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Abstract—Existing approaches to online convex optimization
make sequential one-slot-ahead decisions, which lead to (possibly
adversarial) losses that drive subsequent decision iterates. Their
performance is evaluated by the so-called regret that measures the
difference of losses between the online solution and the best yet fixed
overall solution in hindsight. The present paper deals with online
convex optimization involving adversarial loss functions and adver-
sarial constraints, where the constraints are revealed after making
decisions, and can be tolerable to instantaneous violations but must
be satisfied in the long term. Performance of an online algorithm in
this setting is assessed by the difference of its losses relative to the
best dynamic solution with one-slot-ahead information of the loss
function and the constraint (that is here termed dynamic regret);
and the accumulated amount of constraint violations (that is here
termed dynamic fit). In this context, a modified online saddle-point
(MOSP) scheme is developed, and proved to simultaneously yield
sublinear dynamic regret and fit, provided that the accumulated
variations of per-slot minimizers and constraints are sublinearly
growing with time. MOSP is also applied to the dynamic network
resource allocation task, and it is compared with the well-known
stochastic dual gradient method. Numerical experiments demon-
strate the performance gain of MOSP relative to the state of the art.

Index Terms—Constrained optimization, primal-dual method,
online convex optimization, network resource allocation.

I. INTRODUCTION

ONLINE convex optimization (OCO) is an emerging
methodology for sequential inference with well docu-

mented merits especially when the sequence of convex costs
varies in an unknown and possibly adversarial manner [2]–
[4]. Starting from the seminal papers [2] and [3], most of the
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early works evaluate OCO algorithms with a static regret, which
measures the difference of costs (a.k.a. losses) between the on-
line solution and the overall best static solution in hindsight.
If an algorithm incurs static regret that increases sub-linearly
with time, then its performance loss averaged over an infinite
time horizon goes to zero; see also [4], [5], and references
therein.

However, static regret is not a comprehensive performance
metric [6]. Take online parameter estimation as an example.
When the true parameter varies over time, a static benchmark
(time-invariant estimator) itself often performs poorly so that
achieving sub-linear static regret is no longer attractive. Recent
works [6]–[9] extend the analysis of static regret to that of dy-
namic regret, where the performance of an OCO algorithm is
benchmarked by the best dynamic solution with a-priori infor-
mation on the one-slot-ahead cost function. Sub-linear dynamic
regret is proved to be possible, if the dynamic environment
changes slow enough for the accumulated variation of either
costs or per-slot minimizers to be sub-linearly increasing with
respect to the time horizon. When the per-slot costs depend on
previous decisions, the so-termed competitive difference can be
employed as an alternative of the static regret [10], [11].

The aforementioned works [6]–[11] deal with dynamic costs
focusing on problems with time-invariant constraints that must
be strictly satisfied, but do not allow for instantaneous violations
of the constraints. The long-term effect of such instantaneous
violations was studied in [12], where an online algorithm with
sub-linear static regret and sub-linear accumulated constraint vi-
olation was also developed. The regret bounds in [12] have been
improved in the discrete time domain [13] and the continuous
time domain [14], respectively. Decentralized optimization with
consensus constraints, as a special case of having long-term but
time-invariant constraints, has been studied in [15]–[17]. Nev-
ertheless, [12]–[17] do not deal with OCO under time-varying
adversarial constraints.

In this context, the present paper considers OCO with time-
varying constraints that must be satisfied in the long term. Under
this setting, the learner first takes an action without knowing a-
priori either the adversarial cost or the time-varying constraint,
which are revealed by the nature subsequently. Its performance
is evaluated by: i) dynamic regret that is the optimality loss
relative to a sequence of instantaneous minimizers with known
costs and constraints; and, ii) dynamic fit that accumulates con-
straint violations incurred by the online learner due to the lack
of knowledge about future constraints. We compare the OCO
setting here with those of existing works in Table I.

We further introduce a modified online saddle-point (MOSP)
method in this novel OCO framework, where the learner deals
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TABLE I
A SUMMARY OF RELATED WORKS ON DISCRETE TIME OCO

with time-varying costs as well as time-varying but long-term
constraints. We analytically establish that MOSP simultane-
ously achieves sub-linear dynamic regret and fit, provided that
the accumulated variations of both minimizers and constraints
grow sub-linearly with time. This result provides valuable in-
sights for OCO with long-term constraints: When the dynamic
environment comprising both costs and constraints does not
change on average, and the order of variations is known, the
online decisions provided by MOSP are as good as the best
dynamic solution over a long time horizon.

To demonstrate the impact of these results, we further ap-
ply the proposed MOSP approach to a dynamic network re-
source allocation task, where online management of resources
is sought without knowing future network states. Existing al-
gorithms include first- and second-order methods in the dual
domain [18]–[23], which are tailored for time-invariant deter-
ministic formulations. To capture the temporal variations of
network resources, stochastic formulation of network resource
allocation has been extensively pursued since the seminal work
of [24]; see also the celebrated stochastic dual gradient method
in [25], [26]. These stochastic approximation-based approaches
assume that the time-varying costs are i.i.d. or generally samples
from a stationary ergodic stochastic process [27], [28]. How-
ever, performance of most stochastic schemes is established in
an asymptotic sense, considering the ensemble of per slot aver-
ages or infinite samples across time. Clearly, stationarity may not
hold in practice, especially when the stochastic process involves
human participation. Inheriting merits of the OCO framework,
the proposed MOSP approach operates in a fully online mode
with only information at previous time slots, and further ad-
mits finite-sample performance analysis under a sequence of
deterministic, or even adversarial costs and constraints within a
budget of temporal variation.

Relative to existing works, the main contributions of the
present paper are summarized as follows.

c1) We generalize the standard OCO framework with only
adversarial costs in [2]–[5] to account for both adver-
sarial costs and constraints. Different from the regret
analysis in [12]–[16], performance here is established
relative to the best dynamic benchmark, via metrics that
we term dynamic regret and fit.

c2) We develop a MOSP algorithm to tackle this novel OCO
problem, and analytically establish that MOSP yields si-
multaneously sub-linear dynamic regret and fit, provided
that the accumulated variations of per-slot minimizers
and constraints are known to grow sub-linearly with time.

c3) Our novel approach is tailored for online resource allo-
cation tasks, where MOSP is compared with the popular
stochastic dual gradient approach. Relative to the
latter, MOSP remains operational in a broader practical

setting without probabilistic assumptions. Numerical
tests demonstrate the gain of MOSP over existing
alternatives.

Notation: E denotes expectation, P stands for probability,
(·)� stands for vector and matrix transposition, and ‖x‖ denotes
the �2-norm of a vector x. Inequalities for vectors, e.g., x >
0, are defined entry-wise. The positive projection operator is
defined as [a]+ := max{a,0}, also entry-wise. The indicator
function 1{A} takes value 1 when the event A happens, and 0
otherwise.

II. OCO WITH LONG-TERM TIME-VARYING CONSTRAINTS

In this section, we introduce the generic OCO formulation
with long-term time-varying constraints, along with pertinent
metrics to evaluate an OCO algorithm.

A. Problem Formulation

We begin with the classical OCO setting, where constraints
are time-invariant and must be strictly satisfied. OCO can be
viewed as a repeated game between a learner and nature [2]–
[4]. Consider that time is discrete and indexed by t. Per slot t, a
learner selects an action xt from a convex set X ⊆ RI , and sub-
sequently nature chooses a (possibly adversarial) loss function
ft(·) : RI → R through which the learner incurs a loss ft(xt).
The convex set X is a-priori known and fixed over the entire
time horizon. Although this standard OCO setting is appealing
to various applications such as online regression and classifi-
cation [2]–[4], it does not account for potential variations of
(possibly unknown) constraints, and does not deal with con-
straints that can possibly be satisfied in the long term rather
than a slot-by-slot basis. Online optimization with time-varying
and long-term constraints is motivated for applications such as
navigation, tracking, localization, and resource allocation [14],
[25], [26], [29], [30]. Taking resource allocation as an exam-
ple, time-varying long-term constraints are usually imposed to
tolerate instantaneous violations when available resources can-
not satisfy user requests, and hence allow flexible adaptation of
online decisions to temporal variations of resource availability.

To broaden the applicability of OCO to these scenarios, we
consider that per slot t, a learner selects an action xt from a
known and fixed convex set X ⊆ RI , and then nature reveals
not only a loss function ft(·) : RI → R but also a time-varying
(possibly adversarial) penalty function gt(·) : RI → RI . This
function leads to a time-varying constraint gt(x) ≤ 0, which
is driven by the unknown dynamics in various applications,
e.g., on-demand data request arrivals in resource allocation.
Different from the known and fixed set X , the time-varying
constraint gt(x) ≤ 0 can vary arbitrarily or even adversarially
from slot to slot. It is revealed after the learner makes her/his
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decision, and is hence hard to be satisfied in every time slot.
This is indeed a major difference when comparing to settings
where the time-varying constraints are revealed before making
decisions. Therefore, the goal in this context is to find a sequence
of online solutions {xt ∈ X} that minimize the aggregate loss,
and ensures that the constraints {gt(xt) ≤ 0} are satisfied in the
long-term on average. Specifically, we aim to solve the following
online optimization problem

min
{xt ∈X ,∀t}

T∑

t=1

ft(xt) (1a)

s.t.
T∑

t=1

gt(xt) ≤ 0 (1b)

where T is the time horizon, xt ∈ RI is the decision variable, ft

is the cost function, gt := [g1
t , . . . , gI

t ]� denotes the constraint
function with ith entry gi

t : RI → R, and X ∈ RI is a convex
set. The formulation (1) extends the standard OCO framework
to accommodate adversarial time-varying constraints that must
be satisfied in the long term. Complemented by algorithm devel-
opment and performance analysis to be carried in the following
sections, the main contribution of the present paper is incorpo-
ration of long-term and time-varying constraints to markedly
broaden the scope of OCO.

