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Abstract

Associated to a composition of M and a composition of N, a new presentation of the
super Yangian of the general linear Lie superalgebra Y (glM |N ) is obtained.
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1 Introduction

For each simple finite-dimensional Lie algebra g over C, the associated Yangian Y (g) was
defined by Drinfeld in [D1] as a deformation of the universal enveloping algebra U(g[x])
for the polynomial current Lie algebra g[x]. The Yangians form a family of quantum
groups which give rise to rational solutions of the Yang-Baxter equation originating from
statistical mechanics; see [CP]. A Yangian admits PBW basis, triangular decomposition
and Hopf algebra structure. The Yangian Y (glN ) of the reductive Lie algebra glN was
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earlier considered in [TF]. It is an associative algebra whose defining relations can be
written in a specific matrix form, which is called the RTT relation; see e.g. [FRT]
and [MNO]. The structures and representation theory of Y (glN ) have been studied by
many people; see e.g. [KRS], [Ta], [MNO], and [Mo]. In [D2], Drinfeld gave a new
presentation for Yangians and it in particular can be used to define the analog of the
Cartan subalgebra and the Borel subalgebra in Y (glN ).

In [BK1], Brundan and Kleshchev found a parabolic presentation for Y (glN ) as-
sociated to each composition λ of N. Roughly speaking, the new presentation corre-
sponds to a block matrix decomposition of glN of shape λ. In the special case when
λ = (1, 1, . . . , 1), the corresponding parabolic presentation is just a variation of Drin-
feld’s; see [BK1, Remark 5.12]. On the other extreme case when λ = (N), the corre-
sponding parabolic presentation is exactly the original RTT presentation. The parabolic
presentation allows Brundan and Kleshchev to further define the standard Levi and
parabolic subalgebras of Y (glN ), and thus to obtain a Levi decomposition of Y (glN ).
The parabolic presentations have played a crucial role in their subsequent work [BK2],
in which they derived generators and relations for the finite W -algebras.

The main goal of this article is to obtain the superalgebra generalization of the
parabolic presentations of [BK1] for the super Yangian Y (glM |N ). The super Yangian
of the general linear Lie superalgebra Y (glM |N ) was introduced by Nazarov in [Na], and
it shares many properties with the usual Yangian, such as the PBW theorem, the RTT
relation and the Hopf algebra structure. The results of this article will be used in a
sequel on the connection between Y (glM |N ) and the super W -algebras.

Let λ be a composition of M and ν be a composition of N . We first define some
distinguished elements in Y (glM |N ), denoted by D’s, E’s and F’s, by Gauss decomposi-
tion and quasideterminants. We show that these new elements form a set of generators
for Y (glM |N ). The next step is to find the relations among the new generators, where
the signs arising from the Z2-grading are involved here. However, since the (λ|ν)-block
decomposition of glM |N respects the Z2-grading of the superalgebra, the signs in the
relations are determined by the block positions only. It is known (cf. [BK1]) that if
the elements are from two different blocks and the blocks are not “close”, then they
commute. This phenomenon remains to be true in our super Yangian setting and it
dramatically reduces the number of the nontrivial relations. Hence we only have to
focus on the commutation relations of the elements in the same block or when their
block-positions are “close”. Let m be the number of parts of λ and n be the number of
parts of ν. Then the first new non-trivial case will be m = n = 1, and the new ones will
be m = 2, n = 1 and m = 1, n = 2 (see Section 4). In these special cases, we determined
various relations among D’s, E’s and F’s by direct computation.

Next, we make use of the shift map ψk and the swap map ζM |N between super
Yangians (see Section 4). These maps allow us to transfer the relations in the special
cases with m+ n ≤ 3 to relations in Y (glM |N ) in the setting of general compositions λ
and ν. Finally we show that we have found enough relations for our new presentation.
As a consequence, we obtain the PBW bases for several distinguished subalgebras of
Y (glM |N ).

The parabolic presentation in the extreme case when all parts of λ and ν are 1 was
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found by Gow in [Go], who used the presentation to define the super Yangian of the
special linear superalgebra Y (slN |N ) which was missing in the literature and to determine
the generators of the center of Y (glM |N ). However, there are non-trivial relations that
can not be observed in this special case and nevertheless play an important role in our
paper (see Remark 7.1 below).

We organize this article in the following manner. In Section 2, we recall the definition
and some properties of Y (glM |N ). In Section 3, we introduce the generating elements
in our parabolic presentation by means of Gauss decomposition. In Section 4, we define
some maps between super Yangians in order to reduce the general case to special cases
when m + n ≤ 3, and Section 5 and 6 are devoted to these special cases. Our main
theorem in the general case is formulated in Section 7 and its proof is completed in
Section 8.

2 Properties of the super Yangian Y (glM |N)

Most of the theorems and lemmas in Sections 2 to Section 4 are generalizations of the
counterparts for Y (glN ) in [MNO] or [BK1].

The super Yangian Y (glM |N ), which was introduced in [Na], is the associative Z2-
graded algebra (i.e., superalgebra) over C with generators{

t
(r)
ij | 1 ≤ i, j ≤M +N ; r ≥ 0

}
,

where t
(0)
ij := δij and defining relations

[t
(r)
ij , t

(s)
hk ] = (−1)i j+i h+j h

min(r,s)−1∑
t=0

(
t
(t)
hj t

(r+s−1−t)
ik − t(r+s−1−t)

hj t
(t)
ik

)
, (2.1)

where i = 0 if i ≤M , i = 1 if i ≥M + 1, and the bracket is understood as a supercom-

mutator. For r > 0, the element t
(r)
ij is defined to be an odd element if i+ j = 1 and an

even element if i+ j = 0.

Remark 2.1. When N=0, the super Yangian Y (glM |0) is naturally isomorphic to the
usual Yangian Y (glM ); when M=0, the super Yangian Y (gl0|N ) is also isomorphic to
the usual Yangian Y (glN ) by the map ζ0|N , see Section 4.

We define the formal power series to be the generating series (with non-positive
powers of a variable u) of the generators:

tij(u) = δij + t
(1)
ij u

−1 + t
(2)
ij u

−2 + t
(3)
ij u

−3 + . . . .

Also define

T (u) :=

M+N∑
i,j=1

tij(u)⊗ Eij(−1)j(i+1) ∈ Y (glM |N )[[u−1]]⊗ End CM |N ,
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where Eij is the standard elementary matrix. The extra sign ensures that the product
of matrices can be calculated in the usual manner. We may also think T (u) as an

element in MatM+N

(
Y (glM |N )[[u−1]]

)
, the set of (M+N)×(M+N) matrices with entries

in Y (glM |N )[[u−1]].
We may also define the super Yangian Y (glM |N ) by the RTT relation:

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v), (2.2)

where

T1(u) = T (u)⊗ IdM+N , T2(v) = IdM+N ⊗ T (v), R(u− v) = 1− P12

(u− v)
,

and P12 =

M+N∑
i,j=1

(−1)jEij ⊗ Eji is the permutation matrix.

The equality is in MatM+N ⊗MatM+N ⊗Y (glM |N )((u−1, v−1)), which means the local-

ization of MatM+N⊗MatM+N⊗Y (glM |N )[[u−1, v−1]] at the multiplicative set consisting

of the non-zero elements of C[[u−1, v−1]].

Remark 2.2. Note that we have (u − v)−1 in the matrix R(u − v). Hence we have to
replace Y (glM |N )[[u−1, v−1]] by a certain extension containing (u− v)−1.

Equating the coefficients of Eij ⊗ Ehk on both sides of (2.2), we have the following
equivalent defining relations in terms of the generating series:

[tij(u), thk(v)] =
(−1)i j+i h+j h

(u− v)

(
thj(u)tik(v)− thj(v)tik(u)

)
. (2.3)

Note that the matrix T (u) is invertible, hence one may define the entries of its inverse
by (

T (u)
)−1

:=
(
t′ij(u)

)M+N

i,j=1
.

Multiplying T2(v)−1 on both sides of (2.2) and use the same method getting (2.3), we
have yet another relation:

[tij(u), t′hk(v)] =
(−1)i j+i h+j h

(u− v)

(
δh,j

M+N∑
l=1

til(u)t′lk(v)− δi,k
M+N∑
l=1

t′hl(v)tlj(u)
)
. (2.4)

As an easy consequence of (2.4), we know that for all r and s, if i 6= k and j 6= h, then

t
(r)
ij and t

′(s)
hk supercommute. The following is the PBW basis theorem for Y (glM |N ).

Proposition 2.1. [Go, Theorem 1] The set of all monomials in the elements{
t
(r)
ij |1 ≤ i, j ≤M +N, r ≥ 1

}
taken in some fixed order (containing no second or higher order powers of the odd gen-
erators) forms a basis for Y (glM |N ).
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We have the loop filtration on Y (glM |N )

L0Y (glM |N ) ⊆ L1Y (glM |N ) ⊆ L2Y (glM |N ) ⊆ · · ·

defined by setting deg t
(r)
ij = r − 1 for each r ≥ 1 and LkY (glM |N ) is the span of all

monomials of the form t
(r1)
i1j1

t
(r2)
i2j2
· · · t(rs)

isjs
with total degree

∑s
i=1(ri − 1) ≤ k. We denote

the associated graded algebra by grLY (glM |N ).
Let glM |N [t] denote the loop superalgebra glM |N ⊗ C[t] with the standard basis

{Eijtr | 1 ≤ i, j ≤ M + N, r ≥ 0} and U(glM |N [t]) denote its universal enveloping
algebra. By the PBW theorem for Y (glM |N ), we have the following corollary.

Corollary 2.2. [Go, Corollary 1] The graded algebra grLY (glM |N ) is isomorphic to the
universal enveloping algebra U(glM |N [t]) by the map

grLY (glM |N )→ U(glM |N [t])

grLr−1t
(r)
ij 7→ (−1)iEijt

r−1.

3 Gauss decomposition and quasideterminants

Let λ be a composition of M and ν be a composition of N . In the remaining part of
this article, for notational reason, we set

µi = λi and µm+j = νj for all 1 ≤ i ≤ m, 1 ≤ j ≤ n,

and µ = (µ1, µ2, . . . , µm |µm+1, µm+2, . . . , µm+n) denotes the composition of (M |N).
By definition, the leading minors of the matrix T (u) are invertible. Then it possesses

a Gauss decomposition (cf. [GR])

T (u) = F (u)D(u)E(u)

for unique block matrices D(u), E(u) and F (u) of the form

D(u) =


D1(u) 0 · · · 0

0 D2(u) · · · 0
...

...
. . .

...
0 0 · · · Dm+n(u)

 ,

E(u) =


Iµ1 E1,2(u) · · · E1,m+n(u)
0 Iµ2 · · · E2,m+n(u)
...

...
. . .

...
0 0 · · · Iµm+n

 ,

F (u) =


Iµ1 0 · · · 0

F2,1(u) Iµ2 · · · 0
...

...
. . .

...
Fm+n,1(u) Fm+n,2(u) · · · Iµm+n

 ,
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where

Da(u) =
(
Da;i,j(u)

)
1≤i,j≤µa , (3.1)

Ea,b(u) =
(
Ea,b;i,j(u)

)
1≤i≤µa,1≤j≤µb

, (3.2)

Fb,a(u) =
(
Fb,a;i,j(u)

)
1≤i≤µb,1≤j≤µa

, (3.3)

are µa × µa, µa × µb and µb × µa matrices, respectively, for all 1 ≤ a ≤ m + n in (3.1)
and all 1 ≤ a < b ≤ m+ n in (3.2) and (3.3).

Definition 3.1. We call the indices a, b the block positions, and the indices i, j the
entry positions.

Also define the µa × µa matrix D′a(u) =
(
D′a;i,j(u)

)
1≤i,j≤µa by

D′a(u) :=
(
Da(u)

)−1
.

The entries of these matrices are expanded into power series

Da;i,j(u) =
∑
r≥0

D
(r)
a;i,ju

−r,

D′a;i,j(u) =
∑
r≥0

D
′(r)
a;i,ju

−r,

Ea,b;i,j(u) =
∑
r≥1

E
(r)
a,b;i,ju

−r,

Fb,a;i,j(u) =
∑
r≥1

F
(r)
b,a;i,ju

−r.

