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Abstract

Associated to a composition of M and a composition of N, a new presentation of the
super Yangian of the general linear Lie superalgebra Y (gl ) is obtained.
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1 Introduction

For each simple finite-dimensional Lie algebra g over C, the associated Yangian Y (g) was
defined by Drinfeld in [D1] as a deformation of the universal enveloping algebra U (g[z])
for the polynomial current Lie algebra g[z]. The Yangians form a family of quantum
groups which give rise to rational solutions of the Yang-Baxter equation originating from
statistical mechanics; see [CP]. A Yangian admits PBW basis, triangular decomposition
and Hopf algebra structure. The Yangian Y (gly) of the reductive Lie algebra gly was



earlier considered in [TF]. It is an associative algebra whose defining relations can be
written in a specific matrix form, which is called the RTT relation; see e.g. [FRT]
and [MNO)]. The structures and representation theory of Y (gly) have been studied by
many people; see e.g. [KRS|, [Ta], [MNO], and [Mo]. In [D2], Drinfeld gave a new
presentation for Yangians and it in particular can be used to define the analog of the
Cartan subalgebra and the Borel subalgebra in Y (gly).

In [BK1], Brundan and Kleshchev found a parabolic presentation for Y (gly) as-
sociated to each composition A of N. Roughly speaking, the new presentation corre-
sponds to a block matrix decomposition of gly of shape A. In the special case when
A= (1,1,...,1), the corresponding parabolic presentation is just a variation of Drin-
feld’s; see [BK1, Remark 5.12]. On the other extreme case when A = (IV), the corre-
sponding parabolic presentation is exactly the original RTT presentation. The parabolic
presentation allows Brundan and Kleshchev to further define the standard Levi and
parabolic subalgebras of Y (gly), and thus to obtain a Levi decomposition of Y (gly).
The parabolic presentations have played a crucial role in their subsequent work [BK2],
in which they derived generators and relations for the finite W-algebras.

The main goal of this article is to obtain the superalgebra generalization of the
parabolic presentations of [BK1] for the super Yangian Y (gly;x). The super Yangian
of the general linear Lie superalgebra Y (gl ;) was introduced by Nazarov in [Nal, and
it shares many properties with the usual Yangian, such as the PBW theorem, the RTT
relation and the Hopf algebra structure. The results of this article will be used in a
sequel on the connection between Y (gl ) and the super W-algebras.

Let A be a composition of M and v be a composition of N. We first define some
distinguished elements in Y (glysy), denoted by D’s, E’s and F’s, by Gauss decomposi-
tion and quasideterminants. We show that these new elements form a set of generators
for Y(g[M| ~)- The next step is to find the relations among the new generators, where
the signs arising from the Zs-grading are involved here. However, since the (A|v)-block
decomposition of gl v respects the Zp-grading of the superalgebra, the signs in the
relations are determined by the block positions only. It is known (cf. [BK1]) that if
the elements are from two different blocks and the blocks are not “close”, then they
commute. This phenomenon remains to be true in our super Yangian setting and it
dramatically reduces the number of the nontrivial relations. Hence we only have to
focus on the commutation relations of the elements in the same block or when their
block-positions are “close”. Let m be the number of parts of A and n be the number of
parts of v. Then the first new non-trivial case will be m = n = 1, and the new ones will
bem =2,n=1and m =1, n =2 (see Section 4). In these special cases, we determined
various relations among D’s, E’s and F’s by direct computation.

Next, we make use of the shift map ¢ and the swap map (y;y between super
Yangians (see Section 4). These maps allow us to transfer the relations in the special
cases with m +n < 3 to relations in Y (gl M| ) in the setting of general compositions A
and v. Finally we show that we have found enough relations for our new presentation.
As a consequence, we obtain the PBW bases for several distinguished subalgebras of
Y (alyn)-

The parabolic presentation in the extreme case when all parts of A and v are 1 was



found by Gow in [Gol], who used the presentation to define the super Yangian of the
special linear superalgebra Y (sly|x) which was missing in the literature and to determine
the generators of the center of Y(g[M| ~)- However, there are non-trivial relations that
can not be observed in this special case and nevertheless play an important role in our
paper (see Remark 7.1 below).

We organize this article in the following manner. In Section 2, we recall the definition
and some properties of Y(g[M| ~)- In Section 3, we introduce the generating elements
in our parabolic presentation by means of Gauss decomposition. In Section 4, we define
some maps between super Yangians in order to reduce the general case to special cases
when m + n < 3, and Section 5 and 6 are devoted to these special cases. Our main
theorem in the general case is formulated in Section 7 and its proof is completed in
Section 8.

2 Properties of the super Yangian Y(g[M‘N)

Most of the theorems and lemmas in Sections 2 to Section 4 are generalizations of the
counterparts for Y (gly) in [MNO] or [BK1].

The super Yangian Y (gl ), which was introduced in [Na], is the associative Z-
graded algebra (i.e., superalgebra) over C with generators

{tE;)y1gi,j§M+N;r20},

where tg.)) := 0;; and defining relations

min(r,s)—1

) 0] = (~ )RS (0 g0 (2
t=0

where i = 0if i < M, i = 1if i > M + 1, and the bracket is understood as a supercom-
(r)

mutator. For 7 > 0, the element ¢, is defined to be an odd element if i + 7 = 1 and an

even element if 7 + j = 0.

Remark 2.1. When N=0, the super Yangian Y(g[M‘O) s naturally isomorphic to the
usual Yangian Y (gly); when M=0, the super Yangian Y (glon) is also isomorphic to
the usual Yangian Y (gly) by the map (o|n, see Section 4.

We define the formal power series to be the generating series (with non-positive
powers of a variable u) of the generators:

tij(u) = 65 + 1wt 1w w4

Also define
M+N _
T(u):= Y tij(u) ® Eij(=1)’" € Y (gl ) [[u"]] @ End CMIV,
i,j=1



where E;; is the standard elementary matrix. The extra sign ensures that the product
of matrices can be calculated in the usual manner. We may also think 7'(u) as an

element in Matyrn (Y(g[M|N)[[u_1]]>, the set of (M+N)x(M+N) matrices with entries

in Y (gl n) [[u™"]]-
We may also define the super Yangian Y (gly; ) by the RTT relation:

R(u — v)T1(u)Ta(v) = To(v)T1(u) R(u — v), (2.2)
where
_ _ Py
Tl(u)—T(u)®IdM+N, TQ(’U) —IdM+N®T(v), R(u—v) =1- (u—v)’
M+N _
and Py = Z (—1)Ei; ® Ej; is the permutation matrix.

ij=1

The equality is in Matpy4n @ Matpyr4n ® Y(g[M‘N)(( ~1)), which means the local-

-1

ization of Maty 4 N@Matp N®Y (glyn)[[u” ]] at the multiplicative set consisting

of the non-zero elements of C[[u™!,v™1]].

Remark 2.2. Note that we have (u —v)~! in the matriz R(u — v). Hence we have to

replace Y (glyn)[[u™", v 71| by a certain extension containing (u —v)~".

Equating the coeflicients of E;; ® Epj, on both sides of (2.2), we have the following
equivalent defining relations in terms of the generating series:

(_1)53—%55-&-35
(u=2)
Note that the matrix T'(u) is invertible, hence one may define the entries of its inverse

by
1y M+N
(T(w) = (tij(u))i,jzl :

Multiplying T2(v)~! on both sides of (2.2) and use the same method getting (2.3), we
have yet another relation:

15 (), b (0)] = (thg(w)tin(v) =t (0)tir(w)). (2:3)

) (_1)53—%55-&-35 M+N ) M+N )
[tij(w), thi(v)] = W(‘Sh,j Z ta(w)tye(v) — Gik Z thl(v)tlj<u))- (2.4)
=1 =1
As an easy consequence of (2.4), we know that for all  and s, if i # k and j # h, then

tg) and t;fz) supercommute. The following is the PBW basis theorem for Y (gl n)-

Proposition 2.1. [Go, Theorem 1] The set of all monomials in the elements
{n<ij<M+Nr=1}

taken in some fized order (containing no second or higher order powers of the odd gen-
erators) forms a basis for Y (glysn)-



We have the loop filtration on Y (gl n)
LoY (glan) € L1Y (glan) € LaY (glpyn) C -+

defined by setting deg tl(;) = r — 1 for each r > 1 and LY (gl n) is the span of all
monomials of the form ¢{"¢{"2) ... +"*) with total degree i (ri — 1) < k. We denote

1171 ‘P22 is]s
the associated graded algebra by gTLY(g[M‘N).
Let glyn[t] denote the loop superalgebra gly,n ® C[t] with the standard basis
{Eit" |1 < d,j < M + N,r > 0} and U(glygnl[t]) denote its universal enveloping
algebra. By the PBW theorem for Y'(glys ), we have the following corollary.

Corollary 2.2. [Go, Corollary 1] The graded algebra gTLY(g[M‘N) 1s isomorphic to the
universal enveloping algebra U(gly n[t]) by the map

QTLY(B[M\N) — Ulglynlt])

ngthz(;) — (—1)2Eijtr_1 .

3 (Gauss decomposition and quasideterminants

Let A be a composition of M and v be a composition of N. In the remaining part of
this article, for notational reason, we set

i = A and pPmsj =vj forall 1<i<m, 1<j5<mn,

and p = (1, 12,y -y o | ot 1s 42y - - - 5 omtn) denotes the composition of (M|N).
By definition, the leading minors of the matrix 7'(u) are invertible. Then it possesses
a Gauss decomposition (cf. [GR])

T(u) = F(u)D(u)E(u)

for unique block matrices D(u), E(u) and F(u) of the form

Di(w) 0 - 0
D) = 0 DQ.('U,) 0 |
0 0 - Dun(w)
I, Eip(u) -+ Eimin(u)
O B
0 0 .
I, 0 0
F(u) = Faatu) e "
Frgni(u)  Frin2(u) L



where

Dq(u) = (Da;iu’(“))gi,jgua’
Eop(u) = (Bapsij (“))gigua,gg‘gub’

Fya(u) = (Fhaii g ()1 <jc 1 <icp

and all 1 <a <b<m+mnin (3.2) and (3.3).

