

gr ∆L : grY `
µ (σ)→ gr

(
U(glp|q)⊗ Y `−1

µ (σ̇)
)
. (8.8)

Theorem 8.2. For any admissible shape µ = (µ1, . . . , µz), grY `
µ (σ) is the free supercommu-

tative superalgebra on generators

{e(r)
a,b;i,j | 1 ≤ a, b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, s

µ
a,b < r ≤ sµa,b + pµmin(a,b)}.

Also, the maps gr ∆R and gr ∆L in (8.7) and (8.8) are injective whenever they are defined,

and so are the maps ∆R and ∆L in (8.5) and (8.6).

Proof. Similar to the argument in [8, Theorem 6.2], except that our induction starts from

` = 1. In that case, the assertion follows from [31, Proposition 2.3]. �

As a corollary, we obtain a PBW basis for Y `
m|n(σ).

Corollary 8.3. For any admissible shape µ = (µ1, . . . , µz), the supermonomials in the ele-

ments

{D(r)
a;i,j|1 ≤ a ≤ z, 1 ≤ i, j ≤ µa, 0 < r ≤ pµa},

{E(r)
a,b;i,j|1 ≤ a < b ≤ z, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, s

µ
a,b < r ≤ sµa,b + pµa},

{F (r)
b,a;i,j|1 ≤ a < b ≤ z, 1 ≤ i ≤ µb, 1 ≤ j ≤ µa, s

µ
b,a < r ≤ sµb,a + pµa},

taken in any fixed order forms a basis for Y `
m|n(σ).

Another corollary is obtained by counting.

Corollary 8.4. Consider Y `
m|n(σ) together with the canonical filtration and some fixed Υ.

Let S(ge) be the supersymmetric superalgebra of ge with the Kazhdan filtration, where e is the

nilpotent element corresponding to the triple (σ, `,Υ) as explained in §2. Denote by FdY
`
m|n(σ)

and FdS(ge) the superspaces with total degree not greater than d in the associated filtered

superalgebras respectively. Then for each d ≥ 0, we have dimFdY
`
m|n(σ) = dimFdS(ge).

Proof. Take µ = (1m+n) in Theorem 8.2. Then the statement follows from Proposition 2.9

and induction on d. �

Remark 8.5. Consider the following inverse system

Y `
m|n(σ) � Y `+1

m|n (σ) � Y `+2
m|n (σ) � · · ·

where the maps are homomorphisms of filtered superalgebras with respect to the canonical

filtration. As an observation from Corollary 5.9 (4) and Corollary 8.3, we have

Ym|n(σ) = lim
←
Y `
m|n(σ)
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where the inverse limit is taken in the category of filtered superalgebras. Thus, similar to [8,

Remark 6.4], we may view Ym|n(σ) as the inverse limit `→∞ of the shifted super Yangians

of level `.

9. Invariants

Let π be a given pyramid of height m + n associated to a 0m1n-sequence Υ. Let M and

N be the number of boxes in π labeled by “ + ” and “− ”, respectively. Let p and m be the

subalgebras of glM |N associated to the good pair (eπ, hπ). Generalizing [8, §9], we will define

some distinguished elements in U(p). In the next section we will show that many of them

are m-invariant (under the χ-twisted action) and hence they are elements in Wπ.

We number the columns of π from left to right by 1, . . . , `. Let h = m − n and let

(q̌1, . . . , q̌`) denote the super column heights of π, where each q̌i is defined to be the number

of boxes in the i-th column of π labeled with “ + ” subtract the number of boxes labeled

with “− ” in the same column.

Define ρ = (ρ1, . . . , ρ`), where ρr is given by

ρr := h− q̌r − q̌r+1 − · · · − q̌` (9.1)

for each r = 1, . . . , `.

Recall the ordered index set I := {1 < . . . < M < 1 < . . . < N}. For all i, j ∈ I, define

ẽi,j := (−1)col(j)−col(i)(ei,j + δi,j(−1)pa (i)ρcol(i)), (9.2)

where pa (i) := 0 if i ∈ {1, . . . ,M} and pa (i) := 1 otherwise, as defined in §2.

By calculation one easily shows that

[ẽi,j, ẽh,k] = (ẽi,k − δi,k(−1)pa(i)ρcol(i))δh,j

− (−1)(pa(i)+pa(j))(pa(h)+pa(k))δi,k(ẽh,j − δh,j(−1)pa(j)ρcol(j)). (9.3)

The effect of the homomorphism U(m) → C induced by the character χ can be obtained

easily by definition. We explicitly give the result here since it will be frequently used later.

For any i, j ∈ I, we have

χ(ẽi,j) =

 (−1)pa(i)+1 if row(i) = row(j) and col(i) = col(j) + 1;

0 otherwise.
(9.4)

Now we are going to define certain crucial elements in the universal enveloping algebra

U(glM |N). For 1 ≤ i, j ≤ m+ n and signs σi ∈ {±}, we firstly set

T
(0)
i,j;σ1,...,σm+n

:= σiδi,j
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and then for r ≥ 1 we define

T
(r)
i,j;σ1,...,σm+n

:=
r∑
s=1

∑
i1,...,is
j1,...,js

σrow(j1) · · ·σrow(js−1)(−1)pa(i1)+···+pa(is)ẽi1,j1 · · · ẽis,js (9.5)

where the second sum is taken over all i1, . . . , is, j1, . . . , js ∈ I such that

(1) deg(ei1,j1) + · · ·+ deg(eis,js) = r;

(2) col(it) ≤ col(jt) for each t = 1, . . . , s;

(3) if σrow(jt) = +, then col(jt) < col(it+1) for each t = 1, . . . , s− 1;

(4) if σrow(jt) = −, then col(jt) ≥ col(it+1) for each t = 1, . . . , s− 1;

(5) row(i1) = i, row(js) = j;

(6) row(jt) = row(it+1) for each t = 1, . . . , s− 1.

Due to conditions (1) and (2), T
(r)
i,j;σ1,...,σm+n

belongs to FrU(p).

For an integer 0 ≤ x ≤ m+ n, we set the shorthand notation

T
(r)
i,j;x := T

(r)
i,j;σ1,...,σm+n

where

σi =

 − if i ≤ x,

+ if i > x.

We further define the following series for all 1 ≤ i, j ≤ m+ n:

Ti,j;x(u) :=
∑
r≥0

T
(r)
i,j;xu

−r ∈ U(p)[[u−1]]. (9.6)

The following lemma can be established by exactly the same approach as [8, Lemma 9.2].