Moreover, for 1 ≤ a ≤ m+ n− 1, we set

Ea;i,j(u) := Ea,a+1;i,j(u) =
∑

r≥1E
(r)
a;i,ju

−r,

Fa;i,j(u) := Fa+1,a;i,j(u) =
∑

r≥1 F
(r)
a;i,ju

−r.

There are explicit descriptions of all these series in terms of quasideterminants
(cf. [GKLLRT], [GR]). To write them down, we introduce the following notation. Sup-
pose that A,B,C and D are a × a, a × b, b × a and b × b matrices respectively with
entries in some ring. Assuming that the matrix A is invertible, we define∣∣∣∣ A B

C D

∣∣∣∣ := D − CA−1B.

We write the matrix T (u) in block form as

T (u) =


µT1,1(u) · · · µT1,m+n(u)
...

. . . · · ·
µTm+n,1(u) · · · µTm+n,m+n(u)

 ,

where each µTa,b(u) is a µa × µb matrix.

6



Proposition 3.1. [GR] We have

Da(u) =

∣∣∣∣∣∣∣∣∣
µT1,1(u) · · · µT1,a−1(u) µT1,a(u)

...
. . .

...
...

µTa−1,1(u) · · · µTa−1,a−1(u) µTa−1,a(u)
µTa,1(u) · · · µTa,a−1(u) µTa,a(u)

∣∣∣∣∣∣∣∣∣ , (3.4)

Ea,b(u) = D′a(u)

∣∣∣∣∣∣∣∣∣
µT1,1(u) · · · µT1,a−1(u) µT1,b(u)

...
. . .

...
...

µTa−1,1(u) · · · µTa−1,a−1(u) µTa−1,b(u)
µTa,1(u) · · · µTa,a−1(u) µTa,b(u)

∣∣∣∣∣∣∣∣∣ , (3.5)

Fb,a(u) =

∣∣∣∣∣∣∣∣∣
µT1,1(u) · · · µT1,a−1(u) µT1,a(u)

...
. . .

...
...

µTa−1,1(u) · · · µTa−1,a−1(u) µTa−1,a(u)
µTb,1(u) · · · µTb,a−1(u) µTb,a(u)

∣∣∣∣∣∣∣∣∣D
′
a(u), (3.6)

for all 1 ≤ a ≤ m+ n in (3.4) and 1 ≤ a < b ≤ m+ n in (3.5), (3.6).

We denote the (i, j)-th entry of the µa×µb matrix µTa,b(u) by Ta,b;i,j(u) and denote

the coefficient of u−r in Ta,b;i,j(u) by T
(r)
a,b;i,j . By Proposition 3.1, we immediately have

E
(1)
b−1;i,j = T

(1)
b−1,b;i,j , F

(1)
b−1;i,j = T

(1)
b,b−1;i,j , for all admissible b, i, j, (3.7)

and
D

(r)
1;i,j = T

(r)
1,1;i,j = t

(r)
i,j , for all 1 ≤ i, j ≤ µ1, r ≥ 0. (3.8)

By induction, one may show that for each pair a, b such that 1 < a+ 1 < b ≤ m+n− 1
and 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, we have

E
(r)
a,b;i,j = (−1)b−1[E

(r)
a,b−1;i,k, E

(1)
b−1;k,j ], F

(r)
b,a;i,j = (−1)b−1[F

(1)
b−1;i,k, F

(r)
b−1,a;k,j ], (3.9)

for any 1 ≤ k ≤ µb−1. Here, a := 0 if 1 ≤ a ≤ m and a := 1 if m+ 1 ≤ a ≤ m+ n.
By multiplying out the matrix product T (u) = F (u)D(u)E(u), we see that each

t
(r)
ij can be expressed as a sum of monomials in D

(r)
a;i,j , E

(r)
a,b;i,j and F

(r)
b,a;i,j , appearing in

certain order that all F ’s before D’s and all D’s before E’s. By (3.9), it is enough to use

D
(r)
a;i,j , E

(r)
a;i,j and F

(r)
a;i,j only, rather than all E’s and F ’s. We have proved the following

theorem.

Theorem 1. The super Yangian Y (glM |N ) is generated as an algebra by the following
elements {

D
(r)
a;i,j , D

′(r)
a;i,j | 1 ≤ a ≤ m+ n, 1 ≤ i, j ≤ µa, r ≥ 0

}
,{

E
(r)
a;i,j | 1 ≤ a < m+ n, 1 ≤ i ≤ µa, 1 ≤ j ≤ µa+1, r ≥ 1

}
,{

F
(r)
a;i,j | 1 ≤ a < m+ n, 1 ≤ i ≤ µa+1, 1 ≤ j ≤ µa, r ≥ 1

}
.
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4 Maps between super Yangians

Our ultimate goal in this article is to find out the defining relations among the generating

elements
{
D

(r)
a;i,j , D

′(r)
a;i,j , E

(r)
a;i,j , F

(r)
a;i,j

}
in Y (glM |N ). The strategy is to work out the special

cases when m and n are either 1 or 2, which are relatively less complicated, and then to
apply the maps in this section to obtain the relations in the general case.

Proposition 4.1. (1) The map ρM |N : Y (glM |N )→ Y (glN |M ) defined by

ρM |N
(
tij(u)

)
= tM+N+1−i,M+N+1−j(−u)

is an algebra isomorphism.

(2) The map ωM |N : Y (glM |N )→ Y (glM |N ) defined by

ωM |N
(
T (u)

)
=
(
T (−u)

)−1

is an algebra automorphism.

(3) For any k ∈ Z≥0, the map ψk : Y (glM |N )→ Y (glk+M |N ) defined by

ψk = ωk+M |N ◦ ϕM |N ◦ ωM |N ,

where ϕM |N : Y (glM |N ) → Y (glk+M |N ) is the inclusion which sends each t
(r)
ij in

Y (glM |N ) to t
(r)
k+i,k+j in Y (glk+M |N ), is an injective algebra homomorphism.

(4) The map ζM |N : Y (glM |N )→ Y (glN |M ) defined by

ζM |N = ρM |N ◦ ωM |N

is an algebra isomorphism.

Proof. Follows by checking that these maps preserve the RTT relation (2.2).

Remark 4.1. The composition Y (glN ) ∼= Y (glN |0)
ζN|0−−−→ Y (gl0|N ) is an algebra isomor-

phism.

We call ψk the shift map and ζM |N the swap map. It is clear that ψ0 is the identity
map and ζM |N has order 2. Since they are important for us, we write down their images
explicitly.

Lemma 4.2. Let 1 ≤ i, j ≤M +N .

(1) For any k ∈ N, we have

ψk
(
tij(u)

)
=

∣∣∣∣∣∣∣∣∣∣
t11(u) · · · t1k(u) t1,k+j(u)

...
. . .

...
...

tk1(u) · · · tkk(u) tk,k+j(u)

tk+i,1(u) · · · tk+i,k(u) tk+i,k+j(u)

∣∣∣∣∣∣∣∣∣∣
. (4.1)
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(2) We have
ζM |N

(
tij(u)

)
= t′M+N+1−i,M+N+1−j(u). (4.2)

First note that the description of ψk(tij) in (4.1) is independent of M and N, hence
our notation is unambiguous. Also, (4.1) along with quasideterminants in Section 3
implies that

Da;i,j(u) = ψµ1+µ2+...+µa−1

(
D1;i,j(u)

)
, (4.3)

Ea;i,j(u) = ψµ1+µ2+...+µa−1

(
E1;i,j(u)

)
, (4.4)

Fa;i,j(u) = ψµ1+µ2+...+µa−1

(
F1;i,j(u)

)
. (4.5)

Secondly, observe that ψk maps t′ij(u) ∈ Y (glM |N ) to t′k+i,k+j(u) ∈ Y (glk+M |N ). So

ψk
(
Y (glM |N )

)
is generated by the set {t′(r)k+i,k+j | 1 ≤ i, j ≤M+N, r ≥ 0}, as a subalgebra

of Y (glk+M |N ). If we pick any element t
(r)
ij in the north-western k × k corner of T (u)

(viewed as an (k+M+N)× (k+M+N) matrix with entries in Y (glk+M |N )[[u−1]]), the

indices will never overlap with those of ψk
(
Y (glM |N )

)
, which are in the south-eastern

(M +N)× (M +N) corner of the same T (u). By equation (2.4), they supercommute.
Obviously, the elements in the north-western k × k corner in Y (glk+M |N ) generate a
subalgebra isomorphic to Y (glk) by the defining relations (2.1). We have proved the
following lemma.

Lemma 4.3. The subalgebras Y (glk) and ψk
(
Y (glM |N )

)
in Y (glk+M |N ) supercommute

with each other.

Now we study the map ζM |N . Associate to the composition µ, we may define the

elements {D(r)
a;i,j ;D

′(r)
a;i,j}, {E

(r)
a;i,j}, {F

(r)
a;i,j} in Y (glM |N ) by Gauss decomposition. Consider

µr := (µm+n, . . . , µm+1 |µm, . . . , µ2, µ1),

the reverse of µ, which is a composition of (N |M). With µr, we may similarly de-

fine the elements {D(r)
a;i,j ;D

′(r)
a;i,j}, {E

(r)
a;i,j}, {F

(r)
a;i,j} in Y (glN |M ), by abuse of notations.

Their relations are given in the following proposition, which is a generalization of [Go,
Proposition 1].

Proposition 4.4. For all admissible a, i, j, we have

ζM |N
(
Da;i,j(u)

)
= D′m+n+1−a;µa+1−i,µa+1−j(u), (4.6)

ζM |N
(
Ea;i,j(u)

)
= −Fm+n−a;µa+1−i,µa+1+1−j(u), (4.7)

ζM |N
(
Fa;i,j(u)

)
= −Em+n−a;µa+1+1−i,µa+1−j(u). (4.8)

Note that the D’s, E’s and F’s on the left hand side are in Y (glM |N )[[u−1]], while those

on the right hand side are in Y (glN |M )[[u−1]].

Proof. The proof is essentially the same as [Go, Proposition 1], except that we decom-
pose the matrix T (u) into block decompositions and the entry positions are flipped
around by ζ. For a given composition µ, multiply out the matrix products

T (u) = F (u)D(u)E(u) and T (u)−1 = E(u)−1D(u)′F (u)−1.
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Then the following matrix identities hold.

Ta,a(u) = Da(u) +
∑
c<a

Fa,c(u)Dc(u)Ec,a(u), (4.9)

T ′a,a(u) = D′a(u) +
∑
c>a

Ẽa,c(u)D′c(u)F̃c,a(u), (4.10)

Ta,b(u) = Da(u)Ea,b(u) +
∑
c<a

Fa,c(u)Dc(u)Ec,b(u), (4.11)

Tb,a(u) = Fb,a(u)Da(u) +
∑
c<a

Fb,c(u)Dc(u)Ec,a(u), (4.12)

T ′a,b(u) = Ẽa,b(u)D′b(u) +
∑
c>b

Ẽa,c(u)D′c(u)F̃c,b(u), (4.13)

T ′b,a(u) = D′b(u)F̃b,a(u) +
∑
c>b

Ẽb,c(u)D′c(u)F̃c,a(u), (4.14)

for all 1 ≤ a ≤ m + n in (4.9), (4.10) and 1 ≤ a < b ≤ m + n in (4.11)−(4.14). Here
T ′a,b(u) denotes the µa × µb-matrices in the (a, b)-th block position of T (u)−1, T ′a,b;i,j(u)

denotes the (i, j)-th entry of T ′a,b(u), T
′(r)
a,b;i,j denotes the coefficient of u−r in T ′a,b;i,j(u)

and

Ẽa,b(u) :=
∑

a=i0<i1<...<is=b

(−1)sEa,i1(u)Ei1,i2(u) · · ·Eis−1,b(u),

F̃b,a(u) :=
∑

a=i0<i1<...<is=b

(−1)sFb,is−1(u)Fis−1,is−2(u) · · ·Fi1,a(u).

In fact, (4.7) and (4.8) are the special cases when b = a+1 of the following more general
relations.

ζM |N
(
Ea,b;ij(u)

)
= F̃m+n+1−a,m+n+1−b;µa+1−i,µb+1−j(u), (4.15)

ζM |N
(
Fb,a;ij(u)

)
= Ẽm+n+1−b,m+n+1−a;µb+1−i,µa+1−j(u). (4.16)

One can easily derive (4.6), (4.15) and (4.16) simultaneously by induction on a.