Definition 3.1. We call the indices a,b the block positions, and the indices i,j the
entry positions.

Also define the pq X 1o matrix D) (u) = (D, -(u ))1<ij<u by

a;t,j

Dl (u) == (Dg(u)) .

The entries of these matrices are expanded into power series

‘lﬂJ § :Da,z,] ’

r>0
/ _
Dl ) = > D,
r>0
Eqpij(u) = ZE&?;@J’“_T’
r>1

Fhauij(u) = Z Fb(;);i’ju_r'

r>1

Moreover, for 1 <a <m+n — 1, we set

Ea;i,j(u) = Ea,a+1;i,j(u) = Zer Eéfi),juira
Fuij(0) 1= Faytan;(u) = ¥,mp Fagu"
There are explicit descriptions of all these series in terms of quasideterminants
(cf. [GKLLRT], [GR]). To write them down, we introduce the following notation. Sup-

pose that A, B,C and D are a X a, a X b, b X a and b X b matrices respectively with
entries in some ring. Assuming that the matrix A is invertible, we define

A B
=D —CA™'B.
‘ D]

We write the matrix 7'(u) in block form as
HTI,I(U) e “Tl,m—l—n(u)
T = | S ,

Phnsna(w) - PTmgnmen(u)

where each #Tp () is a pg X f1p matrix.



Proposition 3.1. [GR] We have

PTia(w) o FTg-1(u) “Tlva(“)
() — . . , 4
Da(u) Fla—1a(u) -+ HFlyg4-1(u) Plo- 10(“) Y
Plaa(u) - Flaa-1(u) | PTaa(u)
Pria(w) o PTiga(u)  PTyp(u)
wb(u) = Dl (u : E E ’ 50
Eap(u) () Plo1a(u) - PTo10-1(u) HTo_1p(u) o
“Ta,l(u) T MTa,afl(u) MTavb(u)
Pha(w) oo PTiea(u)  FTa(u)
Fb@(u) = uTa—‘l,l (u) .. “Tafl,'afl(’l,b) MTaf'l,a(u) Da(u)’ (36)
“Tb,l(u) e #Tb’a,l(u) 'uTb,a(u)

foralll<a<m+mnin (3.4)andl <a<b<m-+nin (3.5), (3.6).
We denote the (i, j)-th entry of the p, x pp matrix #T, y(u) by Ty p.,j(u) and denote

the coefficient of u™" in T} ;i (u) by 7 By Proposition 3.1, we immediately have
AN a,b;i,j"

BV =T RO =T4) ., forall admissible 0,75,  (3.7)
and
Dgrz)] Tl(,rl);i,j = tgj;?? for all 1 < 17.7 < 1, T > 0. (38)

By induction, one may show that for each pair a, b such that 1 <a+1<b<m+n-—1
and 1 <17 < g, 1 <5 < up, we have

b—1(7) (1) (r)
=(-1) [Eafb—l;i,k’Eb—l;k,j]’ Fb:z;ivj

T B ! i
IO = (D" E e B (39)

a,b;i,j
forany 1 <k < pup_1. Here,a:=0if 1 <a<manda:=1ifm+1<a<m+n.

By multiplying out the matrix product T'(u) = F(u)D(u)E(u), we see that each
tg) can be expressed as a sum of monomials in D((H) , El(lrg ij and Fb( a) i appearing in
certain order that all F’s before D’s and all D’s before E’s. By (3.9), it is enough to use
Dérl) BT E((l:) J and F CE l) g only, rather than all E’s and F’s. We have proved the following
theorem.

Theorem 1. The super Yangian Y(g[M‘N) is generated as an algebra by the following
elements

{D
{E

\1<a<m+n1<zy<mur>ﬂ

az]’ az]

1<a<m+n 1<i<p0,1<5 < flag, 7> 1},

a7Z7J

{ am [1<a<m+n, 1<z<,ua+171<]<ua,7’>1}



4 Maps between super Yangians

Our ultimate goal in this article is to find out the defining relations among the generating

elements {D((lrl)], D;(;?j, Egl)j, Fa(:)J} in Y (glyn)- The strategy is to work out the special

cases when m and n are either 1 or 2, which are relatively less complicated, and then to
apply the maps in this section to obtain the relations in the general case.

Proposition 4.1. (1) The map pyrn : Y (8l n) — Y(9lyar) defined by

PM|N (ti]’ (u)) = tM+N+1—i,M+N+1—j(_u)

s an algebra isomorphism.

(2) The map wyn = Y (glyn) — Y (8l n) defined by

-1
wpn (T(w) = (T(—u))
s an algebra automorphism.
(3) For any k € Z>o, the map vy : Y (glyyn) — Y (8lpyarn) defined by

Yk = Wy M|N © PM|N © WM|N

where pyrn © Y (8lyn) = Y(8lkpan) is the inclusion which sends each tg-) in
Y (glyn) to téﬁi’kﬂ in Y (gl ymn), is an injective algebra homomorphism.
(4) The map Curn = Y (8lagn) — Y(alninr) defined by
CM|N = PM|N ° WMI|N

s an algebra isomorphism.
Proof. Follows by checking that these maps preserve the RTT relation (2.2). O
Remark 4.1. The composition Y (gly) = Y (gly|o) CN—‘% Y (glojn) is an algebra isomor-
phism.

We call ¢y, the shift map and (yrn the swap map. It is clear that v is the identity
map and (7 n has order 2. Since they are important for us, we write down their images
explicitly.

Lemma 4.2. Let 1 <4,5 < M+ N.
(1) For any k € N, we have

tin(u) - tig(w) t1 ey (u)
(0 (tij (u)) = tkl‘(u) . tkk(u) tk,k—i-.j (u) (4.1)
thyin(uw) o tpgik(u) | tppi g (w)




(2) We have
S (ti (W) = thre N1 i N1 (w). (4.2)
First note that the description of v(t;;) in (4.1) is independent of M and N, hence

our notation is unambiguous. Also, (4.1) along with quasideterminants in Section 3
implies that

Da;i,j (u) = ¢M1+u2+...+ua 1 (Dl,z,] ) (43)
Ea;i,j (u) = ¢u1+u2+...+ua 1 (El,z ) (4.4)
Fa;i,j (u) = ¢N1+u2+...+,ua 1 ( ) (45)

Secondly, observe that ¢x maps t;;(u) € Y (glyn) to t;Hi,kﬂ(u) € Y (gl mn)- So

Vg (Y(g[M|N)) is generated by the set {tkﬂ Kt |1<1i,7<M+N,r >0}, as asubalgebra

of Y (glyyaryn). If we pick any element tgj) in the north-western k x k corner of T'(u)

(viewed as an (k+M +N) x (k+ M + N) matrix with entries in Y(g[kJrM‘N)[[u_l]]), the
indices will never overlap with those of vy (Y(g[M‘ N)), which are in the south-eastern
(M + N) x (M + N) corner of the same T'(u). By equation (2.4), they supercommute.
Obviously, the elements in the north-western k x k corner in Y (gl M| ~N) generate a
subalgebra isomorphic to Y(gl;) by the defining relations (2.1). We have proved the
following lemma.

Lemma 4.3. The subalgebras Y (gly,) and 1 (Y (glyn)) i Y (glgyarn) supercommute
with each other.

Now we Study the map (|N- Associate to the composition u, we may define the

elements {Da 055 Dasi j} {E () 1, { asi ]} in Y (gl n) by Gauss decomposition. Consider

a;t,j
r

wo= (Nm—f—nv <oy Hm+1 ’/’Lma BRI 7”27,”1)7

the reverse of u, which is a composition of (N|M). With p", we may similarly de-
fine the elements {Da”, a”} { am} {F ) i} in Y(glnjar), by abuse of notations.

a;i,j
Their relations are given in the following proposmon, which is a generalization of [Go,

Proposition 1].

Proposition 4.4. For all admissible a, i, j, we have

CM|N(Da§i7j(u)) = D;TH-’IH-l a;pha+1—i,0q+1— j(u)7 (4'6)
CM|N(Ea;i,j(U)) = m4n—a;pe+1—1,q+1+1— ](u)a (4'7)
CM\N (Fa;i,j (U)) = m+n—a;ta4+1+1—%,0a+1 j(u . (4.8)

)
Note that the D’s, E’s and F’s on the left hand side are in Y(g[M|N)[[u_1]], while those
on the right hand side are in Y(g[N|M)[[u_1]].

Proof. The proof is essentially the same as [Go, Proposition 1], except that we decom-
pose the matrix T'(u) into block decompositions and the entry positions are flipped
around by (. For a given composition u, multiply out the matrix products

T(u) = F(u)D(u)E(u) and T(u)™ = E(u) ™' D(u) F(u)™ L.



Then the following matrix identities hold.

Toa(u) = Da(u)+z<:Fa,C(u)Dc(u)Ec,a(u), (4.9)
Toalu) = D&(u)+§Ea,c(u)Dé(u)ﬁc,a(u), (4.10)
Top(u) = Daf o () + Y Fae(u)De(u) Bep(u), (4.11)
Thalu) = Fyalu +§Fbc De(u) B (u), (4.12)
() = Eqp +2<;E )Eep(u), (4.13)
Tp,(uw) = Dpu)Fya(u +§;Ebc Fea(u), (4.14)

foralll <a<m+mnin (4.9), (4.10) and 1 <a < b <m+nin (4.11)— ( 4). Here
T, (u) denotes the ji, X pp-matrices in the (a,b)-th block position of T'( (u)~! Ty i (W)

denotes the (i,7)-th entry of T7 ,(u), Ta(b) denotes the coefficient of u™" in T}, .(u)
and

Eop(u) = > (=1)°Eaiy (W) Eiy iy (u) -+ By p(w),
a=ip<i1<...<is=b
Fya(u) = > (=1)°Foi, (W Fi,_ o (u) - Fyya(u).

a=ip<i1<...<is=b

In fact, (4.7) and (4.8) are the special cases when b = a+ 1 of the following more general
relations.