We omit the details since the argument there is quite formal and does not depend on the

underlying associative superalgebra in which the calculations are performed.

Lemma 9.1. [8, Lemma 9.2] Let 0 ≤ i, j, x, y ≤ m+ n be integers with x < y.

(1) If x < i ≤ y < j ≤ m+ n then

Ti,j;x(u) =

y∑
k=x+1

Ti,k;x(u)Tk,j;y(u).

(2) If x < j ≤ y < i ≤ m+ n then

Ti,j;x(u) =

y∑
k=x+1

Ti,k;y(u)Tk,j;x(u).

(3) If x < y < i ≤ m+ n and y < j ≤ m+ n, then

Ti,j;x(u) = Ti,j;y(u) +

y∑
k,`=x+1

Ti,k;y(u)Tk,`;x(u)T`,j;y(u).
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(4) If x < i ≤ y ≤ m+ n and x < j ≤ y, then

y∑
k=x+1

Ti,k;x(u)Tk,j;y(u) = −δi,j.

Define an invertible (m+ n)× (m+ n) matrix with entries in U(p)[[u−1]] by

T (u) :=
(
Ti,j;0(u)

)
1≤i,j≤m+n

Fix a composition µ = (µ1, µ2, . . . , µz) of m + n. Applying the Gauss decomposition of §3,

we have

T (u) = F (u)D(u)E(u)

where D(u) is a diagonal block matrix, E(u) is an upper unitriangular block matrix, and

F (u) is a lower unitriangular block matrix, with respect to µ.

The diagonal blocks of D(u) define matrices D1(u), . . . , Dz(u), the upper diagonal blocks of

E(u) define matrices E1,2(u), . . . , Ez−1,z(u), and the lower diagonal matrices of F (u) define

matrices F2,1(u), . . . , Fz,z−1(u), respectively. Set Eb(u) = Eb,b+1(u), Fb(u) = Fb+1,b(u) for

1 ≤ b ≤ z − 1 and D′a(u) := Da(u)−1 for all 1 ≤ a ≤ z. The entries of these matrices in turn

define the following series:

Da;i,j(u) =
∑
r≥0

D
(r)
a;i,ju

−r, D′a;i,j(u) =
∑
r≥0

D
′(r)
a;i,ju

−r,

Eb;h,k(u) =
∑
r≥1

E
(r)
b;h,ku

−r, Fb;k,h(u) =
∑
r≥1

F
(r)
b;k,hu

−r,

for all 1 ≤ a ≤ z, 1 ≤ b ≤ z − 1, 1 ≤ i, j ≤ µa, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1.

Nevertheless, all of these elements, depending on the fixed choice of µ, are parallel to the

elements in Ym|n with the same notations given in §3, except that the elements defined here

belong to U(p).

Theorem 9.2. [8, Theorem 9.3] Let µ = (µ1, . . . , µz) be fixed as above. For any admissible

indices a, b, i, j, h, k, we have

Da;i,j(u) = Tµ1+···+µa−1+i,µ1+···+µa−1+j;µ1+···+µa−1(u),

D′a;i,j(u) = −Tµ1+···+µa−1+i,µ1+···+µa−1+j;µ1+···+µa(u),

Eb;h,k(u) = Tµ1+···+µb−1+h,µ1+···+µb+k;µ1+···+µb(u),

Fb;k,h(u) = Tµ1+···+µb+k,µ1+···+µb−1+h;µ1+···+µb(u).

Proof. Note that it suffices to show the identities for D,E and F , since the one for D′ follows

from the one for D and Lemma 9.1(4). We prove our statement by induction on the length

of µ. The initial case is µ = (m+ n), which is trivial since T (u) = D1(u).
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Now let µ = (µ1, . . . , µz) be a composition of length z ≥ 2. Define a new composition

ν = (ν1, . . . , νz−1) of length z−1 by setting νi = µi for all 1 ≤ i ≤ z−2 and νz−1 = µz−1 +µz;

that is, merge the last two parts of µ. By the induction hypothesis, we have

νDa(u) =
(
Tν1+···+νa−1+i,ν1+···+νa−1+j;ν1+···+νa−1(u)

)
1≤i,j≤νa

, ∀ 1 ≤ a ≤ z − 1,

νEb(u) =
(
Tν1+···+νb−1+h,ν1+···+νb+k;ν1+···+νb(u)

)
1≤h≤νb,1≤k≤νb+1

, ∀ 1 ≤ b ≤ z − 2,

νFb(u) =
(
Tν1+···+νb+k,ν1+···+νb−1+h;ν1+···+νb(u)

)
1≤k≤νb+1,1≤h≤νb

, ∀ 1 ≤ b ≤ z − 2,

where we add a superscript ν to emphasize that these elements are defined with respect to

ν. Note that νDa(u) = µDa(u) for all 1 ≤ a ≤ z − 2 and νEb(u) = µEb(u), νFb(u) = µFb(u)

for all 1 ≤ b ≤ z − 3.

Moreover, by Lemma 5.11, µEz−2(u) equals to the submatrix consisting of the first µz−1

columns of νEz−2(u), while µFz−2(u) equals to the submatrix consisting of the top µz−1 rows

of νFz−2(u). Both of them are of the form described in the theorem. It remains to check the

identities for µDz−1(u), µDz(u), µEz−1(u) and µFz−1(u).

Define matrices P,Q,R and S by

P =
(
Tµ1+···+µz−2+i,µ1+···+µz−2+j;µ1+···+µz−2(u)

)
1≤i,j≤µz−1

,

Q =
(
Tµ1+···+µz−2+i,µ1+···+µz−2+µz−1+j;µ1+···+µz−2+µz−1(u)

)
1≤i≤µz−1,1≤j≤µz

,

R =
(
Tµ1+···+µz−2+µz−1+i,µ1+···+µz−2+j;µ1+···+µz−2+µz−1(u)

)
1≤i≤µz ,1≤j≤µz−1

,

S =
(
Tµ1+···+µz−2+µz−1+i,µ1+···+µz−2+µz−1+j;µ1+···+µz−2+µz−1(u)

)
1≤i,j≤µz

.

By Lemma 9.1 with x = µ1 + . . .+ µz−2 and y = µ1 + . . .+ µz−1, we have

νDz−1(u) =

(
Iµz−1 0

R Iµz

)(
P 0

0 S

)(
Iµz−1 Q

0 Iµz

)
=

(
P PQ

RP S +RPQ

)
.