Now we describe the relations among the D’s. We first claim that

[Da;i,j(u), Db;h,k(v)] = 0, unless a = b.

Assume a < b. For 1 ≤ a ≤ m, there exists a suitable number 1 ≤ k ≤ M such that
Da;i,j(u) is contained in the north-western k × k corner of Y (glM |N )[[u−1]], i.e.,

Da;i,j(u) ∈ Y (glk)[[u
−1]] ⊂ Y (glM |N )[[u−1]]

and
Db;h,k(v) ∈ ψk

(
Y (glM−k|N )

)
[[v−1]] ⊂ Y (glM |N )[[v−1]].

Hence they supercommute by Lemma 4.3. For m + 1 ≤ a ≤ m + n, we may apply
the swap map ζM |N first then it is transformed to the above case in the super Yangian
Y (glN |M ) and our claim follows.
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We next compute the bracket explicitly when a = b. For 1 ≤ a ≤ m, by (4.3) and
(3.8), we have

[Da;i,j(u), Da;h,k(v)] =ψµ1+µ2+...+µa−1

(
[D1;i,j(u), D1;h,k(v)]

)
=ψµ1+µ2+...+µa−1

(
[tij(u), thk(v)]

)
.

For m+ 1 ≤ a ≤ m+ n, we set ã := m+ n+ 1− a. Then we have 1 ≤ ã ≤ n and hence

Da;ij(u) = ζN |M
(
D′ã;µã+1−i,µã+1−j(u)

)
= ζN |M ◦ ψµ1+µ2+...+µã−1

(
D′1;µã+1−i,µã+1−j(u)

)
= ζN |M ◦ ψµ1+µ2+...+µã−1

(
t′µã+1−i,µã+1−j(u)

)
.

Therefore, for m+ 1 ≤ a ≤ m+ n, we have

[Da;i,j(u), Da;h,k(v)] = ζN |M ◦ ψµ1+µ2+...+µã−1

(
[tµã+1−i,µã+1−j(u), tµã+1−h,µã+1−k(v)]

)
.

Referring to the definition (2.3), for any 1 ≤ a ≤ m+ n, we have

[Da;i,j(u), Da;h,k(v)] =
(−1)a

u− v
(
Da;h,j(u), Da;i,k(v)−Da;h,j(v), Da;i,k(u)

)
.

Collecting the coefficients of u−rv−s, we have proved the following proposition, which is
parallel to the results in [BK1, Section 4].

Proposition 4.5. The relations among the elements {D(r)
a;i,j , D

′(r)
a;i,j} for all r ≥ 0,

1 ≤ i, j ≤ µa, 1 ≤ a ≤ m+ n are given by

D
(0)
a;i,j = δij ,

r∑
t=0

D
(t)
a;i,pD

′(r−t)
a;p,j = δr0δij ,

[D
(r)
a;i,j , D

(s)
b;h,k] = (−1)aδab

min(r,s)−1∑
t=0

(
D

(t)
a;h,jD

(r+s−1−t)
a;i,k −D(r+s−1−t)

a;h,j D
(t)
a;i,k

)
,

and these elements generate a subalgebra of Y (glM |N ).

We call the subalgebra in Proposition 4.5 the standard Levi subalgebra of Y (glM |N )

associated to µ and denote it by Y 0
µ . Note that in the special case when all µi = 1, the

subalgebra Y 0
(1,...,1) is commutative.

5 Special Cases: non-super case and m=n=1

The following theorem of Brundan and Kleshchev describes the relations among the
generators in the non-super case.
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Theorem 2. [BK1, Theorem A] Let λ = (λ1, λ2, . . . , λm) be a composition of M . The
following identities hold in Y (glM )((u−1, v−1)) for all admissible a, b, f, g, h, i, j, k:.

(u− v)[Da;i,j(u), Eb;h,k(v)] = δa,bδh,jDa;i,p(u)
(
Ea;p,k(v)− Ea;p,k(u)

)
− δa,b+1Da;i,k(u)

(
Eb;h,j(v)− Eb;h,j(u)

)
,

(u− v)[Da;i,j(u), Fb;h,k(v)] = −δa,bδk,i
(
Fb;h,p(v)− Fb;h,p(u)

)
Da;p,j(u)

+ δa,b+1

(
Fb;i,k(v)− Fb;i,k(u)

)
Da;h,j(u),

(u− v)[Ea;i,j(u), Fb;h,k(v)] = δa,b
(
D′a;i,k(u)Da+1;h,j(u)−Da+1;h,j(v)D′a;i,k(v)

)
,

(u− v)[Ea;i,j(u), Ea;h,k(v)] =
(
Ea;i,k(u)− Ea;i,k(v)

)(
Ea;h,j(u)− Ea;h,j(v)

)
,

(u− v)[Fa;i,j(u), Fa;h,k(v)] =
(
Fa;i,k(u)− Fa;i,k(v)

)(
Fa;h,j(u)− Fa;h,j(v)

)
,

(u− v)[Ea;i,j(u), Ea+1;h,k(v)] = δh,j
(
Ea;i,q(u)Ea+1;q,k(v)− Ea;i,q(v)Ea+1;q,k(v)

+ Ea,a+2;i,k(v)− Ea,a+2;i,k(u)
)
,

(u− v)[Fa;i,j(u), Fa+1;h,k(v)] = δi,k
(
− Fa+1;h,q(v)Fa;q,j(u) + Fa+1;h,q(v)Fa;q,j(v)

− Fa+2,a;h,j(v) + Fa+2,a;h,j(u)
)
,

(u− v)[Ea;i,j(u), Eb;h,k(v)] = 0 if b > a+ 1 or if b = a+ 1 and h 6= j,

(u− v)[Fa;i,j(u), Fb;h,k(v)] = 0 if b > a+ 1 or if b = a+ 1 and i 6= k,

[
[Ea;i,j(u), Ea+1;h,k(v)], Ea+1;f,g(w)

]
+[

[Ea;i,j(u), Ea+1;h,k(w)], Ea+1;f,g(v)
]

= 0 if | a− b| ≥ 1,[
Fa;i,j(u), [Fa;h,k(v), Fa+1;f,g(w)]

]
+[

Fa;i,j(v),[Fa;h,k(u), Fa+1;f,g(w)]
]

= 0 if | a− b| ≥ 1,

where the index p (resp. q) is summed over 1, . . . , λa (resp. 1, . . . , λa+1).

Proof. See [BK1, Section 6]. Here, we present the theorem in the series form and we
define the indices of F ’s in a slightly different manner.

Back to the super case. Consider m=n=1; that is, µ = (µ1 |µ2) = (M |N). Since we
have only one block of E’s and F ’s, we may omit the block positions without confusion.
That is, we set

Ei,j(u) := E1;i,j(u) = E1,2;i,j(u), for all 1 ≤ i ≤ µ1 = M, 1 ≤ j ≤ µ2 = N,

and Fi,j(u) := F1;i,j(u) = F2,1;i,j(u), for all 1 ≤ i ≤ µ2 = N, 1 ≤ j ≤ µ1 = M.

The relations among them are given in the following proposition, which is a generaliza-
tion of [BK1, Lemma 6.3].
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Proposition 5.1. The following identities hold in Y (glM |N )((u−1, v−1)).

(u− v)[Da;i,j(u), Eh,k(v)] =

{
δhjD1;i,p(u)

(
Ep,k(v)− Ep,k(u)

)
, if a = 1,

D2;i,k(u)
(
Eh,j(v)− Eh,j(u)

)
, if a = 2,

(5.1)

(u− v)[Da;i,j(u), Fh,k(v)] =

{
δki
(
Fh,p(u)− Fh,p(v)

)
D1;p,j(u), if a = 1,(

Fi,k(u)− Fi,k(v)
)
D2;h,j(u), if a = 2,

(5.2)

(u− v)[Ei,j(u), Fh,k(v)] = D′1;i,k(v)D2;h,j(v)−D2;h,j(u)D′1;i,k(u), (5.3)

(u− v)[Ei,j(u), Eh,k(v)] =
(
Ei,k(u)− Ei,k(v)

)(
Eh,j(v)− Eh,j(u)

)
, (5.4)

(u− v)[Fi,j(u), Fh,k(v)] =
(
Fi,k(u)− Fi,k(v)

)(
Fh,j(v)− Fh,j(u)

)
, (5.5)

for all admissible i, j, h, k and the index p is summed over 1, . . . ,M .

Proof. As in the proof of Proposition 4.4, we compute the matrix products

T (u) = F (u)D(u)E(u) and T−1(u) = E−1(u)D′(u)F−1(u)

with respect to the composition µ = (M |N) and get the following identities.

ti,j(u) = D1;i,j(u), for all 1 ≤ i, j ≤M, (5.6)

ti,M+j(u) = D1;i,pEp,j(u), for all 1 ≤ i ≤M, 1 ≤ j ≤ N, (5.7)

tM+i,j(u) = Fi,p(u)D1;p,j(u), for all 1 ≤ i ≤ N, 1 ≤ j ≤M, (5.8)

tM+i,M+j(u) = Fi,p(u)D1;p,q(u)Eq,j(u) +D2;i,j(u), for all 1 ≤ i, j ≤ N, (5.9)

t′i,j(u) = D′1;i,j(u) + Ei,p′(u)D′2;p′,q′(u)Fq′,j(u), for all 1 ≤ i, j ≤M,(5.10)

t′i,M+j(u) = −Ei,p′(u)D′2;p′,j(u), for all 1 ≤ i ≤M, 1 ≤ j ≤ N, (5.11)

t′M+i,j(u) = −D′2;i,p′(u)Fp′,j(u), for all 1 ≤ i ≤ N, 1 ≤ j ≤M, (5.12)

t′M+i,M+j(u) = D′2;i,j(u), for all 1 ≤ i, j ≤ N, (5.13)

where the indices p, q (resp. p′, q′) are summed over 1, . . . ,M (resp. 1, . . . , N).
(5.1) and (5.2) can be proved using exactly the same method as in [BK1, Lemma 6.3]

and hence we skip the detail.
To establish (5.3), we need other identities. Computing the brackets in (5.1) in the

case a = 2 and (5.2) in the case a = 1 and changing the indices, we have

(u− v)Eα,j(u)D′2;h,β(v)− δhj
(
Eα,q(v)− Eα,q(u)

)
D′2;q,β(v) = (u− v)D′2;h,β(v)Eα,j(u),

(5.14)
−(u− v)Fβ,k(v)D1;i,α(u) + δki

(
Fβ,p(v)− Fβ,p(u)

)
D1;p,α(u) = −(u− v)D1;i,α(u)Fβ,k(v),

(5.15)
where α, p (resp. β, q) are summed over 1, . . . ,M (resp. 1, . . . , N).

By (2.4), we have

(u− v)[ti,M+j(u), t′M+h,k(v)] = −
(
δhj

M+N∑
l=1

til(u)t′lk(v)− δki
M+N∑
s=1

t′M+h,s(v)ts,M+j(u)
)
.
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Substituting by (5.6)−(5.13) and changing the indices, we may rewrite the above identity
as the following

D1;i,α(u)
{

(u− v)Eα,j(u)D′2;h,β(v)− δhj
(
Eα,q(v)− Eα,q(u)

)
D′2;q,β(v)

}
Fβ,k(v)

− δhjD1;i,α(u)D′1;α,h(v)

= D′2;h,β(v)
{
− (u− v)Fβ,k(v)D1;i,α(u) + δki

(
Fβ,p(v)− Fβ,p(u)

)
D1;p,α(u)

}
Eα,j(u)

− δkiD′2;h,β(v)D2;β,j(u), (5.16)

where α, p (resp. β, q) are summed over 1, . . . ,M(resp. 1, . . . , N). Substituting (5.14)
and (5.15) into (5.16), we obtain

D1;i,α(u)
{

(u− v)D′2;h,β(v)Eα,j(u)Fβ,k(v)
}
− δhjD1;i,α(u)D′1;α,k(v) =

D′2;h,β(v)
{
− (u− v)D1;i,α(u)Fβ,k(v)Eα,j(u)

}
− δkiD′2;h,β(v)D2;β,j(u). (5.17)

Multiplying D2(v)D′1(u) from the left on both sides of (5.17), we obtain (5.3).
For (5.4), we start with [ti,M+j(u), t′h,M+k(v)] = 0. Note that they are both odd

elements. Multiplying (u − v)2 and computing the bracket after substitution by (5.7)
and (5.11), we have

(u− v)2D1;i,p(u)Ep,j(u)Eh,q(v)D′2;q,k(v)+

(u− v)Eh,q(v)D1;i,p(u)(u− v)D′2;q,k(v)Ep,j(u) = 0. (5.18)

Rewriting (5.1) again, we have the following identities

(u− v)Eh,q(v)D1;i,p(u) = (u− v)D1;i,p(u)Eh,q(v) + δhpD1;i,p(u)
(
Ep,q(u)− Ep,q(v)

)
,

(u− v)D′2;q,k(v)Ep,j(u) = (u− v)Ep,j(u)D′2;q,k(v) + δjq
(
Ep,q(u)− Ep,q(v)

)
D′2;q,k(v).

