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Abstract. In this note, we formulate and prove a branching rule for simple polynomial
modules of the Lie superalgebra gl(m|n). Our branching rules depend on the conjugacy
class of the Borel subalgebra. A Gelfand-Tsetlin basis of a polynomial module associated
to each Borel subalgebra is obtained in terms of generalized semistandard tableaux.

1. Introduction

Let gl(m) be the general linear Lie algebra and consider the subalgebras

gl(1) ⊂ gl(2) ⊂ . . . ⊂ gl(m),

where we embed gl(k) ⊂ gl(k+1) as the collection of matrices whose last row and column
are zero. Then given a finite-dimensional simple gl(m)-module Lm(λ), we may restrict
the action to view Lm(λ) as a gl(k)-module and decompose it into simple gl(k)-modules
Lk(µ); when k = m− 1, this decomposition is called a branching rule. When k = 1, this
decomposition describes a linear basis for Lm(λ), which is called the Gelfand-Tsetlin basis
[6, Chap. 8]. There are several generalizations and applications of the Gelfand-Tsetlin
basis; cf. [9]. Moreover, this basis has an innate combinatorial description in terms
of semistandard Young tableaux, and hence can be used to derive some combinatorial
identities.

In this note, we generalize these concepts to the general linear Lie superalgebra gl(m|n).
It is known in [1] that there is a branching rule for the standard Borel subalgebra of upper-
triangular matrices. Using Howe duality [4, 11], we formulate and prove a branching law
with respect to an arbitrary choice of Borel subalgebra b, and in particular our approach
provides a novel proof for the standard Borel case. We then deduce the existence of a
Gelfand-Tsetlin basis parametrized by certain tableaux, which we call “b-semistandard”.
This provides a representation-theoretic proof that the number of these tableaux is inde-
pendent of the choice of b; see also [8].

2. Preliminaries

In this note, the underlying field is always C, the complex numbers.

2.1. Partitions, Young Diagrams, and Tableaux. Let λ be a partition of n; that is,
a sequence λ = (λ1, λ2, . . .) of non-negative integers with λi ≥ λi+1 and |λ| =

∑

i λi = n.
The length of λ, denoted by l(λ), is defined to be the number of non-zero entries of λ. Each
partition corresponds to a unique Young diagram, and we will freely identify a partition
with its corresponding Young diagram. We denote the conjugate partition to λ by λ′.

A partition λ is called an (m|n)-hook partition if λm+1 ≤ n. We denote the collection
of (m|n)-hook partitions by Pm|n.
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Given partitions λ and µ such that λi ≥ µi, let λ/µ denote the skew Young diagram.
We will say that a skew diagram is a horizontal strip (respectively, vertical strip) if each
column (respectively, row) of the diagram contains exactly one box. Recall that given
two partitions λ and µ, we say µ interlaces λ if λi ≥ µi ≥ λi−1 for all i. Then a skew
diagram λ/µ is a horizontal strip (respectively, a vertical strip) if and only if µ interlaces
λ (respectively, µ′ interlaces λ′).

Let A be a set. A Young tableau with entries in A is a Young diagram with an element
of A inserted in each box; we will call A an alphabet, and an element of A a letter. Let λ
be a partition and µ be an arbitrary sequence of non-negative integers indexed by A such
that

∑

a∈A µa = |λ|. By a Young tableau of shape λ and content µ, we mean a Young
tableau corresponding to partition λ such that each letter a ∈ A appears in µa boxes.
When convenient, we will also use the notation µ = (aµa)a∈A.

2.2. Littlewood-Richardson coefficients. Let σ and µ be partitions of length at most
m. Given a third partition λ, let cλσµ be the Littlewood-Richardson coefficient. One way
to interpret these non-negative integers is as multiplicities:

Lm(σ)⊗ Lm(µ) ∼=
⊕

λ

Lm(λ)
⊕

cλσµ . (2.1)

Proposition 2.2.1. Let λ, µ and σ be partitions. Then

(1) cλσµ = cλµσ and cλσµ is nonzero only if |µ|+ |σ| = |λ|.