Now the explicit descriptions of the matrices µDz−1(u), µDz(u), µEz−1(u) and µFz−1(u)

follows from Lemma 5.11, which completes the induction argument. �

In the extreme case that µ = (1m+n), we write simply D
(r)
i , D

′(r)
i , E

(r)
j and F

(r)
j for the

elements D
(r)
i;1,1, D

′(r)
i;1,1, E

(r)
j;1,1 and F

(r)
j;1,1 of U(p) for all 1 ≤ i ≤ m + n, 1 ≤ j ≤ m + n − 1,

r ≥ 1, respectively.

Corollary 9.3. [8, Corollary 9.4] D
(r)
i = T

(r)
i,i;i−1, E

(r)
j = T

(r)
j,j+1;j, F

(r)
j = T

(r)
j+1,j;j and D

′(r)
i =

−T (r)
i,i;i.

10. Main theorem

Let π be a pyramid associated with a 0m1n-sequence Υ which corresponds to a good pair

in glM |N and let (σ, `,Υ) be the triple associated to π given by Proposition 2.8. Let Y `
m|n(σ)

denote the shifted super Yangian of level ` associated to π equipped with the canonical
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filtration and let Wπ denote the finite W -superalgebra associated to π equipped with the

Kazhdan filtration .

Suppose also that µ = (µ1, . . . , µz) is an admissible shape for σ, and recall the shorthand

notations sµa,b and pµa from (5.1) and (8.2). We have the elements D
(r)
a;i,j, D

′(r)
a;i,j, E

(r)
b;h,k and

F
(r)
b;k,h of U(p) defined by Theorem 9.2 according to this fixed shape µ. On the other hand,

we also have the parabolic generators D
(r)
a;i,j, D

′(r)
a;i,j, E

(r)
b;h,k and F

(r)
b;k,h in Y `

µ (σ) as defined in

§ 8. We are ready to present the main result of this article.

Theorem 10.1. Let π be a pyramid and let (σ, `,Υ) be the corresponding triple given by

Proposition 2.8. For any shape µ = (µ1, . . . , µz) admissible to σ, there exists a unique

isomorphism Y `
µ (σ)

∼→Wπ of filtered superalgebras such that the generators

{D(r)
a;i,j | 1 ≤ a ≤ z, 1 ≤ i, j ≤ µa, r > 0},

{E(r)
b;h,k | 1 ≤ b < z, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1, r > sµb,b+1},

{F (r)
b;k,h | 1 ≤ b < z, 1 ≤ k ≤ µb+1, 1 ≤ h ≤ µb, r > sµb+1,b}

of Y `
µ (σ) are mapped to corresponding elements of U(p) denoted by the same symbols. In

particular, these elements of U(p) are m-invariants and they form a generating set for Wπ.

Similar to the argument in [8], the proof of Theorem 10.1 is processed by induction on the

number `− t, where ` is the length of the bottom row and t is the length of the top row of π.

Our initial case is ` = t. In this case, the pyramid is of rectangular shape so the associated

shift matrix is the zero matrix. Hence the shifted super Yangian is the whole Ym|n itself, and

its quotient is exactly the truncated super Yangian Y `
m|n. As mentioned in §1 , the statement

of the theorem in this special case was firstly established in [3]; see also [31] for an approach

similar to our setting here.

Assume that our pyramid π is not of rectangular shape so that ` ≥ 2 and ` − t > 0. By

induction on the length of the shape and Lemma 5.11, it suffices to prove the special case

when µ is the minimal admissible shape for σ.

Let H denote the absolute height of the shortest column of π. Since π is a pyramid, either

H = |q1| or H = |q`|. There are two cases:

• Case R: H = |q`| ≤ |q1|.
• Case L: H = |q1| < |q`|.

We will explain the proof of Case R in detail and only sketch the proof of Case L, which can

be obtained by a very similar argument with mild modifications.

From now on we assume that Case R holds. Recall that we numbered the boxes of π using

the index set

I := {1 < · · · < M < 1 < . . . < N}
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in the standard way: down columns from left to right, where i (respectively, i) stands for

the boxes labeled with + (respectively, −). Suppose that there are p (respectively, q) boxes

labeled with + (respectively, −) in the right-most column of π. Since µ is minimal admissible,

we have H = p+ q = µz.

Let π̇ be the pyramid obtained by removing the right-most column of π. We know that

the removed boxes of π are numbered with

M − p+ 1,M − p+ 2, . . . ,M,N − q + 1, N − q + 2, . . . , N,

and their order in the right-most column is determined by Υz, the last H digits of the

0m1n-sequence Υ.

By our assumption, the bottom H rows of π form a rectangle, call it πH . A key obser-

vation [31, Remark 3.5] is that permuting the rows of the rectangle πH will not change the

corresponding even good pair (eπ, hπ); see also Remark 2.5. Although our argument in fact

works in general, for convenience, we assume that the last H digits of Υ are the standard

one:

Υz =

p︷ ︸︸ ︷
0 · · · 0

q︷ ︸︸ ︷
1 · · · 1 .

As a result, the right-most two columns of π are of the form

...

M − 2p+ 1 M − p+ 1

M − 2p+ 2 M − p+ 2
...

...

M − p M

N − 2q + 1 N − q + 1

N − 2q + 2 N − q + 2
...

...

N − q N

Let σ̇ = (ṡi,j)1≤i,j≤m+n be the shift matrix defined by (6.1) where its associated pyramid

is π̇. Define ṗ, ṁ and ė in ġ = glM−p|N−q according to (2.1) and (2.4) and let χ̇ : ṁ→ C be

the character x 7→ (x, ė).

Let Ḋ
(r)
a;i,j, Ḋ

′(r)
a;i,j, Ė

(r)
b;h,k and Ḟ

(r)
b;k,h denote the elements of U(ṗ) as defined in §9 associated

to the same shape µ, which is admissible for both of σ and σ̇. By the induction hypothesis,

Theorem 10.1 holds for π̇, so the following elements of U(ṗ) are invariant under the χ̇-twisted
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action of ṁ; in other words, they belong to the finite W -superalgebra Wπ̇:

{Ḋ(r)
a;i,j, Ḋ

′(r)
a;i,j} for 1 ≤ a ≤ z, 1 ≤ i, j ≤ µa and r > 0;

{Ė(r)
b;h,k} for 1 ≤ b ≤ z − 1, 1 ≤ h ≤ µa, 1 ≤ k ≤ µa+1 and r > sµb,b+1 − δb+1,z;

{Ḟ (r)
b;k,h} for 1 ≤ b ≤ z − 1, 1 ≤ k ≤ µa+1, 1 ≤ h ≤ µa and r > sµb+1,b.