<M|N (Ea,b;ij (u)) = Fm—i—n—i—l—a,m-{—n—i—l—b;ua+1—i,ub+1—j (u)v (415)
<M|N (Fb,a;ij (U,)) = Em+n+17b,m+n+1fa;,ub+1fi,,ua+lfj (u) (416)
One can easily derive (4.6), (4.15) and (4.16) simultaneously by induction on a. O

Now we describe the relations among the D’s. We first claim that
[Dai,j(u), Dy i(v)] = 0, unless a="b.

Assume a < b. For 1 < a < m, there exists a suitable number 1 < k < M such that
D, j(u) is contained in the north-western k x k corner of Y(g[M|N)[[u_1]], ie.,

Da;ij(u) € Y (gh)[[u™) € Y(glyn)[[u™"]]
and
Diyp(v) € i (Y (glas i) ™) € ¥ (glag ) [ ™)
Hence they supercommute by Lemma 4.3. For m +1 < a < m + n, we may apply

the swap map (pyn first then it is transformed to the above case in the super Yangian
Y (gly|ar) and our claim follows.

10



We next compute the bracket explicitly when a = b. For 1 < a < m, by (4.3) and
(3.8), we have

[Da;i,j(u)a Da;h,k (U)] :¢M1+H2+~--+Ha—1 ([Dlgi,j (U)a Dl;h,k (U)])
:¢H1+N2+~--+Ma—1 ([tij (u)v thi (U)]) .
Form+1<a<m+n,weseta:=m-+n+1—a. Then we have 1 < a < n and hence
Dasij(w) = (vt (D 41— pa+1—5 ()

= CN|M © Vprtpot..+pa 1 (Dll;ua+1—i,ya+1—j(u))

= CN|M © Yy pattpa s (t/u,—l+1—i,,ua+1—j(u))'
Therefore, for m 4+ 1 < a < m + n, we have
[Daij (), Dagh ke (v)] = Cniar © Yug+piototpas (Buat1—ipat 15 (W) by 1 g 111 (0)]).

Referring to the definition (2.3), for any 1 < a < m + n, we have

(=1

u—"v

Sl

[Da;i,j (’U,), Da;h,k(v)] - (Da;h,j (u)7 Da;i,k('u) - Da;h,j (’U)7 Da;i,k (u)) .

Collecting the coefficients of u~"v ™%, we have proved the following proposition, which is
parallel to the results in [BK1, Section 4].

Proposition 4.5. The relations among the elements {Dggj,D;(.?j} for all v > 0,
1<4,5 < g, 1 <a<m+n are given by

0) _
Dgiig = 0ij »
T
t —t
Dc(l;z,pD;(;;J = 9r0ij »
=0

min(r,s)—1
() ( _ @ (1) (r4+s—1-t) (r4s—1-t) (1)
[Dui g Dol = 0% > (DaniPain = Dany Dai):
=0

and these elements generate a subalgebra of Y(g[M‘N).

We call the subalgebra in Proposition 4.5 the standard Levi subalgebra of Y(g[M|N)
associated to p and denote it by Y£ . Note that in the special case when all u; = 1, the
subalgebra Y(O1 D) is commutative.

5 Special Cases: non-super case and m=n=1

The following theorem of Brundan and Kleshchev describes the relations among the
generators in the non-super case.

11



Theorem 2. [BK1, Theorem A] Let A = (A1, A2,..., Am) be a composition of M. The
following identities hold in Y (gly)((w™t,v™1)) for all admissible a,b, f, g, h,i, ], k:.
(’LL - U)[Da;i,j (U)v Eb;h,k(v)] = 5a,b5h7jDa;i,p(u) (Ea;p,k(v) - Ea;p,k(u))
— 8a,b41 Dasi i (0) (B, (v) — Epgp,j(w),
(u = v)[Dasi (1), Fosn (V)] = = 00,60k, (Foinp(v) = Fhinp(u) Dasp,j (w)
+ ap1 (Foiik(v) — Fyii(w)) Dagp g (u),

(u = 0)[Eaij (), Fon ke (0)] = a6 (Dlyi () Day 10,5 () = Dagiznj(v) Dy 1o (0)),
(u = 0)[Eaij (1), Bank(v)] = (Basik(u) = Bayi(v) (Bashj (@) = Egnj(v)),
(u = 0)[Fasij(u), Fasn i (V)] = (Fasip(0) = Foyi g (0)) (Fagn (1) = Fagn(v)),

(u = 0)[Eaij (), Bay1:k(0)] = 0h5(Easig() Bat1:0.4(v) = Fuayig(v) Bag1,9.(v)

+ Ea,a+2;i,k(v) - E(z,a+2;i,k (u))7

(u— U)[Fa;i,j(u)a Fa+1;h,k(v)] =9 k( Foq, h,q( )Fa;qd(u) + Fa+1;h,q(U)Fa;qJ (v)
— L'a+2,a;h,j (v) + Fa+2,a;h,j(u))v
(u—0)[Eqij(u), Bppr(v)) =0 if b>a+1 or if b=a+1 and h#j,
(u—0)[Faiju), Fpprp(v)) =0 if b>a+1 or if b=a+1 and i#k,

+

[ [Ea;i,j (u), Ea+1;h,k(”)]> Ea+1;f,g(w)

[[Ea;i,j(u Ea-i—l;h,k(w)]a Ea—i—l;f,g(v)] =0 Zf | a — b| > 1,

~

[Fsij(u)s [Fank (0); Fataipg(w)] ]+
[Fosi  (0):[Fasn (w0, Farripg(w)]] =0 if [a=b] = 1,

where the index p (resp. q) is summed over 1,...,\q (resp. 1,..., Agt1).

Proof. See [BK1, Section 6]. Here, we present the theorem in the series form and we
define the indices of F’s in a slightly different manner. O

Back to the super case. Consider m=n=1; that is, g = (g1 | u2) = (M | N). Since we
have only one block of E’s and F’s, we may omit the block positions without confusion.
That is, we set

E;j(u) = Enj(u) = Br9;,5(u),  forall 1<i<p =M, 1<j<py=N,

and FiJ(’u,) = Fl;i,j(u) = F271;Z'7j(u), for all 1 < ) < Mo = N, 1 < j < M1 = M.

The relations among them are given in the following proposition, which is a generaliza-
tion of [BK1, Lemma 6.3].
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Proposition 5.1. The following identities hold in Y (glyn)((u™,071)).

{ Onj D p(u) (Epi(v) — Epr(u)), if a=1,

(u = v)[Dagsij(u), Epi(v)] = .
D2;z E\u (E Eh,] u)) Zf a=2,

Oki (Fh,p(u) - Fh,p(v))Dl;pJ(u): if a=1,
(u = )[Dayij(u), Fpp(v)] = { , (5.2)
(Fik(u) = F; x(v)) Dogp i (u), if a=2,
(u—)[Eij(u), Foi(v)] = Di,;x(v)Donj(v) = Do j(u) DYy p(w), (5.3)
(u—0)[Eij(u), Bpp(v)] = (Big(u) = Eix(v)) (Enj(v) — Epj(u)),
(u—v)[Fj(u), Fpp()] = (Fipu) — F k) (Faj() — Fyj(w),

for all admissible i, j, h, k and the index p is summed over 1,..., M.

Proof. As in the proof of Proposition 4.4, we compute the matrix products
T(u) = F(u)D(u)E(u) and T Yu) = E7 (u)D'(u)F~ (u)
with respect to the composition p = (M | N) and get the following identities.

= Dy, (u), forall1 <i,57 <M,
Dy pEp j(u), forall1<i< M,1<j<N,
FLp(u)Dl;m(u), forall1<i< N, 1<j<M,
Fip(u) D1y g(u)Ey j(u) + Doy j(u), forall 1 <i,j <N,
D’lw( )—i—Elp (u)DQP q( VEy j(u), forall 1 <i,5 < M,(5.
—E; (u) D} 9/ (u), forall 1 <i< M, 1<j <N, (
(5.
(

| |
S © 0o g O
U — T T N T

J
D22p() (), forall1<i< N,1<j<M,
= DQ;ZJ( )7 fOl“ 3111§Z7]§N7

where the indices p, q (resp. p/,¢') are summed over 1,..., M (resp. 1,...,N).

(5.1) and (5.2) can be proved using exactly the same method as in [BK1, Lemma 6.3]
and hence we skip the detail.

To establish (5.3), we need other identities. Computing the brackets in (5.1) in the
case a = 2 and (5.2) in the case a = 1 and changing the indices, we have

(u—v)Eq (u)D’Q;hﬁ(v) — Onj (qu(v) — qu(u))D'Q;qﬂ(v) = (u— U)Dé;hﬂ(v)Ea,j (u),

(5.14)
—(u =) Fp 1 (v) Drsia (1) + ki (F.p(v) — Fgp(u)) Dipa(u) = —(u = v) Dysia(u) Fai(v),
(5.15)
where «, p (resp. 3, q) are summed over 1,..., M (resp. 1,...,N).
By (2.4), we have
M+N M+N
(u = V) [ti, v (W)t np (0)] = —(On Z Wty (v) — O Z g, (Vs g (w).