B. Performance and Feasibility Metrics

Regarding performance of online decisions {xt}T
t=1 , static

regret is adopted as a metric by standard OCO schemes, under
time-invariant and strictly satisfied constraints. The static regret
measures the difference between the online loss of an OCO
algorithm and that of the best fixed solution in hindsight [2]–
[4]. Extending the definition of static regret over T slots to
accommodate time-varying constraints, it can be written as

Regs
T :=

T∑

t=1

ft(xt) −
T∑

t=1

ft(x∗) (2)

where the best static solution x∗ is obtained as

x∗ ∈ arg min
x∈X

T∑

t=1

ft(x) s. to gt(x) ≤ 0, ∀t. (3)

A desirable OCO algorithm in this case is the one yielding
a sub-linear regret [12], [13], meaning Regs

T = o(T ). Conse-
quently, limT →∞ Regs

T /T = 0 implies that the algorithm is “on
average” no-regret, or in other words, not worse asymptotically
than the best fixed solution x∗. Though widely used in various
OCO applications, the aforementioned static regret has several
limitations. For instance, it fails to capture the convergence of
online decisions {xt} relative to the fixed best solution x∗, since
small regrets can be also achieved by having ft(xt) oscillate
around ft(x∗) [14]. Even when the sub-linear static regret does
imply xt approaching x∗, targeting a rather coarse benchmark
may be less useful especially in dynamic settings. For instance,
[6, Example 2] shows that the gap between the best static and the
best dynamic benchmark can be as large as O(T ). Furthermore,
since the time-varying constraint gt(xt) ≤ 0 is not observed
before making a decision xt , its feasibility can not be checked
instantaneously.

In response to the quest for improved benchmarks in this
dynamic setup, two metrics are considered here: dynamic regret
and dynamic fit. The notion of dynamic regret (also termed
tracking regret or adaptive regret) has been recently introduced
in [6]–[9] to offer a competitive performance measure of OCO
algorithms under time-invariant constraints. We adopt it in the
setting of (1) by incorporating time-varying constraints

Regd
T :=

T∑

t=1

ft(xt) −
T∑

t=1

ft(x∗
t ) (4)

where the benchmark is now formed via a sequence of best
dynamic solutions {x∗

t} for the instantaneous cost minimization
problem subject to the instantaneous constraint, namely

x∗
t ∈ arg min

x∈X
ft(x) s.t. gt(x) ≤ 0. (5)

Clearly, the dynamic regret is always larger than the static regret
in (2), i.e., Regs

T ≤ Regd
T , because

∑T
t=1 ft(x∗) is always no

smaller than
∑T

t=1 ft(x∗
t ) according to the definitions of x∗

and x∗
t . Hence, a sub-linear dynamic regret implies a sub-linear

static regret, but not vice versa. The dynamic regret is suitable
for cases where the goal is to track the time-varying solutions;
e.g., AC power flow [31], and energy management policy [32].

To ensure feasibility of online decisions, the notion of dy-
namic fit is introduced to measure the accumulated violation
of constraints; under time-invariant long-term constraints [12],
[15] or under time-varying constraints [14]. It is defined as

FitdT :=

∥∥∥∥∥∥

[
T∑

t=1

gt(xt)

]+
∥∥∥∥∥∥

. (6)

Observe that the dynamic fit is zero if the accumulated
violation

∑T
t=1 gt(xt) is entry-wise less than zero. However,

enforcing
∑T

t=1 gt(xt) ≤ 0 is different from restricting
xt to meet gt(xt) ≤ 0 in each and every slot. While the
latter readily implies the former, the long-term (aggregate)
constraint allows adaptation of online decisions to the
environment dynamics; as a result, it is tolerable to have
gt(xt) ≥ 0 and gt+1(xt+1) ≤ 0. Note that the definition
of dynamic fit in (6) implicitly assumes that the instanta-
neous constraint violations can be compensated by the later
strictly feasible decisions. When this is the case for resource
allocation in power and cloud networks (see Section IV),
extra modifications are required to account for other type of
constraints, which go beyond the scope of the present paper.

An ideal algorithm in this broader OCO framework is the
one that achieves both sub-linear dynamic regret and sub-linear
dynamic fit. A sub-linear dynamic regret implies “no-regret”
relative to the clairvoyant dynamic solution on the long-term av-
erage; i.e., limT →∞ Regd

T /T = 0; and a sub-linear dynamic fit
indicates that the online strategy is also feasible on average; i.e.,
limT →∞ FitdT /T = 0. Unfortunately, the sub-linear dynamic re-
gret is not achievable in general, even under the special case of
(1) where the time-varying constraint is absent [6]. For this rea-
son, we aim at designing and analyzing an online strategy that
generates a sequence {xt}T

t=1 ensuring sub-linear dynamic re-
gret and fit, under mild conditions that must be satisfied by the
cost and constraint variations.
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III. MODIFIED ONLINE SADDLE-POINT (MOSP) METHOD

In this section, a modified online saddle-point method is de-
veloped to solve (1), and its performance and feasibility are
analyzed using the dynamic regret and fit metrics.

A. Algorithm Development

Consider now the per-slot problem (5), which contains the
current objective ft(x), the current constraint gt(x) ≤ 0, and
a time-invariant constraint set X . With λ ∈ RI

+ denoting the
Lagrange multiplier associated with the time-varying constraint,
the online (partial) Lagrangian of (5) can be expressed as

Lt(x,λ) := ft(x) + λ�gt(x) (7)

where x ∈ X remains implicit. For the online Lagrangian (7),
we introduce a modified online saddle point (MOSP) approach,
which takes a modified descent step in the primal domain, and
a dual ascent step at each time slot t in a Gauss-Seidel manner.
Specifically, given the previous primal iterate xt−1 and the cur-
rent dual iterate λt at each slot t, the current decision xt is the
minimizer of the following optimization problem

min
x∈X

∇ft−1(xt−1)�(x − xt−1) + λ�
t gt−1(x) +

‖x − xt−1‖2

2α
(8)

where α is a positive stepsize, and ∇ft−1(xt−1) is the gradient1

of primal objective ft−1(x) at x = xt−1 . After the current de-
cision xt is made, ft(x) and gt(x) are observed, and the dual
update takes the form

λt+1 =
[
λt + μ∇λLt(xt ,λt)

]+ =
[
λt + μgt(xt)

]+
(9)

where μ is also a positive stepsize, and ∇λLt(xt ,λt) = gt(xt)
is the gradient of online Lagrangian (7) with respect to (w.r.t.)
λ at λ = λt . Clearly, updating λt and xt at slot t only requires
information of the cost and constraint at the previous slot.

Remark 1: The primal gradient step of the classical saddle-
point approach in [12], [14], [15] is tantamount to minimizing
a first-order approximation of Lt−1(x,λt) at x = xt−1 plus a
proximal term. We call the recursion (8) and (9) as a modified
online saddle-point approach, since the primal update (8) is not
an exact gradient step when the constraint gt(x) is nonlinear
w.r.t. x. Similar to the primal update of OCO with long-term but
time-invariant constraints in [13], the minimization in (8) penal-
izes the exact constraint violation gt(x) instead of its first-order
approximation, which improves control of constraint violations
and facilitates performance analysis of MOSP. Nevertheless,
when gt(x) is linear, (8) and (9) reduce to the online saddle-
point approach using the Gauss-Seidel update, which is different
to those with the Jacobi one in [12], [14], [15].

Remark 2: When gt(x) is linear or quadratic, the computa-
tional complexity of (8) is fairly low, and closed-form solutions
are available. When gt(x) is generally a convex function, pe-
nalizing the exact constraint in (8) comes with higher compu-
tational complexity than the saddle-point method. However, as
(8) is strongly convex, iterative solvers can find the minimizer
at linear convergence rate. Linearization techniques can be also

1One can replace the gradient by one of the sub-gradients when ft (x) is
non-differentiable. The performance analysis still holds true for this case.

Algorithm 1: Modified Online Saddle-Point Method.
1: Initialize: primal iterate x0 , dual iterate λ1 , and proper

stepsizes α and μ.
2: for t = 1, 2 . . . do
3: Update primal variable xt by solving (8).
4: Observe the current cost ft(x) and constraint gt(x).
5: Update the dual variable λt+1 via (9).
6: end for

incorporated to facilitate its implementation under fast dynam-
ics, in which case the accuracy depends on the smoothness of
gt(x), and the variability of {xt} (that can be e.g., controlled
by the choice of stepsize α).