We introduce the following non-standard embedding of U(ġ) into U(g). For all i, j in the

index set

İ := {1, . . . ,M − p, 1, . . . , N − q},

the generators ẽij of U(ġ) defined by (9.2) with respect to the pyramid π̇ are identified

with the elements ẽij in U(g) defined by (9.2) with respect to π. One notes that such an

identification in turns embeds U(ṗ) into U(p) and ṁ into m, respectively. Moreover, the

character χ̇ of ṁ is precisely the restriction of the character χ of m. As a consequence, the

χ̇-twisted action of ṁ on U(ṗ) is precisely the restriction of the χ-twist action of m on U(p).

For convenience, we define the index sets

J1 = {M − p+ i | 1 ≤ i ≤ p} ∪ {N − q + j | 1 ≤ j ≤ q},

J2 = {M − 2p+ i | 1 ≤ i ≤ p} ∪ {N − 2q + j | 1 ≤ j ≤ q}.

Note that they are the numbers appearing in the right-most and the second right-most

columns of the rectangle πH , respectively.

Define the bijection R1 : {1, 2, . . . , p+q} → J1 by setting R1(f) to be the number assigned

to the f -th box in the right-most column of the rectangle πH . Similarly, define the bijection

R2 : {1, 2, . . . , p + q} → J2 which assigns R2(f) to be the number appearing to the left of

R1(f). For example, R1(1) = M−p+1, R1(p+q) = N and R2(p+q) = N − q. In particular,

define

η : J1 → {1, 2, . . . , p+ q} (10.1)

to be the inverse map of R1.

The relations between the elements D
(r)
a;i,j, E

(r)
b;h,k, F

(r)
b;k,h of U(p) given by π and the elements

Ḋ
(r)
a;i,j, Ė

(r)
b;h,k, Ḟ

(r)
b;k,h of U(ṗ) given by π̇ are described in the following lemma, which is probably

the most crucial step in the proof of our main theorem.

Lemma 10.2. [8, Lemma 10.4] The following equations hold for all 1 ≤ a ≤ z, 1 ≤ b ≤ z−1,

1 ≤ i, j ≤ µa, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1, all r > 0 that makes sense, and any fixed
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1 ≤ g ≤ H:

D
(r)
a;i,j = Ḋ

(r)
a;i,j

+ δa,z

(
H∑
f=1

(−1)|f |zḊ
(r−1)
a;i,f ẽR1(f),R1(j) + [Ḋ

(r−1)
a;i,g , ẽR2(g),R1(j)]

)
, (10.2)

E
(r)
b;h,k = Ė

(r)
b;h,k + δb+1,z

(
H∑
f=1

(−1)|f |zĖ
(r−1)
b;h,f ẽR1(f),R1(k) + [Ė

(r−1)
b;h,g , ẽR2(g),R1(k)]

)
, (10.3)

F
(r)
b;k,h = Ḟ

(r)
b;k,h, (10.4)

where for (10.3) we are assuming that r > sµz−1,z if b+ 1 = z.

Proof. It can be observed from the explicit description of the elements T
(r)
i,j;x in (9.5) with the

help from Theorem 9.2 together with our assumption on the right-most two columns of the

rectangle πH . �

The inductive descriptions provided in Lemma 10.2, together with the induction hypothe-

sis, allow us to deduce the following several lemmas and eventually to show that the elements

D
(r)
a;i,j, E

(r)
b;h,k and F

(r)
b;k,h of U(p) are m-invariants.

Lemma 10.3. [8, Lemma 10.5] The following elements of U(p) are m-invariant:

(i) D
(r)
a;i,j and D

′(r)
a;i,j for 1 ≤ a ≤ z − 1, 1 ≤ i, j ≤ µa and r > 0;

(ii) E
(r)
b;h,k for 1 ≤ b ≤ z − 2, 1 ≤ h ≤ µb, 1 ≤ k ≤ µb+1 and r > sµb,b+1;

(iii) F
(r)
b;k,h for 1 ≤ b ≤ z − 1, 1 ≤ k ≤ µb+1, 1 ≤ h ≤ µb and r > sµb+1,b.

Proof. All of these elements in U(p) coincide with the elements with the same name in U(ṗ)

by Lemma 10.2. Hence they are ṁ-invariant by the induction hypothesis. Define ṁc to be

the vector space complement of ṁ in m. It remains to show that these elements are invariant

under the χ-twisted action for all ẽf,g in ṁc only. Note that ẽf,g ∈ ṁc if and only if g ∈ İ
and f ∈ J1.

By Theorem 9.2 and (9.5) again, all elements in the description of the lemma are linear

combinations of supermonomials of the form ẽi1,j1 · · · ẽir,jr in U(ṗ) with is ∈ İ and js ∈ İ\J2
for all 1 ≤ s ≤ r.

By (9.4), χ(ẽf,g) = 0 for all g ∈ İ\J2 and f ∈ J1. This implies that all such supermonomials

are invariant under the χ-twisted action of all ẽf,g ∈ ṁc and our lemma follows. �

It remains to show that D
(r)
z;i,j and E

(r)
z−1;h,k are m-invariant. We first show that they are

ṁ-invariant.

Lemma 10.4. [8, Lemma 10.6] The following elements of U(p) are ṁ-invariant:

(1) D
(r)
z;i,j for 1 ≤ i, j ≤ µz and r > 0.
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(2) E
(r)
z−1;h,k for 1 ≤ h ≤ µz−1, 1 ≤ k ≤ µz and r > sµz−1,z.

Proof. (1) By (10.2), we obtain

D
(r)
z;i,j = Ḋ

(r)
z;i,j +

H∑
f=1

(−1)|f |zḊ
(r−1)
z;i,f ẽR1(f),R1(j) + [Ḋ

(r−1)
z;i,g , ẽR2(g),R1(j)].

For any x ∈ ṁ, we have [x, ẽR1(f),R1(j)] = 0 = [x, ẽR2(g),R1(j)]. Using this result together with

the induction hypothesis, one deduces that prχ([x,D
(r)
z;i,j]) = 0. The proof of (2) is similar

by starting with (10.3). �

Next we show that D
(r)
z;i,j and E

(r)
z−1;h,k are ṁc-invariant by induction on r. If sµz−1,z > 1,

this can be deduced in a uniform way, see Lemma 10.8, so we will focus on the case for

sµz−1,z = 1. The following lemma establishes the initial step of the induction.