Substituting these two into the second term in (5.18) and multiplying D1(u) from the
left, D2(v) from the right simultaneously, we obtain

(u− v)2[Ei,j(u), Eh,k(v)] = (u− v)Eh,j(v)
(
Ei,k(v)− Ei,k(u)

)
+ (u− v)

(
Ei,k(v)− Ei,k(u)

)
Eh,j(u) +

(
Ei,j(u)− Ei,j(v)

)(
Eh,k(v)− Eh,k(u)

)
. (5.19)

For a power series P in Y (glM |N )[[u−1, v−1]], we write
{
P
}
d

for the homogeneous com-

ponent of P of total degree d in the variables u−1 and v−1. (5.4) follows from the
following claim.

Claim: For d ≥ 1, we have

(u− v)
{

[Ei,j(u), Eh,k(v)]
}
d+1

=
{(
Ei,k(u)− Ei,k(v)

)(
Eh,j(v)− Eh,j(u)

)}
d
.

We prove the claim by induction on d. For d = 1, we take
{ }

0
on (5.19), and it

implies
(u− v)2

{
[Ei,j(u), Eh,k(v)]

}
2

= 0.
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Note that the right hand side of (5.19) is zero when u = v, hence we may divide both
sides by (u− v) and therefore (u− v)

{
[Ei,j(u), Eh,k(v)]

}
2

= 0, as desired.
Assume the claim is true for some d > 1. By the hypothesis, we have

(u− v)
{

[Eh,j(u), Ei,k(v)]
}
d+1

=
{(
Eh,k(u)− Eh,k(v)

)(
Ei,j(v)− Ei,j(u)

)}
d
. (5.20)

=⇒
{

[Eh,j(u), Ei,k(v)]
}
d+1

=
{(Eh,k(u)− Eh,k(v)

)(
Ei,j(v)− Ei,j(u)

)
u− v

}
d
.

Note that the right hand side is zero when u = v. Hence
{

[Eh,j(v), Ei,k(v)]
}
d+1

= 0,
which implies

Eh,j(v)Ei,k(v) = −Ei,k(v)Eh,j(v). (5.21)

Take
{ }

d
on (5.19):

(u− v)2
{

[Ei,j(u), Eh,k(v)]
}
d+2

= (u− v)
{
Eh,j(v)

(
Ei,k(v)− Ei,k(u)

)}
d+1

+ (u− v)
{(
Ei,k(v)− Ei,k(u)

)
Eh,j(u)

}
d+1

+
{(
Ei,j(u)− Ei,j(v)

)(
Eh,k(v)− Eh,k(u)

)}
d
.

Substituting the last term by (5.20) and simplifying the result, we have

(u− v)2
{

[Ei,j(u), Eh,k(v)]
}
d+2

=

(u− v)
{
Eh,j(v)Ei,k(v) + Ei,k(u)Eh,j(v) +

(
Ei,k(v)− Ei,k(u)

)
Eh,j(u)

}
d+1

.

Substituting by (5.21) into the above identity, we have

(u− v)2
{

[Ei,j(u), Eh,k(v)]
}
d+2

= (u− v)
{(
Ei,k(u)− Ei,k(v)

)
Eh,j(v)−

(
Ei,k(u)− Ei,k(v)

)
Eh,j(u)

}
d+1

= (u− v)
{(
Ei,k(u)− Ei,k(v)

)(
Eh,j(v)− Eh,j(u)

)}
d+1

.

Dividing both sides by u− v establishes the claim.
(5.5) follows from applying the map ζN |M to (5.4) in Y (glN |M )[[u−1, v−1]] with suit-

able indices.

6 Special Case: m=2, n=1

Recall that m is the number of parts of the composition of M and n is the number of
parts of the composition of N . In the case when m = 2, n = 1, µ = (µ1, µ2 |µ3), where
µ1 +µ2 = M and µ3 = N . The relations among Ea;i,j(u) and Fb;h,k(u) in different blocks
are obtained by the following lemma, which is a generalization of [BK1, Lemma 6.4] and
[Go, Lemma 3].

Before stating and proving the lemma, we first set a notation for the remaining part
of this article. We denote the super Yangian by the notation

Yµ := Y (glM |N )
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to emphasize how we decompose the matrix T (u) into block matrices according to the
composition µ of (M |N) and how those D’s, E’s and F ’s are defined. Moreover, by
abuse of notations, we will consider the D’s, E’s and F ’s in different super Yangians at
the same time. It should be clear from the context which super Yangian we are dealing
with.

Lemma 6.1. The following identities hold in Y(µ1,µ2|µ3)((u
−1, v−1)) for all admissible

g, h, i, j, k.

(a) [E1;i,j(u), F2;h,k(v)] = 0,

(b)[E1;i,j(u), E2;h,k(v)] =
δhj
u− v

{
(
E1;i,q(u)−E1;i,q(v)

)
E2;q,k(v)+E1,3;i,k(v)−E1,3;i,k(u)},

(c) [E1,3;i,j(u), E2;h,k(v)] = E2;h,j(v)[E1;i,g(u), E2;g,k(v)],

(d) [E1;i,j(u), E1,3;h,k(v)− E1;h,q(v)E2;q,k(v)] = −[E1;i,g(u), E2;g,k(v)]E1;h,j(u).

Here, q is summed over 1, . . . , µ2 and g could be any number in {1, 2, . . . , µ2}.

Proof. (a) By (2.4), we have [ti,µ1+j(u), t′µ1+µ2+h,µ1+k(v)] = 0. Substituting by (4.9) −
(4.14) with respect to the composition µ and according to the indices, we have

[D1;i,p(u)E1;p,j(u),−D′3;h,q(v)F2;q,k(v)] = 0.

Computing the bracket, we obtain

D1;i,p(u)E1;p,j(u)D′3;h,q(v)F2;q,k(v)−D′3;h,q(v)F2;q,k(v)D1;i,p(u)E1;p,j(u) = 0, (6.1)

where p and q are summed over 1, . . . , µ1 and 1, . . . , µ3, respectively. Similarly, by (2.4),
we have

[tij(u), t′µ1+µ2+h,µ1+k(v)] = [ti,µ1+j(u), t′µ1+µ2+h,µ1+µ2+k(v)] = 0,

which implies that

[D1;i,j(u), F2;h,k(v)] = [E1;i,j(u), D′3;h,k(v)] = 0.

Substituting these into (6.1) and noting that [D1;i,j(u), D′3;h,k(v)] = 0, we have

D1;i,p(u)D′3;h,q(v)E1;p,j(u)F2;q,k(v)−D1;i,p(u)D′3;h,q(v)F2;q,k(v)E1;p,j(u) = 0.

Multiplying D3(v)D′1(u) from the left, we obtain (a).
(b) By (2.4), we have

(u− v)[ti,µ1+j(u), t′µ1+h,µ1+µ2+k(v)] = δjh

M+N∑
s=1

tis(u)ts,µ1+µ2+k(v).

Substituting by (4.9)−(4.14) according to the indices in the above identity, we have

(u− v)[D1;i,p(u)E1;p,j(u),−E2;h,q(v)D′3;q,k(v)] =

δjhD1;i,p(u)
{(
E1;p,r(v)E2;r,q(v)−E1,3;p,q(v)

)
−E1;p,r(u)E2;r,q(v)+E1,3;p,q(u)

}
D′3;q,k(v),

(6.2)
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where the indices p, q, r are summed over µ1, µ3, µ2, respectively. Using the facts that[
E1;i,j(v), D′3;h,k(u)

]
= 0,

(
explained in the proof of (a)

)[
E2;i,j(v), D1;h,k(u)

]
= 0,

(
obtained from [tij(u), t′µ1+h,µ1+µ2+k(v)] = 0

)
we may cancel D1(u) from the left and D′3(v) from the right on both sides of (6.2).
Dividing both sides by u− v, we have proved (b).

(c) By (5.1) in Y(µ2|µ3)[[u
−1, v−1]], we have

(u− v)[E1;h,k(u), D′2;i,j(v)] = δki
(
E1;h,p(v)− E1;h,p(u)

)
D′2;p,j(v).

Applying the map ψµ1 to this identity and using (4.3)−(4.5), we have the following
identity in Y(µ1,µ2|µ3)[[u

−1, v−1]]

(u− v)[E2;h,k(u), D′3;i,j(v)] = δki
(
E2;h,p(v)− E2;h,p(u)

)
D′3;p,j(v).

Taking the coefficient of u0, we obtain

[E
(1)
2;h,k, D

′
3;i,j(v)] = δkiE2;h,p(v)D′3;p,j(v). (6.3)

Also by (3.9), we have

E1,3;i,j(u) = [E1;i,g(u), E
(1)
2;g,j ], for any 1 ≤ g ≤ µ2. (6.4)

By (6.3), (6.4) and the fact that [E1;i,g(u), D′3;h,k(v)] = 0, we have

[E1,3;i,j(u), D′3;h,k(v)] =
[
[E1;i,g(u), E

(1)
2;g,j

]
, D′3;h,k(v)]

=
[
E1;i,g(u), [E

(1)
2;g,j , D

′
3;h,k(v)]

]
=
[
E1;i,g(u), δhjE2;g,p(v)D′3;p,k(v)

]
= δhj

[
E1;i,g(u), E2;g,p(v)

]
D′3;p,k(v). (6.5)

By (2.4) and (4.9)−(4.14), we have

[ti,µ1+µ2+j(u), t′µ1+h,µ1+µ2+k(v)] = [D1;i,p(u)E1,3;p,j(u),−E2;h,q(v)D′3;q,k(v)] = 0,

where p and q are summed over 1, 2, . . . , µ1 and 1, 2, . . . , µ3, respectively. Multiplying
D′1(u) from the left, we have [E1,3;i,j(u), E2;h,q(v)D′3;q,k(v)] = 0, which may be written
as

[E1,3;i,j(u), E2;h,q(v)]D′3;q,k(v)− E2;h,q(v)[E1,3;i,j(u), D′3;q,k(v)] = 0.

Substituting the last bracket by (6.5), we have

[E1,3;i,j(u), E2;h,q(v)]D′3;q,k(v)− δqjE2;h,q(v)[E1;i,g(u), E2;g,p(v)]D′3;p,k(v) = 0.

=⇒ [E1,3;i,j(u), E2;h,q(v)]D′3;q,k(v) = E2;h,j(v)[E1;i,g(u), E2;g,p(v)]D′3;p,k(v).

Multiplying D3(v) from the right to both sides of the above equality, we obtain (c).
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(d) Taking the coefficient of u0 in (b), we have

[E
(1)
1;i,j , E2;h,k(v)] = δhj

(
E1,3;i,k(v)− E1;i,q(v)E2;q,k(v)

)
.

Taking the coefficient of v0 in (5.1) in the case a = 1, we have

[D1;i,j(u), E
(1)
1;h,k] = δhjD1;i,p(u)E1;p,k(u).

