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Linear Convergence of Adaptively Iterative
Thresholding Algorithms for Compressed Sensing

Yu Wang, Jinshan Zeng, Zhimin Peng, Xiangyu Chang, and Zongben Xu

Abstract—This paper studies the convergence of the adaptively
iterative thresholding (AIT) algorithm for compressed sensing. We
first introduce a generalized restricted isometry property (gRIP).
Then, we prove that the AIT algorithm converges to the original
sparse solution at a linear rate under a certain gRIP condition in
the noise free case. While in the noisy case, its convergence rate
is also linear until attaining a certain error bound. Moreover, as
by-products, we also provide some sufficient conditions for the
convergence of the AIT algorithm based on the two well-known
properties, i.e., the coherence property and the restricted isometry
property (RIP), respectively. It should be pointed out that such
two properties are special cases of gRIP. The solid improvements
on the theoretical results are demonstrated and compared with
the known results. Finally, we provide a series of simulations to
verify the correctness of the theoretical assertions as well as the
effectiveness of the AIT algorithm.

Index Terms—Restricted isometric property, coherence, it-
erative hard thresholding, SCAD, compressed sensing, sparse
optimization.

I. INTRODUCTION

L ET and . Compressed
sensing [1], [2] solves the following constrained -min-

imization problem

(1)

where is the measurement noise, is the noise
variance and denotes the number of the nonzero compo-
nents of . Due to the NP-hardness of problem (1) [3], approxi-
mate methods including the greedy method and relaxed method
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are introduced. The greedy method approaches the sparse solu-
tion by successively alternating one or more components that
yield the greatest improvement in quality [3]. These algorithms
include iterative hard thresholding (IHT) [4], accelerated hard
thresholding (AHT) [5], ALPS [6], hard thresholding pursuit
(HTP) [7], CLASH [8], OMP [10], [11], StOMP [12], ROMP
[13], CoSaMP [14] and SP [15]. The greedy algorithms can be
quite efficient and fast in many applications, especially when
the signal is very sparse.
The relaxed method converts the combinatorial -minimiza-

tion into a more tractable model through replacing the norm
with a nonnegative and continuous function , that is,

(2)

One of the most important cases is the -minimization problem
(also known as basis pursuit (BP)) [16] in the noise free case and
basis pursuit denoising in the noisy case) with ,
where is called the norm. The -min-
imization problem is a convex optimization problem that can
be efficiently solved. Nevertheless, the norm may not induce
further sparsity when applied to certain applications [17]–[20].
Therefore, many nonconvex functions were proposed as substi-
tutions of the norm. Some typical nonconvex examples in-
clude the norm [17]–[19], smoothly clipped
absolute deviation (SCAD) [21] and minimax concave penalty
(MCP) [22]. Compared with the -minimization model, the
nonconvex relaxed models can often induce better sparsity and
reduce the bias, while they are generally more difficult to solve.
The iterative reweighted method and regularization method

are two main classes of algorithms to solve (2) when
is nonconvex. The iterative reweighted method includes the
iterative reweighted least squares minimization (IRLS) [23],
[24], and the iterative reweighted -minimization (IRL1)
algorithms [20]. Specifically, the IRLS algorithm solves a
sequence of weighted least squares problems, which can be
viewed as some approximations to the original optimization
problem. Similarly, the IRL1 algorithm solves a sequence of
non-smooth weighted -minimization problems, and hence it
is the non-smooth counterpart to the IRLS algorithm. However,
the iterative reweighted algorithms are slow if the nonconvex
penalty cannot be well approximated by the quadratic function
or the weighted norm function. The regularization method
transforms problem (2) into the following unconstrained opti-
mization problem

(3)

where is a regularization parameter. For some special
penalties such as the norms , SCAD
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and MCP, an optimal solution of the model (3) is a fixed point
of the following equation

where is a componentwise thresholding operator which
will be defined in detail in the next section and is a step
size parameter. This yields the corresponding iterative thresh-
olding algorithm ([19], [25]–[29])

Compared to greedy methods and iterative reweighted algo-
rithms, iterative thresholding algorithms have relatively lower
computational complexities [30]–[32]. So far, most of theoret-
ical guarantees of the iterative thresholding algorithms were de-
veloped for the regularization model (3) with fixed . However,
it is in general difficult to determine an appropriate regulariza-
tion parameter .
Some adaptive strategies for setting the regularization param-

eters were proposed. One strategy is to set the regularization
parameter adaptively so that remains the same at each
iteration. This strategy was first applied to the iterative hard
thresholding algorithm (called Hard algorithm for short hence-
forth) in [33], and later the iterative soft thresholding algorithm
[34] (called Soft algorithm for short henceforth) and the itera-
tive half thresholding algorithm [19] (called Half algorithm for
short henceforth). The convergence of Hard algorithmwas justi-
fied when satisfies the restricted isometry property (RIP) with

[33], where is the number of the nonzero compo-
nents of the truly sparse signal. Later, Maleki [34] investigated
the convergence of both Hard and Soft algorithms in terms of
the coherence. Recently, Zeng et al. [35] generalized Maleki's
results to a wide class of iterative thresholding algorithms. How-
ever, most of guarantees in [35] are coherence-based and focus
on the noise free case with the step size equal to 1. While it has
been observed that in practice, the AIT algorithm can have re-
markable performances for noisy cases with a variety of step
sizes. In this paper, we develop the theoretical guarantees of the
AIT algorithm with different step sizes in both noise free and
noisy cases.