(2) cλ
′

σ′µ′ = cλσµ.

(3) Suppose further that µ = (n), a one row partition. Then cλσ(n) is either 1 or zero.

Moreover, cλσ(n) = 1 if and only if the skew shape λ/σ is a horizontal strip.

(4) Suppose further that µ = (1n), a one column partition. Then cλ
σ(1n) is either 1

or zero. Moreover, cλσ(1n) = 1 if and only if the skew shape λ′/σ′ is a horizontal

strip.

We refer the reader to [3, Appendix A] or [10] for the details.

2.3. The Lie superalgebra gl(m|n). The general linear Lie superalgebra g = gl(m|n)
is the vector superspace of (m+n) by (m+n) complex matrices, with the block-diagonal
even subspace g0 = gl(m)⊕ gl(n).

The standard Cartan subalgebra h is the set of diagonal matrices in gl(m|n). Let
hi := Eii ∈ h be the elementary matrices with a 1 in the (i, i) entry and 0 in all other
entries, for 1 ≤ i ≤ m + n. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let δi, ǫj be the elements in h∗

defined by

δi(hk) = ∆i,k

ǫj(hl) = ∆j+m,l

where ∆x,y = 1 if x = y, and 0 otherwise. The set {δi, ǫj |1 ≤ i ≤ m, 1 ≤ j ≤ n} forms a
basis of h∗.

The root system Φ of g is the set

Φ = {δk − δl, ǫi − ǫj, δk − ǫi|1 ≤ k, l ≤ m, 1 ≤ i, j ≤ n} .

TheWeyl groupW of gl(m|n) is isomorphic to Sm×Sn, where Sm permutes the δi’s and Sn

permutes the ǫj’s. Note that not all simple systems are W -conjugate. In particular, there
exist different choices of positive systems (and hence different choices of Borel subalgebras)
that are not W -conjugate; see [3, Section 1.3].
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2.4. Borel Subalgebras. By an ǫ-δ sequence for gl(m|n), we mean a sequence of m
(indistinguishable) δ’s and n (indistinguishable) ǫ’s. For a given ǫ-δ sequence s, we can
assign the indices 1, . . . ,m to the δ and the indices 1, . . . , n to the ǫ by the increasing order
in which they appear. Then Π(s), the set of sequential differences of the indexed letters,
forms a set of simple roots for Φ. For example, Π(ǫδδǫ) = {ǫ1 − δ1, δ1 − δ2, δ2 − ǫ2}.

It is easy to check that any simple system is W -conjugate to Π(s) for some s. Moreover,
if s and s′ are distinct ǫ-δ sequences, then Π(s) and Π(s′) are not conjugate, so these
sequences index the simple systems of Φ up to conjugacy.

Let Φ+(s) be the set of positive roots relative to Π(s) for some sequence s. Then we
define the Borel subalgebra corresponding to s to be

b(s) = h⊕
⊕

α∈Φ+(s)

gl(m|n)α.

Note that the even subalgebra b(s)0 is independent of s; indeed, b(s)0 is exactly the
standard Borel subalgebra of gl(m|n)0 = gl(m)⊕ gl(n).

Any Borel subalgebra is conjugate by inner automorphisms to b(s) for some s, and b(s)
is not conjugate to b(s′) if s 6= s′; therefore, for the remainder of this note a Borel subal-
gebra will mean b(s) for some ǫ-δ sequence s, and we will abuse notation and identify the
subalgebra with its corresponding sequence. For example, the standard Borel subalgebra
of upper triangular matrices in gl(m|n) is represented by the sequence

bst =

m
︷ ︸︸ ︷

δ . . . δ

n
︷ ︸︸ ︷
ǫ . . . ǫ; .