13



Substituting by (5.6)—(5.13) and changing the indices, we may rewrite the above identity
as the following

Dijia(u){(u —v)Eqj(u) Dy 5(v) = 1j (Ea,g(v) = Baq(u)) Dy 5(v) } Fpk(v)
— 0pj D1jia(u )Di;a,h(v)
= D 5(0){ — (u = ) Fp(v) Disisa (1) + 0ri (Fp.p(v) — Fp(w)) Dip.a(u) } Eaj(u)
- 5kiD/2;h,ﬁ(U)D2;ﬁ,j(u)a (5.16)

where «, p (resp. 3, q) are summed over 1,..., M(resp. 1,...,N). Substituting (5.14)
and (5.15) into (5.16), we obtain

Dyjia(u){(u = v) Doy 5(v) Ea i (u) Fpi(v) } — %'Dl si.0 () Do 1 (v) =
Dyp p(0){ = (4 = v) Drsia (u) Fp o (v) Eo () } = 0pi Dy 5(v) Dasp (u). (5.17)
Multiplying Ds(v)Dj(u) from the left on both sides of (5.17), we obtain (5.3).
For (5.4), we start with [t; p4j(u),t), 37,1 (v)] = 0. Note that they are both odd

elements. Multiplying (u — v)? and computing the bracket after substitution by (5.7)
and (5.11), we have

(u — U)QDI;ZUP(“)EP,J’(U)Eh,q(v)Dé;q,k( )+
(w =) B q(v) D1ip(u)(u — v) Dy, 1 (v) Ep j(u) = 0. (5.18)

Rewriting (5.1) again, we have the following identities

(u—v)Epg(v)Dryip(u) = (u—v)Dryp(u) Epg(v) + 0npDrsip(u) (Ep,q(u) - Ep,q(“))?
(u— U)D/z;q,k(v)Ep,j(“) = (u— v)Ep,; (U)Dlz;q,k(v) +djq (EP7Q(U) - Epﬂ(”)) IQ;q,k(v)'

Substituting these two into the second term in (5.18) and multiplying D;(u) from the
left, Do(v) from the right simultaneously, we obtain

(u—0)*[E;j(u), Epi(v)] = (u = v)En;(0) (Eig(v) — B p(u))
+ (u—0) (Eip(v) = Eig(u) Enj(u) + (Bij(uw) — Eij(v) (Eng(v) = Eng(u)). (5.19)

-1

For a power series P in Y (gl n)[[u ,v1]], we write { P} for the homogeneous com-

ponent of P of total degree d in the variables v~ and v=!. (5.4) follows from the
following claim.
Claim: For d > 1, we have

(u = 0){[Eij(w), B (0)]} 4y = { (Big(w) — Eig(v)) (Bnj(v) — Epj(w)) },-
We prove the claim by induction on d. For d = 1, we take { }0 on (5.19), and it

implies

(u — 0)2{[E,-7j(u), Eh,k(v)]}Q = 0.

14



Note that the right hand side of (5.19) is zero When u = v, hence we may divide both
sides by (u — v) and therefore (u — v){[E; ;(u), Ep (v }2 =0, as desired.
Assume the claim is true for some d > 1. By the hypothesis, we have

(u =) {[Enj(w), Eir()]} 401 = { (Brg(u) = Eng(v)) (Eij( (u)},  (5.20)
= {[Bnj(u), Bix(0)]} 4, = { (Ei() = Eh’k(z)z(fi’j(v) ~ Biy(w) }d.
Note that the right hand side is zero when u = v. Hence {[Eh7j(v),Ei7k(v)]}d+1 =0,
which implies
Eh,j(v)Ei,k(U) - — i,k(v)Eh,j(v)' (521)

Take { }d on (5.19):

(u—0){[Eij(u), Bap(v)] } 4y = (u—0){Bpj(0) (Eip(v) — Eig(u) } 4y
+ (U — ){(Eir(v) — Ei(u))Epj(u) }d+1
+ {(Eij(u) — Ei j(v)) (Enk(v) — Eng(u)) },-

Substituting the last term by (5.20) and simplifying the result, we have

(u— v)z{ [Ei,j(u), Eh,k(v)] }d+2 =
— 0){Enj(v)Eik(v) + Ei g (w) Enj(v) + (Eix(v) = Eip(u)) Enj(u)} 4,

Substituting by (5.21) into the above identity, we have

(w = 0)*{[Ei(u), Bag(v)]} 4,
= (u—0){(Eix(u) = i) En; () = (Bin(u) — B x(v)) Enj(u)},,
= (u = ){(Eix(w) = Eix(v)) (En(0) = Bn;j(w) }, -

Dividing both sides by u — v establishes the claim.
(5.5) follows from applying the map (s to (5.4) in Y(g[N‘M)[[u_l, v~1]] with suit-
able indices. ]

6 Special Case: m=2, n=1

Recall that m is the number of parts of the composition of M and n is the number of
parts of the composition of N. In the case when m =2, n =1, u = (u1, u2 | u3), where
p1+p2 = M and pz = N. The relations among Eq; j(u) and Fy,p, 1(u) in different blocks
are obtained by the following lemma, which is a generalization of [BK1, Lemma 6.4] and
[Go, Lemma 3].

Before stating and proving the lemma, we first set a notation for the remaining part
of this article. We denote the super Yangian by the notation

Y, = Y(Q[M\N)
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to emphasize how we decompose the matrix 7'(u) into block matrices according to the
composition g of (M|N) and how those D’s, E’s and F’s are defined. Moreover, by
abuse of notations, we will consider the D’s, E’s and F’s in different super Yangians at
the same time. It should be clear from the context which super Yangian we are dealing
with.

Lemma 6.1. The following identities hold in Y{
g? h7 i?j? k'
(a) [Evig(u), Fonr(v)] =0,

(0)[Brs(0), B (0)] = 9 {(Bris g ) ~ B () B (0) + B e (0) — By ()},

(¢) [E13:0,5(w), Bon i (v)] = Eap j(0)[Ersig(w), Eog k(0]
(d) [Ersij (), Evging(v) = Ering(0)Egqr(v)] = —[Erig(w), Eagk(v)] Evp,j(u).

Here, q is summed over 1,..., us and g could be any number in {1,2,..., us}.

s slus) (™ 0™h)) for all admissible

Proof. (a) By (2.4), we have [t; u,+;(w),t), 4., 5 +x(0)] = 0. Substituting by (4.9) —
(4.14) with respect to the composition p and according to the indices, we have

[Dl;i,p(u)El;p,j(U)a —Dé;h,q(v)Fl%k(U)] = 0.
Computing the bracket, we obtain
Dl;i,p(“)El;pJ(U)Dé;mq(U)F?;q,k(U) - Dé;h,q(v)FQ;q,k(U)Dl;i,p(u)El;pJ (u) =0, (6.1)

where p and ¢ are summed over 1,...,pu; and 1,..., us, respectively. Similarly, by (2.4),
we have

[ti5 (W) s o tgn 6 ()] = [ 5 (W) b i (V)] = 0,
which implies that
[Dyij(w), Foyp o (v)] = [Evij(u), Dy, g (v)] = 0.

Substituting these into (6.1) and noting that [D1; ;(u), D}, . (v)] = 0, we have

Dl;i,p(u)Dé;h,q(”)El;p,j(U)F2;q,k(”) - Dl;i,p(u)Dé;h,q(U)FZq,k(U)El;p,j (u) =0.

Multiplying D3(v)D}(u) from the left, we obtain (a).
(b) By (2.4), we have

(u— U)[ti,erj(u)?t1¢1+h,m+m+k(v)] = Ojh Z tiS(u)t&m-i-uz-i-k(U)-
s=1

Substituting by (4.9)—(4.14) according to the indices in the above identity, we have
(u = v)[Drip(u)Erpj(u), —Eg;th(v)Dé;%k(v)] =

5th1;i,p(U) { (El;p,r (U)E2;r,q(v) - E1,3;p,q(v)) —Eip,r (U)E2;r,q(v) + E1,3;p,q(u) }Dé;q,k (v),
(6.2)
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where the indices p, ¢, are summed over 1, us, u2, respectively. Using the facts that

(B, (v), Dy, o (u)] =0, (explained in the proof of (a))
[Ez;i,j(v), Dl;h,k(u)] =0, (obtained from [t;;(u), t;lﬁh’#ﬁuﬁk(v)] — 0)

we may cancel Dj(u) from the left and D5(v) from the right on both sides of (6.2).
Dividing both sides by u — v, we have proved (b).
(¢) By (5.1) in Y,y ) [[u,v71]], we have

(u - 'U)[El;h,k(u)a D/2;i,j (’U)] = Oki (El;h7p(v) - El;h,p(“))Dé;p,j(v)'

Applying the map 1), to this identity and using (4.3)—(4.5), we have the following
identity in Y(m,mmg)[[u*l, v~1]]

(u— U)[E2;h,k(u)v Dé;i,j(v)] = Oi (E2;h,p(v) - E2;h,p(“))Dé;p,j(U)-
Taking the coefficient of u°, we obtain
1
By D (0)) = 0t B (0) Dy 5(0). (6.3)
Also by (3.9), we have
Ei35(u) = [El;i’g(u),Eé;lg’j], for any 1 < g < ps. (6.4)

By (6.3), (6.4) and the fact that [E1; 4(u), D3, . (v)] = 0, we have

(B 310, (), D (v [Eu ) B ], Dl o (0)]
= [Buig(u), [BS) ;. Db (0)]]
[El Z,g 5h]E2:9:p( )Ds;p,k(v)]
= Opj [Elz (u )>E2;g,p(v)]Dé;p,k(U)- (6.5)

By (2.4) and (4.9)—(4.14), we have

i ti2+5 (W) Ey oy a6 (V)] = [Dsip(w) E13ip (1), = Bayp g (v) D g 1o (v)] = 0,

where p and ¢ are summed over 1,2,...,u; and 1,2,..., us, respectively. Multiplying
Dj(u) from the left, we have [Eq 3, j(u), Eop,q(v) Dy, 1 (v)] = 0, which may be written
as

[E1,:6,5 (), Bang(0)] D3 1 (v) = Ein g (0) [ B350, (w), Dag 1, (v)] = 0.
Substituting the last bracket by (6.5), we have

[E1,3:0,5 (W), Eaghq(0)] D5 1, (0) — 8g; Eaip g (V) [E1i g (1), Ea,gp(v)] Dy 1 (v) = 0.

= B3, (), Bain g (v)] D 1 (V) = Eain j(0) [ B g (), By p(v)] D (0)-
Multiplying D3 (v) from the right to both sides of the above equality, we obtain (c).
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(d) Taking the coefficient of u" in (b), we have

B Bano(0)] = 04 (B (v) — Biiq(v) Basg i (v)).

Taking the coefficient of v% in (5.1) in the case a = 1, we have

[D1i,5(u), E?;)lk] = 01 D1ip(w) Evpp o (w).

