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Abstract. Let e be an even nilpotent element, satisfying certain restrictions
on its Jordan type, in a general linear Lie superalgebra. We study the finite
W -superalgebra We associated to such an e, and a realization of We in terms of
a quotient of a shifted super Yangian is established.

Contents

1. Introduction 1
2. Shifted super Yangian of gl1|n 3
3. Parabolic presentations 8
4. Baby comultiplications 14
5. Canonical filtration 17
6. Truncation 19
7. Finite W -superalgebras and pyramids 22
8. Invariants 27
9. Main theorem 30
References 40

1. Introduction

A finite W -algebra is an associative algebra constructed from a pair (g, e), where
g is a finite dimensional semisimple or reductive Lie algebra and e is a nilpotent
element of g. In the extreme case where e = 0, the corresponding finite W -algebra
is isomorphic to U(g), the universal enveloping algebra. In the other extreme
case where e is the principal (also called regular) nilpotent element e, Kostant
proved that the associated finite W -algebra is isomorphic to the center of the
universal enveloping algebra U(g) (cf. [Ko]). In recent decades, there are many
new development on W -algebras; we refer to the survey papers [Lo] and [Wa] for
the details.

On the other hand, the Yangians, defined by Drinfeld in 1983, are certain non-
commutative Hopf algebras that are important examples of quantum groups. They
were used to generate the rational solutions of the Yang-Baxtor equation; see the
book [Mo] for more details and further applications of the Yangians.

The connection between Yangians and finite W -algebras of type A associated to
a rectangular nilpotent element e was first noticed by Ragoucy and Sorba in [RS].
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The term “rectangular” means that the Jordan blocks of e are all of the same size.
Brundan and Kleshchev in [BK2] generalized the result to an arbitrary nilpotent
e by a different approach. As a consequence, a realization of finite W -algebra of
type A as a quotient of a so-called shifted Yangian is obtained, and this provides
a powerful tool for the study of finite W -algebras.

In this article, we establish such a connection between finite W -superalgebras
and super Yangians explicitly in type A where the Jordan type of e satisfies a
certain condition (7.7). Let Ym|n denote the super Yangian of the general linear
Lie superalgebra glm|n. In fact, such a connection was firstly obtained in [BR]
when e ∈ glM |N is rectangular; see also [Pe2]. Their result shows that the finite W -
superalgebra associated to a rectangular e ∈ glM |N is isomorphic to the truncated

super Yangian Y ℓ
m|n, which is a certain quotient of the super Yangian Ym|n. Here the

indices m and n are determined by the number of Jordan blocks of the rectangular
e and ℓ is the size of its Jordan block.

In a more recent paper [BBG], the connection between the finiteW -superalgebra
associated to an e ∈ glM |N and Y1|1 is developed. It corresponds to the case when
the nilpotent element e ∈ glM |N is principal. Our main result (Theorem 9.1) is
to establish an isomorphism of superalgebras between the truncated shifted super
Yangian for gl1|n and a finite W -superalgebra.

Let us explain our approach, which is roughly generalizing the argument in
[BK2] to the general linear Lie superalgebras. Firstly we give a presentation of the
shifted super Yangian, denoted by Y1|n(σ), which is a subalgebra of Y1|n associated
to a matrix σ. The set of generators is a certain subset, determined by σ, of the
generators of Y1|n. The defining relations are modified from the defining relations
of Y1|n according to σ as well. Then we quotient out a certain ideal to obtain the
truncated super Yangian Y ℓ

1|n(σ). One may naively think that those generators

with degree higher than ℓ vanish in Y ℓ
1|n(σ).

Next we introduce certain combinatorial objects called pyramids; see [EK], [Ho].
This gives a nice way to record the necessary information (that is, σ and ℓ) to define
Y ℓ
1|n(σ) by a diagram. For example,

ℓ = 4, σ =




0 1 1
0 0 0
1 1 0


 ←→ π =

− − − −
− − −

+ +

The merit of using a pyramid is that one may obtain a nilpotent element e and
a semisimple element h that determine a finite W -superalgebra. In our example
above,

e = e1 2 + e24 + e46 + e13 + e35 + e57,

h = diag(1,−1, 3, 1, 1,−1,−1,−3,−3),

where eij means the elementary matrix in gl2|7; see §7 for the detail.
Therefore, given a pyramid π, we simultaneously obtain a truncated super Yan-

gian Yπ, which is Y ℓ
1|n(σ) for some appropriate choice of ℓ and σ, and a finite
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W -superalgebra Wπ associated to a certain nilpotent e determined by the pyramid
π. Our main result is that there exists an isomorphism of superalgebras between
Yπ and Wπ.

In §8, we introduce the notion of super height so that one may explicitly write
down certain distinguished elements in Wπ according to the diagram π. Eventu-
ally, we prove that the map sending the generators of Yπ into these distinguished
elements is an isomorphism of filtered superalgebras by induction on ℓ, the num-
ber of boxes of the base of π. As a consequence, a presentation of the finite
W -superalgebra Wπ is obtained.

The general case, which means the even nilpotent e ∈ glM |N could be arbitrary,
is highly challenging and requires new presentations of the super Yangian that are
unknown yet; see Remark 7.9.

This article is organized as follows. In §2, we define the shifted Yangian Y1|n(σ)
and prove a PBW theorem for it. In §3, we introduce the notion of parabolic
presentations for Y1|n(σ) as in [Pe1]. An important consequence is that we may
write down an explicit formula for the so-called baby comultiplications in §4. In
§5, we introduce the canonical filtration of Y1|n(σ). In the end it corresponds to the
Kazhdan filtration of finite W -superalgebras. Then we define the truncated shifted
Yangian Y ℓ

1|n(σ) in §6 as a quotient of Y1|n(σ), and prove that Y ℓ
1|n(σ) shares many

nice properties of Y1|n(σ) such as PBW bases and baby comultiplications. Next
we switch our attention to finite W -superalgebras. In §7 we give the definition
of the finite W -superalgebra with respect to an even good Z-grading. Then we
use pyramids as a tool to encode the information needed to define a finite W -
superalgebra. Moreover, we explain how to read off a truncated shifted Yangian
Y ℓ
1|n(σ) from a given pyramid π. In §8, we give explicitly the formulae for some

elements in U(p) that eventually can be identified as generators of our finite W -
superalgebra. Our main theorem is stated and proved in §9.

Notation: In this article the underlying field is always C. A superalgebra means
an associative Z2-graded algebra. The parity of a homogeneous element x is de-
noted by |x|. For homogeneous elements x and y in a superalgebra A = A0 ⊕ A1,
their supercommutator is [x, y] := xy − (−1)|x||y|yx. We say x and y supercom-
mute if [x, y] = 0. For homogeneous x1, . . . , xt ∈ A, an ordered supermonomial in
x1, . . . , xt means a monomial of the form xi11 · · ·x

it
t for some i1, . . . , it ∈ Z≥0 and

ij ≤ 1 if xj is odd.

2. Shifted super Yangian of gl1|n

In this section, we recall the definition of the super Yangian Y1|n. Moreover, we
define a certain superalgebra called the shifted super Yangian, which turns out to
be a subalgebra of Y1|n.

The super Yangian Y1|n, which was introduced in [Na], is the associative Z2-
graded algebra (i.e., superalgebra) over C with generators

{
t
(r)
ij | 1 ≤ i, j ≤ n+ 1; r ≥ 0

}
,



4 YUNG-NING PENG

where t
(0)
ij := δij and defining relations

[t
(r)
ij , t

(s)
hk ] = (−1)pa(i) pa(j)+pa(i) pa(h)+pa(j) pa(h)

min(r,s)−1∑

t=0

(
t
(t)
hj t

(r+s−1−t)
ik − t

(r+s−1−t)
hj t

(t)
ik

)
,

(2.1)
where pa(i) = 0 if i = 1 and pa(i) = 1 otherwise. The bracket in (2.1) is understood

as a supercommutator. For r > 0, the element t
(r)
ij is defined to be an odd element

if pa(i) + pa(j) ≡ 1 (mod 2) and an even element if pa(i) + pa(j) ≡ 0 (mod 2).

The elements {t
(r)
ij } are called RTT generators while the defining relations (2.1)

are called RTT relations. Next we use an alternate presentation of Y1|n to define
shifted Yangians that are not easily obtained from the classical definition.

Let σ be an (n + 1) × (n + 1) matrix (si,j)1≤i,j≤n+1 where the entries are non-
negative integers satisfying that

si,j + sj,k = si,k, (2.2)

whenever |i−j|+|j−k|=|i−k|. Immediately, we have s1,1 = s2,2 = · · · = sn+1,n+1 =
0, and σ is determined by the upper diagonal entries s1,2, s2,3, . . . , sn,n+1 and the
lower diagonal entries s2,1, s3,2, . . . , sn+1,n. In addition, we will add lines to empha-
size the parities. Such a matrix will be called a shift matrix. For example, the
following matrix is a shift matrix:

σ =




0 0 1 1 2
0 0 1 1 2
1 1 0 0 1
3 3 2 0 1
4 4 3 1 0



.

Definition 2.1. The shifted Yangian of gl1|n associated to σ, denoted by Y1|n(σ),
is the superalgebra over C generated by the following elements

{D
(r)
i |1 ≤ i ≤ n + 1, r ≥ 0},

{E
(r)
i |1 ≤ i ≤ n, r > si,i+1},

{F
(r)
i |1 ≤ i ≤ n, r > si+1,i},

subject to the following defining relations:

D
(0)
i = 1 (2.3)

r∑

t=0

D
(t)
i D

′(r−t)
i = δr0 (2.4)

[D
(r)
i , D

(s)
j ] = δij

min(r,s)−1∑

t=0

(D
(t)
i D

(r+s−1−t)
i −D

(r+s−1−t)
i D

(t)
i ) (2.5)
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[D
(r)
i , E

(s)
j ] =





−δi,j

r−1∑

t=0

D
(t)
i E

(r+s−1−t)
j + δi,j+1

r−1∑

t=0

D
(t)
i E

(r+s−1−t)
j , j 6= 1,

δi,j

r−1∑

t=0

D
(t)
i E

(r+s−1−t)
i + δi,j+1

r−1∑

t=0

D
(t)
i E

(r+s−1−t)
j , j = 1,

(2.6)

[D
(r)
i , F

(s)
j ] =





δi,j

r−1∑

t=0

F
(r+s−1−t)
j D

(t)
i − δi,j+1

r−1∑

t=0

F
(r+s−1−t)
j D

(t)
i , j 6= 1,

−δi,j

r−1∑

t=0

F
(r+s−1−t)
j D

(t)
i − δi,j+1

r−1∑

t=0

F
(r+s−1−t)
j D

(t)
i , j = 1,

(2.7)

[E
(r)
i , E

(s)
i ] =





−
s−1∑

t=1

E
(t)
i E

(r+s−1−t)
i +

r−1∑

t=1

E
(t)
i E

(r+s−1−t)
i , i 6= 1,

0, i = 1,

(2.8)

[F
(r)
i , F

(s)
i ] =





−

r−1∑

t=1

F
(r+s−1−t)
i F

(t)
i +

s−1∑

t=1

F
(r+s−1−t)
i F

(t)
i , i 6= 1,

0, i = 1,

(2.9)

[E
(r)
i , F

(s)
j ] = δi,j

r+s−1∑

t=0

D
(r+s−1−t)
i+1 D

′(t)
i , (2.10)

[E
(r+1)
i , E

(s)
i+1]− [E

(r)
i , E

(s+1)
i+1 ] = −E

(r)
i E

(s)
i+1 , (2.11)

[F
(r+1)
i , F

(s)
i+1]− [F

(r)
i , F

(s+1)
i+1 ] = F

(s)
i+1F

(r)
i , (2.12)

[E
(r)
i , E

(s)
j ] = [F

(r)
i , F

(s)
j ] = 0, if |i− j| ≥ 1 , (2.13)

[
E

(r)
i , [E

(s)
i , E

(k)
j ]
]
+
[
E

(s)
i , [E

(r)
i , E

(k)
j ]
]
= 0, |i− j| ≥ 1, (2.14)

[
F

(r)
i , [F

(s)
i , F

(k)
j ]
]
+
[
F

(s)
i , [F

(r)
i , F

(k)
j ]
]
= 0, |i− j| ≥ 1, (2.15)

for all “admissible” i, j, k, r, s. For example, the relation (2.12) should be under-
stood to hold for all 1 ≤ i ≤ n − 1, r > si+1,i and s > si+2,i+1. The elements

{E
(r)
1 |r > s1,2} ∪ {F

(r)
1 |r > s2,1} are the only odd generators.
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Remark 2.2. Note that the lower degree terms in (2.8) and (2.9) cancel each

other. Hence the elements {E
(r)
i , F

(s)
i |1 ≤ i ≤ n, r ≤ si,i+1, s ≤ si+1,i} will not

appear in Y1|n(σ) although they show up in the defining relations.

Remark 2.3. In the special case where σ is the zero matrix, Y1|n(σ) = Y1|n and
the above presentation is exactly a special case of the presentation of Ym|n given
in [Go], which is a generalization of Drinfeld’s presentation. We will implicitly use
this isomorphism in the remaining part of this article.

Let Γ be the map sending the generators of Y1|n(σ) to the elements with the
same name in Y1|n. We now prove that the map Γ : Y1|n(σ) −→ Y1|n is an injective
algebra homomorphism and hence Y1|n(σ) is canonically a subalgebra of Y1|n. As
a corollary, a PBW basis for Y1|n(σ) is obtained.

Define the loop filtration on Y1|n(σ)

L0Y1|n(σ) ⊆ L1Y1|n(σ) ⊆ L2Y1|n(σ) ⊆ · · ·

by setting the degree of the generators D
(r)
i , E

(r)
i , and F

(r)
i to be (r − 1) and

LkY1|n(σ) to be the span of all supermonomials in the generators of total degree ≤ k
and denote the associated graded algebra by grL Y1|n(σ).