B. Performance Analysis

We proceed to show that for MOSP, the dynamic regret in
(4) and the fit in (6) are both sub-linearly increasing, if the
accumulated variations of per-slot minimizers and constraints
are known to be sub-linearly growing. Before formally stating
this result, we assume that the following conditions are satisfied.

Assumption 1: For every t, the cost function ft(x) and the
time-varying constraint gt(x) in (1) are convex.

Assumption 2: For every t, ft(x) has bounded gradient on
X ; i.e., ‖∇ft(x)‖ ≤ G, ∀x ∈ X ; and gt(x) is bounded on X ;
i.e., ‖gt(x)‖ ≤ M, ∀x ∈ X .

Assumption 3: The radius of the convex feasible set X is
bounded; i.e., ‖x − y‖ ≤ R, ∀x,y ∈ X .

Assumption 4: There exists a constant ε > 0, and an interior
point x̃t ∈ X such that gt(x̃t) ≤ −ε1, ∀t.

Assumption 5: The slack constant ε in Assumption 4 sat-
isfies ε > V̄ (g), where the point-wise maximum variation of
consecutive constraints is defined as

V̄ (g) := max
t

max
x∈X

∥∥[gt+1(x) − gt(x)]+
∥∥. (10)

Assumption 1 is necessary for regret analysis in the OCO
setting. Assumption 2 bounds primal and dual gradients per
slot, which is also typical in OCO [4], [7], [13], [15]. As-
sumption 3 restricts the action set to be bounded. Assump-
tion 4 is Slater’s condition, which guarantees the existence of a
bounded optimal Lagrange multiplier [33]. Assumption 5 indi-
cates that the slack constant ε is larger than the maximum vari-
ation of constraints. Although not always satisfied, it is a key
assumption in our proof of the bounded dual iterate (the scaled
fit). Equivalently, it requires mini,t maxx∈X [−gi

t(x)]+ >

maxt maxx∈X
∥∥[gt+1(x) − gt(x)

]+∥∥, which is valid when the
feasible region defined by gt(x) ≤ 0 is large enough, or, the
trajectory of gt(x) is smooth enough across time. Besides, As-
sumption 5 is analogous to the assumption of bounded multi-
pliers in prior OCO works involving long-term constraints [15],
[16]. One simple example for Assumption 5 to hold is that (cf.
I = 1)

gt(x) := 10x + cos(πt), with x ∈ X := {x| − 2≤x≤2}
(11)

where we have ε = mint maxx∈X [−gt(x)]+ = 19, and V̄ (g)
≤ 2, so that ε > V̄ (g).
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Under these assumptions, we are on track to first provide an
upper bound for the dynamic fit.

Theorem 1: Under Assumptions 1–5 and the dual variable
initialization λ1 = 0, the dual iterate for the MOSP recursion
(8)–(9) is bounded by

‖λt‖ ≤ ‖λ̄‖ := μM +
2GR + R2/(2α) + (μM 2)/2

ε − V̄ (g)
, ∀t

(12)
and the dynamic fit in (6) is upper-bounded by

FitdT ≤ ‖λT +1‖
μ

≤ ‖λ̄‖
μ

= M +
2GR/μ + R2/(2αμ) + M 2/2

ε − V̄ (g)
(13)

where G, M , R, and ε are as in Assumptions 2–4.
Proof: See Appendix A. �
Theorem 1 asserts that under the condition on the time-

varying constraints, ‖λt‖ is uniformly upper-bounded, and more
importantly, its scaled version ‖λT +1‖/μ upper bounds the dy-
namic fit. Observe that with a fixed primal stepsize α, FitdT is in
the order of O(1/μ), thus a larger dual stepsize essentially en-
ables a better satisfaction of long-term constraints. In addition,
a smaller V̄ (g) leads to a smaller dynamic fit, which also makes
sense intuitively.

In the next theorem, we further bound the dynamic regret.
Theorem 2: Under Assumptions 1–5 and the dual variable

initialization λ1 = 0, the MOSP recursion (8)–(9) yields a dy-
namic regret

Regd
T ≤ RV ({x∗

t}T
t=1)

α
+

αG2T

2
+

μM 2(T + 1)
2

+
R2

2α

+ ‖λ̄‖V ({gt}T
t=1) (14)

where V ({x∗
t}T

t=1) is the accumulated variation of the per-slot
minimizers x∗

t defined as

V ({x∗
t}T

t=1) :=
T∑

t=1

‖x∗
t − x∗

t−1‖︸ ︷︷ ︸
V (x∗

t )

(15)

and V ({gt}T
t=1) is the accumulated variation of constraints

V ({gt}T
t=1) :=

T∑

t=1

max
x∈X

∥∥[gt+1(x) − gt(x)]+
∥∥

︸ ︷︷ ︸
V (gt )

. (16)

Proof: See Appendix B. �
Theorem 2 asserts that MOSP’s dynamic regret is upper-

bounded by a constant depending on the accumulated varia-
tions of per-slot minimizers and time-varying constraints as
well as the primal and dual stepsizes. While the dynamic regret
in the current form (14) is hard to grasp, the next corollary shall
demonstrate that Regd

T can be very small.
Based on Theorems 1–2, we can readily arrive at the following

corollary regarding the optimal stepsizes.

Corollary 1: Under the same assumptions of Theorems 1–2,
if the primal and dual stepsizes are chosen such that

α = μ = max

{√
V ({x∗

t}T
t=1)

T
,

√
V ({gt}T

t=1)
T

}
(17)

then the dynamic regret is upper-bounded by

Regd
T = O

(
max

{√
V ({x∗

t}T
t=1)T ,

√
V ({gt}T

t=1)T
})

(18)
and the dynamic fit is upper-bounded by

FitdT = O
(
max

{
T

V ({x∗
t}T

t=1)
,

T

V ({gt}T
t=1)

})
. (19)

Proof: The corollary follows by plugging (12) into (14), and
optimizing (13) and (14) over the primal-dual stepsizes. �

According to Theorems 1–2 and Corollary 1, two sets of
stepsizes are discussed next.

S1) Stepsizes without knowledge of variations: If the primal
and dual stepsizes are chosen such that α = μ = O(T− 1

3 ), then
the dynamic fit is upper-bounded by

FitdT = O(T
2
3 ) (20a)

and the dynamic regret is bounded by

Regd
T = O

(
max

{
V ({x∗

t}T
t=1)T

1
3 , V ({gt}T

t=1)T
1
3 , T

2
3

})
.

(20b)
S2) Stepsizes with knowledge of variations: Assume that

there exists a constant β ∈ [0, 1) such that the temporal varia-
tions satisfy V ({x∗

t}T
t=1) = o(Tβ ) and V ({gt}T

t=1) = o(Tβ ).
Corollary 1 then implies that choosing the stepsizes as α = μ =
O(T

β −1
2 ) leads to the dynamic fit

FitdT = O(T 1−β ) = o(T ) (21a)

and the corresponding dynamic regret

Regd
T = O

(
T

β + 1
2

)
= o(T ). (21b)

In the case (S1), sub-linear regret and fit can be achieved
given that V ({x∗

t}T
t=1) = o(T

2
3 ) and V ({gt}T

t=1) = o(T
2
3 ). In

the case (S2), the necessary conditions for the environment can
be relaxed to V ({x∗

t}T
t=1) = o(T ) and V ({gt}T

t=1) = o(T ),
provided that a-priori knowledge of the environment is avail-
able. For example, when allocating resources to smart grids, the
temporal variations of the best dynamic solutions and instanta-
neous constraints can be estimated using day-ahead forecasting
of electricity loads and prices. Corollary 1 provides valuable in-
sights for choosing optimal stepsizes in non-stationary settings.
Specifically, adjusting stepsizes to match the variability of the
environment is the key to achieving the optimal dynamic regret
and fit. Intuitively, when the variation is fast (a larger β), slowly
decaying stepsizes (thus larger stepsizes) can better track the
potential changes; and vice versa.

It is instructive to give several cases where sub-linear accu-
mulated variations emerge, so that the bounds in (21) hold.