Lemma 10.5. [8, Lemma 10.7]

(1) D
(1)
z;i,j is ṁc-invariant for all 1 ≤ i, j ≤ µz.

(2) Suppose sµz−1,z = 1. Then D
(2)
z;i,j is ṁc-invariant for all 1 ≤ i, j ≤ µz.

(3) Suppose sµz−1,z = 1. Then E
(2)
z−1;h,k is ṁc-invariant for all 1 ≤ h ≤ µz−1 and 1 ≤ k ≤

µz.

Proof. We only give the detail of the proof of (1) here, where (2) and (3) can be deduced in

a similar fashion.

By Theorem 9.2, (9.5) and (10.2), we have

D
(1)
z;i,j = Ḋ

(1)
z;i,j + (−1)|i|z ẽR1(i),R1(j) =

∑
1≤k≤`−1

(∑
pk,qk

(−1)|i|z ẽpk,qk
)

+ (−1)|i|z ẽR1(i),R1(j),

where the second sum is taken over all pk, qk ∈ İ satisfying the following conditions

(i) col(pk) = col(qk) = k,

(ii) row(pk) = µ1 + · · ·+ µz−1 + i,

(iii) row(qk) = µ1 + · · ·+ µz−1 + j.

Let ẽf,g ∈ ṁc be arbitrary given so that we have g ∈ İ and f ∈ J1.

Suppose first that row(g) 6= µ1 + . . .+ µz−1 + i. Then we have [ẽf,g, ẽpk,qk ] = 0 for any pk,

qk appearing in the sum. Moreover, [ẽf,g, ẽR1(i),R1(j)] = ±δf,R1(j)ẽR1(i),g, which belongs to the

kernel of χ by (9.4). It follows that prχ([ẽf,g, D
(1)
z;i,j]) = 0.

Assume now that row(g) = µ1 + . . .+µz−1 + i. Then g equals exactly one pk appearing in

the sum and hence [
ẽf,g,

∑
1≤k≤`−1

( ∑
pk,qk∈İ

(−1)|i|z ẽpk,qk
)]

= (−1)|i|z ẽf,qk

for a certain 1 ≤ k ≤ `− 1.
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Suppose in addition that col(qk) 6= `− 1. Then ẽf,qk belongs to kerχ by (9.4). Also, since

g = pk and col(qk) = col(pk) 6= `− 1, the term

[ẽf,g, ẽR1(i),R1(j)] = ±δf,R1(j)ẽR1(i),g

belongs to kerχ. Then we have prχ[ẽf,g, D
(1)
z;i,j] = 0.

Finally, assume that row(g) = µ1 + . . . + µz−1 + i and col(qk) = ` − 1. It implies that

g = pk = R2(i). By definition, we have

[ẽf,R2(i), D
(1)
z;i,j] = (−1)|i|z ẽf,R2(j) + δf,R1(j)(−1)1+|j|z ẽR1(i),R2(i),

which belongs to the kernel of χ by (9.4). This completes the proof of (1). �

To apply induction on r, we need to find the relations between E
(r+1)
z−1;h,k and E

(r)
z−1;h,k and

that between D
(r+1)
z;i,j and D

(r)
z;i,j.

Lemma 10.6. [8, Lemma 10.8] Suppose that sµz−1,z = 1. The following identities hold in

U(p) for r ≥ 2:

(1)

E
(r+1)
z−1;h,k = (−1)|g|z−1 [D

(2)
z−1;h,g, E

(r)
z−1;g,k]−

µz−1∑
f=1

D
(1)
z−1;h,fE

(r)
z−1;f,k ,

(2)

D
(r+1)
z;i,j = (−1)|g|z−1 [F

(2)
z−1;i,g, E

(r)
z−1;g,j]−

r+1∑
t=1

D
(r+1−t)
z;i,j D

′(r)
z−1;g,g .

Proof. By the induction hypothesis and (5.6), for any r > 0 and any 1 ≤ g ≤ µz−1, we have

[Ḋ
(2)
z−1;h,g, Ė

(r)
z−1;g,k] = (−1)|g|z−1Ė

(r+1)
z−1;h,k + (−1)|g|z−1

µz−1∑
p=1

Ḋ
(1)
z−1;h,pĖ

(r)
z−1;p,k. (10.5)

Also, (10.3) implies that for r ≥ 2, we have

E
(r)
z−1;g,k = Ė

(r)
z−1;g,k +

H∑
f=1

(−1)|f |zĖ
(r−1)
z−1;g,f ẽR1(f),R1(k) + [Ė

(r−1)
z−1;g,j, ẽR2(j),R1(k)] (10.6)

It is clear that [Ḋ
(2)
z−1;h,g, ẽR1(f),R1(k)] = 0. Also, due to (9.5) and Theorem 9.2, the expansion

of Ḋ
(2)
z−1;h,g into supermonomials will never involve any matrix unit of the form ẽ?,R2(j) and

it follows that [Ḋ
(2)
z−1;h,g, ẽR2(j),R1(k)] = 0. Computing the supercommutator of (10.6) with
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D
(2)
z−1;h,g = Ḋ

(2)
z−1;h,g and using (10.5), we have

[D
(2)
z−1;h,g, E

(r)
z−1;g,k] = [Ḋ

(2)
z−1;h,g, Ė

(r)
z−1;g,k] +

H∑
f=1

(−1)|f |z [Ḋ
(2)
z−1;h,g, Ė

(r−1)
z−1;g,f ]ẽR1(f),R1(k)

+
[
[D

(2)
z−1;h,g, E

(r−1)
z−1;g,j], ẽR2(j),R1(k)

]
= (−1)|g|z−1Ė

(r+1)
z−1;h,k + (−1)|g|z−1

µz−1∑
p=1

Ḋ
(1)
z−1;h,pĖ

(r)
z−1;p,k

+
H∑
f=1

(−1)|f |z
(

(−1)|g|z−1Ė
(r+1)
z−1;h,f + (−1)|g|z−1

µz−1∑
p=1

Ḋ
(1)
z−1;h,pĖ

(r)
z−1;p,f

)
ẽR1(f),R1(k)

+
[
(−1)|g|z−1Ė

(r+1)
z−1;h,j + (−1)|g|z−1

µz−1∑
p=1

Ḋ
(1)
z−1;h,pĖ

(r)
z−1;p,j, ẽR2(j),R1(k)

]
.