Next, for all 1 ≤ i < j ≤ n+1 and r > si,j , we define the elements E
(r)
i,j ∈ Y1|n(σ)

recursively by

E
(r)
i,i+1 := E

(r)
i , E

(r)
i,j := −[E

(r−sj,j−1)
i,j−1 , E

(sj−1,j+1)
j−1 ]. (2.16)

Similarly, for 1 ≤ i < j ≤ n + 1 and r > sj,i, we may define the elements

F
(r)
j,i ∈ Y1|n(σ) by

F
(r)
i+1,i := F

(r)
i , F

(r)
j,i := −[F

(sj,j−1+1)
j−1 , F

(r−sj,j−1)
j−1,i ]. (2.17)

For all 1 ≤ i, j ≤ n + 1 and r ≥ si,j, define

ei,j;r :=





grLr D
(r+1)
i if i = j,

grLr E
(r+1)
i,j if i < j,

grLr F
(r+1)
i,j if i > j,

where the elements on the right-hand side are in grL Y1|n(σ) of degree r.
Denote the Lie superalgebra gl1|n ⊗C[t] with basis elements {ei,jt

r}1≤i,j≤n+1,r≥0

by gl1|n[t], which can be viewed as a graded Lie superalgebra by setting the degree
of ei,jt

r to be r.
By assumption (2.2), the elements {ei,jt

r | 1 ≤ i, j ≤ n + 1, r ≥ si,j} generate
a subalgebra of gl1|n[t] which we denote by gl1|n[t](σ). The grading on gl1|n[t](σ)

induces a grading on U
(
gl1|n[t](σ)

)
, the universal enveloping algebra.

Theorem 2.4. The map γ : U
(
gl1|n[t](σ)

)
−→ grL Y1|n(σ) such that

ei,jt
r 7−→ (−1)pa(i)ei,j;r

for each 1 ≤ i, j ≤ n + 1 and r ≥ si,j is an isomorphism of graded superalgebras.
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Proof. Following [Go, Theorem 3], one can show that for all 1 ≤ i, j, h, k ≤ n + 1
and r ≥ si,j, s ≥ sh,k, the following identity holds in grL Y1|n:

[ei,j;r, eh,k;s] = (−1)pa(j)δh,jei,k;r+s − (−1)pa(i) pa(j)+pa(i) pa(h)+pa(j) pa(h)δi,keh,j;r+s.
(2.18)

As a result, the map γ is a well-defined homomorphism and obviously surjective.
It remains to show that γ is injective.

We first assume that σ is the zero matrix, hence Y1|n(σ) = Y1|n. According to
the proof of [Go, Theorem 3], we know that the set of all ordered supermonomials
in the elements {ei,j;r | 1 ≤ i, j ≤ n+ 1, r ≥ 0} are linearly independent in grL Y1|n
and γ is an isomorphism in this special case.

In general, the map Γ : Y1|n(σ) −→ Y1|n is a homomorphism of filtered superal-
gebras, which induces a map grL Y1|n(σ) −→ grL Y1|n sending ei,j;r ∈ grL Y1|n(σ) to
ei,j;r ∈ grL Y1|n. The previous paragraph implies that the set of ordered supermono-
mials in the elements {ei,j;r | 1 ≤ i, j ≤ n + 1, r ≥ si,j} are linearly independent in
grL Y1|n(σ) and hence γ is an isomorphism in general. �

Remark 2.5. In general, Γ does not send the general parabolic elements E
(r+1)
i,j ,

F
(r+1)
j,i in Y1|n(σ) to E

(r+1)
i,j , F

(r+1)
j,i of Y1|n if j − i > 1.

Corollary 2.6. The canonical map Γ : Y1|n(σ) −→ Y1|n is injective.

Proof. The map Γ : Y1|n(σ) −→ Y1|n is a filtered map and the induced map
grL Y1|n(σ) −→ grL Y1|n is injective. The corollary follows from induction on de-
gree. �

We denote the subalgebra of Y1|n(σ) generated by all the D
(r)
i ’s by Y 0

1|n, the

subalgebra generated by all the E
(r)
i ’s by Y +

1|n(σ) and the subalgebra generated by

all the F
(r)
i ’s by Y −

1|n(σ), respectively. The following corollary gives PBW bases of

Y1|n(σ) and its subalgebras.

Corollary 2.7. (1) The set of monomials in the elements {D
(r)
i }1≤i≤n+1,r>0 taken

in some fixed order forms a basis for Y 0
1|n.

(2) The set of supermonomials in the elements {E
(r)
i,j }1≤i<j≤n+1,r>si,j taken in some

fixed order forms a basis for Y +
1|n(σ).

(3) The set of supermonomials in the elements {F
(r)
j,i }1≤i<j≤n+1,r>sj,i taken in some

fixed order forms a basis for Y −
1|n(σ).

(4) The set of supermonomials in the union of the elements listed in (1)–(3) taken
in some fixed order forms a basis for Y1|n(σ).

Proof. (4) follows from Theorem 2.4 and the PBW theorem for U(gl1|n[t](σ)). The
others can be proved similarly using (2.18). �

Corollary 2.8. The multiplicative map

Y −
1|n(σ)⊗ Y

0
1|n ⊗ Y

+
1|n(σ) −→ Y1|n(σ)

is an isomorphism of vector spaces.
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By the defining relations of Y1|n, the map τ : Y1|n → Y1|n defined by

τ(D
(r)
i ) = D

(r)
i , τ(E

(r)
i ) = F

(r)
i , τ(F

(r)
i ) = E

(r)
i (2.19)

is an anti-automorphism of order 2 and its restriction on Y1|n(σ) gives an anti-
isomorphism τ : Y1|n(σ)→ Y1|n(σ

t), where σt is the transpose of the matrix σ.
Suppose instead that ~σ = (~si,j)1≤i,j≤n+1 is another shift matrix satisfying (2.2)

and in addition ~si,i+1 + ~si+1,i = si,i+1 + si+1,i for all i = 1, . . . , n. Another check of
relations shows that the map ι : Y1|n(σ)→ Y1|n(~σ) defined by

ι(D
(r)
i ) = ~D

(r)
i , ι(E

(r)
i ) = ~E

(r−si,i+1+~si,i+1)
i , ι(F

(r)
i ) = ~F

(r−si+1,i+~si+1,i)
i , (2.20)

is a superalgebra isomorphism. Here and later on we denote the generatorsD
(r)
i , E

(r)
i

and F
(r)
i of Y1|n(~σ) instead by ~D

(r)
i , ~E

(r)
i and ~F

(r)
i to avoid possible confusion.

3. Parabolic presentations

In this section, we introduce the notion of parabolic presentation to the shifted
super Yangian Y1|n(σ). We start with a brief review about parabolic presentations
of Y1|n from [Pe1] in §3.1, and then we extend the notion to Y1|n(σ) in §3.2.

3.1. Parabolic presentations of Y1|n. Recall that Y1|n is generated by the ele-

ments t
(r)
i,j with defining relation (2.1). We define the formal power series

tij(u) = δij + t
(1)
ij u

−1 + t
(2)
ij u

−2 + t
(3)
ij u

−3 + . . .

and the matrix T (u) :=
(
tij(u)

)
1≤i,j≤n+1

.

Let ν be a composition of n with length m. For notational reason, we set

µ1 = 1 and µj = νj−1 for all 2 ≤ j ≤ m+ 1,

and µ = (µ1 |µ2, µ3, . . . , µm+1) denotes the composition of (1|n).
By definition, the leading minors of the matrix T (u) are invertible. Depending

on the given composition µ, T (u) possesses a Gauss decomposition

T (u) = F (u)D(u)E(u)

for unique block matrices D(u), E(u) and F (u) of the form

D(u) =




D1(u) 0 · · · 0
0 D2(u) · · · 0
...

...
. . .

...
0 0 · · · Dm+1(u)


 ,

E(u) =




Iµ1 E1,2(u) · · · E1,m+1(u)
0 Iµ2 · · · E2,m+1(u)
...

...
. . .

...
0 0 · · · Iµm+1


 ,
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F (u) =




Iµ1 0 · · · 0
F2,1(u) Iµ2 · · · 0

...
...

. . .
...

Fm+1,1(u) Fm+1,2(u) · · · Iµm+1


 ,

where

Da(u) =
(
Da;i,j(u)

)
1≤i,j≤µa

, (3.1)

Ea,b(u) =
(
Ea,b;i,j(u)

)
1≤i≤µa,1≤j≤µb

, (3.2)

Fb,a(u) =
(
Fb,a;i,j(u)

)
1≤i≤µb,1≤j≤µa

, (3.3)

are µa × µa, µa × µb and µb × µa matrices, respectively, for all 1 ≤ a ≤ m + 1 in
(3.1) and all 1 ≤ a < b ≤ m+ 1 in (3.2) and (3.3).

For all 1 ≤ a ≤ m+ 1, define the µa × µa matrix D′
a(u) =

(
D′

a;i,j(u)
)
1≤i,j≤µa

by

D′
a(u) :=

(
Da(u)

)−1
.

The entries of these matrices are expanded into power series

Da;i,j(u) =
∑

r≥0

D
(r)
a;i,ju

−r, Ea,b;i,j(u) =
∑

r≥1

E
(r)
a,b;i,ju

−r,

D′
a;i,j(u) =

∑

r≥0

D
′(r)
a;i,ju

−r, Fb,a;i,j(u) =
∑

r≥1

F
(r)
b,a;i,ju

−r.

Moreover, for 1 ≤ a ≤ n, we set

Ea;i,j(u) := Ea,a+1;i,j(u) =
∑

r≥1E
(r)
a;i,ju

−r,

Fa;i,j(u) := Fa+1,a;i,j(u) =
∑

r≥1 F
(r)
a;i,ju

−r.

Proposition 3.1. [Pe1, Theorem 4] The super Yangian Y1|n is generated by the
elements

{D
(r)
a;i,j, D

′(r)
a;i,j | 1 ≤ a ≤ n + 1, 1 ≤ i, j ≤ µa, r ≥ 0},

{E
(r)
a;i,j | 1 ≤ a ≤ n, 1 ≤ i ≤ µa, 1 ≤ j ≤ µa+1, r ≥ 1},

{F
(r)
a;i,j | 1 ≤ a ≤ n, 1 ≤ i ≤ µa+1, 1 ≤ j ≤ µa, r ≥ 1},

subject to certain relations depending on µ.

Since the defining relations are exactly the relations (3.5)-(3.18) below when all
si,j = 0, we omit the relations here.

For example, the presentation of Y1|n introduced in §2 is the special case when

µ = (1n+1), where D
(r)
a;1,1 = D

(r)
a , E

(r)
a;1,1 = E

(r)
a and F

(r)
a;1,1 = F

(r)
a . The presentation

depends on the composition µ and hence we will use the notation Yµ = Y1|n to
emphasize the composition which we are using.
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3.2. Parabolic presentation of Y1|n(σ). Throughout this subsection, we fix a
shift matrix σ = (si,j)1≤i,j≤n+1. Also recall that we set µ1 = 1 for notational
reason.

Definition 3.2. A composition µ = (µ1 |µ2, . . . , µm+1) of (1|n) is said to be ad-
missible for σ if si,j = 0 for all µ1 + . . .+ µa−1 + 1 ≤ i, j ≤ µ1 + . . .+ µa, for each
1 ≤ a ≤ m+ 1.

For example, the composition µ = (1n+1) is admissible for any shift matrix σ.
We will use a shorthand notation from now on

sµa,b := sµ1+...+µa,µ1+...+µb
. (3.4)

Note that one can recover the original matrix σ if the admissible shape µ and the
numbers {sµa,b|1 ≤ a, b ≤ m+1} are given. Assume from now on that a shift matrix
σ and an admissible shape µ for σ are given.

Definition 3.3. The shifted super Yangian of gl1|n associated to σ and µ, denoted
by Yµ(σ), is the superalgebra over C generated by the following elements

{D
(r)
a;i,j|1 ≤ a ≤ m+ 1, 1 ≤ i, j ≤ µa, r ≥ 0},

{E
(r)
a;i,j|1 ≤ a ≤ m, 1 ≤ i ≤ µa, 1 ≤ j ≤ µa+1, r > sµa,a+1},

{F
(r)
a;i,j|1 ≤ a ≤ m, 1 ≤ i ≤ µa+1, 1 ≤ j ≤ µa, r > sµa+1,a},

subject to the following defining relations:

D
(0)
a;i,j = δij , (3.5)

r∑

t=0

D
(t)
a;i,pD

′(r−t)
a;p,j = δr0δij , (3.6)

[
D

(r)
a;i,j, D

(s)
b;h,k

]
= δab

min(r,s)−1∑

t=0

(
D

(t)
a;h,jD

(r+s−1−t)
a;i,k −D

(r+s−1−t)
a;h,j D

(t)
a;i,k

)
, (3.7)



ON SHIFTED SUPER YANGIANS AND A CLASS OF FINITE W -SUPERALGEBRAS 11

[D
(r)
a;i,j, E

(s)
b;h,k] =




−δa,bδh,j

r−1∑

t=0

D
(t)
a;i,pE

(r+s−1−t)
a;p,k + δa,b+1

r−1∑

t=0

D
(t)
a;i,kE

(r+s−1−t)
b;h,j , b 6= 1,

δa,bδh,j

r−1∑

t=0

D
(t)
a;i,pE

(r+s−1−t)
a;p,k + δa,b+1

r−1∑

t=0

D
(t)
a;i,kE

(r+s−1−t)
b;h,j , b = 1,

(3.8)

[D
(r)
a;i,j, F

(s)
b;h,k] =




δa,bδk,i

r−1∑

t=0

F
(r+s−1−t)
b;h,p D

(t)
a;p,j − δa,b+1

r−1∑

t=0

F
(r+s−1−t)
b;i,k D

(t)
a;h,j, b 6= 1,

−δa,bδk,i

r−1∑

t=0

F
(r+s−1−t)
b;h,p D

(t)
a;p,j − δa,b+1

r−1∑

t=0

F
(r+s−1−t)
b;i,k D

(t)
a;h,j , b = 1,

(3.9)

[E
(r)
a;i,j , E

(s)
a;h,k] =





−

s−1∑

t=1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j +

r−1∑

t=1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j

)
, a 6= 1,

r−1∑

t=1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j −

s−1∑

t=1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j , a = 1,

(3.10)

[F
(r)
a;i,j , F

(s)
a;h,k] =





−

r−1∑

t=1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j +

s−1∑

t=1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j

)
, a 6= 1,

r−1∑

t=1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j −

s−1∑

t=1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j , a = 1,

(3.11)

[E
(r)
a;i,j , F

(s)
b;h,k] = δa,b

r+s−1∑

t=0

D
(r+s−1−t)
a+1;h,j D

′(t)
a;i,k , (3.12)

[E
(r+1)
a;i,j , E

(s)
a+1;h,k]− [E

(r)
a;i,j , E

(s+1)
a+1;h,k] = −δh,jE

(r)
a;i,qE

(s)
a+1;q,k , (3.13)

[F
(r+1)
a;i,j , F

(s)
a+1;h,k]− [F

(r)
a;i,j, F

(s+1)
a+1;h,k] = δi,kF

(s)
a+1;h,qF

(r)
a;q,j , (3.14)

[E
(r)
a;i,j , E

(s)
b;h,k] = 0 if b > a+ 1 or if b = a+ 1 and h 6= j, (3.15)

[F
(r)
a;i,j , F

(s)
b;h,k] = 0 if b > a + 1 or if b = a+ 1 and i 6= k, (3.16)

[
E

(r)
a;i,j, [E

(s)
a;h,k, E

(l)
b;f,g]

]
+
[
E

(s)
a;i,j, [E

(r)
a;h,k, E

(l)
b;f,g]

]
= 0, |a− b| ≥ 1, (3.17)

[
F

(r)
a;i,j, [F

(s)
a;h,k, F

(l)
b;f,g]

]
+
[
F

(s)
a;i,j, [F

(r)
a;h,k, F

(l)
b;f,g]

]
= 0, |a− b| ≥ 1, (3.18)
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for all admissible a, b, f, g, h, i, j, k, l, r, s, t, where the index p (respectively, q) is
summed over 1,. . . , µa (respectively, 1, . . . , µa+1). Similarly, the only odd genera-
tors are

{E
(r)
1;i,j|1 ≤ i ≤ µ1, 1 ≤ j ≤ µ2, r > sµ1,2} ∪ {F

(r)
1;i,j|1 ≤ i ≤ µ2, 1 ≤ j ≤ µ1, r > sµ2,1}.