2.5. Polynomial weights and hook partitions. Let ω =
∑m

i=1 µiδi +
∑n

j=1 νjǫj ∈ h∗.
We call ω a polynomial weight if µi and νj are non-negative integers for all i, j.

Fix a Borel subalgebra b. Then each (m|n)-hook partition λ corresponds to a polyno-
mial weight as follows. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let di (resp. ej) be the number of

ǫ’s (resp. δ’s) appearing before the ith δ (resp. jth ǫ) in b. For example, if b = δδǫδǫδ,
then

d1 = d2 = 0, d3 = 1, d4 = 2, e1 = 2, e2 = 3.

For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let pi = max{λi − di, 0} and qj = max{λ′
j − ej , 0}. The

pair (pi, qj) is called the b-Frobenius coordinates; cf. [3]. Then set

λb =
m∑

i=1

piδi +
n∑

j=1

qjǫj.

When b = bst, there is a simpler description. Define the partitions µ = (λ1, . . . , λm)

and σ = (λm+1, λm+2, . . .)
′. Then we define λ♮ = λbst =

∑m
i=1 µiδi +

∑n
j=1 σjǫj .

2.6. Polynomial modules of gl(m|n). An h-semisimple gl(m|n)-module M is a poly-
nomial module if the weights of M are polynomial. In this note, by polynomial module
we always mean a finite-dimensional polynomial module.

Let a weight ω and a Borel subalgebra b be given. Let Lm|n(b, ω) be the simple gl(m|n)-

module of highest weight ω with respect to b. When b = bst, we use the shorthand
Lm|n(ω) = Lm|n(b

st, ω). Then we have the following result; cf. [2, 3, 5, 7].

Proposition 2.6.1. Fix a Borel subalgebra b.

(1)
{
Lm|n(b, λ

b) : λ ∈ Pm|n

}
is a complete list of pairwise non-isomorphic (finite-

dimensional) simple polynomial gl(m|n)-modules.
(2) Lm|n(b, λ

b) ∼= Lm|n(λ
♮), for λ ∈ Pm|n.

(3) The category of polynomial modules of gl(m|n) is a semisimple tensor category.
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3. Branching rule for gl(m|n)

3.1. Branching Rule. Fix a Borel subalgebra b. Let b̂ be the ǫ-δ sequence obtained from
b by deleting the last entry in the sequence b, and m̂ (respectively, n̂) be the number of

δ’s (respectively, ǫ’s) in b̂. Also set ĥ = hm ∈ h if n̂ = n and ĥ = hm+n if m̂ = m. Then
we have a natural embedding

gl(m̂|n̂) ∼= ĥ⊕
⊕

α∈Φ∩ĥ∗

gl(m|n)α

where ĥ⊕Cĥ = h. With respect to this embedding, we have the following branching rule
for an arbitrary Borel subalgebra.

Theorem 3.1.1 (Branching Rule for gl(m|n) with respect to a general Borel). Let λ be
an (m|n)-hook partition and b be a choice of Borel subalgebra for gl(m|n). In the above
notation,

Lm|n(b, λ
b) ↓gl(m̂,n̂)

∼=
⊕

σ

Lm̂|n̂(b̂, σ
b̂)

where the sum is taken over all (m̂|n̂)-hook partitions σ such that

(1) σ′ interlaces λ′ if m = m̂,
(2) σ interlaces λ if n = n̂.

Proof. First recall the statement of super Howe duality: as gl(m|n)× gl(k)-modules,

S(Cm|n ⊗ C
k) ∼=

⊕

l(λ)≤k
λm+1≤n

Lm|n(b, λ
b)⊗ Lk(λ). (3.1)

Let p = gl(m̂|n̂)× gl(m− m̂|n− n̂). Restricting (3.1) to a p× gl(k)-module yields the
decomposition

S(Cm|n ⊗ C
k) ↓p×gl(k)

∼=
⊕

l(λ)≤k
λm+1≤n

Lm|n(b, λ
b)⊗ Lk(λ). (3.2)