Using (10.3) a few times, one shows that the above equals to

(−1)|g|z−1
(
E

(r+1)
z−1;h,k +

µz−1∑
p=1

D
(1)
z−1;h,pE

(r)
z−1;p,k

)

and the equality (1) is established.

Now we deal with (2). By the induction hypothesis and (5.8), we have

[Ḟ
(2)
z−1;i,g, Ė

(r)
z−1;g,j] = (−1)|g|z−1(

r+1∑
t=0

Ḋ
(r+1−t)
z;i,j Ḋ

′(t)
z−1;g,g)

= (−1)|g|z−1Ḋ
(r+1)
z;i,j + (−1)|g|z−1

r+1∑
t=1

Ḋ
(r+1−t)
z;i,j Ḋ

′(t)
z−1;g,g. (10.7)

Changing the indices in equation (10.6), we have

E
(r)
z−1;g,j = Ė

(r)
z−1;g,j +

H∑
f=1

(−1)|f |zĖ
(r−1)
z−1;g,f ẽR1(f),R1(j) + [Ė

(r−1)
z−1;g,h, ẽR2(h),R1(j)] (10.8)

Note that the expansion of Ḟ
(2)
z−1;i,g into supermonomials will never involve any matrix unit

of the forms ẽ?,R1(h), ẽR1(h),? or ẽR2(h),?, and hence [Ḟ
(2)
z−1;i,g, ẽR1(f),R1(j)] = [Ḟ

(2)
z−1;i,g, ẽR2(h),R1(j)] =

0. As a consequence, we perform the following calculation using the fact that F
(2)
z−1;i,g =
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Ḟ
(2)
z−1;i,g together with (10.8):

[F
(2)
z−1;i,g,E

(r)
z−1;g,j] = [Ḟ

(2)
z−1;i,g, Ė

(r)
z−1;g,j] +

H∑
f=1

(−1)|f |z [Ḟ
(2)
z−1;i,g, Ė

(r−1)
z−1;g,f ]ẽR1(f),R1(j)

+
[
[Ḟ

(2)
z−1;i,g, Ė

(r−1)
z−1;g,h], ẽR2(h),R1(j)

]
= (−1)|g|z−1Ḋ

(r+1)
z;i,j + (−1)|g|z−1

r+1∑
t=1

Ḋ
(r+1−t)
z;i,j Ḋ

′(t)
z−1;g,g

+
H∑
f=1

(−1)|f |z
(

(−1)|g|z−1Ḋ
(r)
z;i,f + (−1)|g|z−1

r∑
t=1

Ḋ
(r−t)
z;i,f Ḋ

′(t)
z−1;g,g

)
ẽR1(f),R1(j)

+
[
(−1)|g|z−1Ḋ

(r)
z;i,h + (−1)|g|z−1

r∑
t=1

Ḋ
(r−t)
z;i,h Ḋ

′(t)
z−1;g,g, ẽR2(h),R1(j)

]
Using (10.2) a few times, the above can be rewritten as

(−1)|g|z−1D
(r+1)
z;i,j + (−1)|g|z−1

r+1∑
t=1

D
(r+1−t)
z;i,j Ḋ

′(t)
z−1;g,g

and our assertion (2) follows. �

Lemma 10.7. Suppose sµz−1,z = 1. Then

(1) D
(r)
z;i,j are m-invariant for all r ≥ 0 and 1 ≤ i, j ≤ µz.

(2) E
(r)
z−1;h,k are m-invariant for all r > 1 and 1 ≤ h ≤ µz−1, 1 ≤ k ≤ µz.

Proof. By Lemma 10.4, these elements are ṁ-invariant. It remains to check that they are

ṁc-invariant, but that follows from Lemma 10.5, Lemma 10.6 and induction on r. �

Lemma 10.8. [8, Lemma 10.9] Suppose that sµz−1,z > 1. Then the following elements are

invariant under the χ-twisted action of ẽR1(x),R2(y) for all 1 ≤ x, y ≤ H.

(1) D
(r)
z;i,j for all r ≥ 2 and 1 ≤ i, j ≤ µz.

(2) E
(r)
z−1;h,k for all r > sµz−1,z and 1 ≤ h ≤ µz−1, 1 ≤ k ≤ µz.

Proof. Let π̈ be the pyramid obtained by deleting the right-most two columns of π. Define

p̈, m̈ and ë ∈ glM−2p|N−2q as before, and embed U(g̈) into U(ġ) as how we embed U(ġ) into

U(g). Note that the assumption sµz−1,z > 1 implies that |q`−1| = |q`| ≤ |q1|. As a result, the

induction hypothesis applies to the pyramid π̈ and hence we know that the elements D̈
(r)
z;i,j

in Wπ̈ are m̈-invariant under the χ̇-twisted action.

Applying Lemma 10.2 to π and π̇, we have

D
(r)
z;i,j = Ḋ

(r)
z;i,j +

H∑
f=1

(−1)|f |zḊ
(r−1)
z;i,f ẽR1(f),R1(j) + [Ḋ

(r−1)
z;i,g , ẽR2(g),R1(j)] (10.9)
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and

Ḋ
(r)
z;i,j = D̈

(r)
z;i,j +

H∑
f=1

(−1)|f |zD̈
(r−1)
z;i,f ẽR2(f),R2(j) + [D̈

(r−1)
z;i,g , ẽR3(g),R2(j)] (10.10)

where R3(g) is defined to be the number assigned to g-th box in the third right-most column

of the rectangle πH .

Substituting (10.10) into (10.9) and simplifying the result by (9.3), one deduces that for

all r ≥ 2, D
(r)
z;i,j = A+B + C +D + E + F +G+ Y , where

A = D̈
(r)
z;i,j, B =

H∑
k=1

(−1)|k|zD̈
(r−1)
z;i,k ẽR2(k),R2(j),

C = [D̈
(r−1)
z;i,g , ẽR3(g),R2(j)], D =

H∑
k=1

(−1)|k|zD̈
(r−1)
z;i,k ẽR1(k),R1(j)

E =
H∑

h,k=1

(−1)|h|z+|k|zD̈
(r−2)
z;i,h ẽR2(h),R2(k)ẽR1(k),R1(j), F =

H∑
k=1

(−1)|k|zD̈
(r−2)
z;i,k ẽR2(k),R1(j),

G =
H∑
k=1

[D̈
(r−2)
z;i,g , ẽR3(g),R2(k)]ẽR1(k),R1(j), Y = [D̈

(r−2)
z;i,g , ẽR3(g),R1(j)].