C1) Intermittent switches: With x∗
t = x∗

t+1 or gt = gt+1
defining a switch, the number of switches is sub-linear over
T ; i.e.,

∑T
t=1 1{x∗

t =x∗
t + 1 } = Tβ , and

∑T
t=1 1{gt =gt + 1 } = Tβ ,

∀β ∈ [0, 1). It then follows that V ({x∗
t}T

t=1) = O(Tβ ), and
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V ({gt}T
t=1) = O(Tβ ), since the one-slot variation of the min-

imizer and the constraint is bounded; see Assumptions 2–3.
C2) Decreasing variations: When the one-slot variations

are decreasing over time such that V (x∗
t ) = O(tβ−1) and

V (gt) = O(tβ−1), ∀β ∈ [0, 1), the accumulated variations of
the per-slot minimizers and the consecutive constraints become
V ({x∗

t}T
t=1) = O(Tβ ), and V ({gt}T

t=1) = O(Tβ ).
Other cases do exist for which the accumulated variation is

sub-linear, including the interplay between (C1) and (C2).
Remark 3: Theorems 1–2 and Corollary 1 are in the spirit

of the recent works in [2], [6]–[9] and [17], where the regret
bounds are established with respect to a dynamic benchmark in
OCO without long-term time-varying constraints. Specifically,
[6], [9] consider dynamic regret bounds for strongly-convex
loss functions. For the general convex loss functions considered
here, [2] reports the dynamic regret bound in the form of

Regd
T = O

(√
V ({x∗

t}T
t=1)T

)
(22)

and [6] states the bound in the form of

Regd
T = O

(
V ({ft}T

t=1)
1
3 T

2
3

)
(23)

where the accumulated variation of loss functions is defined
as V ({ft}T

t=1) :=
∑T

t=1 maxx∈X ‖ft+1(x) − ft(x)‖. The dy-
namic regret bound in [8] considers a hybrid version of (22) and
(23), when the effect of dynamic models is further accounted for
in the dynamic regret bounds of [7], [17]. When the functional
variation V ({ft}T

t=1) is not directly comparable to the variation
of minimizers V ({x∗

t}T
t=1), our regret bound in (18) immedi-

ately reduces to (22) in [2], by setting α =
√

V ({x∗
t}T

t=1)/T .
Note that [2], [6]–[9], [17] do not account for long-term and
time-varying constraints, while the regret analysis is general-
ized here to the setting with long-term constraints. Interestingly
though, in the considered setting, sub-linear dynamic regret and
fit can be achieved when the environment consisting of the per-
slot minimizer and the time-varying constraint does not vary on
average, that is, V ({x∗

t}T
t=1) and V ({gt}T

t=1) are sub-linearly
increasing over T . Selecting the optimal stepsizes requires the
knowledge of variations, and thus it is also promising to develop
a parameter-free MOSP using the doubling trick [8], [34].

C. Beyond Dynamic Regret

Although the dynamic benchmark in (4) is more competitive
than the static one in (2), it is worth noting that the sequence of
the per-slot minimizer x∗

t in (5) is not the optimal solution to
problem (1). Consider the offline optimal solutions to (1), i.e.,

{xoff
t }T

t=1 ∈ arg min
{xt ∈X ,∀t}

T∑

t=1

ft(xt) s.t.
T∑

t=1

gt(xt)≤0.

(24)
Computing the per-slot minimizer x∗

t in (5) only requires one-
slot-ahead information (namely, ft(x) and gt(x)), while com-
puting each xoff

t within {xoff
t }T

t=1 requires information over
the entire time horizon (that is, {ft(x)}T

t=1 and {gt(x)}T
t=1).

For this reason, we use the superscript “off” in {xoff
t }T

t=1 to
emphasize that this solution comes from offline computation
with information over T slots. Note that for the cases without

long-term constraints [6]–[9], the offline solutions {xoff
t }T

t=1
coincides with the sequence of per-slot minimizers {x∗

t}T
t=1 .

Regarding feasibility, {xoff
t }T

t=1 exactly satisfies the long-
term constraint (1b), while the solution of MOSP satisfies (1b)
on average under mild conditions (cf. Corollary 1). For optimal-
ity, the cost of the online decisions {xt}T

t=1 attained by MOSP
is further benchmarked by the offline solutions {xoff

t }T
t=1 . To

this end, define MOSP’s optimality gap as

OptGapoff
T :=

T∑

t=1

ft(xt) −
T∑

t=1

ft(xoff
t ). (25a)

Intuitively, if {xoff
t }T

t=1 are close to {x∗
t}T

t=1 , the dynamic regret
Regd

T is able to provide an accurate performance measure in
the sense of OptGapoff

T . Specifically, one can decompose the
optimality gap as

OptGapoff
T =

T∑

t=1

ft(xt) −
T∑

t=1

ft(x∗
t )

︸ ︷︷ ︸
U1

+
T∑

t=1

ft(x∗
t ) −

T∑

t=1

ft(xoff
t )

︸ ︷︷ ︸
U2

(25b)

where U1 corresponds to the dynamic regret Regd
T in (4) cap-

turing the regret relative to the sequence of per-slot minimizers
with one-slot-ahead information, and U2 is the difference be-
tween the performance of per-slot minimizers and the offline
optimal solutions. Although the second term appears difficult to
quantify, we will show next that U2 is driven by the accumulated
variation of the dual functions associated with (5).

To this end, consider the dual function of the instantaneous
primal problem (5), which can be expressed by minimizing the
online Lagrangian in (7) at time t, namely [33]

Dt(λ) := min
x∈X

Lt(x,λ) = min
x∈X

ft(x) + λ�gt(x). (26)

Likewise, the dual function of (1) over the entire horizon is

D(λ) := min
{xt ∈X ,∀t}

T∑

t=1

Lt(xt ,λ)

(a)
=

T∑

t=1

min
xt ∈X

Lt(xt ,λ)
(b)
=

T∑

t=1

Dt(λ) (27)

where equality (a) holds since the minimization is separable
across the summand at time t, and equality (b) is due to the
definition of the per-slot dual function in (26). As the primal
problems (1) and (5) are both convex, Slater’s condition in As-
sumption 4 implies that strong duality holds. Accordingly, U2
in (25b) can be written as

T∑

t=1

ft(x∗
t ) −

T∑

t=1

ft(xoff
t ) =

T∑

t=1

max
λt ≥0

Dt(λt)

− max
λ≥0

T∑

t=1

Dt(λ) (28)
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which is the difference between the dual objective of
the static best solution, i.e., λ∗ ∈ arg maxλ≥0

∑T
t=1 Dt(λ),

and that of the per-slot best solution for (26), i.e., λ∗
t ∈

arg maxλt ≥0Dt(λt). Leveraging this special property of the
dual problem, we next establish that U2 can be bounded by
the variation of the dual function, thus providing an estimate of
the optimality gap (25).

Proposition 1: Define the variation of the dual function (26)
from time t to t + 1 as

V (Dt) := max
λ≥0

‖Dt+1(λ) −Dt(λ)‖ (29)

and the total variation over the time horizon T as
V ({Dt}T

t=1) :=
∑T

t=1 V (Dt). Then the cost difference be-
tween the best offline solution and the best dynamic solution
satisfies

T∑

t=1

ft(x∗
t ) −

T∑

t=1

ft(xoff
t ) ≤ 2TV ({Dt}T

t=1) (30)

where x∗
t is the minimizer of the instantaneous problem (5), and

xoff
t solves (1) with all future information available. Combined

with (25b), it readily follows that

OptGapoff
T ≤ Regd

T + 2TV ({Dt}T
t=1) (31)

where Regd
T is defined in (4), and OptGapoff

T in (25).
Proof: Instead of going to the primal domain, we upper

bound U2 via the dual representation in (28). Letting t̃ denote
any slot in T := {1, . . . , T}, we have

∑

t∈T
max
λ≥0

Dt(λ) − max
λ≥0

∑

t∈T
Dt(λ) (32)

≤
∑

t∈T

(
Dt(λ∗

t ) −Dt(λ∗
t̃ )
)
≤ T max

t∈T

{
Dt(λ∗

t ) −Dt(λ∗
t̃ )
}

.

The first inequality comes from the definition λ∗
t ∈

arg maxλ≥0Dt(λ). Note that if maxt∈T {Dt(λ∗
t ) −Dt(λ∗

t̃ )} ≤
2V ({Dt}T

t=1), the proposition readily follows from (32). We
will prove this inequality by contradiction. Assume there exists
a slot t0 ∈ T such that Dt0 (λ

∗
t0

) −Dt0 (λ
∗
t̃ ) > 2V ({Dt}T

t=1),
which implies that

Dt̃(λ
∗
t̃)

(a)
≤ Dt0 (λ

∗
t̃) + V ({Dt}T

t=1)
(b)
< Dt0 (λ

∗
t0

) − V ({Dt}T
t=1)

(c)
≤ Dt̃(λ

∗
t0

), ∀ t̃ ∈ T (33)

where inequalities (a) and (c) come from the fact that
V ({Dt}T

t=1) is the accumulated variation over T slots, and
hence maxt1 ,t2 ∈T ‖Dt1 (λ) −Dt2 (λ)‖ ≤ V ({Dt}T

t=1), while
(b) is due to the hypothesis above. Note that Dt̃(λ

∗
t̃ ) < Dt̃(λ

∗
t0

)
in (33) contradicts the fact that λ∗

t̃ is the maximizer of Dt̃(λ).
Therefore, we have Dt(λ∗

t̃ ) −Dt(λ∗
t )≤2V ({Dt}T

t=1), which
completes the proof. �

The following remark provides an approach to improving the
bound in Proposition 1.