Let Γ denote the homomorphism Yµ(σ) −→ Yµ sending the generators D
(r)
a;i,j,

D
′(r)
a;i,j, E

(r)
a;i,j and F

(r)
a;i,j in Yµ(σ) to those in Yµ with the same notations obtained by

Gauss decomposition. We now prove that the map Γ is injective and its image is
independent of the choice of the admissible shape µ. In particular, Yµ(σ) can be
identified with the super Yangian Y1|n(σ) introduced in §2 which is the special case
when µ = (1n+1) of our current definition.

For 1 ≤ a < b ≤ m + 1, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, r > sµa,b and a choice of

1 ≤ k ≤ µb−1, we define the elements E
(r)
a,b;i,j ∈ Y1|n(σ) recursively by

E
(r)
a,a+1;i,j := E

(r)
a;i,j, E

(r)
a,b;i,j := −[E

(r−s
µ
b,b−1)

a,b−1;i,k , E
(sµ

b−1,b+1)

b−1;k,j ]. (3.19)

Similarly, for 1 ≤ a < b ≤ m + 1, 1 ≤ i ≤ µb, 1 ≤ j ≤ µa, r > sµb,a and a choice of

1 ≤ k ≤ µb−1, we define the elements F
(r)
b,a;i,j ∈ Y1|n(σ) by

F
(r)
a+1,a;i,j := F

(r)
a;i,j, F

(r)
b,a;i,j := −[F

(sµ
b,b−1+1)

b−1;i,k , F
(r−s

µ
b,b−1)

b−1,a;k,j ], (3.20)

It turns out that the above definitions are independent of the choice of k; see [BK1,
(6.9)] for the detail.

Similar to §2, we introduce the loop filtration on Yµ(σ)

L0Yµ(σ) ⊆ L1Yµ(σ) ⊆ L2Yµ(σ) ⊆ · · ·

by setting the degree of the generators D
(r)
a;i,j, E

(r)
a;i,j, and F

(r)
a;i,j to be (r − 1) and

LkYµ(σ) to be the span of all supermonomials in the generators of total degree ≤ k
and denote the associated graded algebra by grL Yµ(σ).

Define the elements {ei,j;r}1≤i,j≤n+1,r≥si,j
in grL Yµ(σ) by

eµ1+···+µa−1+i,µ1+···+µa−1+j;r = grLr D
(r+1)
a;i,j , (3.21)

eµ1+···+µa−1+i,µ1+···+µb−1+j;r = grLr E
(r+1)
a,b;i,j , (3.22)

eµ1+···+µb−1+i,µ1+···+µa−1+j;r = grLr F
(r+1)
b,a;i,j . (3.23)

One can prove that these elements satisfy relation (2.18) as well. As a result, there
exists a surjective superalgebra homomorphism γ : U

(
gl1|n[t](σ)

)
։ grL Yµ(σ)

such that γ(ei,jt
r) = (−1)pa(i)ei,j;r. By the PBW theorem for gl1|n[t](σ), γ is also

injective and hence an isomorphism.

Let Y 0
µ denote the subalgebra of Y1|n(σ) generated by all the D

(r)
a;i,j’s , Y +

µ (σ)

denote the subalgebra generated by all the E
(r)
a;i,j’s and Y

−
µ (σ) denote the subalgebra

generated by all the F
(r)
a;i,j ’s. The following corollaries are parallel to Corollary 2.7

and Corollary 2.8.
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Corollary 3.4. (1) The set of monomials in the elements {D
(r)
a;i,j}a=1,...,m+1,1≤i,j≤µa,r>0

taken in some fixed order forms a basis for Y 0
µ .

(2) The set of supermonomials in the elements {E
(r)
a,b;i,j}1≤a<b≤m+1,1≤i≤µa,1≤j≤µb,r>s

µ
a,b

taken in some fixed order forms a basis for Y +
µ (σ).

(3) The set of supermonomials in the elements {F
(r)
b,a;i,j}1≤a<b≤m+1,1≤i≤µb,1≤j≤µa,r>s

µ
b,a

taken in some fixed order forms a basis for Y −
µ (σ).

(4) The set of supermonomials in the union of the elements listed in (1)–(3) taken
in some fixed order forms a basis for Yµ(σ).

Corollary 3.5. The multiplicative map Y −
µ (σ) ⊗ Y 0

µ ⊗ Y +
µ (σ) −→ Y1|n(σ) is an

isomorphism of vector spaces.

Now we prove that the definition of Yµ(σ) is independent of the choice of the
admissible shape µ. If µi = 1 for all i, then Yµ(σ) is defined as in §2. Suppose that
µb > 1 for some 2 ≤ b ≤ m+ 1. We may further assume that µb = α+ β for some
α, β ≥ 1. Define a finer composition ν of (1|n) by

ν = (µ1 |µ2, . . . , µb−1, α, β, µb+1, . . . , µm+1).

Note that ν is also an admissible shape for σ. As a result, the matrix T (u) has a
Gauss decomposition with respect to ν as well; that is,

T (u) = µE(u)µD(u)µF (u) = νE(u)νD(u)νF (u),

where the matrices are block matrices as introduced in the beginning of this section.
We will denote by µDa and νDa to be the a-th diagonal matrices in µD(u) and

νD(u) with respect to the compositions µ and ν, respectively. Similarly, µEa and
µFa are defined to be the matrices in the a-th upper and lower-diagonal of µE(u)
and µF (u), respectively; νEa and νFa are defined to be the matrices in the a-th
upper and lower-diagonal of νE(u) and νF (u), respectively.

Lemma 3.6. In the notation above, define an (α×α)-matrix A, an (α×β)-matrix
B, a (β × α)-matrix C and a (β × β)-matrix D from the equation

µDb =

(
Iα 0
C Iβ

)(
A 0
0 D

)(
Iα B
0 Iβ

)
.

Then,

(i) νDa =
µDa for a < b, νDb = A, νDb+1 = D, and νDc =

µDc−1 for c > b+1;
(ii) νEa = µEa for a < b − 1, νEb−1 is the submatrix consisting of the first α

columns of µEb−1,
νEb = B, νEb+1 is the submatrix consisting of the last β

rows of µEb, and
νEc =

µEc−1 for c > b+ 1;
(iii) νFa =

µFa for a < b−1, νFb−1 is the submatrix consisting of the first α rows
of µFb−1,

νFb = C, µFb+1 is the submatrix consisting of the last β columns
of µFb, and

νFc =
µFc−1 for c > b+ 1;

Proof. Multiply matrices. �



14 YUNG-NING PENG

To show the definition of Yµ(σ) is independent the choice of µ, it suffices to
show that Yν(σ) = Yµ(σ). By Lemma 3.6, one has that Yν(σ) ⊆ Yµ(σ). Now the
equality follows from the fact that the isomorphism U

(
gl1|n[t](σ)

)
∼= grL Yµ(σ) is

independent of µ.

Proposition 3.7. The superalgebra Yµ(σ) is independent of the choice of the ad-
missible shape µ.

Using Lemma 3.6 and induction on the length of the composition, one can de-
scribe the maps τ and ι in terms of parabolic generators. The anti-isomorphism τ
satisfies

τ(D
(r)
a;i,j) = D

(r)
a;j,i, τ(E

(r)
a;i,j) = F

(r)
a;j,i, τ(F

(r)
a;i,j) = E

(r)
a;j,i. (3.24)

Also, in terms of the notation of (2.20), suppose that µ is an admissible shape
for σ and ~σ simultaneously, then the isomorphism ι : Yµ(σ)→ Yµ(~σ) satisfies

ι(D
(r)
a;i,j) = ~D

(r)
a;i,j, ι(E

(r)
a;i,j) = ~E

(r−s
µ
a,a+1+~s

µ
a,a+1)

a;i,j , ι(F
(r)
a;i,j) = ~F

(r−s
µ
a+1,a+~s

µ
a+1,a)

a;i,j .
(3.25)

4. Baby comultiplications

In this section, we define some comultiplication-like maps on Yµ(σ) that are
crucial in later sections.

We first consider the special case where σ = 0, i.e., the whole super Yangian
Y1|n. It is well-known (cf. [Go]) that Y1|n is a Hopf superalgebra where the comul-

tiplication ∆ : Y1|n → Y1|n ⊗ Y1|n is defined in terms of the RTT generators {t
(r)
i,j }

by the formula

∆(t
(r)
i,j ) =

r∑

s=0

n+1∑

k=1

t
(s)
i,k ⊗ t

(r−s)
k,j . (4.1)

Moreover, the evaluation homomorphism ev : Y1|n → U(gl1|n) defined by

ev(t
(r)
i,j ) = δr,0δi,j + δr,1(−1)

pa(i)ei,j, (4.2)

where ei,j is the elementary matrices in gl1|n, is surjective.
Define ∆R̃ := (id⊗ ev) ◦∆ and ∆L̃ := (ev⊗id) ◦∆, where they are both algebra

homomorphisms. Thus we have

∆R̃ : Y1|n → Y1|n ⊗ U(gl1|n), t
(r)
i,j 7→ t

(r)
i,j ⊗ 1 +

n+1∑

k=1

(−1)pa(k)t
(r−1)
i,k ⊗ ek,j (4.3)

∆L̃ : Y1|n → U(gl1|n)⊗ Y1|n, t
(r)
i,j 7→ 1⊗ t

(r)
i,j +

n+1∑

k=1

(−1)pa(i)ei,k ⊗ t
(r−1)
k,j . (4.4)

In general, if σ is not the zero matrix, then Yµ(σ) does not have a comultiplica-
tion. But we may define some nice homomorphisms called baby comultiplications
as in [BK2], suggested from the maps ∆R̃ and ∆L̃ above.
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Definition 4.1. An admissible composition µ of (1 |n) for σ is called minimal
admissible if the length of µ is minimal.

For example, µ = (1 | 2, 1, 1) is a minimal admissible shape of (1|4) for the shift
matrix

σ =




0 0 0 1 1
0 0 0 1 2
0 0 0 1 2
2 2 2 0 1
4 4 4 2 0



.

Note that the minimal admissible shape denotes the “sizes” of largest zero square
matrices in the diagonal of σ, respecting the parity (so we use (1,2) rather than (3)
in the northwestern corner). Throughout this section, we fix a shift matrix σ and
a minimal admissible shape µ of (1|n) for σ.

For convenience, we let β = µm+1. Since µ is a minimal admissible shape for σ,
we have that 1 ≤ β ≤ n and either sn+1−β,n+2−β 6= 0 or sn+2−β,n+1−β 6= 0.

Theorem 4.2. Let µ = (µ1 |µ2, . . . , µm+1) be a minimal admissible shape of (1|n)
for the shift matrix σ. For 1 ≤ i, j ≤ β, let

ẽi,j := ei,j + δi,j(n− 1− β) ∈ U(glβ).

(1) Suppose that sn+1−β,n+2−β 6= 0. Define σ̇ = (ṡi,j)1≤i,j≤n+1 by

ṡi,j =

{
si,j − 1 if i ≤ n+ 1− β < j,
si,j otherwise.

(4.5)

Then the map ∆R : Y1|n(σ)→ Y1|n(σ̇)⊗ U(glβ) defined by

D
(r)
a;i,j 7→ Ḋ

(r)
a;i,j ⊗ 1− δa,m+1

β∑

k=1

Ḋ
(r−1)
a;i,k ⊗ ẽk,j,

E
(r)
a;i,j 7→ Ė

(r)
a;i,j ⊗ 1− δa,m

β∑

k=1

Ė
(r−1)
a;i,k ⊗ ẽk,j,

F
(r)
a;i,j 7→ Ḟ

(r)
a;i,j ⊗ 1,

is a superalgebra homomorphism.

(2) Suppose that sn+2−β,n+1−β 6= 0. Define σ̇ = (ṡi,j)1≤i,j≤n+1 by

ṡi,j =

{
si,j − 1 if j ≤ n+ 1− β < i,
si,j otherwise.

(4.6)
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Then the map ∆L : Y1|n(σ)→ U(glβ)⊗ Y1|n(σ̇) defined by

D
(r)
a;i,j 7→ 1⊗ Ḋ

(r)
a;i,j − δa,m+1

β∑

k=1

ẽi,k ⊗ Ḋ
(r−1)
a;k,j ,

E
(r)
a;i,j 7→ 1⊗ Ė

(r)
a;i,j,

F
(r)
a;i,j 7→ 1⊗ Ḟ

(r)
a;i,j − δa,m

β∑

k=1

ẽi,k ⊗ Ḟ
(r−1)
a;k,j ,

is a superalgebra homomorphism.

Proof. Check that ∆R and ∆L preserve the defining relations in Definition 3.3.
Similar to [BK2, Theorem 4.2], to check (3.17) and(3.18), one needs to use (3.13),
(3.14), (3.15) and (3.16) multiple times. �

Remark 4.3. To avoid possible confusion, in the above theorem and hereafter, the

elements D
(r)
a;i,j , E

(r)
a;i,j, and F

(r)
a;i,j in Y1|n(σ̇) are denoted by Ḋ

(r)
a;i,j, Ė

(r)
a;i,j, and Ḟ

(r)
a;i,j,

where σ̇ is defined by either (4.5) or (4.6), with respect to the same composition
µ. Note that µ is admissible but may no longer be minimal with respect to σ̇.