By the above two equalities and the fact that [D1;i,j(u), E2;g,k(v)] = 0, we have

[D1;i,j(u), E1,3;h,k(v)− E1;h,q(v)E2;q,k(v)] = [D1;i,j(u),
[
E

(1)
1;h,g, E2;g,k(v)]

]
=
[
[D1;i,j(u), E

(1)
1;h,g], E2;g,k(v)

]
= [δhjD1;i,p(u)E1;p,g(u), E2;g,k(v)]

= δhjD1;i,p(u)[E1;p,g(u), E2;g,k(v)]. (6.6)

Taking the sum of all j in (6.6), we have

δhrD1;i,p(u)[E1;p,g(u)E2;g,k(v)] = D1;i,r(u)
(
E1,3;h,k(v)− E1;h,s(v)E2;s,k(v)

)
−
(
E1,3;h,k(v)− E1;h,s(v)E2;s,k(v)

)
D1;i,r(u),

where p, r, s are summed over µ1, µ1, µ2, respectively. Changing the indices, we may
rewrite the above equality as(

E1;h,r(v)E2;r,k(v)− E1,3;h,k(v)
)
D1;i,p(u) =

δhpD1;i,p′(u)[E1;p′,g(u), E2;g,k(v)] +D1;i,p(u)
(
E1;h,r(v)E2;r,k(v)− E1,3;h,k(v)

)
, (6.7)

where r, p, p′ are summed over µ2, µ1, µ1, respectively.
On the other hand, by (2.4) and (4.9)−(4.14), we have

[ti,µ1+j(u), t′h,µ1+µ2+k(v)] =

[D1;i,p(u)E1;p,j(u),
(
E1;h,r(v)E2;r,q(v)− E1,3;h,q(v)

)
D′3;q,k(v)] = 0, (6.8)

where p and q are summed over µ1 and µ3, respectively. Multiplying D3(v) from the
right and computing the bracket, (6.8) becomes

D1;i,p(u)E1;p,j(u)
(
E1;h,r(v)E2;r,k(v)− E1,3;h,k(v)

)
−
(
E1;h,r(v)E2;r,k(v)− E1,3;h,k(v)

)
D1;i,p(u)E1;p,j(u) = 0, (6.9)

where p and r are summed over µ1 and µ2, respectively. Substituting (6.7) into the
second term of (6.9), we have

D1;i,p(u)E1;p,j(u)
(
E1;h,q(v)E2;q,k(v)− E1,3;h,k(v)

)
− δh,p1D1;i,p2(u)

[
E1;p2,g(u), E2;g,k(v)

]
E1;p1,j(u)

−D1;i,p3(u)
(
E1;h,q1(v)E2;q1,k(v)− E1,3;h,k(v)

)
E1;p3,j(u) = 0.
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Multiplying D′1(u) from the left, we obtain

E1;i,j(u)
(
E1;h,q(v)E2;q,k(v)− E1,3;h,k(v)

)
−
[
E1;i,g(u), E2;g,k(v)

]
E1;h,j(u)−

(
E1;h,q1(v)E2;q1,k(v)− E1,3;h,k(v)

)
E1;i,j(u) = 0.

Simplifying the above, we obtain (d).

We have the F-counterpart of Lemma 6.1.

Lemma 6.2. The following identities hold in Y(µ1,µ2|µ3)((u
−1, v−1)) for all admissible

g, h, i, j, k.

(a) [F1;i,j(u), E2;h,k(v)] = 0,

(b)[F1;i,j(u), F2;h,k(v)] =
δik
u− v

{
F2;h,q(v)

(
F1;q,j(v)−F1;q,j(u)

)
−F3,1;h,j(v)+F3,1;h,j(u)

}
,

(c) [F3,1;i,j(u), F2;h,k(v)] = [F2;h,g(v), F1;g,j(u)]F2;i,k(v),

(d) [F1;i,j(u), F2;h,q(v)F1;q,k(v)− F3,1;h,k(v)] = F1;i,k(u)[F1;g,j(u), F2;h,g(v)].

Here, q is summed over 1, . . . , µ2 and g could be any number in {1, 2, . . . , µ2}.

Proof. They can be proved by similar methods as in the proof of Lemma 6.1 and we
skip the details.

The following lemma is a generalization of [BK1, Lemma 6.5, Lemma 6.6] and of
part of [Go, Lemma 3].

Lemma 6.3. The following identities hold in Y(µ1,µ2|µ3)[[u
−1, v−1, w−1]] for all admis-

sible f, g, h, i, j, k.

(a)
[
[E1;i,j(u), E2;h,k(v)], E2;f,g(v)

]
= 0,

(b)
[
E1;i,j(u), [E1;h,k(u), E2;f,g(v)]

]
= 0,

(c)
[
[E1;i,j(u), E2;h,k(v)], E2;f,g(w)

]
+
[
[E1;i,j(u), E2;h,k(w)], E2;f,g(v)

]
= 0,

(d)
[
E1;i,j(u), [E1;h,k(v), E2;f,g(w)]

]
+
[
E1;i,j(v), [E1;h,k(u), E2;f,g(w)]

]
= 0,

(e)
[
[F1;i,j(u), F2;h,k(v)], F2;f,g(v)

]
= 0,

(f)
[
F1;i,j(u), [F1;h,k(u), F2;f,g(v)]

]
= 0,

(g)
[
[F1;i,j(u), F2;h,k(v)], F2;f,g(w)

]
+
[
[F1;i,j(u), F2;h,k(w)], F2;f,g(v)

]
= 0,

(h)
[
F1;i,j(u), [F1;h,k(v), F2;f,g(w)]

]
+
[
F1;i,j(v), [F1;h,k(u), F2;f,g(w)]

]
= 0.

Proof. We prove (a) and (c) in detail here, while the others can be proved in a similar
fashion.

(a) We first claim that

[Ea;i,j(v), Ea;h,k(v)] = 0 for a = 1, 2 in Y(µ1,µ2|µ3)[[u
−1, v−1]].

The case a = 1 follows from Theorem 2 and a = 2 follows from applying the map ψµ1
to (5.4).
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By the super-Jacobi identity, together with the claim and Lemma 6.1(b), it suffices
to prove the case when j = h = f . In this case, we compute the bracket by Lemma 6.1
as follows.

(u− v)
[
[E1;i,j(u), E2;j,k(v)], E2;j,g(v)

]
= −(u− v)

[
E2;j,k(v), [E1;i,j(u), E2;j,g(v)]

]
= [E1;i,q(u)E2;q,g(v)− E1;i,q(v)E2;q,g(v) + E1,3;i,g(v)− E1,3;i,g(u), E2;j,k(v)]

= [E1;i,q(u)E2;q,g(v), E2;j,k(v)] + [E1,3;i,g(v), E2;j,k(v)]

− [E1;i,q(v)E2;q,g(v), E2;j,k(v)]− [E1,3;i,g(u), E2;j,k(v)]

= −[E1;i,q(u), E2;j,k(v)]E2;q,g(v)− E2;j,g(v)[E1;i,j(u), E2;j,k(v)]

+ [E1;i,q(v), E2;j,k(v)]E2;q,g(v) + E2;j,g(v)[E1;i,j(u), E2;j,k(v)]

= −
[
[E1;i,j(u), E2;j,k(v)], E2;j,g(v)

]
+
[
[E1;i,j(v), E2;j,k(v)], E2;j,g(v)

]
.

Thus we have

(u− v − 1)
[
[E1;i,j(u), E2;j,k(v)], E2;j,g(v)

]
= −

[
[E1;i,j(v), E2;j,k(v)], E2;j,g(v)

]
. (6.10)

Note that the right hand side of (6.10) is independent of the choice of u. Set u = v + 1,
then the right hand side of (6.10) is zero. Using (6.10) again, we obtain (a).

(c) It is enough to show that

(u− w)(v − w)(u− v)
[
[E1;i,j(u), E2;h,k(v)], E2;f,g(w)

]
(6.11)

is symmetric in v and w. We may further assume j = h, as in the proof of (a). By
Lemma 6.1(b), we have

(u− v)
[
[E1;i,j(u), E2;j,k(v)], E2;f,g(w)

]
=
[
E1;i,q(u)E2;q,k(v)− E1;i,q(v)E2;q,k(v) + E1,3;i,k(v)− E1,3;i,k(u), E2;f,g(w)

]
.

Multiplying both sides with (u−w)(v −w), computing the brackets by Lemma 6.1, we
have

(u− w)(v − w)(u− v)
[
[E1;i,j(u), E2;h,k(v)], E2;f,g(w)

]
=(u− w)(v − w)

{
E1;i,q(u)E2;q,k(v)E2;f,g(w) + E2;f,g(w)E1;i,q(u)E2;q,k(v)

− E1;i,q(v)E2;q,k(v)E2;f,g(w)− E2;f,g(w)E1;i,q(v)E2;q,k(v)

+ E2;f,k(w)[E1;i,x(v), E2;x,g(w)]− E2;f,k(w)[E1;i,x(u), E2;x,g(w)]
}

=(u− w)(v − w)
{
E1;i,q(u)[E2;q,k(v), E2;f,g(w)]− E1;i,q(u)E2;f,g(w)E2;q,k(v)

+ [E2;f,g(w), E1;i,q(u)]E2;q,k(v) + E1;i,q(u)E2;f,g(w)E2;q,k(v)

− E1;i,q(v)[E2;q,k(v), E2;f,g(w)] + E1;i,q(v)E2;f,g(w)E2;q,k(v)

− [E2;f,g(w), E1;i,q(v)]E2;q,k(v)− E1;i,q(v)E2;f,g(w)E2;q,k(v)

− [E1;i,x(v), E2;x,g(w)]E2;f,k(w) + [E1;i,x(u), E2;x,g(w)]E2;f,k(w)
}

=(u− w)(v − w)E1;i,q(u)
[
E2;q,k(v), E2;f,g(w)

]
+ (u− w)(v − w)

[
E2;f,g(w), E1;i,q(u)

]
E2;q,k(v)
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− (u− w)(v − w)E1;i,q(v)
[
E2;q,k(v), E2;f,g(w)

]
− (u− w)(v − w)

[
E2;f,g(w), E1;i,q(v)

]
E2;q,k(v)

− (u− w)(v − w)
[
E1;i,x(v), E2;x,g(w)

]
E2;f,k(w)

+ (u− w)(v − w)
[
E1;i,x(u), E2;x,g(w)

]
E2;f,k(w). (6.12)

Now we use (5.4) and Lemma 6.1 to compute these brackets, then (6.12) equals

(u− w)E1;i,q(u)
(
E2;q,g(v)− E2;q,g(w)

)(
E2;f,k(w)− E2;f,k(v)

)
− (v − w)δq,j

{(
E1;i,q0(u)− E1;i,q0(w)

)
E2;q0,g(w) + E1,3;i,g(w)− E1,3;i,g(u)

}
E2;q,k(v)

− (u− w)E1;i,q(v)
(
E2;q,g(v)− E2;q,g(w)

)(
E2;f,k(w)− E2;f,k(v)

)
+ (u− w)δq,f

{(
E1;i,q0(v)− E1;i,q0(w)

)
E2;q0,g(w) + E1,3;i,g(w)− E1,3;i,g(v)

}
E2;q,k(v)

− (u− w)
{
E1;i,q(v)E2;q,g(w)− E1;i,q(w)E2;q,g(w) + E1,3;i,g(w)− E1,3;i,g(v)

}
E2;f,k(w)

+ (v − w)
{
E1;i,q(u)E2;q,g(w)− E1;i,q(w)E2;q,g(w) + E1,3;i,g(w)− E1,3;i,g(u)

}
E2;f,k(w),

where the indices q and q0 are summed over 1, 2, . . . µ2.
Opening the parentheses of the above equality, we obtain that the resulting expression

is indeed symmetric in v and w. Therefore, (6.11) is symmetric in v and w and hence
(c) is proved.

7 The general Case

Recall that our goal is to obtain the relations among the generators {D(r)
a;i,j , D

′′(r)
a;i,j},

{E(r)
a;i,j}, and {F (r)

a;i,j} associated to a composition µ of (M |N). To that end, we divide
them into 3 disjoint parts as following:

A :
{
D

(r)
a;i,j , D

′(r)
a;i,j

}
1≤a≤m ∪

{
E

(r)
a;i,j

}
1≤a<m ∪

{
F

(r)
a;i,j

}
1≤a<m,

B :
{
D

(r)
a;i,j , D

′(r)
a;i,j

}
m+1≤a≤m+n

∪
{
E

(r)
a;i,j

}
m+1≤a<m+n

∪
{
F

(r)
a;i,j

}
m+1≤a<m+n

,

C :
{
E

(r)
m;i,j

}
∪
{
F

(r)
m;i,j

}
,

for all admissible indices i, j, r.
If we choose two elements from Part A, then their bracket is obtained by Theorem 2.