Remark 4: Although the optimality gap in (31) appears to
be at least linear w.r.t. T , one can use the “restarting” trick
for dual variables, similar to that for primal variables in the
unconstrained case; see e.g., [6]. Specifically, if the total vari-
ation V ({Dt}T

t=1) is known a-priori, one can divide the entire

time horizon T := {1, . . . , T} into �T/ΔT � sub-horizons (each
with ΔT = o

(
T/V ({Dt}T

t=1)
)

slots), and restart the dual it-
erate λ at the beginning of each sub-horizon. By assuming
that V ({Dt}T

t=1) is sub-linear w.r.t. T , one can guarantee that
ΔT ≥ 1 always exists. In this case, the optimality gap in (31)
can be improved by

OptGapoff
T ≤ �T/ΔT �Regd

ΔT
+ 2ΔT V ({Dt}T

t=1) (34a)

and the dynamic fit is the summation over each sub-horizon

FitdT ≤ �T/ΔT �FitdΔT
. (34b)

To this end, if the regularity conditions of the environment in
(21) are satisfied, one can properly set the primal-dual stepsizes
to guarantee the sub-linear regret and fit on each sub-horizon.
Correspondingly, the optimality gap and the dynamic fit in (34)
are also both sub-linearly growing with time. Interested readers
are referred to [6] for details of this restarting trick, which are
omitted here due to space limitation.

IV. APPLICATION TO NETWORK RESOURCE ALLOCATION

In this section, we solve the network resource allocation prob-
lem within the OCO framework, and present numerical experi-
ments to demonstrate the merits of our MOSP solver.

A. Online Network Resource Allocation

Consider the resource allocation problem over a cloud net-
work [29], which is represented by a directed graph G = (I, E)
with node set I and edge set E , where |I| = I and |E| = E.
Nodes considered here include mapping nodes collected in
the set J = {1, . . . , J}, and data centers collected in the set
K = {1, . . . , K}; i.e., we have I = J

⋃
K.

Per time t, each mapping node j receives an exogenous data
request bj

t , and forwards the amount xjk
t to each data center

k in accordance with bandwidth availability. Each data cen-
ter k schedules workload yk

t according to its resource avail-
ability. Regarding yk

t as the weight of a virtual outgoing edge
(k, ∗) from data center k, edge set E := {(j, k),∀j ∈ J , k ∈
K}
⋃
{(k, ∗),∀k ∈ K} contains all the links connecting map-

ping nodes with data centers, and all the “virtual” edges coming
out of the data centers. The I × E node-incidence matrix is
formed with the (i, e)-th entry

A(i,e) =

⎧
⎨

⎩

1, if link e enters node i
−1, if link e leaves node i

0, else.
(35)

For compactness, collect the data workloads across edges
e = (i, j) ∈ E in a resource allocation vector xt :=
[x11

t , . . . , xJ K
t , y1

t , . . . , yK
t ]� ∈ RE

+ , and the exogenous load ar-
rival rates of all nodes in a vector bt := [b1

t , . . . , b
J
t , 0 . . . , 0]� ∈

RI
+ . Then, the aggregate (endogenous plus exogenous) work-

loads of all nodes are given by Axt + bt . When the i-th
entry of Axt + bt is positive, there is service residual at
node i; otherwise, node i over-serves the current workload
arrival. Assume that each data center and mapping node has
a local data queue to buffer unserved workloads [25]. With
qt := [q1

t , . . . , qJ +K
t ]� collecting the queue lengths at each

mapping node and data center, the queue update is qt+1 =
[qt + Axt + bt ]

+ , where [·]+ ensures that the queue length is
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Fig. 1. A diagram of online network resource allocation. Per time t, mapping
node j has an exogenous workload bj

t plus that stored in the queue qj
t , and

schedules workload xjk
t to data center k. Data center k serves an amount of

workload yk
t out of the assigned

∑J

j=1 xjk
t as well as that stored in its queue

qJ + k
t . The thickness of each edge is proportional to its capacity.

always non-negative. The bandwidth limit of link (j, k) is x̄jk ,
and the resource capability of data center k is ȳk , which can be
compactly expressed by x ∈ X with X := {0 ≤ x ≤ x̄} and
x̄ := [x̄11 , . . . , x̄J K , ȳ1 , . . . , ȳK ]�. The overall system diagram
is depicted in Fig. 1.

For each data center, the power cost fk
t (yk

t ) := fk (yk
t ; θk

t )
depends on a time-varying parameter θk

t , which captures the en-
ergy price and the renewable generation at data center k during
slot t. The bandwidth cost fjk

t (xjk
t ) := fjk (xjk

t ; θjk
t ) charac-

terizes the transmission delay and is parameterized by a time-
varying scalar θjk

t . Scalars θk
t and θjk

t can be readily extended
to vector forms. To keep the exposition simple, we use scalars
to represent time-varying factors at nodes and edges.

Per slot t, the instantaneous cost ft(xt) aggregates the costs
of power consumed at all data centers plus the bandwidth costs
at all links, namely

ft(xt) :=
∑

k∈K
fk

t (yk
t )︸ ︷︷ ︸

power cost

+
∑

j∈J

∑

k∈K
fjk

t (xjk
t )︸ ︷︷ ︸

bandwidth cost

(36)

where the objective can be also written as ft(xt) := f(xt ;θt)
with θt := [θ1

t , . . . , θK
t , θ11

t , . . . , θJ K
t ]� concatenating all time-

varying parameters. Aiming to minimize the accumulated cost
while serving all workloads, the optimal workload routing and
allocation strategy in this cloud network is the solution of the
following optimization problem

min
{xt ∈X ,∀t}

T∑

t=1

ft(xt) s.t. qt+1 = [qt + Axt + bt ]
+ , ∀t

q1 ≥ 0, qT +1 = 0 (37)

where q1 is the given initial queue length, and qT +1 = 0 guar-
antees that all workloads arrived have been served at the end
of the scheduling horizon. Note that (37) is time-coupled, and
generally challenging to solve without information of future
workload arrivals and time-varying cost functions. Therefore,
we reformulate (37) to fit our OCO formulation (1) by relaxing

the queue recursion in (37), namely

qT +1 ≥ qT + AxT + bT ≥ q1 +
T∑

t=1

(Axt + bt) (38)

which readily leads to
∑T

t=1(Axt + bt) ≤ qT +1 − q1 ≤ 0,
since q1 ≥ 0 and qT +1 = 0. Therefore, instead of solving (37),
we aim to tackle a relaxed problem, given by

min
{xt ∈X ,∀t}

T∑

t=1

ft(xt) s.t.
T∑

t=1

(Axt + bt) ≤ 0 (39)

where the workload flow conservation constraint Axt + bt ≤ 0
must be satisfied in the long term rather than slot-by-slot.
Clearly, (39) is in the form of (1). Therefore, the MOSP
algorithm of Section III can be leveraged to solve (39) in
an online fashion, with provable performance and feasibil-
ity guarantees. Specifically, with gt(xt) = Axt + bt , the pri-
mal update (8) boils down to a simple gradient update xt =
PX
(
xt−1 − α∇ft−1(xt−1) − αA�λt

)
, where PX (·) defines

projection onto the convex set X . The dual update (9) is λt+1 =[
λt + μ(Axt + bt)

]+
, which can be nicely regarded as a scaled

version of the queue dynamics in (37), with qt = λt/μ.
In addition to simple closed-form updates, MOSP can also

afford a fully decentralized implementation by exploiting the
problem structure of network resource allocation, where each
mapping node or data center decides the amounts on all its
outgoing links, and only exchanges information with its one-
hop neighbors. Per time slot t, the primal update at mapping
node j includes variables on all its outgoing links, given by

xjk
t =

[
xjk

t−1 − α∇fjk
t−1(x

jk
t−1) − α

(
λk

t − λ
j
t

)]x̄j k

0
, ∀k ∈ K

(40a)
and the dual update reduces to

λ
j
t+1 =

[
λ

j
t + μ

(
bj
t −
∑

k∈K
xjk

t

)]+

. (40b)

Likewise, for data center k, the primal update becomes

yk
t =

[
yk

t−1 − α
(
∇fk

t−1(y
k
t−1) − λk

t

)]ȳ k

0
(40c)

where [ · ]ȳ
k

0 := min{ȳk ,max{·, 0}}, and the dual recursion is

λk
t+1 =

[
λk

t + μ

(
∑

j∈J
xjk

t − yk
t

)]+

. (40d)

Distributed MOSP for online network resource allocation is
summarized in Algorithm 2.