The next lemma shows how to compute the baby comultiplications on the general

parabolic elements E
(r)
a,b;i,j and F

(r)
b,a;i,j under the same minimal admissible shape.

Lemma 4.4. (1) Under the same assumption of Theorem 4.2(1), for all ad-
missible i, j, r and 1 ≤ a < b− 1 < m+ 1, we have

∆R(F
(r)
b,a;i,j) = Ḟ

(r)
b,a;i,j ⊗ 1,

∆R(E
(r)
a,b;i,j) = Ė

(r)
a,b;i,j ⊗ 1, if b < m+ 1,

and

∆R(E
(r)
a,m+1;i,j) = −

(
[Ė

(r−s
µ
m,m+1)

a,m;i,h , Ė
(sµm,m+1+1)

m;h,j ] ⊗ 1
)
−

β∑

k=1

Ė
(r−1)
a,m+1;i,k ⊗ ẽk,j,

for any 1 ≤ h ≤ µm.
(2) Under the same assumption of Theorem 4.2(2), for all admissible i, j, r and

1 ≤ a < b− 1 < m+ 1, we have

∆L(E
(r)
a,b;i,j) = 1⊗ Ė

(r)
a,b;i,j,

∆L(F
(r)
b,a;i,j) = 1⊗Ḟ

(r)
b,a;i,j , if b < m+ 1,

and

∆L(F
(r)
m+1,a;i,j) = −

(
1 ⊗ [Ḟ

(sµm+1,m+1)

m;i,h , Ḟ
(r−s

µ
m+1,m)

m,a;h,j ]
)
−

β∑

k=1

ẽk,j ⊗ Ḟ
(r−1)
m+1,a;k,j,

for any 1 ≤ h ≤ µm.
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Proof. We compute ∆R(E
(r)
a,m+1;i,j) for 1 ≤ a ≤ m in detail here, while others are

similar. By definition,

E
(r)
a,m+1;i,j = −[E

(r−s
µ
m,m+1)

a,m;i,h , E
(sµm,m+1+1)

m;h,j ],

for any 1 ≤ h ≤ µm. Also, ∆R(E
(r−s

µ
m,m+1)

a,m;i,h ) = Ė
(r−s

µ
m,m+1)

a,m;i,h ⊗ 1. Hence

∆R(E
(r)
a,m+1;i,j) = −

[
Ė

(r−s
µ
m,m+1)

a,m;i,h ⊗ 1, Ė
(sµm,m+1+1)

m;h,j ⊗ 1
]

+

[
Ė

(r−s
µ
m,m+1)

a,m;i,h ⊗ 1,

β∑

k=1

Ė
(sµm,m+1)

m;h,k ⊗ ẽk,j

]

= −
[
Ė

(r−s
µ
m,m+1)

a,m;i,h , Ė
(sµm,m+1+1)

m;h,j

]
⊗ 1−

β∑

k=1

Ė
(r−1)
a,m+1;i,k ⊗ ẽk,j,

as claimed. �

Proposition 4.5. The maps ∆R and ∆L are injective, whenever they are defined.

Proof. Let β be defined as in Theorem 4.2 and let ǫ : U(glβ) → C be the homo-
morphism such that ǫ(ẽi,j) = 0 for 1 ≤ i, j ≤ β. By definition, Y1|n(σ) and Y1|n(σ̇)
are subalgebras of Y1|n with Y1|n(σ) ⊆ Y1|n(σ̇). One may check that the composi-
tions m ◦ (id⊗ǫ) ◦∆R and m ◦ (ǫ⊗ id) ◦∆L coincide with the natural embedding
Y1|n(σ) →֒ Y1|n(σ̇), where m(a⊗ b) := ab (the usual multiplication). �

5. Canonical filtration

Recall the canonical filtration of Y1|n

F0Y1|n ⊆ F1Y1|n ⊂ F2Y1|n ⊆ · · ·

defined by deg t
(r)
ij := r, i.e., FdY1|n is the span of all supermonomials in the

generators t
(r)
ij of total degree ≤ d. It is clear form (2.1) that the associated graded

superalgebra gr Y1|n is supercommutative.
Now we describe the canonical filtration by parabolic presentation. Let µ =

(µ1 | . . . , µm+1) be a composition of (1|n). By [Pe1, Proposition 3.1], the para-

bolic generators D
(r)
a;i,j E

(r)
a,b;i,j and F

(r)
b,a;i,j of Yµ = Y1|n are linear combinations of

supermonomials in t
(s)
i,j of total degree r.

On the other hand, if we set D
(r)
a;i,j , E

(r)
a,b;i,j and F

(r)
b,a;i,j all to be of degree r,

by multiplying out the matrix equation T (u) = F (u)D(u)E(u), each t
(r)
ij is a

linear combination of supermonomials in the parabolic generators of total degree
r. Hence we may describe FdY1|n as the span of all supermonomials in the parabolic

generators D
(r)
a;i,j E

(r)
a,b;i,j and F

(r)
b,a;i,j of total degree ≤ d.
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For 1 ≤ a, b ≤ n + 1, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb and r > 0, define the following
elements in grY1|n by

e
(r)
a,b;i,j :=





grrD
(r)
a;i,j if a = b,

grr E
(r)
a,b;i,j if a < b,

grr F
(r)
a,b;i,j if a > b.

(5.1)

Note that the notation depends on the shape µ implicitly. Since grY1|n is su-
percommutative, together with Corollary 3.4 (4) in the case σ = 0, we have the
following:

Proposition 5.1. For any shape µ = (µ1 | . . . , µm+1), grY1|n is the free supercom-

mutative superalgebra on generators {e
(r)
a,b;i,j}1≤a,b≤m+1,1≤i≤µa,1≤j≤µb,r>0.

Next we show that the shifted super Yangian adapts the canonical filtration as
well. Let µ = (µ1 | . . . , µm+1) be a given admissible shape for a fixed shift matrix
σ. Here we use the notations Yµ for Y1|n and Yµ(σ) for Y1|n(σ) to emphasize the
shape µ.

Since Yµ(σ) is a subalgebra of Yµ, we may induce the canonical filtration of
Yµ to Yµ(σ) by defining FdYµ(σ) := FdYµ ∩ Yµ(σ). Therefore, the inclusion map
Yµ(σ) →֒ Yµ is a filtered map and the induced map grYµ(σ)→ gr Yµ is injective as
well. Hence we may identify gr Yµ(σ) with a subalgebra of the supercommutative
superalgebra gr Yµ. The next theorem describes this subalgebra explicitly.

Theorem 5.2. For an admissible shape µ = (µ1 | . . . , µm+1), gr Yµ(σ) is the subal-

gebra of grYµ generated by the elements {e
(r)
a,b;i,j}1≤a,b≤m+1,1≤i≤µa,1≤j≤µb,r>s

µ
a,b
.

Proof. By relations (3.13) and (3.14), the element e
(r)
a,b;i,j of grYµ(σ) is identified

with the element of the same notation in gr Yµ. The theorem follows from Corollary
3.4 (4) and Proposition 5.1. �

Remark 5.3. One consequence of Theorem 5.2 is that we may define the canonical

filtration on Yµ(σ) intrinsically by setting the elements D
(r)
a;i,j, E

(r)
a,b;i,j and F

(r)
a,b;i,j of

Yµ(σ) all to be degree r. This definition is independent of the choice of admissible
shape µ by Proposition 3.7.

Remark 5.4. By definition, the comultiplication ∆ : Y1|n → Y1|n⊗Y1|n is a filtered
map with respect to the canonical filtration. If we extend the canonical filtration
of Y1|n(σ̇) to Y1|n(σ̇) ⊗ U(glβ) by declaring the degree of the matrix unit eij ∈ glβ
to be 1, then the baby comultiplications ∆R and ∆L in Theorem 4.2 are filtered
maps as well, provided that they are defined. Moreover, following the argument
in Proposition 4.5, we have that the associated graded maps gr∆L and gr∆R are
injective.
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6. Truncation

Fix a shift matrix σ = (si,j)1≤i,j≤n+1. Choose an integer ℓ ≥ s1,n+1 + sn+1,1,
which will be called “level” later. For each 1 ≤ i ≤ n+ 1, set

pi := ℓ− si,n+1 − sn+1,i. (6.1)

This defines a tuple (p1, . . . , pn+1) of integers such that 0 ≤ p1 ≤ · · · ≤ pn+1 = ℓ.
Let µ = (µ1 | . . . , µm+1) be an admissible shape for σ. For each 1 ≤ a ≤ m+ 1,

set

pµa := pµ1+...+µa
. (6.2)

By definition, for each 1 ≤ a ≤ m+1, we have pi = pµa for all µ1+ · · ·+µa−1+1 ≤
i ≤ µ1 + · · ·+ µa.

Definition 6.1. The truncated shifted super Y angian of level ℓ, denoted by
Y ℓ
1|n(σ), is the quotient of Y1|n(σ) by the two-side ideal generated by the elements

{D
(r)
1 }r>p1.

When σ = 0, since t
(r)
11 = D

(r)
1 for all r and p1 = ℓ, the above definition is exactly

the super analogy of Yangian of level ℓ due to Cherednik or the truncated Yangian
in [BK1].

It should be clear from the context that we are dealing with Y1|n(σ) or Y
ℓ
1|n(σ)

and hence we will use the same symbols D
(r)
a;i,j, E

(r)
a,b;i,j and F

(r)
a,b;i,j to denote the

generators of Y1|n(σ) and their images in the quotient Y ℓ
1|n(σ), by abusing notations.

It is clear that the anti-isomorphism τ defined in (2.19) factors through the
quotient and induces an anti-isomorphism

τ : Y ℓ
1|n(σ)→ Y ℓ

1|n(σ
t). (6.3)

Similarly, let ~σ be another shift matrix satisfying that ~si,i+1+~si+1,i = si,i+1+ si+1,i

for all 1 ≤ i ≤ n + 1. Then the isomorphism ι defined by (2.20) also induces an
isomorphism

ι : Y ℓ
1|n(σ)→ Y ℓ

1|n(~σ). (6.4)

Consider the canonical filtration defined in §5. We obtain a filtration

F0Y
ℓ
1|n(σ) ⊆ F1Y

ℓ
1|n(σ) ⊆ · · ·

induced from the quotient map Y1|n(σ)→ Y ℓ
1|n(σ). By Remark 5.3, we may define

directly that for a given admissible shape µ for σ, the elements D
(r)
a;i,j, E

(r)
a,b;i,j and

F
(r)
a,b;i,j of Y

ℓ
1|n(σ) are all of degree r and FdY

ℓ
1|n(σ) is the span of all supermonomials

in these elements of total degree ≤ d.

For 1 ≤ a, b ≤ m+ 1, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb and r > sµa,b, define element e
(r)
a,b;i,j,

by abusing notations again, in the associative graded superalgebra grY ℓ
1|n(σ) ac-

cording to exactly the same formula (5.1), except that those D’s, E’s and F ’s
are now in the quotient. Since gr Y ℓ

1|n(σ) is a quotient of gr Y1|n(σ), by Proposi-
tion 5.1 and Theorem 5.2, it is also supercommutative and is generated by the
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elements {e
(r)
a,b;i,j}1≤a,b≤m+1,1≤i≤µa,1≤j≤µb,r>s

µ
a,b
. In fact, we only need a finite set as

a generating set of grY ℓ
1|n(σ), as suggested by the following lemma.

Lemma 6.2. For any admissible shape µ = (µ1 | . . . , µm+1), gr Y
ℓ
1|n(σ) is generated

only by the elements {e
(r)
a,b;i,j}1≤a,b≤m+1,1≤i≤µa,1≤j≤µb,s

µ
a,b

<r≤s
µ
a,b

+p
µ

min(a,b)
.

Proof. It can be proved by using the same argument as in [BK2, Lemma 6.1],
except that the induction argument starts from µ = (1 |n) and our notations are
slightly different.

�

Suppose that the shift matrix σ is nonzero and the level ℓ > 0. Let β be the size
of the maximal zero square matrix in the southeastern corner of σ. Hence we have
1 ≤ β ≤ n and either sn+1−β,n+2−β 6= 0 or sn+2−β,n+1−β 6= 0.

If sn+1−β,n+2−β 6= 0, then one may easily check that the baby comultiplication
∆R defined in Theorem 4.2 factors through the quotient to induce a map

∆R : Y ℓ
1|n(σ)→ Y ℓ−1

1|n (σ̇)⊗ U(glβ), (6.5)

where σ̇ is defined by (4.5). Similarly, if sn+2−β,n+1−β 6= 0, then the baby comulti-
plication ∆L defined in Theorem 4.2 induces a map

∆L : Y ℓ
1|n(σ)→ U(glβ)⊗ Y

ℓ−1
1|n (σ̇), (6.6)

where σ̇ is defined by (4.6). By Remark 5.4, ∆R and ∆L are filtered maps so they
induce the following homomorphisms of graded superalgebras

gr∆R : gr Y ℓ
1|n(σ)→ gr

(
Y ℓ−1
1|n (σ̇)⊗ U(glβ)

)
, (6.7)

gr∆L : gr Y ℓ
1|n(σ)→ gr

(
U(glβ)⊗ Y

ℓ−1
1|n (σ̇)

)
. (6.8)

Theorem 6.3. For any admissible shape µ = (µ1 | . . . , µm+1), grY
ℓ
1|n(σ) is the free

supercommutative superalgebra on generators

{e
(r)
a,b;i,j}1≤a,b≤m+1,1≤i≤µa,1≤j≤µb,s

µ
a,b

<r≤s
µ
a,b

+p
µ

min(a,b)
.

Also, the maps gr∆R and gr∆L in (6.7) and (6.8) are injective whenever they are
defined, and so are the maps ∆R and ∆L in (6.5) and (6.6).