By the above two equalities and the fact that [Dy; j(u), Eo.g 1 (v)] = 0, we have

1
(D105 (w), By aino(v) — Eigng (v) Basq(v)] = [Drij (u), [EL |, Baigi(v)]]
1
= [[Drj(w), BY,) ), Bag i (v)]
= [5thl;i7p(U)El;p,g (u), E2;g,k(v)]
= 5th1;i7p(u) [Eipg(u), E2;g,k(”)]' (6.6)
Taking the sum of all j in (6.6), we have
e D13ip (1) [Brip g () Bagg 1 (v)] = Dii () (E130,k () = By (0) Bage ik (v))
— (B13n,k(v) — E1;p,s(v) Eays 1 (v)) D1y (w),

where p,r, s are summed over ui, u1, o, respectively. Changing the indices, we may
rewrite the above equality as

(Bvr(0) By i (v) = B35 (v)) Disip(u) =
Snp D1y (W) [ By g (1), Eig 6 (v)] 4 Disip(w) (El;h,r(U)EQ;r,k(v) - E173;h,k(v))’ (6.7)

where 7, p,p’ are summed over us, i1, j11, respectively.
On the other hand, by (2.4) and (4.9)—(4.14), we have

[ti,ﬂl+j (u)7 t;z,/u—i—ug—f—k(v)] =
[D1ip(u) Evp,j(u), (El;hvr(U)EZr,q(v) - E1,3;h,q(v))D§;q,kz(U)] =0, (6.8)

where p and ¢ are summed over p; and s, respectively. Multiplying D3(v) from the
right and computing the bracket, (6.8) becomes

Dy p(u)Evrp,j(u) (Epr (0) By (v) — By (v))
— (Bine (0) By (v) — By (v)) Digip(u) By j(u) = 0, (6.9)

where p and r are summed over p; and ug, respectively. Substituting (6.7) into the
second term of (6.9), we have

Dip(w) Eryp j(w) (Eppg(v) Eyg e (v) — By i(v))
- 5h,p1 Duip, (u) [El;pz,g (u), E9.9.k (U)} Eip, g (u)
— D1y s (w) (Evhg, (V) Bagy 1 (v) — By gk (0)) B j(u) = 0.
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Multiplying D) (u) from the left, we obtain
B g (u) (B (0) Brg e (v) — B (v))
= [Brig(w), Byg ko (v)] Evinj () = (Evihg, (V) EBaig k(v) = B gin i (v)) Brsi g (u) = 0.
Simplifying the above, we obtain (d). O
We have the F-counterpart of Lemma 6.1.

Lemma 6.2. The following identities hold in Y, i) ((u™" v™1)) for all admissible
g? h? i’j’ k'

(a) [Fi;ij(u), Egpg(v)] =0,

(b)[F1ij(u), Fopp(v)] = g (V) (Fliq,5 (0) = Frig i (w)) — F3 15,5 () + F3 15,5 (u) },
(¢) [Fs15i,5(w), Fon e (v)] = [Fong(v), Fuyg,5(w)] Fayi ke (v),

(d) [Fiij(u)s Fosng(0) Friqr(v) — F31n,6(0)] = Friip(u)[Fiig,j(w), Fong(v)].

Here, q is summed over 1,...,us and g could be any number in {1,2,..., pus}.

Proof. They can be proved by similar methods as in the proof of Lemma 6.1 and we
skip the details. O

The following lemma is a generalization of [BK1, Lemma 6.5, Lemma 6.6] and of
part of [Go, Lemma 3].

1

Lemma 6.3. The following identities hold in Y u= v~ wTY] for all admis-

sible f,g,h,1,7, k.
(a) [[Evij(u), Expk
(b) [Evrij(u), [Eypk
(¢) [[Brij(u), Bapi
(d) [Evrij(u), [Ernk
(e) [[Fiij(uw), Fanp U)] Fypg(v)] =
[ ]
[
[

11,042 13) [[

—~ o~~~
<
=
g
—~
S
S~—
—

+ [[Brij(w), Eyn ik (w)], Ba.pg(v)] =0,
+ [Brii(v), [Bunp(u), By g g(w)]] =0,
(f) Fl,’L,] Flhk
[Frij( F2hk: + [[Frj(w), o p(w)], Fopg(v)] =

(h) )s P g (W] + [Friij (v), [Frin i (w), Faspg(w)]] =
Proof. We prove (a) and (c) in detail here, while the others can be proved in a similar

fashion.
(a) We first claim that

Flz] Flhkv

[Ea;i,j(v)v Ea;h,k’(v)] =0 fora=1,2 in Y(M1,u2|u3)[[u_17 U_l]]'

The case a = 1 follows from Theorem 2 and a = 2 follows from applying the map 1,
o (5.4).
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By the super-Jacobi identity, together with the claim and Lemma 6.1(b), it suffices
to prove the case when j = h = f. In this case, we compute the bracket by Lemma 6.1
as follows.

(u =) [[Bry,(w), Baj(v)], Eayjg(v)]
= —(u =) [Egjk(v), [Bryij(w), Ezjg(v)]]
= [E1;i,q(w) E2,9,9(v) — E14i () Baiq,9(v) + B1,35i.6(0) — E1 351,9(0), Bk (v)]
= [Eiq(u) Eniq,g(v), Eaijir (V)] + [E13:i,9(0), B (v)]
— [Br5iq(v) E2iq,9(v), a3,k ()] — [E1,35i,(u), Eayj i (v)]
—[Etiq(w), By k(0)] Baiq,g(v) — oy g (0)[E1yi,5 (), oy k(v)]
+ [E1iq(v), Bayj (V)] Baig,g (V) + a6 (0)[B1y,5 (), ok (v)]
—[[Br;i,j(w), Baj s (v)], Bajg(v)] + [[Br;i(v), Bk (v)], Eayjg(v)]-

Thus we have

(u—v = 1) [[Erij(u), Bayju(v)], Bajg(v)] = —[[Briij (v), Bayji(v)], Bayjg(v)].  (6.10)

Note that the right hand side of (6.10) is independent of the choice of u. Set u=v+1,
then the right hand side of (6.10) is zero. Using (6.10) again, we obtain (a).
(c) It is enough to show that

(u—w)(v — w)(u = v)[[Erij(u), Exp 1 (v)], Bz g(w)] (6.11)

is symmetric in v and w. We may further assume j = h, as in the proof of (a). By
Lemma 6.1(b), we have

(u =) [[Brij(u), B2k ()], Baypg(w)]
= [B1iq(u) E2iq (V) — Eviig(v) g (v) + E13.6(v) — E1giin(u), Bapg(w)].

Multiplying both sides with (v — w)(v — w), computing the brackets by Lemma 6.1, we
have

(u —w)(v = w)(u — ) [[Bus,j(u), Eapo(v)], Ea;p9(w)]

=(u—w)(v— w){El;i,q(U)EZq,k(”)E2;f7g(w) + Es;1,9(w) Evyiq(u) Eq ke (v)
— E1i,q(v) Eayg k(0) B2 1,9(w) — Ea 1,9 (w) 1y q(v) Eoyq 6 (0)
+ By (W) [ By (v), Eajag(w)] — Ea; g 1o(w) [Brii o (w), i, g(w)] }

=(u —w)(v — w){El;i,q(u)[EZq,k(U): E2;f,g(w)] E1iq(u )E2 fg(w)E2;q,k(U)
+ [E2;f7g(w)a El;i,q(u)]EZ%k( )+ Eiglu )E2;fg( )E2,q7 (v)
- El;i,q(v)[EQ;%k(U)’ E2;f7g(w)] + Elig(v )EQ;fvg( )Eo; iq k(v)
— [E2f,9(w), Eyiq (V)] B2 (v) — Eyiq(v) Eo;1.9(w) Eig o (v)
— (B30 (v), Basag ()] Basp (W) + [Eryi0(w), Eag(w)] B g0 (w) }

=(u —w)(v — w)El;i,q(u) [E2;q,k( ), E2;f,g(w)]
+ (u—w)(v —w) [E2;f,g(w)v El;i,q(u)] E2;q,k(v)
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u—w)(v— U}Eliq()[EQ;qk(U) Eo.f.4(w)

]
U)] Es;q.k (v)

- )( )

— (u—w)(v = w) [Eapg(w), Erig

— (u—w)(v = w)[Er;iz(v), Basg(w)] Eo. g x(w)

+ (u —w)(v — w)[Eu )s Bz g (w )}E2fk( ). (6.12)

(
(
(
(
Now we use (5.4) and Lemma 6.1 to compute these brackets, then (6.12) equals

(u— w)El;i,q(u) (EQ;q,g(U) - EQ;M("‘U)) (E2;f,k(w) E2;f,k("0))
—(v—w qj{(El;iyqo(U) - El;i,qo(w))E?qo,g("w) + E13iig(w) — E1,3;i,g(u)}E2;q,k<”)

— (u—w)Ey9(v )(Equ( ) = Eniq.g(w)) (B p(w) — Baif 4 (v))
+ (u =)0 1 (Byige (v) = Buiige(w)) Baige,g(w) + B 31,9(w) — E13;1,6(v) } Eag 1 (v)

= (u = w){ E;iq(v) Eay, g( ) = Etjiq(w) Eziq.g(w) + E35,9(w) — B133i,9(v) } Bas e (w)

+ (0 = w){ Bryiq(0) Baig g (w) — Brjiq(w)Egigq(w) + B13ii.g(w) — B1giig(w) } Baipp(w),
where the indices ¢ and ¢¢ are summed over 1,2, ... us.

Opening the parentheses of the above equality, we obtain that the resulting expression
is indeed symmetric in v and w. Therefore, (6.11) is symmetric in v and w and hence
(c) is proved. O

7 The general Case
D//(T)}

a;t,j° a0
{EC(LTZ)]} and {Fél]} associated to a composition p of (M|N). To that end, we divide
them into 3 disjoint parts as following:

A {DGZ]’ al,]}1<a<mU{Ea1]}l<a<mU{ GZ]}1<a<m’

B: {Da 3,770 a,z,] }m+l<a<m+n U { a;i,j }m+1<a<m+n U { a;i,j }m+1<a<m+n7

. (r)
C' {Emz]}u{ mz,]}

for all admissible indices i, j, .