Let X = ẽR1(x),R2(y) for some 1 ≤ x, y ≤ H. Note that X supercommutes with all

elements in U(p̈). Using (9.1), (9.3) and (9.4), we can explicitly compute their images under

the composition prχ ◦ adX as follows:

prχ([X,A]) = 0, prχ([X,B]) = δxj(−1)1+|x|z+|y|zD̈
(r−1)
z;i,y ,

prχ([X,C]) = 0, prχ([X,D]) = δxj(−1)|x|z+|y|zD̈
(r−1)
z;i,y ,

prχ([X,E]) = (−1)|x|z+|y|zδxj(p− q)D̈(r−2)
z;i,y + (−1)|y|z+1D̈

(r−2)
z;i,y ẽR1(x),R1(j)

+ δxj

H∑
k=1

(−1)(|x|z+|y|z)(|k|z+|j|z)+|k|zD̈
(r−2)
z;i,k ẽR2(k),R2(y),

prχ([X,F ]) = −(−1)|x|z+|y|zδxj(p− q)D̈(r−2)
z;i,y + (−1)|y|zD̈

(r−2)
z;i,y ẽR1(x),R1(j)

− δxj
H∑
k=1

(−1)(|x|z+|y|z)(|k|z+|j|z)+|k|zD̈
(r−2)
z;i,k ẽR2(k),R2(y),

prχ([X,G]) = (−1)|y|z+|j|zδxj[D̈
(r−2)
z;i,g1

, ẽR3(g1),R2(f)],

prχ([X, Y ]) = −(−1)|y|z+|j|zδxj[D̈
(r−2)
z;i,g1

, ẽR3(g1),R2(f)].

As a consequence, prχ([X,D
(r)
z;i,j]) = 0. The proof of (2) is similar. �
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Proposition 10.9. [8, Lemma 10.10] The following elements of U(p) are m-invariant under

the χ-twisted action:

{D(r)
a;i,j}1≤a≤z,1≤i,j≤µa,r>0,

{E(r)
b;h,k}1≤b<z,1≤h≤µa,1≤k≤µa+1,r>s

µ
a,b
,

{F (r)
b;k,h}1≤b<z,1≤k≤µa+1,1≤h≤µa,r>sµb,a .

Proof. It follows from the induction hypothesis and Lemma 10.3–Lemma 10.8. �

A consequence of Proposition 10.9 is that the elements in the description of Theorem 10.1

are actually elements of Wπ. Furthermore, by the induction hypothesis, we may identify

Y `−1
µ (σ̇) = Y `−1

m|n (σ̇) with Wπ̇ ⊆ U(ṗ), where the generators Ḋ
(r)
a:i,j, Ė

(r)
b;h,k and Ḟ

(r)
b;k,h in Y `−1

µ (σ̇)

are identified with the elements of Wπ̇ denoted by the same notations. Now we are going to

make use of the monomorphism ∆R : Y `
m|n(σ)→ U(ṗ)⊗ U(glp|q) obtained in Theorem 8.2.

By Corollary 8.4, for each d ≥ 0, we have

dim ∆R(FdY
`
m|n(σ)) = dimFdY

`
m|n(σ) = dimFdS(ge), (10.11)

where FdS(ge) is the sum of all graded elements in S(ge) of degree ≤ d with respect to the

Kazhdan grading.

Define the higher root elements E
(r)
a,b;i,j and F

(r)
b,a;j,i in FrU(p) by equations (5.19) and (5.20)

recursively, where the index k could be chosen arbitrarily there. Let Xd denote the subspace

of U(p) spanned by all supermonomials in the elements

{D(r)
a;i,j}1≤a≤z,1≤i,j≤µa,0≤r≤sµa,a ,

{E(r)
a,b;h,k}1≤a<b≤z,1≤h≤µa,1≤k≤µb,sµa,b<r≤s

µ
a,b+p

µ
a
,

{F (r)
b,a;k,h}1≤a<b≤z,1≤k≤µb,1≤h≤µa,sµb,a<r≤s

µ
b,a+pµa .

taken in some fixed order with total degree ≤ d. It follows from Proposition 10.9 that Xd is

a subspace of FdWπ.

Define a superalgebra homomorphism ψR : U(p)→ U(ṗ)⊗ U(glp|q) by

ψR(ẽi,j) :=


ẽi,j ⊗ 1 if col(i) ≤ col(j) ≤ `− 1,

0 if col(i) ≤ `− 1, col(j) = `,

1⊗ ẽη(i),η(j) if col(i) = col(j) = `,
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where the map η is defined in (10.1). By Lemma 10.2, we have

ψR(D
(r)
a;i,j) = Ḋ

(r)
a;i,j ⊗ 1 + δa,z

H∑
f=1

(−1)|f |zḊ
(r−1)
a;i,f ⊗ ẽf,j,

ψR(E
(r)
b;h,k) = Ė

(r)
b;h,k ⊗ 1 + δb+1,z

H∑
f=1

(−1)|f |zĖ
(r−1)
b;h,f ⊗ ẽf,k,

ψR(F
(r)
b;k,h) = Ḟ

(r)
b;k,h ⊗ 1.

Comparing this with Theorem 6.1(1) and recalling the PBW basis for Y `
m|n(σ) obtained in

Corollary 8.3, we deduce that ψR(Xd) = ∆R(FdY
`
m|n(σ)). Combining this with (10.11) and

Corollary 8.4, we obtain

dimFdS(ge) = dimψR(Xd) ≤ dimXd ≤ dimFdWπ ≤ dimFdS(ge).

Hence equalities hold everywhere so we have Xd = FdWπ for each d ≥ 0. In particular,

ψR : Wπ → U(ṗ) ⊗ glp|q is an injective homomorphism. Comparing ψR with the map ∆R

defined in Theorem 6.1(1), we see that ψR(D
(r)
a;i,j) = ∆R(D

(r)
a;i,j), where the elements D

(r)
a;i,j on

the left-hand side are the elements of Wπ and the elements D
(r)
a;i,j on the right-hand side are

the generators of Y `
m|n(σ). Similarly, ψR(E

(r)
b;h,k) = ∆R(E

(r)
b;h,k) and ψR(F

(r)
b;k,h) = ∆R(F

(r)
b;k,h) for

all admissible indices b, h, k, r.