Proof. We prove by induction on ℓ, where the case ℓ = 0 is trivial. Assume ℓ > 0
and the first statement holds for any smaller ℓ. It suffices to prove the induction
step in the special case where µ = (µ1 | . . . , µm+1) is the minimal admissible shape
for σ. Thus, at least one of ∆R or ∆L is defined. We assume without loss of
generality that ∆R is defined, where the other case can be derived from this by
applying the anti-isomorphism τ defined in (2.19). Let σ̇ be defined by (4.5).
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Define the following elements in gr
(
Y ℓ−1
1|n (σ̇)⊗ U(glβ)

)
:

ė
(r)
a,b;i,j :=





grr Ḋ
(r)
a;i,j ⊗ 1 if a = b,

grr Ė
(r)
a,b;i,j ⊗ 1 if a < b,

grr Ḟ
(r)
a,b;i,j ⊗ 1 if a > b,

and xi,j := gr1 1⊗ eij for all 1 ≤ i, j ≤ β.
By Theorem 4.2 (1), Lemma 4.4 (1) and Lemma 6.2, there exists some polyno-

mials f
(r)
a;i,j all in the variables ė

(s)
a,b;i,j such that

gr∆R(e
(r)
a,b;i,j) = ė

(r)
a,b;i,j, (6.9)

for all 1 ≤ a ≤ m+1, 1 ≤ b ≤ m, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, s
µ
a,b < r ≤ sµa,b+p

µ

min(a,b),

and

gr∆R(e
(r)
a,m+1;i,j) =

β∑

k=1

ė
(r−1)
a,m+1;i,k ⊗ xk,j + f

(r)
a;i,j, (6.10)

for all 1 ≤ a ≤ m+ 1, 1 ≤ i ≤ µa, 1 ≤ j ≤ µm+1, s
µ
a,m+1 < r ≤ sµa,m+1 + pµa , where

ė
(0)
m+1,m+1;i,j := δij .
By the induction hypothesis and the PBW theorem for U(glβ), the elements

{xi,j}1≤i,j≤β,

{ė
(r)
a,b;i,j}1≤a≤m+1, 1≤b≤m, 1≤i≤µa, 1≤j≤µb, s

µ

a,b
<r≤s

µ

a,b
+p

µ

min(a,b)
,

{ė
(r)
a,m+1;i,j}1≤a≤m+1, 1≤i≤µa, 1≤j≤µm+1, s

µ
a,m+1+δa,m+1−1<r≤s

µ
a,m+1+p

µ
a−1

are algebraically independent in gr
(
Y ℓ−1
1|n (σ̇)⊗ U(glβ)

)
. Let B denote the set con-

sisting of the above elements.
By (6.9) and (6.10), we may express the images of the generators of gr Y ℓ

1|n(σ)
from Lemma 6.2 under the map gr∆R in terms of the elements of B. As a result,
the images are algebraically independent in gr

(
Y ℓ−1
1|n (σ̇)⊗U(glβ)

)
and hence gr∆R

is injective. This completes the proof of the induction step. �

As a corollary, we obtain a PBW theorem for Y ℓ
1|n(σ) in terms of parabolic

generators.

Corollary 6.4. For any admissible shape µ = (µ1 | . . . , µm+1), the set of super-
monomials in the elements

{D
(r)
a;i,j|1 ≤ a ≤ m+ 1, 1 ≤ i, j ≤ µa, 0 < r ≤ pµa},

{E
(r)
a,b;i,j|1 ≤ a < b ≤ m+ 1, 1 ≤ i ≤ µa, 1 ≤ j ≤ µb, s

µ
a,b < r ≤ sµa,b + pµa},

{F
(r)
b,a;i,j|1 ≤ a < b ≤ m+ 1, 1 ≤ i ≤ µb, 1 ≤ j ≤ µa, s

µ
b,a < r ≤ sµb,a + pµa},

taken in some fixed order forms a basis for Y ℓ
1|n(σ).
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7. Finite W -superalgebras and pyramids

Throughout this section, g = glM |N and ( · , · ) denotes the non-degenerate even
supersymmetric invariant bilinear form on g defined by (x, y) := str(xy) for all
x, y ∈ g, where str means the super trace form and xy stands for the usual compo-
sition. Every element of g in our description is considered Z2-homogeneous unless
mentioned specifically.

In §7.1, we recall the definition of a finite W -superalgebra, which is determined
by a nilpotent element e and a semisimple element h of glM |N . In §7.2, a com-
binatorial object called pyramid is introduced so that we may encode e and h
simultaneously by a diagram π. Finally, in §7.3, when π satisfies certain restric-
tion, we explain how to associate such a π to Y ℓ

1|n(σ), a shifted Yangian of level
ℓ.

7.1. Finite W -superalgebras of glM |N . Let e be an even nilpotent element in
g. It can be shown (cf. [Ho], [Wa]) that there exists (not uniquely) a semisimple
element h ∈ g such that ad h : g → g gives a good Z-grading of g for e, which
means the following:

(1) adh(e) = 2e,
(2) g =

⊕
j∈Z g(j), where g(j) := {x ∈ g| adh(x) = jx},

(3) the center of g is contained in g(0),
(4) ad e : g(j)→ g(j + 2) is injective for all j ≤ −1,
(5) ad e : g(j)→ g(j + 2) is surjective for all j ≥ −1.

Example 7.1. Let e be an even nilpotent element. By Jacobson-Morozov Theo-
rem, there exist h ∈ g and f ∈ g such that {e, h, f} forms an sl2-triple. It follows
from the representation theory of sl2 that ad h gives a good Z-grading of g for e,
called the Dynkin grading.

Assume that a good Z-grading for e is given. To simplify the definition of W-
superalgebra, throughout this article, we assume in addition that the grading is
even; that is, g(i) = 0 for all i /∈ 2Z. In the case of glM |N , an even good Z-grading
always exists; see Theorem 7.4 below. Note that, in general, the Dynkin grading
in the example above may not be even.

Remark 7.2. Even good Z-gradings do not always exist in other types; see [Ho].

Define the following subalgebras of g by

p :=
⊕

j≥0

g(j), m :=
⊕

j<0

g(j). (7.1)

Let χ ∈ g∗ be defined by χ(y) := (y, e), for all y ∈ g. Then the restriction of χ
on m gives a one dimensional U(m)-module. Let Iχ denote the left ideal of U(g)
generated by {a− χ(a)|a ∈ m}.

By the PBW theorem for U(g), we have U(g) = U(p)⊕Iχ. Let prχ : U(g)→ U(p)
be the natural projection and we identify U(g)/Iχ ∼= U(p). Next we define the χ-
twisted action of m on U(p) by a · y := prχ([a, y]) for all a ∈ m and y ∈ U(p).
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The finite W-superalgebra (which we will usually omit the term “finite” from
now on) is defined to be the space of m-invariants of U(p) under the χ-twisted
action; that is,

We,h := U(p)m ={y ∈ U(p)| prχ([a, y]) = 0, ∀a ∈ m}

={y ∈ U(p)|
(
a− χ(a)

)
y ∈ Iχ, ∀a ∈ m}.

Example 7.3. If we take the nilpotent element e = 0, then χ = 0, g = g(0) = p,
m = 0, We,h = U(p) = U(g).

At this point, the definition of a finite W -superalgebra depends on the nilpotent
element e and a semisimple element h which gives a good Z-grading for e.

7.2. Pyramids and finite W -superalgebras. Suppose that we are given a tuple
of positive integers (q1, . . . , qℓ). We associate a diagram π consisting of q1 boxes
stacked in the first (leftmost) column, q2 boxes stacked in the second column, . . .
, qℓ boxes stacked in the ℓ-th (rightmost) column.

We call a diagram obtained in this way a pyramid if each row of the diagram is
a connected horizontal strip. For example, the left diagram is a pyramid but the
right one is not:

Moreover, we assign the boxes of a given pyramid with + and − such that the
boxes in a same row have the same sign. Such a pyramid will be called a signed
pyramid. For example,

π = − − − −

− − −

+ +

LetM (respectively, N) be the number of boxes assigned with + (respectively, −)
in a signed pyramid π. We now explain how to obtain an even nilpotent e(π) and
a semisimple h(π) in glM |N which gives a good Z-grading for e from a given signed
pyramid π.

First of all, we enumerate the “+”-boxes by the numbers 1, . . . ,M down columns
from left to right, and enumerate the “ − ”-boxes by the numbers 1, . . . , N in the
same way. In fact, any numbering of “ + ”-boxes by the numbers 1, . . . ,M and
“ − ”-boxes by the numbers 1, . . . , N would work , so we may choose the most
intuitive and convenient way for our purpose. Moreover, we image that each box
of π is of size 2× 2 and our pyramid is built on the x-axis where the center of π is
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exactly on the origin as shown in the example below.

π = 1 3 5 7

2 4 6

1 2

•
1 3−1−3

(7.2)

Let I = {1 < . . . < M < 1 < . . . < N} be an ordered index set and let
{ei|i ∈ I} be a basis of CM |N . We identify glM |N

∼= End(CM |N) with the set of

(M + N) × (M + N) matrices over C by this basis of CM |N with respect to the
following order

ei < ej if i < j in I.

Define the element

e(π) :=
∑

i,j∈I

ei,j ∈ glM |N , (7.3)

summing over all adjacent pairs i j of boxes in π. It is clear that such an element
e(π) is even nilpotent.

Let c̃ol(i) denote the x-coordinate of the box numbered with i ∈ I. Then we
define the following diagonal matrix

h(π) := −diag
(
c̃ol(1), . . . , c̃ol(M), c̃ol(1), . . . , c̃ol(N)

)
∈ glM |N . (7.4)

For example, the elements e(π) and h(π) in gl2|7 associated to the π in (7.2) are

e(π) = e1 2 + e24 + e46 + e13 + e35 + e57,

h(π) = diag(1,−1, 3, 1, 1,−1,−1,−3,−3).

One may check directly that adh(π) gives a good Z-grading of g for e(π).
Observe that if we horizontally shift the rows of π to obtain another pyramid ~π,

then e(π) and e(~π) have the same Jordan type and hence they belong to precisely
the same nilpotent orbit. On the contrary, h(π) 6= h(~π). The following theorem
assures that every even good Z-gradings for e(π) is obtained by shifting the rows
of π. In fact, it still holds if we drop the term “even”.

Theorem 7.4. [Ho, Theorem 7.2] Let π be a given signed pyramid, e = e(π) and
h = h(π) be the elements in glM |N defined by (7.3) and (7.4), respectively. Then
ad h defines an even good Z-grading for e. Moreover, any even good Z-grading for
e is defined by ad h(~π) where ~π is some signed pyramid obtained by shifting rows
of π horizontally.

Now we characterize those e which is of the form e(π) for some π. Let e ∈ glM |N

be even nilpotent. Consider

e = eM ⊕ eN ∈ EndCM |N , (7.5)
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where eM and eN are the restriction of e to C
M |0 and C

0|N , respectively. Let
µ = (µ1, µ2, . . .) and ν = (ν1, ν2, . . .) be the partitions representing the Jordan type
of eM and eN , respectively. We define a new partition λ by collecting all parts of
µ and ν together and reorder them by the usual decreasing order, except that if
µi = νj for some i, j, then we let µi appear first.

For example, consider gl6|4, µ = (3, 2, 1) and ν = (3, 1). Then the resulting λ
is given by λ = (3+, 3, 2+, 1+, 1), where we use i+ to indicate the number i come
from µ.

In particular, the Young diagram λ in French style (which means the longest
row is in the bottom) is itself a signed pyramid if we assign the boxes of a row by
“ + ” when that row corresponds to a part of µ and by “ − ” otherwise (so we do
need to distinguish the numbers from µ and ν).

As a consequence, the good Z-gradings of glM |N for any nilpotent e are classified
by Theorem 7.4. Therefore, for a given signed pyramid π, we let Wπ := We(π),h(π)

denote the W -superalgebra associated to e(π) and h(π).

Remark 7.5. Under a certain assumption (see (7.7) below), we will prove even-
tually (Corollary 9.11) that up to isomorphism, Wπ depends only on e(π), not on
the even good Z-grading given by h(π), which is not obvious from the definition.

Let g = glM |N . Now we label the columns of π from left to right by 1, . . . , ℓ, and
for any i ∈ I we let col(i) denote the column where i appear. Define the Kazhdan
filtration of U(g)

· · · ⊆ FdU(g) ⊆ Fd+1U(g) ⊆ · · ·

by declaring
deg(ei,j) := col(j)− col(i) + 1 (7.6)

for each i, j ∈ I and FdU(g) denotes the span of all supermonomials ei1,j1 · · · eis,js
for s ≥ 0 and

∑s

k=1 deg (eik,jk) ≤ d. Let grU(g) denote the associated graded
superalgebra. The natural projection g ։ p induces a grading on Wπ.

On the other hand, let ge denote the centralizer of e in g and let S(ge) denote
the associated supersymmetric superalgebra. We define the Kazhdan filtration on
S(ge) by the same setting (7.6). The following proposition was observed in [Zh],
where the mild assumption there is satisfied when the good Z-grading for e is even.

Proposition 7.6. [Zh, Remark 3.9] grWπ
∼= S(ge) as Kazhdan graded superalge-

bras.

7.3. Pyramids and shifted super Yangians. From now on and the remainder
of this article, we assume that our signed pyramids satisfy the following property:

The top row of π is the only row assigned with +. (7.7)

In terms of the notations in (7.5), it means that e(π) = e = eM ⊕ eN , where eM is
principal nilpotent in glM |0 and the sizes of the Jordan blocks of eN are all greater
or equal to M .

Let π be a fixed signed pyramid satisfying (7.7). We explain how to associate π
with a truncated shifted super Yangian. Firstly, let ℓ be the length of the bottom
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row of π, and we label the columns of π by 1, . . . , ℓ from left to right. Next we
let |qi| denote the number of boxes in the i-th column of π for 1 ≤ i ≤ ℓ and let
n + 1 be the maximal number in {|qi| |1 ≤ i ≤ ℓ}. Also, we label the rows of π by
1, . . . , n+ 1 from top to bottom.

Define the shift matrix σ := (si,j)1≤i,j≤n+1 by setting

si,j := the number of bricks the i-th row is indented from the j-th row

at the left (respectively, right) edge of

the diagram if i ≥ j (respectively, if i ≤ j).

It is not hard to check that such a definition gives a shift matrix satisfying (2.2).
With this shift matrix σ and the integer ℓ, we know precisely the generators and
defining relations for Y1|n(σ) and hence Y ℓ

1|n(σ) as its quotient.

This process can be reversed as follows. Let σ = (sij)1≤i,j≤n+1 be a shift matrix
and let the level ℓ ≥ s1,n+1 + sn+1,1 be given. We define the tuple (p1, . . . , pn+1) by
setting pi := ℓ− si,n+1 − sn+1,i as in (6.1). Now draw a pyramid π with pi bricks
on the ith row indented sn+1,i columns from the left-hand edge and si,n+1 columns
from the right-hand edge, for each i = 1, . . . , n+ 1. Finally we assign the top row
of π by + and the remaining boxes by −.