If we choose two elements from Part A, then their bracket is obtained by Theorem 2.
If we choose two elements from Part B, then they are the images of some elements from
the Part A in Y(g[N|M) under the swap map (y|as, and the bracket is obtained by
Theorem 2 as well.

Now suppose one of them is from Part A and the other is from Part B. Note that
every element in Part A is in the north-western M x M corner of T'(u) and hence is in
the subalgebra Y (gly;) of Y(glys ) (see Section 4). On the other hand, every element
in Part B is in the south-eastern N x N corner of T'(u) and hence is in the subalgebra
U (Y(g[0|N)) of Y(glysv). Thus, their bracket is zero by Lemma 4.3.

Therefore, we only have to focus on the cross section where the odd blocks and even
blocks are “close”, and this is done in Proposition 5.1, Lemma 6.1 and Lemma 6.2.
Moreover, there are some non-trivial ternary brackets relations in the non-super case,
and the corresponding ternary relations in the super case are found in Lemma 6.3.

Recall that our goal is to obtain the relations among the generators {D

21



The following proposition summarizes the results we have obtained up to now.

Proposition 7.1. For all admissible a,b, f, g, h,1,j, k, we have the following equalities
in the super Yangian Y,((u™, vt w™1)).

(u = 0)[Dagi (1), By i (v)] =
)" {8000 Dai o (0) (Eaip o (v) = B (0))
~0a,b+1 D (W) (B j(v) = Eypj ()}, if b#m,
0a,b0n,j Daip(w) (Ea;p,k (v) = Ea;p,k(u))

+0ap+1Dasi i (w) (Ey i (v) — Eyp (), if b=m

(v = )[Dasij (u), Fone(v)] =
(_1)5{ — 0,60k, (Fb;h,p(v) - Fb;h,p(u))Da;p,j (u)
+0ap+1(Friik (V) — Fuii(w)) Do (u) }, if b #m,
— 080,60k, (Foshp(v) = Fysp(t)) Dagp ()
6,541 (Foii o (v) — Foi e () Do j(w), if b=m

{ ( D*(Egik(u) — Eamk(v)) (Ea;hd(u) — Ea;h,j(v)), if a+#m,
(Ea,z,k a z,k:(v)) (Ea;h,j ('l)) - Ea;h,j (u)), Zf a=m

(u —v)[Fusij U),Fa,h,k

{ —(-1 a,z,k( u) — Foi k(v )) (Fa‘h,j(u) — Fahj (U))a if a#m,
a,l,k a,z,k ) ( a; h,_] - Fa;h,j (U)), if a=m

(4 = 0)[Basi g (), Fy s ()] = 05 (~1)" (Dl () Dag 13, (1) — Dap1snj (v) Dl 1 (0)),

(=) [Baiij()s Barinp(0)] = 0n5 (=) (Eaging (1) Eat1,q,4(0)
- Ea;i,q(v)Ea—l-l;q,k(v) + Ea,a+2;i,k (U) - Ea,a+2;i,k(u))’

(u—w) [Fa;i,j(u)a Fa+1;h7k(”)] = 0ik(=1)" att ( = Fay1;h,q(0) Fayg i (w)
+ Fat1ing(0) Fasg (V) = Fas2.0n,5(0) + Fayz.ani (1)),

(u—)[Eqsij(u), Eppr(v)] =0, if b>a+1 or if b=a+1andh+#j,
(u — ) [Faij(w), Fppp(v)] =0, if b>a+1 or if b=a+1andi#k,
[Ea;i,j(u)a [Ea;h,k(v)aEb;f,g(w)H + [Ea;i,j(v)v [Ea;fuk(u)a Eb;fvg(w)]] =0, la —b| > 1,
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[Fa;i,j<“)7 [Fsnk(v), Fb;f,g(w)]] + [Fa;i,j(v)7 [Fosn k(1) Fb;ﬁg(w)u =0, la—0b] >1,
wherea:=0ifl<a<manda:=1ifm+1<a<m-+n.

Proof. This is the consequence of Theorem 2, Proposition 5.1, Lemmas 6.1—6.3, together
with the maps ¢y and (s |y- O

The next lemma is a block generalization of [Go, Lemma 5] and the proof is essentially
the same, except that we are using block decompositions. The relations are purely super
phenomenons.

Lemma 7.2. Associated to p = (p1, 42, - - - fom | b1y« -« s bmtn) withm > 1 andn > 1,
we have the following identities in Y),.

r 1 1 S

[ [Ev(n)—l;i,j’ Eﬁn;)h,k]’ [E£n3ho,ko’ Eﬁnl—l;f,g] } =0, (7.1)
r 1 1 s

[ [Féllsi,j’ Fv(n)hk]’ [Fr(n;)ho,ko’ F751-)&-1;f79] ] =0, (7'2)

for all admissible f,g,h, 1,7, k, hg, ko, T, s.

Proof. By using the maps (y and 1, it is enough to show (7.1) in the case m = n = 2

only. Therefore, we want to show (7.1) in Y{,,, |us,u4)> 1-€-
(r) (1) (1) (5) 171 —
[[Elrzy Byl oy ko ngf,g]] =0. (7.3)
We first claim that for all admissible i, j, h, k,
(B35 (1) 5 Eging(v) Esg k(v) = E2a:nk(v)] =0, (7.4)
where the index ¢ is summed over 1,2,...,us. To prove the claim, we use (4.11) and

(4.13) associated to the composition (g1, p2 | 13, 114) to derive the following identities.

By 55(u) = DIlzp( Wtp iy +pn+5 (W),
Eopq(v)E3q (V) — B2 ank(v) = tu1+h,u1+u2+u3+r(”>D4;r,k(”)a
forall 1 <i <y, 1<j<pus 1 <h<pu,l<k<p4 and the indices p, ¢, r are

summed over py, U3, p4, respectively. Substituting these identities into the bracket in
(7.4) and setting a notation ng := uy + p2 + ... + g for short, we have

[E1,3:0,5 (1), Basng(v) Bk (v) — Ea 5,1 (v))]
= [D1i.p(Wtpina+5 (W), ty 1 hpypr (V) Dagr o (0)]
D1 i p( W)tpny+j(u )tu1+h n3+r( ) Dy (v) pi+th, n3+r( )D4;r,k(U)D,l;i,p(u)tp,n2+j(U)
= Dllz (U)tp nz—H( ) pwi+h, n3+r( )D4,r,k(v) u1+h n3+r( )Dll;z‘,p(u)D4;r,k(U)
DY p(Wtpg+j (W, 1 hyr (V) Dy (v) + Dl p( )+ b (V) png 5 (W) Dy (v)
Dy p(@)[tpna5(W)s 1 hngtr (V)] D (v) = and the claim follows.

+ ¢!
+t!

~

p,na+j (u)
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Note that in the above computation we have used the facts that
Dl;i,j (u) = tij (U) and Dﬁl,z j( ) t;Lg—l—’L TL3+]( )

therefore [D1ij (W)t s hong sk ()] =0 and  [Di; (u), thn,+k(v)] =0 by (2.4).
It suffices to prove (7.3) when h = j and ko = f, by Lemma 6.1(b). Computing the
following bracket by Lemma 6.1(b), we have

(u —v)(w = 2) [ [Bri(w), Bz (V)] [Bang,r(w), Bap6(2)] ]
= [El;i,q(u)EQ;qyk(U) - El;i,q( )EQ 10,k ( ) + E1,3;i,k(v) - El,S;i,k(u)a
— By p(W) E3p g(2) + Bohg p(2) E3ip.g(2) — B2 4:h,g(2) + E2 a9 ,g(w) ]

Taking its coefficient of u="27*v%w", we have
S ) (e ) (s)
T s—t t T S
> B 500 By pBsipg) + =BV 3000~ Eating o)
t=1

and it equals the coefficient of u™"27% in [E 3 1(w), —Eoho p(2) E3ipg(2) + E24:h0,9(2)]
which is zero by (7.4).
Finally, the coefficient of u

(u—v)(w = 2) [ [Fri5(u), Bayge ()], [Baing,r(w), E31,(2)] ]
. r 1 1 s
is exactly —[ [Ei 2], Eéj)k] [Eé f)Lo,f’ E?E;},g]] and (7.3) follows. O

Recall the fact stated in Theorem 1 that Y (gl M| ) is generated as an algebra by the

7250900 in

set {D D' E@ } The following theorem describes the relations among

a;t,j’ " aii,g ai,g? az]
these generators.

Theorem 3. The following relations hold in Y(g[M‘N) for all admissible indices a,b, f, g,
ha iv.jv k? l7 r,s, hOa kO:

D = i, (7.5)
Z Dy Dipi’ = 60, (7.6)
t=0
") ) e (t)  prbs—1—t)  (rts—1—t) (8)
[Daﬂ,j’Dbhk] - 6ab Z (Da;h,jDa;i,k Dah,] Da;i,k)’ (77)
t=0
") (o)
DY) 5 B 4] =

B r—1
(71)b(5‘11b5h7j Z D((zlg,p af]jjs Y- 6‘1 b+1 Z Da i,k bri:rjs lit))’ b ?é m,
t=0 (7.8)