If we choose two elements from Part B, then they are the images of some elements from
the Part A in Y (glN |M ) under the swap map ζN |M , and the bracket is obtained by
Theorem 2 as well.

Now suppose one of them is from Part A and the other is from Part B. Note that
every element in Part A is in the north-western M ×M corner of T (u) and hence is in
the subalgebra Y (glM ) of Y (glM |N ) (see Section 4). On the other hand, every element
in Part B is in the south-eastern N ×N corner of T (u) and hence is in the subalgebra
ψM
(
Y (gl0|N )

)
of Y (glM |N ). Thus, their bracket is zero by Lemma 4.3.

Therefore, we only have to focus on the cross section where the odd blocks and even
blocks are “close”, and this is done in Proposition 5.1, Lemma 6.1 and Lemma 6.2.
Moreover, there are some non-trivial ternary brackets relations in the non-super case,
and the corresponding ternary relations in the super case are found in Lemma 6.3.
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The following proposition summarizes the results we have obtained up to now.

Proposition 7.1. For all admissible a, b, f, g, h, i, j, k, we have the following equalities
in the super Yangian Yµ((u−1, v−1, w−1)).

(u− v)[Da;i,j(u), Eb;h,k(v)] =

(−1)b
{
δa,bδh,jDa;i,p(u)

(
Ea;p,k(v)− Ea;p,k(u)

)
−δa,b+1Da;i,k(u)

(
Eb;h,j(v)− Eb;h,j(u)

)}
, if b 6= m,

δa,bδh,jDa;i,p(u)
(
Ea;p,k(v)− Ea;p,k(u)

)
+δa,b+1Da;i,k(u)

(
Eb;h,j(v)− Eb;h,j(u)

)
, if b = m,

(u− v)[Da;i,j(u), Fb;h,k(v)] =

(−1)b
{
− δa,bδk,i

(
Fb;h,p(v)− Fb;h,p(u)

)
Da;p,j(u)

+δa,b+1

(
Fb;i,k(v)− Fb;i,k(u)

)
Da;h,j(u)

}
, if b 6= m,

−δa,bδk,i
(
Fb;h,p(v)− Fb;h,p(u)

)
Da;p,j(u)

−δa,b+1

(
Fb;i,k(v)− Fb;i,k(u)

)
Da;h,j(u), if b = m,

(u− v)[Ea;i,j(u), Ea;h,k(v)] ={
(−1)a

(
Ea;i,k(u)− Ea;i,k(v)

)(
Ea;h,j(u)− Ea;h,j(v)

)
, if a 6= m,(

Ea;i,k(u)− Ea;i,k(v)
)(
Ea;h,j(v)− Ea;h,j(u)

)
, if a = m,

(u− v)[Fa;i,j(u), Fa;h,k(v)] ={
−(−1)a

(
Fa;i,k(u)− Fa;i,k(v)

)(
Fa;h,j(u)− Fa;h,j(v)

)
, if a 6= m,(

Fa;i,k(u)− Fa;i,k(v)
)(
Fa;h,j(v)− Fa;h,j(u)

)
, if a = m,

(u− v)[Ea;i,j(u), Fb;h,k(v)] = δa,b(−1)b+1
(
D′a;i,k(u)Da+1;h,j(u)−Da+1;h,j(v)D′a;i,k(v)

)
,

(u− v)
[
Ea;i,j(u), Ea+1;h,k(v)

]
= δh,j(−1)a+1

(
Ea;i,q(u)Ea+1;q,k(v)

− Ea;i,q(v)Ea+1;q,k(v) + Ea,a+2;i,k(v)− Ea,a+2;i,k(u)
)
,

(u− v)
[
Fa;i,j(u), Fa+1;h,k(v)

]
= δi,k(−1)a+1

(
− Fa+1;h,q(v)Fa;q,j(u)

+ Fa+1;h,q(v)Fa;q,j(v)− Fa+2,a;h,j(v) + Fa+2,a;h,j(u)
)
,

(u− v)[Ea;i,j(u), Eb;h,k(v)] = 0, if b > a+ 1 or if b = a+ 1 and h 6= j,

(u− v)[Fa;i,j(u), Fb;h,k(v)] = 0, if b > a+ 1 or if b = a+ 1 and i 6= k,

[
Ea;i,j(u), [Ea;h,k(v), Eb;f,g(w)]

]
+
[
Ea;i,j(v), [Ea;h,k(u), Eb;f,g(w)]

]
= 0, |a− b| ≥ 1,
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[
Fa;i,j(u), [Fa;h,k(v), Fb;f,g(w)]

]
+
[
Fa;i,j(v), [Fa;h,k(u), Fb;f,g(w)]

]
= 0, |a− b| ≥ 1,

where a := 0 if 1 ≤ a ≤ m and a := 1 if m+ 1 ≤ a ≤ m+ n.

Proof. This is the consequence of Theorem 2, Proposition 5.1, Lemmas 6.1−6.3, together
with the maps ψk and ζM |N .

The next lemma is a block generalization of [Go, Lemma 5] and the proof is essentially
the same, except that we are using block decompositions. The relations are purely super
phenomenons.

Lemma 7.2. Associated to µ = (µ1, µ2, . . . µm |µm+1, . . . , µm+n) with m > 1 and n > 1,
we have the following identities in Yµ.[

[E
(r)
m−1;i,j , E

(1)
m;h,k], [E

(1)
m;h0,k0

, E
(s)
m+1;f,g]

]
= 0, (7.1)[

[F
(r)
m−1;i,j , F

(1)
m;h,k], [F

(1)
m;h0,k0

, F
(s)
m+1;f,g]

]
= 0, (7.2)

for all admissible f, g, h, i, j, k, h0, k0, r, s.

Proof. By using the maps ζM |N and ψ, it is enough to show (7.1) in the case m = n = 2
only. Therefore, we want to show (7.1) in Y(µ1,µ2|µ3,µ4), i.e.,[

[E
(r)
1;i,j , E

(1)
2;h,k] , [E

(1)
2;h0,k0

, E
(s)
3;f,g]

]
= 0. (7.3)

We first claim that for all admissible i, j, h, k,

[E1,3;i,j(u) , E2;h,q(v)E3;q,k(v)− E2,4;h,k(v) ] = 0, (7.4)

where the index q is summed over 1, 2, . . . , µ3. To prove the claim, we use (4.11) and
(4.13) associated to the composition (µ1, µ2 |µ3, µ4) to derive the following identities.

E1,3;i,j(u) = D′1;i,p(u)tp,µ1+µ2+j(u),

E2;h,q(v)E3;q,k(v)− E2,4;h,k(v) = t′µ1+h,µ1+µ2+µ3+r(v)D4;r,k(v),

for all 1 ≤ i ≤ µ1, 1 ≤ j ≤ µ3, 1 ≤ h ≤ µ2, 1 ≤ k ≤ µ4, and the indices p, q, r are
summed over µ1, µ3, µ4, respectively. Substituting these identities into the bracket in
(7.4) and setting a notation na := µ1 + µ2 + . . .+ µa for short, we have

[E1,3;i,j(u), E2;h,q(v)E3;q,k(v)− E2,4;h,k(v)]

= [D′1;i,p(u)tp,n2+j(u), t′µ1+h,n3+r(v)D4;r,k(v)]

= D′1;i,p(u)tp,n2+j(u)t′µ1+h,n3+r(v)D4;r,k(v) + t′µ1+h,n3+r(v)D4;r,k(v)D′1;i,p(u)tp,n2+j(u)

= D′1;i,p(u)tp,n2+j(u)t′µ1+h,n3+r(v)D4;r,k(v) + t′µ1+h,n3+r(v)D′1;i,p(u)D4;r,k(v)tp,n2+j(u)

= D′1;i,p(u)tp,n2+j(u)t′µ1+h,n3+r(v)D4;r,k(v) +D′1;i,p(u)t′µ1+h,n3+r(v)tp,n2+j(u)D4;r,k(v)

= D′1;i,p(u)[tp,n2+j(u), t′µ1+h,n3+r(v)]D4;r,k(v) = 0, and the claim follows.
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Note that in the above computation we have used the facts that

D1;i,j(u) = tij(u) and D′4;i,j(u) = t′n3+i,n3+j(u),

therefore [D1;i,j(u), t′µ1+h,n3+k(v)] = 0 and [D′4;i,j(u), th,n2+k(v)] = 0 by (2.4).
It suffices to prove (7.3) when h = j and k0 = f , by Lemma 6.1(b). Computing the

following bracket by Lemma 6.1(b), we have

(u− v)(w − z)
[

[E1;i,j(u), E2;j,k(v)] , [E2;h0,f (w), E3;f,g(z)]
]

=
[
E1;i,q(u)E2;q,k(v)− E1;i,q(v)E2;q,k(v) + E1,3;i,k(v)− E1,3;i,k(u),

− E2;h0,p(w)E3;p,g(z) + E2;h0,p(z)E3;p,g(z)− E2,4;h0,g(z) + E2,4;h0,g(w)
]
.

Taking its coefficient of u−rz−sv0w0, we have

s−1∑
t=1

[−E(r)
1,3;i,k, E

(s−t)
2;h0,p

E
(t)
3;p,g] + [−E(r)

1,3;i,k,−E
(s)
2,4;h0,g

],

and it equals the coefficient of u−rz−s in [E1,3;i,k(u),−E2;h0,p(z)E3;p,g(z) +E2,4;h0,g(z)],
which is zero by (7.4).

Finally, the coefficient of u−rz−sv0w0 in

(u− v)(w − z)
[

[E1;i,j(u), E2;j,k(v)] , [E2;h0,f (w), E3;f,g(z)]
]

is exactly −
[

[E
(r)
1;i,j , E

(1)
2;j,k] , [E

(1)
2;h0,f

, E
(s)
3;f,g]

]
and (7.3) follows.

Recall the fact stated in Theorem 1 that Y (glM |N ) is generated as an algebra by the

set
{
D

(r)
a;i,j , D

′(r)
a;i,j , E

(r)
a;i,j , F

(r)
a;i,j

}
. The following theorem describes the relations among

these generators.

Theorem 3. The following relations hold in Y (glM |N ) for all admissible indices a, b, f, g,
h, i, j, k, l, r, s, h0, k0:

D
(0)
a;i,j = δij , (7.5)

r∑
t=0

D
(t)
a;i,pD

′(r−t)
a;p,j = δr0δij , (7.6)

[
D

(r)
a;i,j , D

(s)
b;h,k

]
= δab

min(r,s)−1∑
t=0

(
D

(t)
a;h,jD

(r+s−1−t)
a;i,k −D(r+s−1−t)

a;h,j D
(t)
a;i,k

)
, (7.7)

[D
(r)
a;i,j , E

(s)
b;h,k] =

(−1)b
(
δa,bδh,j

r−1∑
t=0

D
(t)
a;i,pE

(r+s−1−t)
a;p,k − δa,b+1

r−1∑
t=0

D
(t)
a;i,kE

(r+s−1−t)
b;h,j

)
, b 6= m,

δa,bδh,j

r−1∑
t=0

D
(t)
a;i,pE

(r+s−1−t)
a;p,k + δa,b+1

r−1∑
t=0

D
(t)
a;i,kE

(r+s−1−t)
b;h,j , b = m,

(7.8)
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[D
(r)
a;i,j , F

(s)
b;h,k] =

(−1)b
(
− δa,bδk,i

r−1∑
t=0

F
(r+s−1−t)
b;h,p D

(t)
a;p,j + δa,b+1

r−1∑
t=0

F
(r+s−1−t)
b;i,k D

(t)
a;h,j

)
, b 6= m,

−δa,bδk,i
r−1∑
t=0

F
(r+s−1−t)
b;h,p D

(t)
a;p,j − δa,b+1

r−1∑
t=0

F
(r+s−1−t)
b;i,k D

(t)
a;h,j , b = m,

(7.9)

[E
(r)
a;i,j , E

(s)
a;h,k] =


(−1)a

( s−1∑
t=1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j −

r−1∑
t=1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j

)
, a 6= m,

r−1∑
t=1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j −

s−1∑
t=1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j , a = m,

(7.10)

[F
(r)
a;i,j , F

(s)
a;h,k] =


(−1)a

( r−1∑
t=1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j −

s−1∑
t=1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j

)
, a 6= m,

r−1∑
t=1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j −

s−1∑
t=1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j , a = m,

(7.11)