On the other hand, evidently S(Cm|n⊗C
k) ↓p×gl(k)

∼= S(Cm̂|n̂⊗C
k)⊗S(Cm−m̂|n−n̂⊗C

k).
By applying Super Howe duality again to each tensor factor, we see that

S(Cm|n ⊗ C
k) ↓p×gl(k)

∼=
⊕

σ,µ

Lm̂|n̂(b̂, σ
b̂)⊗ Lk(σ)⊗ Lm−m̂|n−n̂(θ, µ

θ)⊗ Lk(µ),

where the sum is taken over all σ and µ such that σ is an (m̂|n̂)-hook partition with
l(σ) ≤ k and µ is a (m−m̂|n−n̂)-hook partition with l(µ) ≤ k, and the notation θ=δ(resp.
ǫ) if n̂ = n(resp. m̂ = m). In particular, since gl(m− m̂|n− n̂) ∼= C, Lm−m̂|n−n̂(θ, µ

θ) is
1-dimensional and thus

S(Cm|n ⊗ C
k) ↓gl(m̂|n̂)×gl(k)

∼=
⊕

σ,µ

Lm̂|n̂(b̂, σ
b̂)⊗

(
Lk(σ)⊗ Lk(µ)

)
. (3.3)

Then using (2.1),

S(Cm|n ⊗C
k) ↓gl(m̂|n̂)×gl(k)

∼=
⊕

σ,µ Lm̂|n̂(b̂, σ
b̂)⊗

⊕

λ Lk(λ)
⊕cλσµ

∼=
⊕

σ,µ,λ Lm̂|n̂(b̂, σ
b̂)⊗ Lk(λ)

⊕cλσµ (3.4)
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Comparing (3.2) and (3.4), we obtain

Lm|n(b, λ
b) ↓gl(m̂|n̂)

∼=
⊕

σ,µ

Lm̂|n̂(b̂, σ
b̂)⊕cλσµ . (3.5)

Since {m− m̂, n− n̂} = {0, 1}, µ is either a row or column partition. The result follows
by Proposition 2.2.1.

�

Remark 3.1.2. The case b = bst had been proved in [1] using the commuting actions of

gl(m|n) and Sd on (C(m|n))⊗d.

3.2. The Gelfand-Tsetlin basis and b-semistandard tableaux. By iterating Theo-
rem 3.1.1, one obtains a linear basis of Lm|n(b, λ

b). These basis vectors are in bijection

with the sequences of triples (mk, nk, λ
k) where mk, nk are non-negative integers and λk

are partitions satisfying the following conditions.

(1) Either mk = mk+1 and nk = nk+1 + 1 or mk = mk+1 + 1 and nk = nk+1.
(2) λk is an (mk|nk)-hook partition.
(3) λk/λk+1 is a vertical strip if mk = mk+1 or a horizontal strip otherwise (or the

empty diagram).

These sequences may be realized in terms of certain tableaux of λ. Let A denote the
alphabet set

{
1, . . . ,m, 1, . . . , n

}
and b be the following ǫ-δ sequence:

b =

µ1
︷ ︸︸ ︷

δδ . . . δ

ν1
︷ ︸︸ ︷
ǫǫ . . . ǫ . . . . . .

µt
︷ ︸︸ ︷

δ . . . δ

νt
︷ ︸︸ ︷
ǫ . . . ǫ ,

where µ1 and νt are non-negative and all other µi, νj are positive integers. For conve-
nience, set ν0 = 0. Define the total order <b on A by setting

i <b j if 1 ≤ i < j ≤ m, k <b l if 1 ≤ k < l ≤ n,

i <b k if i ≤

r∑

g=1

µg and k >

r−1∑

g=0

νg for some 1 ≤ r ≤ t,

k <b i if i >
r∑

g=1

µg and k ≤
r∑

g=0

νg for some 1 ≤ r ≤ t.