A. Main Contributions
The main contributions of this paper are the following.
i) Based on the introduced gRIP, we give a new uniqueness

theorem for the sparse signal (see Theorem 1), and then
show that the AIT algorithm can converge to the original
sparse signal at a linear rate (See Theorem 2). Specifi-
cally, in the noise free case, the AIT algorithm converges
to the original sparse signal at a linear rate. While in the
noisy case, it also converges to the original sparse signal
at a linear rate until reaching an error bound.

ii) The tightness of our analyses is further discussed in two
specific cases. The coherence based condition for Soft al-
gorithm is the same as those required for both OMP and
BP. Moreover, the RIP based condition for Hard algo-
rithm is , which is better than
the results in [7] and [9].

The remainder of this paper is organized as follows. In
Section II, we describe the adaptively iterative thresholding

(AIT) algorithm. In Section III, we introduce the generalized
restricted isometry property, and then provide a new uniqueness
theorem. In Section IV, we prove the convergence of the AIT
algorithm. In Section V, we compare the obtained theoretical
results with some other known results. In Section VI, we
discuss many practical issues on the implementation of the AIT
algorithm, and then conclude this paper in Section VII. All the
proofs are presented in the Appendices.
Notations: We denote and as the natural number set

and one-dimensional real space, respectively. For any vector
is the -th component of for . For any

matrix denotes the -th column of . and
represent the transpose of vector and matrix respectively.
For any index set represents its cardinality.

is the complementary set, i.e., . For any
vector represents the subvector of with the com-
ponents restricted to . Similarly, represents the submatrix
of with the columns restricted to . We denote as the orig-
inal sparse signal with , and is
the support set of . is the -dimensional identity
matrix. represents the signum function.

II. ADAPTIVELY ITERATIVE THRESHOLDING ALGORITHM

The AIT algorithm for (3) is the following

(4)

(5)

where is a step size and
(6)

is a componentwise thresholding operator. The thresholding
function is defined as

(7)

where is the defining function. In the following, we give
some basic assumptions of the defining function, which were
firstly introduced in [35].
Assumption 1: Assume that satisfies
1) Odevity. is an odd function of .
2) Monotonicity. for any .
3) Boundedness. There exist two constants

such that for .
Note that most of the commonly used thresholding func-

tions satisfy Assumption 1. In Fig. 1, we show some typical
thresholding functions including hard [27], soft [25] and half
[19]thresholding functions for norms respectively,
as well as the thresholding functions for norm [26] and
SCAD penalty [21]. The corresponding boundedness parame-
ters are shown in Table I.
This paper considers a heuristic way for setting the threshold
, specifically, we let

where is the -th largest component of in mag-
nitude and is the specified sparsity level, denotes the
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Fig. 1. Typical thresholding functions with .

TABLE I
BOUNDEDNESS PARAMETERS FOR DIFFERENT THERSHOLDING FUNCTIONS

index of this component. We formalise the AIT algorithm as in
Algorithm 1.

Algorithm 1: Adaptively Iterative Thresholding Algorithm

Initialization: Normalize such that for
.

Given a sparsity level , a step size and an initial point
.

Let ;
Step 1: Calculate ;
Step 2: Set and as the index set of
the largest components of in magnitude;
Step 3: Update: if ,
otherwise ;
Step 4: and repeat Steps 1–3 until convergence.

Remark 1: At the -th iteration, the AIT algorithm yields
a sparse vector with nonzero components. The sparsity
level is a crucial parameter for the performance of the AIT al-
gorithm.When , the results will get better as decreases.
Once , the AIT algorithm fails to find the original sparse
solution. Thus, should be specified as an upper bound estimate
of .
Remark 2: In Algorithm 1, the columns of matrix are re-

quired to be normalized. Such operation is only for a clearer def-
inition of the following introduced generalized restricted isom-
etry property (gRIP) and more importantly, better theoretical
analyses. However, as shown in Section VI.B, this requirement
is generally not necessary for the use of the AIT algorithm in
the perspective of the recovery performance. We will conduct a
series of experiments in Section VI.B for a detailed explanation.