(t) (r+s 1-t) (r+s—1-t) .
b5hazDaz,p i 0 bHZDazk bhg 0 0=
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(r s
[Da,z),y7 b(h) k] =
r+s—1—t) ~(t) (r+s—1-— t (t)
(_ békzZFb Dapj+5ab+1Zszk ;hJ),b#m,
(7.9)
(r+s—1— t r+s—1—t) ~(t) .
*6ab5kzZF 75ab+1Zszk ah’],b—m,
( S )N g )
5 'r+s 1—t t r+s—1—t
Z Ea,z,k azh,j - Ea;i,kEa;h,j )’ a ?é m,
T s t=1
[Ec(t;i),j’ErSL;})z,k] = r—1 ) . s— -
t (r+s—1-t) (r+s—1—t
Z Ea,z,k a;h,j Z Ea,z,k ash,j ’ a=m,
t=1
(7.10)
( r—1 s—1
a r+s—1—t t r+s—1—t t
") (s) (_1) (Z Fé;i;: )Fé;i)z,j - Fé;i;: )Fé;i)z,j>’ a 7& m,
[FaﬂJ’ E h,k] - r—1 ( =1 -t s—1 ( =1 )@
r+s—1—t t r+s—1—t t
Z Fa;i,k Fa;h,j B Fa;i,k Fa;h,j ) a=m,
t=1 t=1
(7.11)
) ) £ NG
r s (r+s—1—t)
(B Fynad = =(=1)""0ay Z Doiing  Daiges (7.12)
r+1 s r s+1 a s
[E(EL,'L,] )7 E((z+)1 HR k] I:Ec(l,;’t'),j7 Ec(z+1;})z,k] = ( ) +16 EC(L 1)th(1le g,k (713)
r+1 s T s+1 a s T
[Fé;ivj )’ Féﬁl;h,k] [Fé,z),p F(iJrl fz k] - _( ) +15 FCE+)1 :h,q cEq),] 5 (714)
(ES) BS =0 if b>a+1 or ifb=a+1andh#], (7.15)
(FS L ES =0 if b>a+1 or ifb=a+1andi#k, (7.16)
(r) (s) 0] (s) r) (ORI
[Ea;i,j’ [Ea;h,k:’ Eb fg]] [Ea 38,77 [Ea;h,k7 Eb;f,g]] =0, |CL - b’ > 1, (717)
r s l s r l
[ch;i),j’ [Fa(;iz,k’ Fb(;])c,g]] + [F(E;i),j’ [F(E;iz,k’ Fb(;},g]] = O’ |CL - b’ 2 1’ (718)
r 1 1 s
B s B ) B h BSL 1] =0,  when m > 1,n > 1, (7.19)
r 1 1 s
[ES i B ESD JFSL 11 =0, when m > 1,n > 1, (7.20)

wherea :=0ifl<a<m,a:=1ifm+1<a<m+
summed over 1,...,u1 (resp. 1,...,u2)
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Proof. (7.5)—(7.7) follow from Proposition 4.5, while the others come from Proposi-
tion 7.1, Lemma 7.2 and the identity

S( Z S(T-l-s l)u o8
u—v ’
r,s>1
for any formal series S(u) =3, STy, O

Remark 7.1. In the special case where all p; = 1, the right hand side of (7.10) and
(7.11) degenerate to zero when a=m. See [Go, Theorem 3].

In fact, the relations in Theorem 3 are enough as defining relations of the super
Yangian Y (glyn)-

Theorem 4. The super Yangian Y(g[M‘N) is generated by the elements

(")
(E®)

a;i,j

|1<a<m—|—n 1<i,j < pg,r >0},

azg’ azg

[1<a<m+n,1<i< g1 <j<pgrr,r>1},

{ a”|1<a<m+n 1<i< pgr1,1 <5< pg,r > 1},
subject to the relations (7.5)—(7.20).

Proof. Recall the notation Y, := Y (gl ) defined in Section 6. Let }A’M denote the ab-
stract algebra generated by the elements and relations as in the statement of Theorem 4.
We may further define all the other B! g i and Fb( a) ;j i ?M by the relations (3.9), and
it is not hard to show that this deﬁmtlon is 1ndependent of the choices of k£ [BK1, p.22].
Let I" be the map

r:v, —vy,

sending every element in 17“ into the element in Y,, with the same name. By Theorem 1
and Theorem 3, the map I' is a surjective algebra homomorphism. Therefore, it remains
to prove that I is also injective. The injectivity will be proved in Section 8. O

8 Injectivity of I’

Our strategy of proving the injectivity of I' is as follows: we find a spanning set for }7“
(see Proposition 8.1) and show that the images of the spanning set for Y,, under I is
linearly independent in Y), (see Proposition 8.4).

Proposition 8.1. 17 is spanned as a vector space by the monomials in the elements
{ p™ g0 g

o m’ E, b Lo ”} taken in certain fixed order.

Pmof Let )A/O (resp ?* }A’*) denote the subalgebras of }A/M generated by the elements

{Dau} (resp {Ea b,w} { b(z)”}). By the relations in Theorem 3, }7# is spanned by

the monomials where all F’s come before all D’s and all D’s come before all E’s.
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Define a filtration on ?u by setting

deg(DY) ) = deg(EY). ) = deg(F,")

ba”)—r—l, forall r>1,

and denote the associated graded algebra by grLiA/u. The above argument implies that
the multiplication map is surjective,

grLY ®grLYO ® gr Y —» grLY

Moreover, grL}A/O is Commutative by Proposition 4.5. It follows that 170 is spanned by

the monomials in {D } in certain fixed order. Hence it is enough to show that gr YJ
is spanned by the monomlals in E’s in certain order, and the swap map (yps will show

that grLiA/_ is spanned by the monomials in F’s in certain order.

We denote the image of EC(Lg ;.; in the graded algebra grf_l?/j by E((;l),w We have
the following.

Claim*: For all admissible a,b,c,d, 1,7, h, k,r, s, we have

w=(r (s r+s—1 abtac+be r+s—1
[Ez(z,l)a;i,jvEg,c)l;h,k] ( )bébc(sh,y z(zd,z,k )_(—1) bracibe 5ad5z kEgbh] )- (8-1)

Assuming the claim we have that the graded algebra grLiA/+ is spanned by the

monomlals in {E -} in certain order and hence Y+ is spanned by the monomials in

{E

a,byi,j
b Z]} in certain order as well and therefore Proposition 8.1 is established. U

To establish the claim*, we first prove some special cases.
Lemma 8.2. The following identities hold in grL?J :
(a)

—(r) s) .
[E((l,a+1;i7]7 El() b—‘,—l;h,k] = 07 ’lf‘CL - b| 7é 17 (82)
) -=(r) -(s) =(r=1)  (s+1)
[Ea,aJrl;i,ja Eb,b+1;h,k] = [Ea,aJrl;i,ja Ey b+, hk] ifla—b] =1, (8.3)

[Beiis: Bovrvnme Bpesall = ~[Eoartis Buarinn Boprngll (84)
if la—0bl=1,
(d)
ES%M _( ) [E((zrl)) 1;i,h7El()lf)1,b;h,j] = (‘Um[ﬁsgzﬂ;i,kaE((Ql,b;k,j]a (8'5)
forallb>a+1and any1 <h < pp_1,1 <k < pgt1-
Proof. (8.2) and (8.3) follow from (7.15) and (7.13). (8.4) follows from (7.17) and (8.5)
follows from (3.9). ]
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Lemma 8.3. The following identities hold in grL?J :

(a)
[Eg(l—s—li,j’E((zsjl,a+2;h,k] = 07 fO’/“ all 1<a<m+n— 27 (86)

(b)
[Egri+1;i7],Egsi+2;h’k] =0, forall 1<a<m+n-—2, (8.7)

(c)
[ES:C)HQM,Fgﬂl7a+3;h7k] =0, forall 1<a<m+mn-—3, (8.8)

(d)
[Efzfl));i,j’ﬁc(jc)—kl;h,k] =0, forall 1<a<c<b<m+n. (8.9)

Proof. (a) By (8.5) and (8.4), we have

(r) +(s) +(r) (1) +(s)
(_1)a+1[Ea1:a+2;i,j ) Eas—l—l,a—l—Q;h,k] = [ [Eara—i—l i, f Ea+1 a+2;f,j] ’ Eas—l—l,a—&-Z;h,k]
(r) (s) (1)
- [ [EaTaJrl,z,f’ Ea5+1 a+2;f,j] Ea+1 ,a+2;h,k ]

—(r+s—1) —==(1) —(1)
- - [ [Ea,a—l—l;i,f? Ea+1 a+2;f,j] Ea+1 a+2;h,k]

and the last term is zero by (8.4).

(b) The same method in (a) works, except that we apply (8.5) on the term Egjz)wzh,k-

(c¢) It takes some effort in this case due to the Zo-grading. First assume that
a # m—1. We apply (8.5) on the left hand side of (8.8) and use the super-Jacobi
identity:

(r) Z(s) (r) (1) (1) (s)
[Eara+2;i,j7 E(f—l—l,a—&—S;h,k] - (_1)a+1+a+2 [ [Eafa—l—l;i,h? Ea+1,a+2;h,j] [Ea—l—l ,a+2;h,5 Eai—Q,a—&—?);j,k] ]
_ (_1)a+1+a+2|: [[E(T) ] E(l) ] E(l) ] E(S) ) ]
a,a+1;i,hy ~a+1,a+2;h,j10 ~a+1,a+2;h,51° ~ a+2,a+3;5,k
(1) (r) (1) +=(s)
+ 8(_1)a+1+a+2 [Ea+1,a+2;h,j’ [ [Eara—l—l;i,h? Ea+1,a+2;h,j]7 E;}—Z,Q—Q—S;j,k] ] )

where ¢ is (—=1)%7, @ is the degree of [E fffmyz,h,Efjl atr2:h;) and B is the degree of

Eglll at2:hj- BY (8.4), the first term is zero. Moreover, by our assumption that a # m—1,

the elements ESJZLG +2;h,; 18 even and hence € is 1. Keep using the super-Jacobi identity
and Lemma 8.2, we may deduce that the above equals to

(1) +(r) (1) +(s)
( 1)a+1+a+2 |:Ea+1 a+2;h,j° [ [Eara-l—l;i,h? Ea+1,a+2;h,j]’ Eas-l—Q,a—l—B;j,k] }

_ a+1+a+2 —(1) —=(s)
_( 1) |:Ea+1 a+2;h,j ra a+1,z,h7 a+1 a+2;h,j5> Ea+2,a+3;j,k] ] +0

atitat2[ L) () (1) +=(s)
(_1)a+1+a+2 [ [EaJrl ,a+2;h,57 EaT(H»l;i,h} [EaJrl ,a+2;h,57 Eas+2,a+3;j,k] ] +0
+(r) (1) (1) +(s)
- ( 1)a+1+a+2 [ [Ea ,a+1;i,h> Ea+1 a+2;h,j]’ [Ea+1,a+2;h,j’ Eai—Q,a—&—S;j,k] ]
~[E