As a summary, given a signed pyramid π, we obtain Y ℓ
1|n(σ), a shifted Yangian

of level ℓ and vice versa. For example,

ℓ = 6, σ =




0 1 1 2
0 0 0 1
1 1 0 1
2 2 1 0


 ←→ π =

− − − − − −

− − − −
− − −

+ +

The following proposition is a well-known result about ge. As remarked in [BBG],
the result is similar to the Lie algebra case glM+N since e is even.

Proposition 7.7. Let π be a signed pyramid with row lengths {pi|1 ≤ i ≤ n+ 1},
σ = (si,j)1≤i,j≤n+1 be the associated shift matrix of π and let e be the nilpotent
element defined by (7.3). For all 1 ≤ i, j ≤ n+ 1 and r > 0, define

c
(r)
i,j :=

∑

h,k∈I
row(h)=i,row(k)=j
col(k)−col(h)=r−1

eh,k ∈ g = glM |N .

Then the set of vectors {c
(r)
i,j |1 ≤ i, j ≤ n + 1, si,j < r ≤ si,j + pmin(i,j)} forms a

basis for ge.

Corollary 7.8. Consider Y ℓ
1|n(σ) with the canonical filtration and S(ge) with the

Kazhdan filtration. Let FdY
ℓ
1|n(σ) and FdS(g

e) denote the superspace with total
degree ≤ d in the associated filtered superalgebras, respectively. Then for each
d ≥ 0, we have dimFdY

ℓ
1|n(σ) = dimFdS(g

e).

Proof. Follows from Theorem 6.3, Proposition 7.7 and induction on d. �
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Remark 7.9. In the most general case, where the even nilpotent element e could
be arbitrary, one may still use a signed pyramid to denote e and h simultaneously;
or equivalently a pair (σ, ℓ) as what we did above. However, a presentation of
the corresponding shifted super Yangian Ym|n(σ) (and its quotient) is unknown
yet. Moreover, the descriptions of the maps ∆R and ∆L in Theorem 4.2 and
the computations in section 9 would be much more complicated if we drop the
assumption (7.7).

8. Invariants

Let π be a given signed pyramid satisfying (7.7). We will define some elements
in U(p). It turns out later that they are m-invariant, i.e., belong to Wπ.

Let (q̌1, . . . , q̌ℓ) denote the super column heights of π, where each q̌i is defined
to be the number of boxes signed with “ + ” subtract the number of boxes signed
with “ − ” in the i-th column of π. We also define the absolute height by setting
|qi|:= the number of total boxes (regardless the signs) in the i-th column. Let h
denote the super height of π, which is defined to be the number q̌j such that |qj| is
maximal.

Define ρ = (ρ1, . . . , ρℓ) by setting that

ρr := h− q̌r − q̌r+1 − · · · − q̌ℓ (8.1)

for each r = 1, . . . , ℓ.
Recall the ordered index set I := {1 < . . . < M < 1 < . . . < N}, where M and

N denote the number of boxes of π assigned with “+” and “−”, respectively. For
all i, j ∈ I, define

ẽi,j := (−1)col(j)−col(i)(ei,j + δi,j(−1)
p̌a(i)ρcol(i)), (8.2)

where p̌a(i) := 0 if i ∈ {1, . . . ,M} and p̌a(i) := 1 otherwise. One should be careful
that the number p̌a(i) defined here is for glM |N , while the number pa(i) defined in
§2 is for Y1|n.

One may check that

[ẽi,j , ẽh,k] = (ẽi,k − δi,k(−1)
p̌a(i)ρcol(i))δh,j

− (−1)(p̌a(i)+p̌a(j))(p̌a(h)+p̌a(k))δi,k(ẽh,j − δh,j(−1)
p̌a(j)ρcol(j)). (8.3)

Let us also spell out the effect of the homomorphism U(m)→ C induced by the
character χ. For any i, j ∈ I, we have

χ(ẽi,j) =

{
(−1)p̌a(i)+1 if row(i) = row(j) and col(i) = col(j) + 1;
0 otherwise.

(8.4)

Now we give the most important definition of this article. For 1 ≤ i, j ≤ n + 1

and signs σi ∈ {±}, we let T
(0)
i,j;σ1,...,σn+1

:= δi,jσi and for r ≥ 1 define

T
(r)
i,j;σ1,...,σn+1

:=

r∑

s=1

∑

i1,...,is
j1,...,js

σrow(j1) · · ·σrow(js−1)(−1)
p̌a(i1)+···+p̌a(is)ẽi1,j1 · · · ẽis,js (8.5)
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where the second sum is taken over all i1, . . . , is, j1, . . . , js ∈ I such that

(1) deg(ei1,j1) + · · ·+ deg(eis,js) = r (recall (7.6));
(2) col(it) ≤ col(jt) for each t = 1, . . . , s;
(3) if σrow(jt) = + then col(jt) < col(it+1) for each t = 1, . . . , s− 1;
(4) if σrow(jt) = − then col(jt) ≥ col(it+1) for each t = 1, . . . , s− 1;
(5) row(i1) = i, row(js) = j;
(6) row(jt) = row(it+1) for each t = 1, . . . , s− 1.

Note that the assumptions (1) and (2) imply that T
(r)
i,j;σ1,...,σn+1

belongs to FrU(p).

For 0 ≤ x ≤ n+ 1, let T
(r)
i,j;x denote T

(r)
i,j;σ1,...,σn+1

in the special case that σi = − for
all i ≤ x and σj = + for all j > x. Define the following series for all 1 ≤ i, j ≤ n+1:

Ti,j;x(u) :=
∑

r≥0

T
(r)
i,j;xu

−r ∈ U(p)[[u−1]]. (8.6)

Lemma 8.1. Let i, j, x, y be non-negative integers.

(i) If x < i ≤ y < j ≤ n+ 1 then

Ti,j;x(u) =

y∑

k=x+1

Ti,k;x(u) Tk,j;y(u).

(ii) If x < j ≤ y < i ≤ n+ 1 then

Ti,j;x(u) =

y∑

k=x+1

Ti,k;y(u) Tk,j;x(u).

(iii) If x < y < i ≤ n+ 1 and y < j ≤ n+ 1, then

Ti,j;x(u) = Ti,j;y(u) +

y∑

k,l=x+1

Ti,k;y(u) Tk,l;x(u) Tl,j;y(u).

(iv) If x < i ≤ y ≤ n+ 1 and x < j ≤ y, then
y∑

k=x+1

Ti,k;x(u) Tk,j;y(u) = −δi,j.

Proof. All of the proofs are exactly the same as in [BK2, Lemma 9.2] and hence
they are omitted. �

Define T (u) :=
(
Ti,j;0(u)⊗ (−1)pa(j)(pa(i)+1)Ei,j

)
1≤i,j≤n+1

, an invertible (n+ 1)×

(n+1) matrix with entries in U(p)[[u−1]] where Ei,j denotes the elementary matri-
ces. Also let µ = (µ1 |µ2, . . . , µm+1) be a fixed shape such that µ1 = 1. Consider
the Gauss factorization T (u) = F (u)D(u)E(u) where D(u) is a block diagonal
matrix, E(u) is a block upper unitriangular matrix, and F (u) is a block lower
unitriangular matrix, all block matrices being of shape µ. The diagonal blocks
of D(u) define matrices D1(u), . . . , Dm+1(u), the upper diagonal blocks of E(u)
define matrices E1(u), . . . , Em(u), and the lower diagonal matrices of F (u) define
matrices F1(u), . . . , Fm(u). Also let D′

a(u) := Da(u)
−1.
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Thus Da(u) = (Da;i,j(u))1≤i,j≤µa
and D′

a(u) = (D′
a;i,j(u))1≤i,j≤µa

are µa × µa

matrices, Ea(u) = (Ea;i,j(u))1≤i≤µa,1≤j≤µa+1 are µa × µa+1 matrices, and Fa(u) =
(Fa;i,j(u))1≤i≤µa+1,1≤j≤µa

are µa+1 × µa matrices, respectively. Write

Da;i,j(u) =
∑

r≥0

D
(r)
a;i,ju

−r, D′
a;i,j(u) =

∑

r≥0

D
′(r)
a;i,ju

−r,

Ea;i,j(u) =
∑

r>0

E
(r)
a;i,ju

−r, Fa;i,j(u) =
∑

r>0

F
(r)
a;i,ju

−r,

and then the elements D
(r)
a;i,j, E

(r)
a;i,j and F

(r)
a;i,j of U(p) are defined, all depending on

the fixed choice of µ. All of them are parallel to the definition of the elements of
Y1|n with the same names in §3.

Theorem 8.2. With µ = (µ1 |µ2, . . . , µm+1) fixed as above and all admissible a, i, j,
we have that

Da;i,j(u) = Tµ1+···+µa−1+i,µ1+···+µa−1+j;µ1+···+µa−1(u),

D′
a;i,j(u) = −Tµ1+···+µa−1+i,µ1+···+µa−1+j;µ1+···+µa

(u),

Ea;i,j(u) = Tµ1+···+µa−1+i,µ1+···+µa+j;µ1+···+µa
(u),

Fa;i,j(u) = Tµ1+···+µa+i,µ1+···+µa−1+j;µ1+···+µa
(u).

Proof. Note that it is enough to show the formulae for D,E and F , since the one
for D′ follows from the one for D and Lemma 8.1(iv). We prove this by induction
on the length of µ. The initial case is µ = (1 |n), a composition of length 2. By
Gauss decomposition, we have

T (u) =

(
I1 0
F1 In

)(
D1 0
0 D2

)(
I1 E1

0 In

)
=

(
D1 D1E1

F1D1 D2 + F1D1E1

)
.

Comparing the corresponding blocks and using Lemma 8.1, we have proved the
initial step of the induction.

Now let µ = (µ1 |µ2, . . . , µm, µm+1) with m ≥ 2 be a composition of length m+1
be given. Define a new composition ν = (ν1 | . . . , νm) of lengthm by setting νi = µi

for all 1 ≤ i ≤ m− 1 and νm = µm + µm+1. By the induction hypothesis, we have

νDa(u) =
(
Tν1+···+νa−1+i,ν1+···+νa−1+j;ν1+···+νa−1(u)

)
1≤i,j≤νa

, ∀ 1 ≤ a ≤ m,

νEa(u) =
(
Tν1+···+νa−1+i,ν1+···+νa+j;ν1+···+νa(u)

)
1≤i≤νa,1≤j≤νa+1

, ∀ 1 ≤ a ≤ m− 1,

νFa(u) =
(
Tν1+···+νa+i,ν1+···+νa−1+j;ν1+···+νa(u)

)
1≤i≤νa+1,1≤j≤νa

, ∀ 1 ≤ a ≤ m− 1,

where we add a superscript ν to emphasize that these elements are defined with
respect to ν. Note that νDa(u) = µDa(u) for all 1 ≤ a ≤ m − 1 and νEa(u) =
µEa(u),

νFa(u) =
µFa(u) for all 1 ≤ a ≤ m − 2. Hence it is enough to show the

explicit descriptions of the matrices µDm(u),
µDm+1(u),

µEm(u) and µFm(u) are
as described in our theorem.



30 YUNG-NING PENG

Define matrices A,B,C and D by

A =
(
Tν1+···+νm−1+i,ν1+···+νm−1+j;ν1+···+νm−1(u)

)
1≤i,j≤µm

,

B =
(
Tν1+···+νm−1+i,ν1+···+νm−1+µm+j;ν1+···+νm−1+µm

(u)
)
1≤i≤µm,1≤j≤µm+1

,

C =
(
Tν1+···+νm−1+µm+i,ν1+···+νm−1+j;ν1+···+νm−1+µm

(u)
)
1≤i≤µm+1,1≤j≤µm

,

D =
(
Tν1+···+νm−1+µm+i,ν1+···+νm−1+µm+j;ν1+···+νm−1+µm

(u)
)
1≤i,j≤µm+1

.

By Lemma 8.1 with x = µ1 + . . .+ µm−1 and y = µ1 + . . .+ µm, we have

νDm(u) =

(
Iµm

0
C Iµm+1

)(
A 0
0 D

)(
Iµm

B
0 Iµm+1

)
=

(
A AB
CA D + CAB

)
.

Now the explicit descriptions of the matrices µDm(u),
µDm+1(u),

µEm(u) and
µFm(u) follows from Lemma 3.6, which completes the induction argument. �

In the extreme case that µ = (1n+1), we write simply D
(r)
i , D

′(r)
i , E

(r)
i and F

(r)
i

for the elements D
(r)
i;1,1, D

′(r)
i;1,1, E

(r)
i;1,1 and F

(r)
i;1,1 of U(p), respectively.

Corollary 8.3. D
(r)
i = T

(r)
i,i;i−1, E

(r)
i = T

(r)
i,i+1;i, F

(r)
i = T

(r)
i+1,i;i and D

′(r)
i = −T

(r)
i,i;i,.

9. Main theorem

Let π be a signed pyramid of base ℓ satisfying (7.7) and let σ = (si,j)1≤i,j≤n+1

be the shift matrix associated to π as explained in §7. Let Y ℓ
1|n(σ) denote the

truncated shifted Yangian associated to π equipped with the canonical filtration
and let Wπ denote the finite W -superalgebra associated to π equipped with the
Kazhdan filtration .

Suppose also that µ = (µ1 |µ2, . . . , µm+1) with µ1 = 1 is an admissible shape for
σ, and recall the notation sµa,b and p

µ
a from (3.4) and (6.2). We have the elements

D
(r)
a;i,j, D

′(r)
a;i,j, E

(r)
a;i,j and F

(r)
a;i,j of U(p) defined by Theorem 8.2 relative to this fixed

shape µ. We also have the parabolic generators D
(r)
a;i,j, D

′(r)
a;i,j, E

(r)
a;i,j and F

(r)
a;i,j of

Y ℓ
1|n(σ) as defined in §3. The main result of the article is as follows.

Theorem 9.1. Let π be a signed pyramid satisfying (7.7). There is a unique

isomorphism Y ℓ
1|n(σ)

∼
→ Wπ of filtered superalgebras such that for any admissible

shape µ = (µ1 |µ2, . . . , µm+1) with µ1 = 1, the generators

{D
(r)
a;i,j}1≤a≤m+1,1≤i,j≤µa,r>0,

{E
(r)
a;i,j}1≤a<m+1,1≤i≤µa,1≤j≤µa+1,r>s

µ
a,b
,

{F
(r)
a;i,j}1≤a<m+1,1≤i≤µa+1,1≤j≤µa,r>s

µ
b,a

of Y ℓ
1|n(σ) are mapped to the elements of U(p) with the same names. In particular,

these elements of U(p) are m-invariants and they generate Wπ.
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The rest of this article is devoted to prove Theorem 9.1. We shall prove it by
induction on the number ℓ − t, where ℓ is the length of the bottom row and t is
the length of the top row of π.