[E
(r)
a;i,j , F

(s)
b;h,k] = −(−1)b+1δa,b

r+s−1∑
t=0

D
(r+s−1−t)
a+1;h,j D

′(t)
a;i,k , (7.12)

[E
(r+1)
a;i,j , E

(s)
a+1;h,k]− [E

(r)
a;i,j , E

(s+1)
a+1;h,k] = (−1)a+1δh,jE

(r)
a;i,qE

(s)
a+1;q,k , (7.13)

[F
(r+1)
a;i,j , F

(s)
a+1;h,k]− [F

(r)
a;i,j , F

(s+1)
a+1;h,k] = −(−1)a+1δi,kF

(s)
a+1;h,qF

(r)
a;q,j , (7.14)

[E
(r)
a;i,j , E

(s)
b;h,k] = 0 if b > a+ 1 or if b = a+ 1 and h 6= j, (7.15)

[F
(r)
a;i,j , F

(s)
b;h,k] = 0 if b > a+ 1 or if b = a+ 1 and i 6= k, (7.16)

[
E

(r)
a;i,j , [E

(s)
a;h,k, E

(l)
b;f,g]

]
+
[
E

(s)
a;i,j , [E

(r)
a;h,k, E

(l)
b;f,g]

]
= 0, |a− b| ≥ 1, (7.17)

[
F

(r)
a;i,j , [F

(s)
a;h,k, F

(l)
b;f,g]

]
+
[
F

(s)
a;i,j , [F

(r)
a;h,k, F

(l)
b;f,g]

]
= 0, |a− b| ≥ 1, (7.18)

[
[E

(r)
m−1;i,j , E

(1)
m;h,k] , [E

(1)
m;h0,k0

, E
(s)
m+1;f,g]

]
= 0, when m > 1, n > 1, (7.19)

[
[F

(r)
m−1;i,j , F

(1)
m;h,k] , [F

(1)
m;h0,k0

, F
(s)
m+1;f,g]

]
= 0, when m > 1, n > 1, (7.20)

where a := 0 if 1 ≤ a ≤ m, a := 1 if m + 1 ≤ a ≤ m + n, and the index p (resp. q) is
summed over 1,. . . , µ1 (resp. 1, . . . , µ2)
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Proof. (7.5)−(7.7) follow from Proposition 4.5, while the others come from Proposi-
tion 7.1, Lemma 7.2 and the identity

S(v)− S(u)

u− v
=
∑
r,s≥1

S(r+s−1)u−rv−s,

for any formal series S(u) =
∑

r≥0 S
(r)u−r.

Remark 7.1. In the special case where all µi = 1, the right hand side of (7.10) and
(7.11) degenerate to zero when a=m. See [Go, Theorem 3].

In fact, the relations in Theorem 3 are enough as defining relations of the super
Yangian Y (glM |N ).

Theorem 4. The super Yangian Y (glM |N ) is generated by the elements

{D(r)
a;i,j , D

′(r)
a;i,j | 1 ≤ a ≤ m+ n, 1 ≤ i, j ≤ µa, r ≥ 0},

{E(r)
a;i,j | 1 ≤ a < m+ n, 1 ≤ i ≤ µa, 1 ≤ j ≤ µa+1, r ≥ 1},

{F (r)
a;i,j | 1 ≤ a < m+ n, 1 ≤ i ≤ µa+1, 1 ≤ j ≤ µa, r ≥ 1},

subject to the relations (7.5)−(7.20).

Proof. Recall the notation Yµ := Y (glM |N ) defined in Section 6. Let Ŷµ denote the ab-
stract algebra generated by the elements and relations as in the statement of Theorem 4.

We may further define all the other E
(r)
a,b;i,j and F

(r)
b,a;i,j in Ŷµ by the relations (3.9), and

it is not hard to show that this definition is independent of the choices of k [BK1, p.22].
Let Γ be the map

Γ : Ŷµ −→ Yµ

sending every element in Ŷµ into the element in Yµ with the same name. By Theorem 1
and Theorem 3, the map Γ is a surjective algebra homomorphism. Therefore, it remains
to prove that Γ is also injective. The injectivity will be proved in Section 8.

8 Injectivity of Γ

Our strategy of proving the injectivity of Γ is as follows: we find a spanning set for Ŷµ
(see Proposition 8.1) and show that the images of the spanning set for Ŷµ under Γ is
linearly independent in Yµ (see Proposition 8.4).

Proposition 8.1. Ŷµ is spanned as a vector space by the monomials in the elements

{D(r)
a;i,j , E

(r)
a,b;i,j , F

(r)
b,a;i,j} taken in certain fixed order.

Proof. Let Ŷ 0
µ (resp. Ŷ +

µ , Ŷ −µ ) denote the subalgebras of Ŷµ generated by the elements

{D(r)
a;i,j} (resp. {E(r)

a,b;i,j}, {F
(r)
b,a;i,j}). By the relations in Theorem 3, Ŷµ is spanned by

the monomials where all F ’s come before all D’s and all D’s come before all E’s.
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Define a filtration on Ŷµ by setting

deg(D
(r)
a;i,j) = deg(E

(r)
a,b;i,j) = deg(F

(r)
b,a;i,j) = r − 1, for all r ≥ 1,

and denote the associated graded algebra by grLŶµ. The above argument implies that
the multiplication map is surjective,

grLŶ −µ ⊗ grLŶ 0
µ ⊗ grLŶ +

µ � grLŶµ.

Moreover, grLŶ 0
µ is commutative by Proposition 4.5. It follows that Ŷ 0

µ is spanned by

the monomials in {D(r)
a;i,j} in certain fixed order. Hence it is enough to show that grLŶ +

µ

is spanned by the monomials in E’s in certain order, and the swap map ζN |M will show

that grLŶ −µ is spanned by the monomials in F ’s in certain order.

We denote the image of E
(r)
a,b;i,j in the graded algebra grLr−1Ŷ

+
µ by E

(r)
a,b;i,j . We have

the following.

Claim*: For all admissible a, b, c, d, i, j, h, k, r, s, we have

[E
(r)
a,b;i,j , E

(s)
c,d;h,k] = (−1)bδb,cδh,jE

(r+s−1)
a,d;i,k − (−1)a b+a c+b cδa,dδi,kE

(r+s−1)
c,b;h,j . (8.1)

Assuming the claim, we have that the graded algebra grLŶ +
µ is spanned by the

monomials in {E(r)
a,b;i,j} in certain order and hence Ŷ +

µ is spanned by the monomials in

{E(r)
a,b;i,j} in certain order as well and therefore Proposition 8.1 is established.

To establish the claim*, we first prove some special cases.

Lemma 8.2. The following identities hold in grLŶ +
µ :

(a)

[E
(r)
a,a+1;i,j , E

(s)
b,b+1;h,k] = 0, if |a− b| 6= 1, (8.2)

(b)

[E
(r)
a,a+1;i,j , E

(s)
b,b+1;h,k] = [E

(r−1)
a,a+1;i,j , E

(s+1)
b,b+1;h,k], if |a− b| = 1, (8.3)

(c) [
E

(r)
a,a+1;i,j , [E

(s)
a,a+1;h,k, E

(t)
b,b+1;f,g]

]
= −

[
E

(s)
a,a+1;i,j , [E

(r)
a,a+1;h,k, E

(t)
b,b+1;f,g]

]
, (8.4)

if |a− b| = 1,

(d)

E
(r)
a,b;i,j = (−1)b−1[E

(r)
a,b−1;i,h, E

(1)
b−1,b;h,j ] = (−1)a+1[E

(1)
a,a+1;i,k, E

(r)
a+1,b;k,j ], (8.5)

for all b > a+ 1 and any 1 ≤ h ≤ µb−1, 1 ≤ k ≤ µa+1.

Proof. (8.2) and (8.3) follow from (7.15) and (7.13). (8.4) follows from (7.17) and (8.5)
follows from (3.9).
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Lemma 8.3. The following identities hold in grLŶ +
µ :

(a)

[E
(r)
a,a+2;i,j , E

(s)
a+1,a+2;h,k] = 0, for all 1 ≤ a ≤ m+ n− 2, (8.6)

(b)

[E
(r)
a,a+1;i,j , E

(s)
a,a+2;h,k] = 0, for all 1 ≤ a ≤ m+ n− 2, (8.7)

(c)

[E
(r)
a,a+2;i,j , E

(s)
a+1,a+3;h,k] = 0, for all 1 ≤ a ≤ m+ n− 3, (8.8)

(d)

[E
(r)
a,b;i,j , E

(s)
c,c+1;h,k] = 0, for all 1 ≤ a < c < b ≤ m+ n. (8.9)

Proof. (a) By (8.5) and (8.4), we have

(−1)a+1[E
(r)
a,a+2;i,j , E

(s)
a+1,a+2;h,k] =

[
[E

(r)
a,a+1;i,f , E

(1)
a+1,a+2;f,j ] , E

(s)
a+1,a+2;h,k

]
=−

[
[E

(r)
a,a+1;i,f , E

(s)
a+1,a+2;f,j ] , E

(1)
a+1,a+2;h,k

]
=−

[
[E

(r+s−1)
a,a+1;i,f , E

(1)
a+1,a+2;f,j ] , E

(1)
a+1,a+2;h,k

]
and the last term is zero by (8.4).

(b) The same method in (a) works, except that we apply (8.5) on the term E
(s)
a,a+2;h,k.

(c) It takes some effort in this case due to the Z2-grading. First assume that
a 6= m− 1. We apply (8.5) on the left hand side of (8.8) and use the super-Jacobi
identity:

[E
(r)
a,a+2;i,j , E

(s)
a+1,a+3;h,k] = (−1)a+1+a+2

[
[E

(r)
a,a+1;i,h, E

(1)
a+1,a+2;h,j ] , [E

(1)
a+1,a+2;h,j , E

(s)
a+2,a+3;j,k]

]
= (−1)a+1+a+2

[ [
[E

(r)
a,a+1;i,h, E

(1)
a+1,a+2;h,j ], E

(1)
a+1,a+2;h,j

]
, E

(s)
a+2,a+3;j,k

]
+ ε(−1)a+1+a+2

[
E

(1)
a+1,a+2;h,j ,

[
[E

(r)
a,a+1;i,h, E

(1)
a+1,a+2;h,j ], E

(s)
a+2,a+3;j,k

] ]
,

where ε is (−1)αβ, α is the degree of [E
(r)
a,a+1;i,h, E

(1)
a+1,a+2;h,j ] and β is the degree of

E
(1)
a+1,a+2;h,j . By (8.4), the first term is zero. Moreover, by our assumption that a 6= m−1,

the elements E
(1)
a+1,a+2;h,j is even and hence ε is 1. Keep using the super-Jacobi identity

and Lemma 8.2, we may deduce that the above equals to

(−1)a+1+a+2
[
E

(1)
a+1,a+2;h,j ,

[
[E

(r)
a,a+1;i,h, E

(1)
a+1,a+2;h,j ], E

(s)
a+2,a+3;j,k

] ]
=(−1)a+1+a+2

[
E

(1)
a+1,a+2;h,j ,

[
E

(r)
a,a+1;i,h, [E

(1)
a+1,a+2;h,j , E

(s)
a+2,a+3;j,k]

] ]
+ 0

=(−1)a+1+a+2
[

[E
(1)
a+1,a+2;h,j , E

(r)
a,a+1;i,h], [E

(1)
a+1,a+2;h,j , E

(s)
a+2,a+3;j,k]

]
+ 0

=− (−1)a+1+a+2
[

[E
(r)
a,a+1;i,h, E

(1)
a+1,a+2;h,j ], [E

(1)
a+1,a+2;h,j , E

(s)
a+2,a+3;j,k]

]
=− [E

(r)
a,a+2;i,j , E

(s)
a+1,a+3;h,k].
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Therefore, (8.8) is true for all a 6= m− 1.
Now let a = m− 1, same method shows that

[E
(r)
m−1,m+1;i,j , E

(s)
m,m+2;h,k ]

=
[

(−1)m [E
(r)
m−1,m;i,f , E

(1)
m,m+1;f,j ] , (−1)m+1 [E

(1)
m,m+1;h,g , E

(s)
m+1,m+2;g,k ]

]
=±

[
[E

(r)
m−1,m;i,f , E

(1)
m,m+1;f,j ] , [E

(1)
m,m+1;h,g , E

(s)
m+1,m+2;g,k]

]
,

which is zero by (7.1) and hence (8.8) is true when a = m− 1 as well.
(d) By super-Jacobi identity and (8.5), it is enough to show the following 2 cases:

[E
(r)
a,c+1;i,j , E

(s)
c,c+1;h,k] = 0, for all a < c, (8.10)

and
[E

(r)
a,c+1;i,j , E

(s)
c,c+2;h,k] = 0, for all a < c. (8.11)

They can be proved by using (8.2)−(8.8) and induction on c − a. We show (8.10) in
detail here. When c = a + 1, it follows directly from (8.6). Now assume c > a + 1. By
(8.5) and super-Jacobi identity, we have

[E
(r)
a,c+1;i,j , E

(s)
c,c+1;h,k] =

[
(−1)a+1 [E

(1)
a,a+1;i,f , E

(r)
a+1,c+1;f,j ] , E

(s)
c,c+1;h,k

]
= (−1)a+1

[
E

(1)
a,a+1;i,f , [E

(r)
a+1,c+1;f,j , E

(s)
c,c+1;h,k]

]
±
[
E

(r)
a+1,c+1;f,j , [E

(1)
a,a+1;i,f , E

(s)
c,c+1;h,k]

]
.