Finally, the composition ψ−1
R ◦ ∆R : Y `

m|n(σ) → Wπ is exactly the filtered superalgebra

isomorphism described in Theorem 10.1 and the elements listed in Theorem 10.1 indeed

generate Wπ. This completes the induction step of our main theorem under the assumption

of Case R.

Next we sketch how to complete the induction step under the assumption of Case L. In

this case, we enumerate the bricks of π down columns from right to left. Note that different

ways of enumerating are just choosing different bases to describe glM |N
∼= End(CM |N) so we

may choose the way most suitable for our purpose.

Let π̇ denote the pyramid obtained from π by deleting the left-most column of π. Let I,

İ, J1 and J2 be the same index sets as defined in Case R. It is clear that the deleted bricks

are still numbered with elements in J1. Moreover, we may again assume that the left-most

two columns of π are of the form
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...

M − p+ 1 M − 2p+ 1

M − p+ 2 M − 2p+ 2
...

...

M M − p
N − q + 1 N − 2q + 1

N − q + 2 N − 2q + 2
...

...

N N − q

Similarly, we define the bijection L1 : {1, 2, . . . , p + q} → J1 by setting L1(f) to be the

number assigned to the f -th box in the left-most column of the rectangle πH , and define the

bijection L2 : {1, 2, . . . , p + q} → J2 by assigning L2(f) to be the number appearing to the

right of L1(f). In particular, denote by

ξ : J1 → {1, 2, . . . , p+ q} (10.12)

the inverse map of L1.

Let σ̇ be the shift matrix obtained from (6.2), where the corresponding pyramid is exactly

π̇, and define ṗ, ṁ, ė ∈ ġ := glM−p|N−q via (2.1) and (2.4) with respect to π̇. Different from

Case R, note that in Case L we embed U(ġ) into U(g) by the natural embedding, which

already sends the elements ẽij of U(ġ) to the elements ẽij of U(g) for all i, j ∈ İ.

Under the natural embedding, the superalgebra Wπ̇ = U(ṗ)ṁ is a subalgebra of U(ṗ) ⊂
U(p) and the χ̇-twisted action of ṁ on U(ṗ) is exactly the same with the restriction of the

χ-twisted action of m on U(p). Let Ḋ
(r)
a;i,j, Ḋ

′(r)
a;i,j, Ė

(r)
b;h,k and Ḟ

(r)
b;k,h denote the elements of U(ṗ)

as defined in §9 associated to the shape µ which is the minimal admissible shape of σ and

also admissible for σ̇. By the induction hypothesis, all of these elements are ṁ-invariant.

From now we follow exactly the same idea in Case R to complete the proof. By the

following crucial lemma, which is the analogue of Lemma 10.2, we may express the elements

D
(r)
a;i,j, D

′(r)
a;i,j, E

(r)
b;h,k and F

(r)
b;k,h in U(p) in terms of Ḋ

(r)
a;i,j, Ḋ

′(r)
a;i,j, Ė

(r)
b;h,k and Ḟ

(r)
b;k,h. Then by

similar case-by-case discussions and computations as before, we can prove that all of the

elements D
(r)
a;i,j, D

′(r)
a;i,j, E

(r)
b;h,k and F

(r)
b;k,h are indeed m-invariant under our current setting in

Case L. We provide only the most crucial lemma below since its proof and other arguments

are almost identical as in the earlier case.
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Lemma 10.10. [8, Lemma 10.11] The following identities hold for all admissible a, b, i, j, h, k, r

and any fixed 1 ≤ g ≤ H:

D
(r)
a;i,j = Ḋ

(r)
a;i,j

+ δa,z(−1)|i|z

(
H∑
f=1

ẽL1(i),L1(f)Ḋ
(r−1)
z;f,j + [ẽL1(i),L2(g), Ḋ

(r−1)
z;g,j ]

)
, (10.13)

E
(r)
b;h,k = Ė

(r)
b;h,k, (10.14)

F
(r)
b;k,h = Ḟ

(r)
b;k,h + δb,z−1(−1)|k|z

(
H∑
f=1

ẽL1(k),L1(f)Ḟ
(r−1)
z−1;f,h + [ẽL1(k),L2(g), Ḟ

(r−1)
z−1;g,h]

)
, (10.15)

where for (10.15) we are assuming that r > sµz,z−1 if b = z − 1.

With the help of Lemma 10.10, one can deduce that the statement of Proposition 10.9 still

holds in Case L. Finally, define a superalgebra homomorphism ψL : U(p)→ U(glp|q)⊗ U(ṗ)

by

ψL(ẽi,j) :=


ẽξ(i),ξ(j) ⊗ 1 if col(i) = col(j) = 1,

0 if col(i) = 1, col(j) ≥ 2,

1⊗ ẽi,j if 2 ≤ col(i) ≤ col(j),

where the function ξ is defined by (10.12). Using Lemma 10.10 again, we have that

ψL(D
(r)
a;i,j) = 1⊗ Ḋ(r)

a;i,j + δa,z

H∑
f=1

(−1)|f |z ẽi,f ⊗ Ḋ(r−1)
a;f,j

ψL(E
(r)
b;h,k) = 1⊗ Ė(r)

b;h,k,

ψL(F
(r)
b,k,h) = 1⊗ Ḟ (r)

b;k,h + δb+1,z

H∑
f=1

(−1)|f |z ẽk,f ⊗ Ḟ (r−1)
b;f,h .

Using exactly the same argument as in Case R, one shows that the map ψL is injective

and the composition ψ−1
L ◦ ∆L : Y `

m|n(σ) → Wπ gives the required isomorphism of filtered

superalgebras. This completes the proof of Theorem 10.1.

Corollary 10.11. Let π be a pyramid corresponding to an even good pair and ~π be a pyramid

obtained by horizontally shifting rows of π. Let Wπ and W~π denote the associated finite W -

superalgebras, respectively. Then there exists a superalgebra isomorphism ι : Wπ → W~π

defined on parabolic generators with respect to an admissible shape µ by (5.23). In other

words, the definition of a finite W -superalgebra associated to an even good pair depends only

on e up to isomorphism.

Proof. This is an immediate consequence of (8.4) and the isomorphism in Theorem 10.1. �
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Remark 10.12. A more general result of Corollary 10.11 was obtained in [47] by a very

different approach. It is proved that the definition of type A finite W -superalgebra is inde-

pendent of the choices of the good Z-grading (which may not be even) up to isomorphism,

generalizing the results of [5, 20].
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