B. Revisiting Stochastic Dual (sub) Gradient

The dynamic network resource allocation problem in Sec-
tion IV-A has so far been studied in the stochastic setting [29],
[35]. Classical approaches include Lyapunov optimization [24],
[25] and the stochastic dual (sub)gradient method [26], both of
which rely on stochastic approximation (SA) [27]. In the con-
text of stochastic optimization, the time-varying vectors {ξt}
with ξt := [θ�

t ,b�
t ]� appearing in the cost and constraint are
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Algorithm 2: MOSP for Online Resource Allocation.
1: Initialize: primal iterate x0 , dual iterate λ1 , and proper

stepsizes α and μ.
2: for t = 1, 2 . . . do
3: Each mapping node j performs (40a) and each data

center k runs (40c).
4: Mapping nodes and data centers observe local costs

and workload arrivals.
5: Each mapping node j performs (40b) and each data

center k performs (40d).
6: Mapping nodes (data centers) send multipliers to all

neighboring data centers (mapping nodes).
7: end for

assumed to be independent realizations of a random variable
Ξ.2 In an SA-based stochastic optimization algorithm, per time
t, a policy first observes a realization ξt of the random variable
Ξ, and then (stochastically) selects an action xt ∈ X . However,
in contrast to minimizing the observed cost in the OCO setting,
the goal of the stochastic resource allocation is usually to min-
imize the limiting average of the expected cost subject to the
so-termed stability constraint, namely

min
{xt ∈X ,qt ,∀t}

lim
T →∞

1
T

T∑

t=1

E[ft(xt)] (41a)

s.t. qt+1 = [qt + Axt + bt ]
+ ,∀t (41b)

lim
T →∞

1
T

T∑

t=1

E [qt ] ≤ 0 (41c)

where he expectation in (41a) is taken over Ξ and the ran-
domness of xt and qt induced by all possible sample paths
{ξ1 , . . . , ξt} via (41b); and the stability constraint (41c) im-
plies a finite bound on the accumulated constraint violation. In
contrast to the observed costs in (37), each decision xt is eval-
uated by all possible realizations in Ξ here. However, as qt in
(41b) couples the optimization variables over an infinite time
horizon, (41) is intractable in general.

Prior works [25], [26], [29], [37] have demonstrated that (41)
can be tackled via a tractable stationary relaxation, given by

min
{xt ∈X ,∀t}

lim
T →∞

1
T

T∑

t=1

E[ft(xt)] (42a)

s.t. lim
T →∞

1
T

T∑

t=1

E [Axt + bt ] ≤ 0 (42b)

where the time-coupling constraints (41b) and (41c) are relaxed
to the limiting average constraint (42b). Such a relaxation can
be verified similar to the queue relaxation in (38); see also [25].
Note that (42) is still challenging since it involves expectations
in both costs and constraints, and the distribution of Ξ is usu-
ally unknown. Even if the joint probability distribution function

2Extension is also available when {ξt} constitute a sample path from an
ergodic stochastic process {Ξt}, which converges to a stationary distribution;
see e.g., [28], [36].

were available, finding the expectations would not scale with the
dimensionality of Ξ. A common remedy is to use the stochastic
dual gradient (SDG) iteration (a.k.a. Lyapunov optimization)
[24], [25], [29]. Specifically, with λ ∈ RI

+ denoting the multi-
pliers associated with the expectation constraint (42b), the SDG
method first observes one realization ξt at each slot t, and then
performs the dual update as

λt+1 =
[
λt + μ(Axt + bt)

]+
, ∀t (43)

where λt is the dual iterate at time t, Axt + bt is the stochastic
dual gradient, and μ is a positive (and typically constant) step-
size. The actual allocation or the primal variable xt appearing
in (43) needs be found by solving the following sub-problems,
one per slot t

xt ∈ arg min
x∈X

ft(x) + λ�
t (Ax + bt). (44)

For the considered network resource allocation prob-
lem, SDG in (43)–(44) entails a well-known cost-delay
tradeoff [25]. Specifically, with f ∗ denoting the opti-
mal objective (42), SDG can achieve an O(μ)-optimal
solution such that limT →∞(1/T )

∑T
t=1 E [ft (xt)]≤f ∗ +

O(μ), and guarantee queue lengths3 satisfying limT →∞
(1/T )

∑T
t=1 E [‖qt‖] = O(1/μ). Therefore, reducing the op-

timality gap O(μ) will essentially increase the average network
delay O(1/μ).

Remark 5: The optimality of SDG is established relative to
the offline optimal solution of (42), which can be thought as
the time-average optimality gap in (25) under the OCO setting.
Interestingly though, the optimality gap under the stochastic
setting is equivalent to the (expected) dynamic regret (4), since
their (expected) difference V ({E[Dt ]}T

t=1) in (31) reduces to
zero. To see this, note that E[ft(x)] and E[Ax + bt ] are time-
invariant, hence the dual problem of each per-slot subproblem
in (42) is time-invariant. This reduction means that the SDG
solver of the dynamic problem in (41) leverages its inherent
stationarity (through the stationary dual problem), in contrast to
the non-stationary nature of the OCO framework.

Remark 6: Below we highlight several differences of the
novel MOSP in Algorithm 2 with the SDG recursion in (43)–
(44) for the dynamic network resource allocation task.

(D1) From an operational perspective, SDG observes the cur-
rent state ξt first, and then performs the resource allocation
decision xt accordingly. Therefore, at the beginning of slot t,
SDG needs to precisely know the non-causal information ξt . In-
heriting the merits of OCO, on the other hand, MOSP operates
in a fully predictive mode, which decides xt without knowing
the cost ft(x) and the constraint gt(x) (or ξt) at time t. This
feature of MOSP is of major practical importance when costs
and availability of resources are not available at the point of
making decisions; e.g., online demand response in smart grids
[32], [39] and resource allocation in wireless networking [40].

(D2) From a computational point of view, MOSP reduces to
a simple saddle-point recursion with primal (projected) gradi-
ent descent and dual gradient ascent for the network resource
allocation problem, both of which incur affordable complexity.

3According to Little’s law [38], the time-average delay is proportional to the
time-average queue length given the arrival rate.
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However, the primal update of SDG in (44) generally requires
solving a convex program per time slot t, which leads to much
higher computational complexity in general.

(D3) With regards to the theoretical claims, the time-varying
vector ξt in SDG typically requires a rather restrictive proba-
bilistic assumption, to establish SDG optimality in either the
ensemble average [25] or the limiting ergodic average sense
[36]. In contrast, leveraging the OCO framework, MOSP ad-
mits finite-sample performance analysis with non-stochastic ob-
served costs and constraints, which can even be adversarial.

C. Numerical Experiments

In this section, we provide numerical tests to demonstrate the
merits of the proposed MOSP algorithm in the application of
dynamic network resource allocation. Consider the geograph-
ical workload routing and allocation task in (39) with J = 10
mapping nodes and K = 10 data centers. The instantaneous
network cost in (36) is

ft(xt) :=
∑

k∈K
pk

t (yk
t )2 +

∑

j∈J

∑

k∈K
cjk (xjk

t )2 (45)

where pk
t is the energy price at data center k at time t, and cjk is

the per-unit bandwidth cost for transmitting from mapping node
j to data center k. With the bandwidth limit x̄jk uniformly ran-
domly generated within [10, 100], we set the bandwidth cost of
each link (j, k) as cjk = 40/x̄jk ,∀j, k. The resource capacities
{ȳk ,∀k} at all data centers are uniformly randomly generated
from [100, 200]. We consider the following two cases for the
time-varying parameters {pk

t ,∀t, k} and {bj
t ,∀t, j}:

Case 1: Parameters {pk
t ,∀t, k} and {bj

t ,∀t, j} are indepen-
dently drawn from time-invariant distributions. Specifically, pk

t

is uniformly distributed over [1, 3], and the delay-tolerant work-
load bj

t arrives at each mapping node j according to a uniform
distribution over [50, 150].

Case 2: Parameters {pk
t ,∀t, k} and {bj

t ,∀t, j} are generated
according to non-stationary stochastic processes. Specifically,
pk

t = sin(πt/12) + nk
t with i.i.d. noise nk

t uniformly distributed
over [1, 3], while bj

t = 50 sin(πt/12) + vj
t with i.i.d. noise vj

t

uniformly distributed over [99, 101]. One can verify that As-
sumption 5 is satisfied in this case, as the constraints vary slowly.
Intuitively, it means that the network capacity margin is large
relative to the temporal variation of arrival rates here.

Finally, with time horizon T = 500, the stepsize in (40a)
and (40c) is set to α = 0.05/T 1/3 , and for (40b) and (40d) to
μ = 50/T 1/3 . MOSP is benchmarked by three strategies: SDG
in Section IV-B, the sequence of per-slot best minimizers in (5),
and the offline optimal solution that solves (1) at once with all
future costs and constraints available. Note that at the beginning
of each slot t, the exact prices {pk

t ,∀k} and demands {bj
t ,∀j} for

the coming slot are generally not available in practice [39]–[42].
Since the original SDG updates (43) and (44) require non-causal
knowledge of {pk

t ,∀k} and {bj
t ,∀j} to decide xt , we modify

them for fairness in this online setting by using the prices and
demands at slot t − 1 to obtain xt , which we term online dual
gradient (ODG). As shown next, different constant stepsizes for
ODG’s dual update in (43) lead to quite different performance

Fig. 2. Time-average cost for Case 1.

Fig. 3. Dynamic regret for Case 1.

Fig. 4. Dynamic fit for Case 1.

and feasibility behaviors; i.e., a larger stepsize results in higher
regret but smaller fit, and vice versa. For this reason, ODG is
studied under two different stepsizes: μODG = 0.5 balancing
the regret and fit of ODG, and μODG = 1 allowing ODG to
have similar fit with MOSP.

Figs. 2–4 show the test results for Case 1 under i.i.d. costs
and constraints. Clearly, MOSP in Fig. 2 converges to a smaller
time-average cost than ODG with the two stepsizes. The time-
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Fig. 5. Time-average cost for Case 2.