The first term is zero by induction hypothesis and the second term is also zero by
(8.2).

Proof of claim*. Without loss of generality, we may assume that a ≤ c. The proof is
split into 7 cases and we prove them one by one.

Case 1. a < b < c < d:
It follows directly from (8.2) and (8.5) that the bracket in (8.1) is zero.

Case 2. a < b = c < d:
By (8.3) and (8.5), we have

[E
(r+1)
b−1,b;i1,j , E

(s+1)
b,b+1;h,k1 ] = [E

(r+s+1)
b−1,b;i1,j , E

(1)
b,b+1;h,k1 ] = δh,j(−1)bE

(r+s+1)
b−1,b+1;i1,k1 . (8.12)

Note that when h 6= j, the bracket is zero by (7.13) and hence the δh,j comes out.
Taking the bracket on both sides of the equation (8.12) with the elements

E
(1)
b+1,b+2;k1,k2 , E

(1)
b+2,b+3;k2,k3 , · · · , E

(1)
d−1,d;kd−1,k

from the right and using the super-Jacobi identity, (8.2) and (8.5), we have

[E
(r+1)
b−1,b;i1,j , E

(s+1)
b,d;h,k] = δh,j(−1)bE

(r+s+1)
b−1,d;i1,k . (8.13)

Taking brackets on both sides of (8.13) with the elements

E
(1)
b−2,b−1;i2,i1 , E

(1)
b−3,b−2;i3,i2 , · · · , E

(1)
a,a+1;i,ib−a−1

from the left and using exactly the same method as above, we have

[E
(r)
a,b;i,j , E

(s)
b,d;h,k] = δh,j(−1)bE

(r+s−1)
a,d;i,k , as desired.
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Case 3. a < c < b = d:
Using the super-Jacobi identity, (8.5) and (8.9), we have

[E
(r)
a,b;i,j , E

(s)
c,b;h,k] =

[
E

(r)
a,b;i,j , (−1)c+1[E

(1)
c,c+1;h,f1 , E

(s)
c+1,b;f1,k]

]
= (−1)c+1

[
[E

(r)
a,b;i,j , E

(1)
c,c+1;h,f1 ], E

(s)
c+1,b;f1,k

]
± (−1)c+1

[
E

(1)
c,c+1;h,f1 , [E

(r)
a,b;i,j , E

(s)
c+1,b;f1,k]

]
= 0± (−1)c+1

[
E

(1)
c,c+1;h,f1 , [E

(r)
a,b;i,j , E

(s)
c+1,b;f1,k]

]
= · · · = ±

[
E

(1)
c,c+1;h,f1 , [E

(1)
c+1,c+2;f1,f2 , . . . , [E

(r)
a,b;i,j , E

(s)
b−1,b;fb−1−c,k

]
]
· · ·
]
.

By (8.9) again, the bracket [E
(r)
a,b;i,j , E

(s)
b−1,b;fb−1−c,k

] = 0.

Case 4. a < c < d < b:
Using the same method as in Case 3, we have

[E
(r)
a,b;i,j , E

(s)
c,d;h,k] =

[
E

(r)
a,b;i,j , (−1)c+1[E

(1)
c,c+1;h,f1 , E

(s)
c+1,d;f1,k]

]
= (−1)c+1

[
[E

(r)
a,b;i,j , E

(1)
c,c+1;h,f1 ], E

(s)
c+1,d;f1,k]

]
± (−1)c+1

[
E

(1)
c,c+1;h,f1 , [E

(r)
a,b;i,j , E

(s)
c+1,d;f1,k]

]
= 0± (−1)c+1

[
E

(1)
c,c+1;h,f1 , [E

(r)
a,b;i,j , E

(s)
c+1,d;f1,k]

]
= · · · = ±

[
E

(1)
c,c+1;h,f1 ,

[
E

(1)
c+1,c+2;f1,f2 , . . . , [E

(r)
a,b;i,j , E

(s)
d−1,d;fd−1−c,k

]
]
· · ·
]
.

By (8.9) again, the bracket [E
(r)
a,b;i,j , E

(s)
d−1,d;fd−1−c,k

] = 0.

Case 5. a < c < b < d:
We prove this case by induction on d− b ≥ 1. When d− b = 1, we have

[E
(r)
a,b;i,j , E

(s)
c,b+1;h,k] =

[
E

(r)
a,b;i,j , (−1)b[E

(s)
c,b;h,j , E

(1)
b,b+1;j,k]

]
= (−1)b

[
[E

(r)
a,b;i,j , E

(s)
c,b;h,j ] , E

(1)
b,b+1;j,k

]
± (−1)b

[
E

(s)
c,b;h,j , [E

(r)
a,b;i,j , E

(1)
b,b+1;j,k]

]
.

Now the bracket in the first term is zero by Case 3, and we may rewrite the whole

second term as ±[E
(r)
a,b+1;i,k, E

(s)
c,b;h,j ], which is zero by Case 4. Assume that d−b > 1,

then d− 1 > b. By (8.5), the bracket becomes

[E
(r)
a,b;i,j , E

(s)
c,d;h,k] =

[
E

(r)
a,b;i,j , (−1)d−1[E

(s)
c,d−1;h,f , E

(1)
d−1,d;f,k]

]
= (−1)d−1

[
[E

(r)
a,b;i,j , E

(s)
c,d−1;h,f ] , E

(1)
d−1,d;f,k

]
±
[
E

(s)
c,d−1;h,f , [E

(r)
a,b;i,j , E

(1)
d−1,d;f,k]

]
.

The bracket in the first term is zero by induction hypothesis, while the bracket in
the second term is zero as well by Case 1.

Case 6. a = c < b < d:

[E
(r)
a,b;i,j , E

(s)
a,d;h,k] =

[
E

(r)
a,b;i,j , (−1)a+1[E

(1)
a,a+1;h,f , E

(s)
a+1,d;f,k]

]
= (−1)a+1

[
[E

(r)
a,b;i,j , E

(1)
a,a+1;h,f ] , E

(s)
a+1,d;h,k

]
±
[
E

(1)
a,a+1;h,f , [E

(r)
a,b;i,j , E

(s)
a+1,d;f,k]

]
.
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Note that [E
(r)
a,b;i,j , E

(s)
a+1,d;f,k] = 0 by Case 5. Hence it is enough to show that

[E
(r)
a,b;i,j , E

(1)
a,a+1;h,f ] = 0, for all b > a. (8.14)

We prove (8.14) by induction on b− a ≥ 1. When b− a = 1, it follows from (8.2).
Now assume b− a > 1. By (8.5), we have

[E
(r)
a,b;i,j , E

(1)
a,a+1;h,f ] =

[
(−1)b−1 [E

(r)
a,b−1;i,g , E

(1)
b−1,b;g,j ] , E

(1)
a,a+1;h,f

]
= (−1)b−1

[
E

(r)
a,b−1;i,g , [E

(1)
b−1,b;g,j , E

(1)
a,a+1;h,f ]

]
± (−1)b−1

[
E

(1)
b−1,b;g,j , [E

(r)
a,b−1;i,g , E

(1)
a,a+1;h,f ]

]
.

Note that [E
(r)
a,b−1;i,g , E

(1)
a,a+1;h,f ] = 0 by induction hypothesis. Also by (8.2),

[E
(1)
b−1,b;g,j , E

(1)
a,a+1;h,f ] = 0 unless b − 1 = a + 1. When b − 1 = a + 1, (8.14)

becomes [E
(r)
a,a+2;i,j , E

(1)
a,a+1;h,f ], which is zero by (8.7).

Case 7. a = c < b = d:
We claim that

[E
(r)
a,b;i,j , E

(s)
a,b;h,k] = 0. (8.15)

If b = a + 1, it follows directly from (8.2). If b > a + 1, we may expand one term
in the bracket of (8.15) by (8.5) as follow.

[E
(r)
a,b;i,j , E

(s)
a,b;h,k ] =

[
(−1)b−1 [E

(r)
a,b−1;i,f , E

(1)
b−1,b;f,j ] , E

(s)
a,b;h,k

]
= (−1)b−1

[
E

(r)
a,b−1;i,f , [E

(1)
b−1,b;f,j , E

(s)
a,b;h,k]

]
± (−1)b−1

[
E

(1)
b−1,b;f,j , [E

(r)
a,b−1;i,f , E

(s)
a,b;h,k]

]
.

Note that [E
(1)
b−1,b;f,j , E

(s)
a,b;h,k] = 0 by Case 3 and [E

(r)
a,b−1;i,f , E

(s)
a,b;h,k] = 0 by Case 6.

Therefore, we have proved (8.15).

This completes the proof of claim*.

Proposition 8.4. The images of the monomials in Proposition 8.1 under Γ are linearly
independent.

Proof. By Corollary 2.2, we may identify grLY (glM |N ) = grLYµ with the loop superal-
gebra U(glM |N [t]) via

grLr−1t
(r)
ij 7−→ (−1)iEijt

r−1.

We consider the following composition

grLŶ −µ ⊗ grLŶ 0
µ ⊗ grLŶ +

µ � grLŶµ
Γ−→ grLYµ ∼= U(glM |N [t]).

Let na := µ1 + µ2 + . . . + µa for short. By Proposition 3.1, the image of E
(r)
a,b;i,j

(resp. D
(r)
a;i,j , F

(r)
b,a;i,j) under the above composition map is (−1)na+iEna+i,nb+jt

r−1
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(resp. (−1)na+iEna+i,na+jt
r−1, (−1)nb+iEnb+i,na+jt

r−1 ). By the PBW theorem for
U(glM |N [t]), the set of all monomials in{

grLr−1D
(r)
a;i,j | 1 ≤ a ≤ m+ n, 1 ≤ i, j ≤ µa, r ≥ 1

}
∪
{
grLr−1E

(r)
a,b;i,j | 1 ≤ a < b ≤ m+ n, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, r ≥ 1

}
∪
{
grLr−1F

(r)
b,a;i,j | 1 ≤ a < b ≤ m+ n, 1 ≤ i ≤ µb, 1 ≤ j ≤ µa, r ≥ 1

}
taken in certain fixed order forms a basis for grLYµ and hence Proposition 8.4 follows.

Let Y 0
µ , Y +

µ and Y −µ denote the subalgebras of Yµ generated by all the D’s, E’s and
F ’s, respectively. Along the proofs of Proposition 8.1 and Proposition 8.4, we have found
the PBW bases for each of these algebras.

Corollary 8.5. (1) The set of monomials in {D(r)
a;i,j}1≤a≤m+n,1≤i,j≤µa,r≥1 taken in

certain fixed order forms a basis for Y 0
µ .

(2) The set of monomials in {E(r)
a,b;i,j}1≤a<b≤m+n,1≤i≤µa,1≤j≤µb,r≥1 taken in certain

fixed order forms a basis for Y +
µ .

(3) The set of monomials in {F (r)
b,a;i,j}1≤a<b≤m+n,1≤i≤µb,1≤i≤µa,r≥1 taken in certain fixed

order forms a basis for Y −µ .

(4) The set of monomials in the union of the elements listed in (1), (2) and (3) taken
in certain fixed order forms a basis for Yµ.
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