The initial step ℓ = t was established in [BR]; see also [Pe2] for an approach
similar to our setting here. In this case, the pyramid is of rectangular shape so
the associated shift matrix is the zero matrix. Hence the shifted super Yangian is
the whole super Yangian Y1|n itself, and its quotient is exactly the truncated super
Yangian Y ℓ

1|n.

By [Pe2, Theorem 4.3], the map γ sending t
(r)
i,j ∈ Y

ℓ
1|n to T

(r)
i,j;0 ∈ Wπ defined by

(8.5) is an isomorphism of filtered superalgebras. By Lemma 8.1 and Theorem 8.2,
the images of the parabolic generators

{D
(r)
1 , D

(r)
2;i,j, E

(s)
1;1,j, F

(s)
1;i,1 | 1 ≤ i, j ≤ n, r ≥ 0, s ≥ 1}

in Y ℓ
1|n under γ are exactly the elements in Wπ with the same name, which proves

the initial step of the induction argument.
Now we assume that our signed pyramid π is not a rectangle so ℓ − t > 0 and

ℓ ≥ 2 (ℓ=1 must be a rectangle). The first reduction is that it suffices to prove the
case where µ is a minimal admissible shape for the shift matrix σ associated to π,
by induction on the length of the shape and Lemma 3.6. Therefore, we assume
from now on that µ is a minimal admissible shape for σ and we denote by β the
absolute column height of the shortest column of π. Since π is a pyramid, we know
that either β = |q1| or β = |ql|, and we discuss them case-by-case.

• case R: |q1| ≥ |qℓ| = β.
• case L: |q1| = β < |qℓ|.

We will explain the proof of case R in detail and sketch the proof of case L,
which can be obtained by a very similar argument. Our approach is similar to
[BK2]. Recall that we numbered the boxes of π using the index set I := {1 <
. . . < M < 1 < . . . < N} in the standard way: down columns from left to right,
where i (respectively, i) stands for the boxes assigned with + (respectively, −).

Let π̇ be the pyramid obtained by removing the rightmost column of π, i.e.
removing the boxes numbered with N − β + 1, N − β + 2, . . . , N of π. Let σ̇ =
(ṡi,j)1≤i,j≤n+1 be the shift matrix defined by (4.5) where its associated pyramid is
π̇. Define ṗ, ṁ and ė in ġ = glM |N−β according to (7.1) and (7.3) and let χ̇ : ṁ→ C

be the character x 7→ (x, ė).

Let Ḋ
(r)
a;i,j , Ḋ

′(r)
a;i,j, Ė

(r)
a;i,j and Ḟ

(r)
a;i,j denote the elements of U(ṗ) as defined in §8

associated to the same shape µ. Note that µ is an admissible shape for both σ and
σ̇. By the induction hypothesis, Theorem 9.1 holds for π̇, so the following elements
of U(ṗ) are invariant under the twisted action of ṁ, i.e. they belong to the finite
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W -superalgebra Wπ̇ = U(ṗ)ṁ:

{Ḋ
(r)
a;i,j} and {Ḋ

′(r)
a;i,j} for 1 ≤ a ≤ m+ 1, 1 ≤ i, j ≤ µa and r > 0;

{Ė
(r)
a;i,j} for 1 ≤ a ≤ m, 1 ≤ i ≤ µa, 1 ≤ j ≤ µa+1 and r > sµa,a+1 − δa,m;

{Ḟ
(r)
a;i,j} for 1 ≤ a ≤ m, 1 ≤ i ≤ µa+1, 1 ≤ j ≤ µa and r > sµa+1,a.

We embed U(ġ) into U(g) such that the generators ẽij of U(ġ) defined from π̇
are mapped to the generators ẽij of U(g) defined from π, for all i, j in the index

set İ := {1, . . . ,M, 1, . . . , N − β}. It also embeds U(ṗ) into U(p) and ṁ into m.
Moreover, the character χ̇ of ṁ is the restriction of the character χ of m and hence
the twisted action of ṁ on U(ṗ) is the restriction of the twist action of m on U(p).

The next crucial lemma gives the relations between the elements D
(r)
a;i,j, E

(r)
a;i,j ,

F
(r)
a;i,j of U(p) and the elements Ḋ

(r)
a;i,j, Ė

(r)
a;i,j , Ḟ

(r)
a;i,j of U(ṗ).

Lemma 9.2. The following equations hold for r > 0, all admissible a, i, j and any
fixed 1 ≤ h ≤ β:

D
(r)
a;i,j = Ḋ

(r)
a;i,j

+ δa,m+1

(
−

β∑

k=1

Ḋ
(r−1)
a;i,k ẽN−β+k,N−β+j + [Ḋ

(r−1)
a;i,h , ẽN−2β+h,N−β+j]

)
, (9.1)

E
(r)
a;i,j = Ė

(r)
a;i,j + δa,m

(
−

β∑

k=1

Ė
(r−1)
a;i,k ẽN−β+k,N−β+j + [Ė

(r−1)
a;i,h , ẽN−2β+h,N−β+j]

)
,

(9.2)

F
(r)
a;i,j = Ḟ

(r)
a;i,j , (9.3)

where for (9.2) we are assuming that r > sµm,m+1 if a = m.

Proof. It follows from Theorem 8.2 and the explicit form of the elements T
(r)
i,j;x from

(8.5). �

In the next several lemmas we will use the above inductive descriptions and the

induction hypothesis to show that the elements D
(r)
a;i,j , E

(r)
a;i,j and F

(r)
a;i,j of U(p) are

m-invariants for the appropriate r’s.

Lemma 9.3. The following elements of U(p) are m-invariant:

(i) D
(r)
a;i,j and D

′(r)
a;i,j for 1 ≤ a ≤ m, 1 ≤ i, j ≤ µa and r > 0;

(ii) E
(r)
a;i,j for 1 ≤ a < m, 1 ≤ i ≤ µa, 1 ≤ j ≤ µa+1 and r > sµa,a+1;

(iii) F
(r)
a;i,j for 1 ≤ a ≤ m, 1 ≤ i ≤ µa+1, 1 ≤ j ≤ µa and r > sµa+1,a.

Proof. By Lemma 9.2 and the definitions of D
′(r)
a;i,j and Ḋ

′(r)
a;i,j, all these elements of

U(p) coincide with the corresponding elements of U(ṗ). By the induction hypothe-
sis, they are ṁ-invariant. Hence it is enough to show that they are invariant under
the twisted action of all ẽf,g in ṁc, which means the vector space complement of ṁ
in m. One should note that ẽf,g ∈ ṁc if and only if g ≤ N − β < f ≤ N .
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By Theorem 8.2 and the explicit form of (8.5), all these elements under our
consideration are linear combinations of supermonomials of the form ẽi1,j1 · · · ẽir ,jr
in U(ṗ) with is ∈ İ and 1 ≤ js ≤ N − 2β for all s = 1, . . . , r.

By the fact that χ(ẽf,g) = 0 for all g ≤ N − 2β and N − β < f ≤ N , one may
prove that all such supermonomials are invariant under the twisted action of all
ẽf,g ∈ mc and our assertion follows. �

Lemma 9.4. The following elements of U(p) are ṁ-invariant under the twisted
action:

(1) D
(r)
m+1;i,j for 1 ≤ i, j ≤ µm+1 and r > 0.

(2) E
(r)
m;i,j for 1 ≤ i ≤ µm, 1 ≤ j ≤ µm+1 and r > sµm,m+1.

Proof. (1) Let x ∈ ṁ. By (9.1), we have

D
(r)
m+1;i,j = Ḋ

(r)
m+1;i,j −

β∑

k=1

Ḋ
(r−1)
m+1;i,kẽN−β+k,N−β+j + [Ḋ

(r−1)
m+1;i,h, ẽN−2β+h,N−β+j].

Note that [x, ẽN−β+k,N−β+j] = 0 = [x, ẽN−2β+h,N−β+j]. Using this and the induction

hypothesis, one can show that prχ([x,D
(r)
m+1;i,j ]) = 0. (2) can be derived in a similar

way. �

Lemma 9.5. (1) D
(1)
m+1;i,j is ṁc-invariant for 1 ≤ i, j ≤ µm+1.

(2) Suppose sµm,m+1 = 1. Then D
(2)
m+1;i,j is ṁc-invariant for 1 ≤ i, j ≤ µm+1.

(3) Suppose sµm,m+1 = 1. Then E
(2)
m;i,j is ṁc-invariant for 1 ≤ i ≤ µm and

1 ≤ j ≤ µm+1.

Proof. (1) By (9.1), Theorem 8.2 and (8.5), we have

D
(1)
m+1;i,j = Ḋ

(1)
m+1;i,j − ẽN−β+i,N−β+j =

∑

row(pk)=µ1+...+µm+i
row(qk)=µ1+...+µm+j

col(pk)=col(qk)=k
1≤k≤ℓ−1

(−ẽpk ,qk)− ẽN−β+i,N−β+j.

Let ẽf,g ∈ ṁc, hence g ≤ N − β < f ≤ N .
If row(g) 6= µ1+. . .+µm+i, then [ẽf,g,−

∑
ẽpk,qk ] = 0 since g 6= pk and f 6= qk for

any pk, qk appearing in the sum. Also, [ẽf,g, ẽN+β−i,N+β−j] = −δf,N−β+j ẽN−β+i,g,

which belongs to the kernel of χ by (8.4). In this case, prχ([ẽf,g, D
(1)
m+1;i,j]) = 0.

Assume from now on that row(g)=µ1 + . . . + µm + i. Then g equals exactly
one pk appearing in the sum and hence [ẽf,g,−

∑
ẽpk,qk ] = −ẽf,qk for a certain

1 ≤ k ≤ ℓ − 1, and it belongs to the kernel of χ unless col(qk)=ℓ − 1 by (8.4).
Also, [ẽf,g, ẽN+β−i,N+β−j] = −δf,N−β+j ẽN−β+i,g, which belongs to the kernel of χ

except that col(g)=ℓ − 1. Thus, [ẽf,g, D
(1)
m+1;i,j] belongs to the kernel of χ unless

col(g)=ℓ− 1 and row(g)=µ1 + . . .+µm + i, and this exception happens only when
g = N − 2β + i.

Therefore, we directly compute that

[ẽf,N−2β+i, D
(1)
m+1;i,j] = −ẽf,N−2β+j + δf,N−β+j ẽN−β+i,N−2β+i,
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which belongs to the kernel of χ by (8.4). As a result, D
(1)
m+1;i,j is ṁ

c-invariant.
(2) and (3) can be derived similarly, although the computations are more in-

volved. �

Lemma 9.6. Suppose that sµm,m+1 = 1. Then the following identities hold in U(p)
for r > 1:

(1)

E
(r+1)
m;i,j = (−1)pa(m)[D

(2)
m;i,g, E

(r)
m;g,j]−

µm∑

f=1

D
(1)
m;i,fE

(r)
m;f,j ,

(2)

D
(r+1)
m+1;i,j = (−1)pa(m)[F

(2)
m;i,g, E

(r)
m;g,j]−

r+1∑

t=1

D
(r+1−t)
m+1;i,jD

′(r)
m;g,g .

Proof. There are two possibilities here: either m = 1 and µ = (1 | β), or m > 1
and µ = (1 |µ2, . . . , µm, β). Assume that m > 1. We prove (2) in detail, where (1)
can be proved using exactly the same method.

By the induction hypothesis and defining relation (3.12), we have

[Ḟ
(2)
m;i,g, Ė

(r)
m;g,j] = −(

r+1∑

t=0

Ḋ
(r+1−t)
m+1;i,j Ḋ

′(t)
m;g,g) = −Ḋ

(r+1)
m+1;i,j −

r+1∑

t=1

Ḋ
(r+1−t)
m+1;i,j Ḋ

′(t)
m;g,g. (9.4)

By Lemma 9.2, we have

E
(r)
m;g,j = Ė

(r)
m;g,j −

β∑

k=1

Ė
(r−1)
m;g,k ẽN−β+k,N−β+j + [Ė

(r−1)
m;g,h , ẽN−2β+h,N−β+j]. (9.5)

Now bracket (9.5) with F
(2)
m;i,g = Ḟ

(2)
m;i,g. Note that no supermonomial in the expan-

sion of Ḟ
(2)
m;i,g contains any matrix unit of the forms ẽ?,N−β+h, ẽN−β+h,? or ẽN−2β+h,?.

As a result, [
˙

F
(2)
m;i,g, ẽN−β+j,N−β+k] = [

˙
F

(2)
m;i,g, ẽN−2β+h,N−β+j] = 0.
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Using (9.4) and (9.1) twice, we obtain

[F
(2)
m;i,g, E

(r)
m;g,j] = [Ḟ

(2)
m;i,g, Ė

(r)
m;g,j]−

β∑

k=1

[Ḟ
(2)
m;i,g, Ė

(r−1)
m;g,k ]ẽN−β+k,N−β+j

+
[
[F

(2)
m;i,g, E

(r−1)
m;g,h ], ẽN−2β+h,N−β+j

]

= −Ḋ
(r+1)
m+1;i,j −

r+1∑

t=1

Ḋ
(r+1−t)
m+1;i,j Ḋ

′(t)
m;g,g

+

β∑

k=1

Ḋ
(r)
m+1;i,kẽN−β+k,N−β+j +

β∑

k=1

r∑

t=1

Ḋ
(r−t)
m+1;i,kḊ

′(t)
m;g,gẽN−β+k,N−β+j

− [Ḋ
(r)
m+1;i,h, ẽN−2β+h,N−β+j]−

r∑

t=1

[Ḋ
(r−t)
m+1;i,hḊ

′(t)
m;g,g, ẽN−2β+h,N−β+j]

= −
r∑

t=1

Ḋ
(r+1−t)
m+1;i,j Ḋ

′(t)
m;g,g +

r∑

t=1

β∑

k=1

Ḋ
(r−t)
m+1;i,kḊ

′(t)
m;g,gẽN−β+k,N−β+j

−
r∑

t=1

[Ḋ
(r−t)
m+1;i,hḊ

′(t)
m;g,g, ẽN−2β+h,N−β+j]−D

(r+1)
m+1;i,j − Ḋ

(0)
m+1;i,jḊ

′(r+1)
m;g,g

= −D
(r+1)
m+1;i,j −

r+1∑

t=1

D
(r+1−t)
m+1;i,j Ḋ

′(t)
m;g,g

Thus D
(r+1)
m+1;i,j = −[F

(2)
m;i,g, E

(r)
m;g,j]−

∑r+1
t=1 D

(r+1−t)
m+1;i,j Ḋ

′(t)
m;g,g for m > 1.