A tableau in A will be called b-semistandard if the following three conditions are satisfied:

(1) The entries are weakly increasing along each row and column with respect to <b.
(2) The entries from {1, 2, . . . ,m} are strictly increasing along each column.
(3) The entries from

{
1, 2, . . . , n

}
are strictly increasing along each row.

The combinatorics of such tableaux have been studied in some detail, and in particular
it is known that there is a content-preserving bijection between b-semistandard tableaux
and bst-semistandard tableaux; cf. [8].

Proposition 3.2.1. The module Lm|n(b, λ
b) has a basis indexed by b-semistandard tableaux

of shape λ which is obtained by iterated application of the branching rule. The entries
determine which simple summand the basis vector belongs to at each application of the
branching rule.

Proof. OrderA from largest to smallest according to b to obtain A = {a1 >b . . . >b an+m}.
Then given a sequence (mk, nk, λ

k) associated to a linear basis element we can define a
unique b-semistandard tableau: give each box in λk/λk+1 the entry ak. Clearly the re-
sulting tableau is uniquely determined by the sequence of partitions. On the other hand,
given a b-semistandard tableau it is evident that stripping away the boxes with entry
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a1, then those with a2, etc. defines a sequence of partitions corresponding to a basis
element. �

Example 3.2.2. Consider gl(3|2) and b = δǫǫδδ. We choose the following partitions
λ = λ1 = (4, 3, 3, 2, 2, 1), λ2 = (3, 3, 2, 2, 2), λ3 = (3, 2, 2, 2), λ4 = (2, 1, 1, 1), λ5 = (1).

In this case, the ordered alphabet is

1 <b 1 <b 2 <b 2 <b 3.

Following the algorithm above, we find the corresponding b-semistandard tableau to be

1 1 2 3
1 2 2
1 2 3
1 2
2 2
3

We note that if µ is the content of a b-semistandard tableau T and we write

µ = (1µ1 , 2µ2 , . . . ,mµm , 1
µ
1 , . . . , nµn)

then the basis vector corresponding to T has weight

µ =

m∑

i=1

µiδi +

n∑

j=1

µjǫj .

Remark 3.2.3. When b = bst, a Gelfand-Tsetlin basis of a polynomial module and the
explicit expressions for the generators of gl(m|n) acting on this basis are obtained in [12]
by a different approach.

3.3. An analogue of the Kostka numbers. The branching rule implies that the num-
ber of b-semistandard tableaux of shape λ is equal to the dimension of gl(m|n)-module
Lm|n(b, λ

b), which is the same module as Lm|n(λ
♮) by Proposition 2.6.1. Comparing

the Gelfand-Tsetlin bases, we obtain the following result, which is a special case of [8,
Proposition 2.11].

Corollary 3.3.1. Fix an (m|n)-hook partition λ and a content µ. The number Kb
λ,µ

of b-semistandard tableaux of shape λ and content µ is independent of the choice of b.

In particular, there is a well-defined number K
(m|n)
λ,µ = Kb

λ,µ which is an analogue of the

Kostka number Kλ,µ.

Example 3.3.2. Consider gl(2|1) and λ = (3, 2, 1)

Consider two different ǫ-δ sequences b1 = bst = δδǫ and b2 = δǫδ. One may check that
all possible b1-semistandard tableaux of shape λ are

1 1 1
2 2
1

1 1 1
2 1
1

1 1 2
2 2
1

1 1 1
2 1
1

1 1 2
2 1
1

1 1 1
2 2
1

1 2 2
2 1
1

1 2 1
2 1
1
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and all possible b2-semistandard tableaux are

1 1 1
1 2
2

1 1 1
1 2
1

1 1 2
1 2
2

1 1 1
1 2
1

1 1 1
1 2
2

1 1 1
1 2
2

1 1 2
1 2
2

1 1 2
1 2
1

Hence the number of semistandard tableaux are the same.

In both cases, there are two semistandard tableaux with content (12, 22| 1
2
) and there is

only one semistandard tableau for other possible contents.
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