Fig. 6. Dynamic regret for Case 2.

average cost of MOSP is slightly higher than the per-slot optimal
solution, as well as the offline optimal solution with all informa-
tion of the costs and constraints available over horizon T . Fig. 3
confirms the conclusion made from Fig. 2, where the dynamic
regret (cf. (4)) of MOSP grows much slower than that of ODG.
Regarding the dynamic fit (cf. (6)), Fig. 4 demonstrates that
ODG with μODG = 1 has a smaller fit than that of μODG = 0.5,
and similar to the dynamic fit of MOSP. According to the well-
known trade-off between cost (optimality) and delay (constraint
violations) in [25], increasing μODG will improve the dynamic
fit of ODG but degrade its dynamic regret. Therefore, MOSP
is favorable in Case 1 since it has much smaller regret when
its dynamic fit is similar to that of ODG with μODG = 1. It
is worth mentioning that theoretically speaking, the dynamic
regret of MOSP may not be sub-linear in this i.i.d. case, since
the accumulated cost and constraint variation is not necessarily
small enough (cf. Theorem 2). However, MOSP is robust in this
aspect at least for the numerical tests we carried.

Simulation tests using non-stationary costs and constraints
are shown in Figs. 5–7. Different from Case 1, the time-average
cost of MOSP is not only smaller than ODG, but also smaller
than the per-slot optimum obtained via (3); see Fig. 5. A similar
conclusion can be also drawn through the growths of dynamic
regret in Fig. 6. From a high level, this is because the difference

Fig. 7. Dynamic fit for Case 2.

between the cost of the per-slot minimizers and that of the
offline solutions is no longer small in the non-stationary case.
Regarding Fig. 7, both ODG and MOSP have finite dynamic fits
in the sense that the accumulated constraint violations do not
increase with time. The dynamic fit of MOSP is much smaller
than that of ODG with μODG = 0.5, and comparable to that of
ODG with μODG = 1. Therefore, in this non-stationary case,
MOSP also markedly outperforms ODG in both regret and fit.

V. CONCLUDING REMARKS

OCO with both adversarial costs and constraints has been
studied in this paper. Different from existing works, the focus
is on a setting where some of the constraints are revealed after
taking actions, they are tolerable to instantaneous violations, but
must be satisfied on average. Performance of the novel OCO al-
gorithm is measured by: i) the difference of its objective relative
to the best dynamic solution with one-slot-ahead information of
the cost and the constraint (dynamic regret); and, ii) its accumu-
lated amount of constraint violations (dynamic fit). It has been
shown that the proposed MOSP algorithm adapts to the consid-
ered OCO setting with adversarial constraints. Under standard
assumptions, MOSP simultaneously yields sub-linear dynamic
regret and fit, if the accumulated variations of the per-slot min-
imizers and adversarial constraints are sub-linearly increasing
with time. Algorithm design and performance analysis in this
novel OCO setting, under adversarial constraints and with a dy-
namic benchmark, broaden the applicability of OCO to a wider
application regime, which includes dynamic network resource
allocation and online demand response in smart grids. Numeri-
cal tests demonstrated that the proposed algorithm outperforms
state-of-the-art alternatives under different scenarios.

The novel OCO setting with long-term time-varying con-
straints opens up several interesting research directions. For in-
stance, when nonlinear constraints are present, how to reduce the
computational complexity of MOSP needs further investigation.
Developing an adaptive version of MOSP with parameter-free
implementation is also of particular interest.

APPENDIX

Before proving Theorems 1 and 2, we first bound the variation
of the dual variable for the MOSP recursion (8)–(9). With the
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dual drift defined as Δ(λt) :=
(
‖λt+1‖2 − ‖λt‖2

)
/2, we have

the following lemma.
Lemma 1: Per slot t, the dual drift of the MOSP recursion

(8)–(9) is upper-bounded as

Δ(λt) ≤ μλ�
t gt(xt) +

μ2

2
‖gt(xt)‖2 . (46)

Proof: Squaring the dual variable update (9), we have

‖λt+1‖2 =
∥∥∥
[
λt + μgt(xt)

]+∥∥∥
2
≤ ‖λt + μgt(xt)‖2

= ‖λt‖2 + 2μλ�
t gt(xt) + μ2‖gt(xt)‖2 . (47)

The proof is complete after dividing both sides by 2. �

A. Proof of Theorem 1

The proof follows the steps in [13, Theorem 7], but general-
izes the result from static regret with time-invariant constraints
to dynamic regret with time-varying and long-term constraints.
Recall that the primal iterate xt+1 is the optimal solution to the
following optimization problem (cf. (8))

min
x∈X

ht(x) := ∇ft(xt)�(x − xt) + λ�
t+1gt(x)

+
1
2α

‖x − xt‖2 . (48)

Then for any interior point x̃t ∈ X in Assumption 4, it fol-
lows that

∇ft(xt)�(xt+1 − xt) + λ�
t+1gt(xt+1) +

1
2α

‖xt+1 − xt‖2

≤ ∇ft(xt)�(x̃t − xt) + λ�
t+1gt(x̃t) +

1
2α

‖x̃t − xt‖2

(a)
≤ ∇ft(xt)�(x̃t − xt) − ελ�

t+11 +
1
2α

‖x̃t − xt‖2

(b)
≤ ∇ft(xt)�(x̃t − xt) − ε‖λt+1‖ +

1
2α

‖x̃t − xt‖2 (49)

where (a) follows by choosing x̃t such that gt(x̃t) ≤ −ε1 and
recalling the non-negativity of λt+1 ; inequality (b) is because
‖λt+1‖ ≤ λ�

t+11 holds for any non-negative vector λt+1 .
Rearranging terms in (49), it follows that

λ�
t+1gt(xt+1) ≤ ∇ft(xt)�(x̃t − xt) −∇ft(xt)�(xt+1 − xt)

− ε‖λt+1‖ +
1
2α

‖x̃t − xt‖2 − 1
2α

‖xt+1 − xt‖2

(c)
≤∇ft(xt)�(x̃t − xt) −∇ft(xt)�(xt+1 − xt)

− ε‖λt+1‖ +
R2

2α

(d)
≤ ‖∇ft(xt)‖‖x̃t − xt‖ + ‖∇ft(xt)‖‖xt+1 − xt‖

− ε‖λt+1‖ +
R2

2α

(e)
≤ 2GR − ε‖λt+1‖ +

R2

2α
(50)

where (c) holds since X confines ‖x̃t − xt‖2 ≤ R2 and
‖xt+1 − xt‖2 ≥ 0; (d) uses the Cauchy-Schwartz inequality

twice; (e) leverages the bounds in Assumption 3, namely,
‖∇ft(xt)‖ ≤ G, ‖x̃t − xt‖ ≤ R, and ‖xt+1 − xt‖ ≤ R.

Plugging (50) into (46) in Lemma 1, we have

Δ(λt+1) ≤ μλ�
t+1gt+1(xt+1) +

μ2

2
‖gt+1(xt+1)‖2

(f )
≤ μλ�

t+1
(
gt+1(xt+1) − gt(xt+1)

)
− εμ‖λt+1‖

+ 2μGR +
μR2

2α
+

μ2M 2

2
(g)
≤ μλ�

t+1
[
gt+1(xt+1) − gt(xt+1)

]+ − εμ‖λt+1‖

+ 2μGR +
μR2

2α
+

μ2M 2

2
(h)
≤ μV̄ (g)‖λt+1‖ − εμ‖λt+1‖ + 2μGR +

μR2

2α
+

μ2M 2

2
(51)

where (f) uses the upper bound in Assumption 2 such that
‖gt+1(xt+1)‖ ≤ M , (g) holds since λt+1 ≥ 0, and (h) follows
from the Cauchy-Schwartz inequality and the definition of the
maximum variation V̄ (g) in Assumption 5.

We prove the dual upper bound (12) by contradiction. Without
loss of generality, suppose that t + 2 is the first time that (12)
does not hold. Therefore, we have

‖λt+1‖ ≤ ‖λ̄‖ = μM +
2GR + R2/(2α) + (μM 2)/2

ε − V̄ (g)
(52a)

and correspondingly

‖λt+2‖ > ‖λ̄‖ = μM +
2GR + R2/(2α) + (μM 2)/2

ε − V̄ (g)
.

(52b)
In this case, it follows that

‖λt+1‖ ≥ ‖λt+2‖ − ‖λt+2 − λt+1‖

= ‖λt+2‖ − ‖[λt+1 + μgt+1(xt+1)]+ − λt+1‖
(i)
≥ ‖λt+2‖ − ‖μgt+1(xt+1)‖
(j )
>

2GR + R2/(2α) + (μM 2)/2
ε − V̄ (g)

(53)

where (i) is due to the non-expansive property of the projection
operator, and inequality (j) uses (52b) and ‖gt+1(xt+1)‖ ≤ M
in Assumption 2. However, since ε > V̄ (g), (51) implies that we
have Δ(λt+1) < 0 if (53) holds. By definition of the dual drift,
Δ(λt+1) < 0 implies that ‖λt+2‖ < ‖λt+1‖, which contradicts
(52a) and (52b). In addition, observe that the dual variable is ini-
tialized by λ1 = 0, and consequently ‖λ2‖ ≤ μM . Therefore,
for every t, we have that ‖λt‖ ≤ ‖λ̄‖ holds.