The case for m = 1 is exactly the same, except that the E1’s and F1’s are odd
elements. �

Lemma 9.7. Suppose sµm,m+1 = 1. Then

(1) D
(r)
m+1;i,j are m-invariant for all r ≥ 0 and 1 ≤ i, j ≤ µm+1.

(2) E
(r)
m;i,j are m-invariant for all r > 1 and 1 ≤ i ≤ µm, 1 ≤ j ≤ µm+1.

Proof. These elements are known to be ṁ-invariant by Lemma 9.4. Hence it suffices
to show that they are ṁc-invariant. By Lemma 9.5, Lemma 9.6 and induction on
r, the statement follows. �

Lemma 9.8. Suppose that sµm,m+1 > 1. Then the following elements are invariant
under the twisted action of ẽN−β+f,N−2β+g for all 1 ≤ f, g ≤ β.

(1) D
(r)
m+1;i,j for all r ≥ 2 and 1 ≤ i, j ≤ µm+1.

(2) E
(r)
m;i,j for all r > sµm,m+1 and 1 ≤ i ≤ µm, 1 ≤ j ≤ µm+1.

Proof. (1) Let π̈ be the pyramid obtained by deleting the rightmost two columns
of π. Define p̈, m̈ and ë ∈ glM |N−2β as before, and embed U(g̈) into U(ġ) as we

embed U(ġ) into U(g). By the induction hypothesis, the elements D̈
(r)
m+1;i,j in Wπ̈

are m̈-invariant.
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Assuming r ≥ 2 and applying Lemma 9.1 to π, we have

D
(r)
m+1;i,j = Ḋ

(r)
m+1;i,j −

β∑

k=1

Ḋ
(r−1)
m+1;i,kẽN−β+k,N−β+j + [Ḋ

(r−1)
m+1;i,h, ẽN−2β+h,N−β+j] (9.6)

Applying Lemma 9.1 to π̇, we obtain

Ḋ
(r)
m+1;i,j = D̈

(r)
m+1;i,j−

β∑

k=1

D̈
(r−1)
m+1;i,kẽN−2β+k,N−2β+j+[D̈

(r−1)
m+1;i,h, ẽN−3β+h,N−2β+j] (9.7)

Substituting (9.7) into (9.6) and simplifying by (8.3), one deduces that for all

r ≥ 2, D
(r)
m+1;i,j = A−B + C −D + E − F −G+H , where

A = D̈
(r)
m+1;i,j , B =

β∑

k=1

D̈
(r−1)
m+1;i,kẽN−2β+k,N−2β+j,

C = [D̈
(r−1)
m+1;i,h, ẽN−3β+h,N−2β+j], D =

β∑

k=1

D̈
(r−1)
m+1;i,kẽN−β+k,N−β+j

E =

β∑

k,s=1

D̈
(r−2)
m+1;i,sẽN−2β+s,N−2β+kẽN−β+k,N−β+j, F =

β∑

k=1

D̈
(r−2)
m+1;i,kẽN−2β+k,N−β+j,

G =

β∑

k=1

[D̈
(r−2)
m+1;i,h, ẽN−3β+h,N−2β+k]ẽN−β+k,N−β+j, H = [D̈

(r−2)
m+1;i,g, ẽN−3β+g,N−β+j].

Let x = ẽN−β+f,N−2β+g for some 1 ≤ f, g ≤ β. Note that x commutes with all
elements in U(p̈). Applying ad x to the above elements and using (8.1), (8.3) and
(8.4), we obtain their images under prχ as follows:

prχ([x,A]) = 0, prχ([x,B]) = δfjD̈
(r−1)
m+1;i,g,

prχ([x, C]) = 0, prχ([x,D]) = −δfjD̈
(r−1)
m+1;i,g,

prχ([x, E]) = −βδfjD̈
(r−2)
m+1;i,g + D̈

(r−2)
m+1;i,gẽN−β+f,N−β+j

− δfj

β∑

k=1

D̈
(r−2)
m+1;i,kẽN−2β+k,N−2β+g,

prχ([x, F ]) = −βδfjD̈
(r−2)
m+1;i,g + D̈

(r−2)
m+1;i,gẽN−β+f,N−β+j

− δfj

β∑

k=1

D̈
(r−2)
m+1;i,kẽN−2β+k,N−2β+g,

prχ([x,G]) = −δfj [D̈
(r−2)
m+1;i,h, ˜eN−3β+h,N−2β+g],

prχ([x,H ]) = −δfj [D̈
(r−2)
m+1;i,h, ẽN−3β+h,N−2β+g].

As a result, prχ([x,D
(r)
m+1;i,j ]) = 0.

(2) can be proved by a similar method. �
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Proposition 9.9. The elements

{D
(r)
a;i,j}1≤a≤m+1,1≤i,j≤µa,r>0,

{E
(r)
a;i,j}1≤a<m+1,1≤i≤µa,1≤j≤µa+1,r>s

µ
a,b
,

{F
(r)
a;i,j}1≤a<m+1,1≤i≤µa+1,1≤j≤µa,r>s

µ
b,a

of U(p) are m-invariant.

Proof. By the induction hypothesis and Lemma 9.3–Lemma 9.8. �

Proposition 9.9 implies that the elements in the description of Theorem 9.1 are
indeed elements of Wπ. By the induction hypothesis, we may identify Y ℓ−1

1|n (σ̇) with

Wπ̇ ⊆ U(ṗ) and hence the generators Ḋ
(r)
a:i,j, Ė

(r)
a;i,j and Ḟ

(r)
a;i,j in Y ℓ−1

1|n (σ̇) coincide

with the elements of Wπ̇ with the same name. Recall the injective superalgebra
homomorphism ∆R : Y ℓ

1|n(σ)→ U(ṗ)⊗ U(glβ) in Theorem 6.3.
By Corollary 7.8, for each d ≥ 0, we have

dim∆R(FdY
ℓ
1|n(σ)) = dimFdY

ℓ
1|n(σ) = dimFdS(g

e), (9.8)

where FdS(g
e) is the sum of all graded elements in S(ge) of degree ≤ d in the

Kazhdan grading.

Define the general parabolic generators E
(r)
a,b;i,j and F

(r)
ab,;i,j in FrU(p) by formulae

(3.19) and (3.20) recursively, choosing an arbitrary integer k there. Let Xd denote
the subspace of U(p) spanned by all supermonomials in the elements

{D
(r)
a;i,j}1≤a≤m+1,1≤i,j≤µa,0≤r≤s

µ
a,a
,

{E
(r)
a,b;i,j}1≤a<b≤m+1,1≤i≤µa,1≤j≤µb,s

µ
a,b

<r≤s
µ
a,b

+p
µ
a
,

{F
(r)
a,b;i,j}1≤b<a≤m+1,1≤i≤µa,1≤j≤µb,s

µ
a,b

<r≤s
µ
a,b

+p
µ
a
.

taken in some fixed order and of total degree ≤ d. By Proposition 9.9, Xd is a
subspace of FdWπ.

Define a superalgebra homomorphism ψR : U(p)→ U(ṗ)⊗ U(glβ) by

ψR(ẽi,j) :=





ẽi,j ⊗ 1 if col(i) ≤ col(j) ≤ ℓ− 1,
0 if col(i) ≤ ℓ− 1, col(j) = ℓ,
1⊗ ẽi−N+β,j−N+β if col(i) = col(j) = ℓ.

By Lemma 9.2, we have

ψR(D
(r)
a;i,j) = Ḋ

(r)
a;i,j ⊗ 1− δa,m+1

β∑

k=1

Ḋ
(r−1)
a;i,k ⊗ ẽk,j,

ψR(E
(r)
a;i,j) = Ė

(r)
a;i,j ⊗ 1− δa,m

β∑

k=1

Ė
(r−1)
a;i,k ⊗ ẽk,j,

ψR(F
(r)
a;i,j) = Ḟ

(r)
a;i,j ⊗ 1.
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Comparing this with Theorem 4.2(1 ) and recalling the PBW basis for Y ℓ
1|n(σ)

obtained from Corollary 6.4, we deduce that ψR(Xd) = ∆R(FdY
ℓ
1|n(σ)). Combining

this with (9.8) and Corollary 7.8, we obtain

dimFdS(g
e) = dimψR(Xd) ≤ dimXd ≤ dimFdWπ ≤ dimFdS(g

e).

Thus equality holds everywhere so we have Xd = FdWπ for each d ≥ 0, and
in particular, the map ψR : Wπ → U(ṗ) ⊗ glβ is an injective homomorphism.

Moreover, recall the map ∆R : Y ℓ
1|n(σ) → U(ṗ) ⊗ glβ defined in Theorem 4.2(1 ).

Comparing the formulae, we have that ψR(D
(r)
a;i,j) = ∆R(D

(r)
a;i,j), where the elements

D
(r)
a;i,j on the left-hand side are the elements of Wπ, and the elements D

(r)
a;i,j on the

right-hand side are the generators of Y ℓ
1|n(σ). Similarly, ψR(E

(r)
a;i,j) = ∆R(E

(r)
a;i,j) and

ψR(F
(r)
a;i,j) = ∆R(F

(r)
a;i,j) for all admissible a, i, j, r.

Therefore, the composition map ψ−1
R ◦∆R : Y ℓ

1|n(σ)→Wπ is exactly the filtered
superalgebra isomorphism described in Theorem 9.1 and the elements listed in
Theorem 9.1 indeed generate Wπ. This proves Theorem 9.1 in the case R.

Next we sketch how to complete the induction step in the case L. In this case, we
enumerate the bricks of π down columns from right to left. Note that different ways
of enumerating are just choosing different bases to describe glM |N

∼= End(CM |N)
so we may choose the way most suitable for our current purpose.

Let π̇ denote the pyramid obtained from π by deleting the left-most column of
π; that is, deleting the bricks numbered with N,N−1, . . . , N−β+1. Let σ̇ be the
shift matrix obtained from (4.6), where the corresponding pyramid is exactly π̇,
and define ṗ, ṁ, ė ∈ ġ := glM |N−β via (7.1) and (7.3) with respect to π̇. Note that
in this case we embed U(ġ) into U(g) by the natural embedding, since it already
sends the elements ẽij of U(ġ) to the elements ẽij of U(g) for all 1 ≤ i, j ≤ N − β.

Under this embedding, the superalgebra Wπ̇ = U(ṗ)ṁ is a subalgebra of U(ṗ) ⊂
U(p) and the twisted action of ṁ on U(ṗ) is exactly the restriction of the twisted

action of m on U(p). Let Ḋ
(r)
a;i,j, Ḋ

′(r)
a;i,j, Ė

(r)
a;i,j and Ḟ

(r)
a;i,j denote the elements of U(ṗ)

as defined in §8 associated to the shape µ which is also admissible for σ̇. By the
induction hypothesis, these elements are ṁ-invariant.

The idea is exactly the same. By the following crucial lemma, which is the

analogue of Lemma 9.2, we may express the elements D
(r)
a;i,j , D

′(r)
a;i,j, E

(r)
a;i,j and F

(r)
a;i,j

in U(p) in terms of Ḋ
(r)
a;i,j , Ḋ

′(r)
a;i,j, Ė

(r)
a;i,j and Ḟ

(r)
a;i,j . Then by case-by-case discussions

and computations, we can prove that all of the D
(r)
a;i,j, D

′(r)
a;i,j, E

(r)
a;i,j and F

(r)
a;i,j are

indeed m-invariant. Since the arguments are almost identical, we will only provide
the most crucial lemma below, where the proof is exactly the same.
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Lemma 9.10. The following equations hold for r > 0, all admissible a, i, j and
any fixed 1 ≤ h ≤ β:

D
(r)
a;i,j = Ḋ

(r)
a;i,j

+ δa,m+1

(
−

β∑

k=1

ẽN−β+i,N−β+kḊ
(r−1)
a;k,j + [ẽN−β+i,N−2β+h, Ḋ

(r−1)
a;h,j ]

)
, (9.9)

E
(r)
a;i,j = Ė

(r)
a;i,j, (9.10)

F
(r)
a;i,j = Ḟ

(r)
a;i,j + δa,m

(
−

β∑

k=1

ẽN−β+i,N−β+kḞ
(r−1)
a;k,j + [ẽN−β+i,N−2β+h, Ḟ

(r−1)
a;h,j ]

)
,

(9.11)

where for (9.11) we are assuming that r > sµm+1,m if a = m.

With the help of Lemma 9.10, one can deduce that the statement of Proposi-
tion 9.9 still holds in the case L. Finally, define a superalgebra homomorphism
ψL : U(p)→ U(glβ)⊗ U(ṗ) by

ψL(ẽi,j) :=





ẽi−N+β,j−N+β ⊗ 1 if col(i) = col(j) = 1,
0 if col(i) = 1, col(j) ≥ 2,
1⊗ ẽi,j if 2 ≤ col(i) ≤ col(j).

By Lemma 9.10, we have that

ψL(D
(r)
a;i,j) = 1⊗ Ḋ

(r)
a;i,j − δa,m+1

β∑

k=1

ẽi,k ⊗ Ḋ
(r−1)
a;k,j

ψL(E
(r)
a;i,j) = 1⊗ Ė

(r)
a;i,j ,

ψL(F
(r)
a,ji,j) = 1⊗ Ḟ

(r)
a;i,j − δa,m

β∑

k=1

ẽi,k ⊗ Ḟ
(r−1)
a;k,j .

Exactly the same argument as in the case R shows that the map ψL is injective
and the composition map ψ−1

L ◦∆L : Y ℓ
1|n(σ)→Wπ gives the required isomorphism

of filtered superalgebras. This completes the proof of Theorem 9.1.

Corollary 9.11. Let π be a signed pyramid satisfying (7.7) and ~π be another signed
pyramid obtained by horizontally shifting rows of π. Let Wπ and W~π denote the
associated finite W -superalgebras, respectively. Then there exists a superalgebra
isomorphism ι : Wπ → W~π defined on parabolic generators with respect to an
admissible shape µ by (2.20).

Proof. Follows from Theorem 9.1 and (6.4). �

Remark 9.12. In the classical (non-super) case, the definition of a finite W -
algebra is independent of the choices of the good Z-gradings [BG]. Under certain
mild assumption, which is satisfied in our current case, such a phenomenon is
generalized to the Lie superalgebra case [Zh, Theorem 3.7, Remark 3.11], and our
Corollary 9.11 is included as a special case.
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