(r) )
a,a+2;1,7° a+1 a+3;h,k]'
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Therefore, (8.8) is true for all a # m — 1.
Now let a = m — 1, same method shows that

[ES;) Lm+13i,50 Eg)mw k]
-=(r) (1) (1) (s)
:[( ) [Em 1,m;i, f o Em ;m—+1; f,j] <_ ) [Em ;m~+1;h,g Em+1,m+2;g,k]]
—=(r) (1) (1) =(s)
==+ [ [Em—l,m;i,f ) Em,m+1;f,j] [Em m~+1;h,g Em—i—l,m—i—?;g,k] ]’

which is zero by (7.1) and hence (8.8) is true when a = m — 1 as well.
(d) By super-Jacobi identity and (8.5), it is enough to show the following 2 cases:

B i B ] = 0, foralla < c, (8.10)
and
B 13 B nns] = 0, for alla < c. (8.11)

They can be proved by using (8.2)—(8.8) and induction on ¢ — a. We show (8.10) in
detail here. When ¢ = a + 1, it follows directly from (8.6). Now assume ¢ > a + 1. By
(8.5) and super-Jacobi identity, we have

() +(s) a1 =) () +(s)

[Ea ct154.90 Ec ,c+1;h, k] = [(_1)(1—1— [Ea,a+1;i,f ) Ea+1 117 ] ) Ec c+1;h k]
_ a+1 (1) 7”) E(S) + E( r) E(l) E(S)
- ra a+1;i f? a+1 c+1;f,5° c,c+1;h,k]] [ a+1,c+1;f,5° [ a,a+1;3,f> c,c-l—l;h,k] ] :
The first term is zero by induction hypothesis and the second term is also zero by
(8.2). O
Proof of claim*. Without loss of generality, we may assume that a < ¢. The proof is
split into 7 cases and we prove them one by one.

Case l. a<b<c<d:
It follows directly from (8.2) and (8.5) that the bracket in (8.1) is zero.

Case 2. a<b=c<d:
By (8.3) and (8.5), we have

—(r+1) —(s+1) —(r+s+1)  ==(1) —(r+s+1)
Byt 0150 Eoprihg] = [Eo-1biir s Ebbtiink] = Onj(— 1)'E,” bl ey - (8:12)

Note that when h # j, the bracket is zero by (7.13) and hence the dj ; comes out.
Taking the bracket on both sides of the equation (8.12) with the elements

(1) (1) (1)
Eb+1 b+25k1 ko Eb+2,b+3;k2,k3’ T Ed*l,d;kdfl,k

from the right and using the super-Jacobi identity, (8.2) and (8.5), we have

r+l s+1 r+s+1
[Ez(; 113117] ) Ez(;dh)k] = 0p,5(—=1) Ez(; 1d11),k' (8.13)

Taking brackets on both sides of (8.13) with the elements

(1) —=(1) (1)
By o b1y Eo3p—2:i5,i90 "+ E

a,a+130,0p—q—1
from the left and using exactly the same method as above, we have

—_— s b=(r+s—1 .
[Ez(zl)zz,] ) Ez(u%h K = 5h,j(_1)bEz(z,d;i,k )| as desired.
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Case 3. a<c<b=d:
Using the super-Jacobi identity,

()
[Ear,b;i,jv cbhk ra b,Z,]’ —1
(") (1) +(s)
= (‘UCH [[Bgbijs Eoorinfi)s Bort ikl
£ 7 +(s)
C+1 rc c+1;h,f1 arb,z,j ) Ecj—l,b;fl,k]]
_ 0 4+ (— C+1 E(T) E(S)
- ( rc,chl shof1 0 [ a,b;i,j 0 c+1,b;f1,k]]

1) =) =) F)
T i[Ec s Betesnsiger - Bibig B s o o] )

(8. )and( 9), we have
)t

+=(s)
[ cc+1 h flﬁEcil,b;fl,k] ]

By (8.9) again, the bracket [E B El() )1 bifo1_okl =0

a,byi,j 0
Case 4. a<c<d<b:
Using the same method as in Case 3, we have

[Egz);;i,p cdhk: rabzg’ - C+1[E£,1c)+1;h,f1’Et(?jzl,d;fl,k]]
= ()T [EBiys Bodrrng) Beragil]
+ (DB s Babis Botvannl]
=0+ (-1 )m[ﬁglg—&-l hof1 s [E(T)v j E(:i)l,d;fl K]

a,byi,j 0
(1) () (s)
= :i[ c,c+1;h, f1 o rc+lc+2f17f2""’[Eabw’Ed 1d;fd—1—c,k]] }

By (8.9) again, the bracket [Egl),” , Eé)ldfd .k =0

Case 5. a<c<b<d:
We prove this case by induction on d —b > 1. When d — b =1, we have

=) (s) -=(r) b))
[Babiii> Eepring = [Bonigr (1 [Eepnir By b+1,],k] ]

= ( ) [[Ec(zrl)) 8,7 0 Egslz h,j] ) El(),b)+1;j,k] rc b;h,j 7(1 ,byi,7 0 El(J lz-i—l,] k]]
Now the bracket in the first term is zero by Case 3, and we may rewrite the whole

second term as j:[E((ITI))+1;i7k, Egsg -h,j], which is zero by Case 4. Assume that d—b > 1,
then d — 1 > b. By (8.5), the bracket becomes

==(r) -=(s) (1)
[Eafb;i,]7 cdhk rabz,]ﬂ ~D"NE s g EBalvagl]
- (r) -(s) (1) -(s) ==(7) (1)
= (‘Ud 1[[Ea7:b;i,j7 chdfl;h,f] E;” 1d;f,k] + [Ec,sdq;h,fa [Eafb;i,j7 Edfl,d;f,k]]'

The bracket in the first term is zero by induction hypothesis, while the bracket in
the second term is zero as well by Case 1.

Case 6. a=c<b<d:
B gs Bomn) = [Bilbay - (CU Bl i g Boly gl
= (—1)** [[Egrz)) i Et(zlc)b—i-l;h,f] Ef{‘il i)
+ [Eggﬂ;h,fv [Et(zfl));i,j ; Et(zi)—l,d;f,k]]‘

30



Note that [E ((ll)”j , Eﬁl’d;ﬁk] = 0 by Case 5. Hence it is enough to show that

[Egg;m , Eglz)wl;h,f] =0, for all b > a. (8.14)

We prove (8.14) by induction on b —a > 1. When b — a = 1, it follows from (8.2).
Now assume b — a > 1. By (8.5), we have

—(r —(1 —1 r 1 —(1
(B is o) = [V B 1ig- Bytiigs ) Bl
b—1 r=(r 1 —(1
:(_1)b Eal)) 14,9 [Eé )lbgj7E((l,()1+1;h,f]]

T ) (1)
rb 1,b;9,7 ° a b—1;i,9 Ea,a+1;h,f] ] :

Note that [E((lr(), Ling s ESZH;}LJ] = 0 by induction hypothesis. Also by (8.2),
[Eél)l big Ez(zi)z—&-l;h,f] =Ounless b—1=a+1 Whenb—-1=a+1, (814)

—
—
~—

becomes [EEZ:()HFQ%Z'J y B ot1:n.¢], which is zero by (8.7).

Case 7. a=c<b=d:
We claim that ) )
(Eabij> Eapnil =0 (8.15)

a,bsi,j

If b =a+ 1, it follows directly from (8.2). If b > a + 1, we may expand one term
in the bracket of (8.15) by (8.5) as follow.

= =) (1) =(s)

[Eopiis Eabnrl = [( ) [ a b Lif s Eb Loefi) s Ea bk

7 70 (s
rab Lia,f » b 1,b;f,5 Eal))h,k]]
-1 1) Z(r) Z(s)
+ (—1) Eb—l,b;f,j» [Eab1:s Eapnrl]-

Note that [El(,l)l bifgo ESZ;M“] = 0 by Case 3 and [Ele); L f Et(zfl));h,k] = 0 by Case 6.
Therefore, we have proved (8.15).

This completes the proof of claim*. O

Proposition 8.4. The images of the monomials in Proposition 8.1 under I' are linearly
independent.

Proof. By Corollary 2.2, we may identify grY (gl MIN) = grLYu with the loop superal-
gebra U(glyyy[t]) via
grf_ltg) — (—1)iE’ijtT_1.

We consider the following composition
grL?M_ ®grLlA/l? ®g7“Ll/> — gr Y LN grLY# & U(g[M|N[ D-

Let ng := p1 + po + ... 4+ po for short. By Proposition 3.1, the image of Et(zl)nu

(resp. ES?J, Féfg;i’j) under the above composition map is (—1 )”““Enaﬂmbﬂ-t -
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(resp. (=1)" By tina+it™ L (=1 E,, 1ina+t" 1 ). By the PBW theorem for
U(glyrn[t]), the set of all monomials in

{QT£_1D(T) |1 <a<m-+n, 1§i,j§ua,r21}

asi,j
U{grF BV 11 <a<b<man, 1<6< a1 <5<y, r>1}

U{ngL_lFb(z),in§a<b§m—|—n, 1<i<pp,1<j<pg,r>1}
taken in certain fixed order forms a basis for grLYM and hence Proposition 8.4 follows. [

Let Yl? , Y/f and Y, denote the subalgebras of Y, generated by all the D’s, E’s and
F7’s, respectively. Along the proofs of Proposition 8.1 and Proposition 8.4, we have found
the PBW bases for each of these algebras.

Corollary 8.5. (1) The set of monomials in {Dgi),j}1§a§m+n,1§i,j§ua,r21 taken in
certain fixed order forms a basis for Y/E) .

(2) The set of monomials in {Egg;i,j}1Sa<b§m+n,lSisua,1§j§ub,r21 taken in certain
fized order forms a basis for Y;‘.

. . r . .
(8) The set of monomials in {Fb(@);i,j}1§a<b§m+n,1§igﬂb71§i§#a,T‘Zl taken in certain fixed
order forms a basis for'Y, .

(4) The set of monomials in the union of the elements listed in (1), (2) and (3) taken
in certain fized order forms a basis for'Y,,.
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