Using the dual recursion in (9), it follows that λT +1 ≥ λT +
μgT (xT ) ≥ λ1 +

∑T
t=1 μgt(xt). Rearranging terms, we have

T∑

t=1

gt(xt) ≤
λT +1

μ
− λ1

μ
≤ λT +1

μ
. (54)
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With λT +1 ≥ 0, (54) implies that [
∑T

t=1 gt(xt)]+ ≤ λT +1/μ,
which completes the proof by taking norms on both sides and
using the dual upper bound (12).

B. Proof of Theorem 2

With ht(x) defining the objective in (48), it can be shown
that ht(x) is 1/α-strongly convex, which implies that for any
x,y ∈ RI , we have [43, Theorem 2.1.8]

ht(y) ≥ ht(x) + ∇ht(x)� (y − x) +
1
2α

‖y − x‖2 . (55)

Since xt+1 is the minimizer of the problem minx∈X ht(x), the
optimality condition [33] implies that

∇ht(xt+1)�(y − xt+1) ≥ 0, ∀y ∈ X . (56)

Setting y = x∗
t and x = xt+1 in (55), we have that (cf. (56))

ht(x∗
t )≥ht(xt+1) +

1
2α

‖x∗
t − xt+1‖2 . (57)

Hence, replacing ht(x) with the objective in (48) leads to

∇ft(xt)� (xt+1 − xt) + λ�
t+1gt(xt+1) +

‖xt+1 − xt‖2

2α

(a)
≤ ∇ft(xt)�(x∗

t − xt) + λ�
t+1gt(x∗

t ) +
‖x∗

t − xt‖2

2α

− ‖xt+1 − x∗
t‖2

2α
(58)

where (a) uses the strong convexity of the objective in (8); see
also [13, Corollary 1]. Adding ft(xt) in (58) yields

ft(xt) + ∇ft(xt)� (xt+1 − xt) + λ�
t+1gt(xt+1)

+
‖xt+1 − xt‖2

2α

≤ ft(xt) + ∇ft(xt)� (x∗
t − xt) + λ�

t+1gt(x∗
t )

+
‖x∗

t − xt‖2

2α
− ‖x∗

t − xt+1‖2

2α

(b)
≤ ft(x∗

t ) + λ�
t+1gt(x∗

t ) +
‖x∗

t − xt‖2

2α
− ‖x∗

t − xt+1‖2

2α

(c)
≤ ft(x∗

t ) +
‖x∗

t − xt‖2

2α
− ‖x∗

t − xt+1‖2

2α
(59)

where (b) is due to the convexity of ft(x), and (c) comes from
the fact that λt+1 ≥ 0 and the per-slot optimal solution x∗

t is
feasible (i.e., gt(x∗

t ) ≤ 0) such that λ�
t+1gt(x∗

t ) ≤ 0.
Next, we bound the term ∇ft(xt)� (xt+1 − xt) by

−∇ft(xt)� (xt+1 − xt) ≤ ‖∇ft(xt)‖‖xt+1 − xt‖ (60)

≤ ‖∇ft(xt)‖2

2η
+

η

2
‖xt+1 − xt‖2

(d)
≤ G2

2η
+

η

2
‖xt+1 − xt‖2

where η is an arbitrary positive constant, and (d) is from the
bound of gradients in Assumption 2. Plugging (60) into (59),

we have

ft(xt) + λ�
t+1gt(xt+1) ≤ ft(x∗

t) +
(η
2
− 1

2α

)
‖xt+1 − xt‖2

+
1
2α

(
‖x∗

t − xt‖2 − ‖x∗
t − xt+1‖2

)
+

G2

2η

(e)
= ft(x∗

t ) +
1
2α

(
‖x∗

t − xt‖2 − ‖x∗
t − xt+1‖2

)
+

αG2

2
(61)

where (e) follows by choosing η = 1/α so that η/2−1/(2α)=
0.

Using the dual drift bound (46) in Lemma 1 again, we have

Δ(λt+1)/μ + ft(xt) ≤ ft(xt) + λ�
t+1gt(xt+1)

+ λ�
t+1gt+1(xt+1) − λ�

t+1gt(xt+1) +
μ

2
‖gt+1(xt+1)‖2

(f )
≤ ft(x∗

t ) +
1
2α

(
‖x∗

t − xt‖2 − ‖x∗
t − xt+1‖2

)

+ λ�
t+1(gt+1(xt+1)−gt(xt+1))+

μ‖gt+1(xt+1)‖2

2
+

αG2

2
(g)
≤ ft(x∗

t ) +
1
2α

(
‖x∗

t − xt‖2 − ‖x∗
t − xt+1‖2

)

+ λ�
t+1 [gt+1(xt+1) − gt(xt+1)]

+ +
μM 2

2
+

αG2

2
(h)
≤ ft(x∗

t ) +
1
2α

(
‖x∗

t − xt‖2 − ‖x∗
t − xt+1‖2

)

+ ‖λt+1‖V (gt) +
μM 2

2
+

αG2

2
(62)

where (f) follows from (61); (g) uses non-negativity of λt+1 and
the gradient upper bound ‖gt+1(x)‖ ≤ M,∀x ∈ X ; and (h)
follows from the Cauchy-Schwartz inequality and the definition
of the constraint variation V (gt) in (16).

By interpolating intermediate terms in ‖x∗
t − xt‖2 − ‖x∗

t −
xt+1‖2 , we have that

‖x∗
t − xt‖2 − ‖x∗

t − xt+1‖2

= ‖x∗
t − xt‖2 − ‖xt − x∗

t−1‖2 + ‖xt − x∗
t−1‖2

− ‖x∗
t − xt+1‖2

= ‖x∗
t − x∗

t−1‖‖x∗
t − 2xt + x∗

t−1‖ + ‖xt − x∗
t−1‖2

− ‖x∗
t − xt+1‖2

(i)
≤ 2R‖x∗

t − x∗
t−1‖ + ‖xt − x∗

t−1‖2 − ‖x∗
t − xt+1‖2 (63)

where (i) follows from the radius of X in Assumption 3 such
that ‖x∗

t − 2xt + x∗
t−1‖ ≤ ‖x∗

t − xt‖ + ‖xt − x∗
t−1‖ ≤ 2R.

Plugging (63) into (62), it readily leads to

Δ(λt+1)/μ +ft(xt) ≤ ft(x∗
t)+‖λt+1‖V (gt)+

μM 2

2
+

αG2

2

+
1
2α

(
2R‖x∗

t − x∗
t−1‖ + ‖xt − x∗

t−1‖2 − ‖x∗
t − xt+1‖2

)
.

(64)
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Summing up (64) over t = 1, 2, . . . , T , we find

T∑

t=1

Δ(λt+1)/μ +
T∑

t=1

ft(xt)

≤
T∑

t=1

ft(x∗
t ) +

1
2α

T∑

t=1

(
‖xt − x∗

t−1‖2 − ‖x∗
t − xt+1‖2)

+
RV ({x∗

t}T
t=1)

α
+

T∑

t=1

‖λt+1‖V (gt) +
μM 2T

2
+

αG2T

2

(j )
≤

T∑

t=1

ft(x∗
t ) +

1
2α

(
‖x1 − x∗

0‖2 − ‖x∗
T − xT +1‖2)

+
RV ({x∗

t}T
t=1)

α
+ ‖λ̄‖

T∑

t=1

V (gt) +
μM 2T

2
+

αG2T

2

(k)
≤

T∑

t=1

ft(x∗
t ) +

1
2α

(
‖x1 − x∗

0‖2)+
RV ({x∗

t}T
t=1)

α

+ ‖λ̄‖V ({gt}T
t=1) +

μM 2T

2
+

αG2T

2
(65)

where (j) uses the upper bound of ‖λt‖ in (12) that we define
as ‖λ̄‖, and (k) follows from the definition of accumulated
variations V ({gt}T

t=1) in (16). The definition of dynamic regret
in (4) finally implies that

Regd
T ≤ RV ({x∗

t}T
t=1)

α
+

‖x1 − x∗
0‖2

2α
+ ‖λ̄‖V ({gt}T

t=1)

+
μM 2T

2
+

αG2T

2
−

T∑

t=1

Δ(λt+1)
μ

=
RV ({x∗

t}T
t=1)

α
+

‖x1 − x∗
0‖2

2α
+ ‖λ̄‖V ({gt}T

t=1)

+
μM 2T

2
+

αG2T

2
− ‖λT +2‖2

2μ
+

‖λ2‖2

2μ

(l)
≤ RV ({x∗

t}T
t=1)

α
+

R2

2α
+ ‖λ̄‖V ({gt}T

t=1)

+
μM 2T

2
+

αG2T

2
+

μM 2

2
(66)

where (l) follows since: i) ‖x1 − x∗
0‖ ≤ R due to the compact-

ness ofX ; ii) ‖λT +2‖2 ≥ 0; and, iii) ‖λ2‖2 ≤ μ2M 2 if λ1 = 0.
This completes the proof.
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