III. GENERALIZED RESTRICTED ISOMETRY PROPERTY

This section introduces the generalized restricted isometry
property (gRIP) and then gives the uniqueness theorem.
Definition 1: For any matrix , and a constant pair

where and then the
-generalized restricted isometry constant (gRIC)

of is defined as

(8)

We will show that the introduced gRIP satisfies the following
proposition.
Proposition 1: For any positive constant pair with

, the generalized restricted isometric constant as-
sociated with and must satisfy

(9)

The proof of this proposition is presented in Appendix A. It
can be noted that the gRIP closely relates to the coherence prop-
erty and restricted isometry property (RIP), whose definitions
are listed in the following.
Definition 2: For any matrix , the coherence of
is defined as

(10)

where denotes the -th column of for .
Definition 3: For any matrix , given

the restricted isometry constant (RIC) of with respect to
, is defined to be the smallest constant such that

(11)

for all -sparse vector, i.e., .
By Definition 3, RIC can also be written as:

(12)

which is very similar to the middle part of (9). In fact, Propo-
sition 2 shows that coherence and RIP are two special cases of
gRIP.
Proposition 2: For any column-normalized matrix

, that is, for , it holds
i) for .
ii) , for .
The proof of this proposition is shown in Appendix B.

A. Uniqueness Theorem Characterized via gRIP

We first give a lemma to show the relation between two dif-
ferent norms for a -sparse vector space.
Lemma 1: For any vector with , and

for any , then

(13)
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This lemma is trivial based on the well-known norm equiv-
alence theorem so the proof is omitted. Note that Lemma 1 is
equivalent to

(14)

With Lemma 1, the following theorem shows that a -sparse
solution of the equation will be the unique sparsest
solution if satisfies a certain gRIP condition.
Theorem 1: Let be a -sparse solution of . If

satisfies -gRIP with

then is the unique sparsest solution.
The proof of Theorem 1 is given in Appendix C. According

to Proposition 2 and Theorem 1, we can obtain the following
uniqueness results characterized via coherence and RIP, respec-
tively.
Corollary 1: Let be a -sparse solution of the equation

. If satisfies

then is the unique sparsest solution.
It was shown in [36]that when , the -sparse solu-

tion should be unique. In another perspective, it can be noted
that the condition is equivalent to while

is equivalent to . Since should be
an integer, these two conditions are almost the same.
Corollary 2: Let be a -sparse solution of the equation

. If satisfies

then is the unique sparsest solution.
According to [37], the RIP condition obtained in Corollary 2

is the same as the state-of-the-art result and more importantly,
is tight in the sense that once the condition is violated, then we
can construct two different signals with the same sparsity.

IV. CONVERGENCE ANALYSIS

In this section, we will study the convergence of the AIT al-
gorithm based on the introduced gRIP.

A. Characterization Via gRIP
To describe the convergence of the AIT algorithm, we first

define

and

where and are the corresponding
boundedness parameters.
Theorem 2: Let be a sequence generated by the AIT

algorithm. Assume that satisfies -gRIP with the
constant , and let

i) ;

ii) , where

and

Then

where with

Particularly, when , it holds

The proof of this Theorem is presented in Appendix D. Under
the conditions of this theorem, we can verify that .
We first note that
then it holds . The definition of gives

If , it holds

Similarly, if

Therefore, we have and thus, .
Theorem 2 demonstrates that in the noise free case, the AIT

algorithm converges to the original sparse signal at a linear rate,
while in the noisy case, it also converges at a linear rate until
reaching an error bound. Moreover, it can be noted that the con-
stant depends on the step size . Since

reaches its minimum at . The trend
of with respect to is shown in Fig. 2. The optimal conver-
gence rate is obtained when . This observation is consis-
tent with the conclusion drawn in [6].
By Proposition 2, it shows that the coherence and RIP are two

special cases of gRIP, thus we can easily obtain some recovery
guarantees based on coherence and RIP respectively in the next
two subsections.
Remark 3: From Theorem 2, we can see that the step size

should lie in an appropriate interval, which depends on the gRIP
constant, which is generally NP-hard to verify. However, we
would like to emphasize that the theoretical result obtained in
Theorem 2 is of importance in theory and it can give some
insights and theoretical guarantees of the implementation of
the AIT algorithm, though it seems stringent. Empirically, we
find that a small interval of the step size, i.e., [0.9,1] is gener-
ally sufficient for the convergence of the AIT algorithm. This
is also supported by the numerical experiments conducted in
Section VI. In [8], it demonstrates that many algorithms perform
well with either constant or adaptive step sizes. In Section VI.C,
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TABLE II
COHERENCE BASED CONDITIONS FOR DIFFERENT AIT ALGORITHMS

we will discuss and compare different step-size schemes in-
cluding the constant and an adaptive step-size strategies on the
performance of AIT algorithms.

B. Characterization via Coherence
Let . In this case,

, and . According to Theorem 2
and Proposition 2, assume that , then the AIT
algorithm converges linearly with the convergence rate constant

if we take and . In the following, we
show that the constant and thus can be further improved
when and .
Theorem 3: Let be a sequence generated by the AIT

algorithm for . Assume that satisfies
, and if we take

i) ;
ii) ,

then it holds

where with

Particularly, when , it holds

The proof of this Theorem is given in Appendix E. As
shown in Theorem 3, the constant can be improved from

to , and also the feasible range
of the step size parameter gets larger from
to . We list the coherence-based
convergence conditions of several typical AIT algorithms in
Table II. As shown in Table II, it can be observed that the
recovery condition for Soft algorithm is the same as those of
OMP [38] and BP [39].

C. Characterization via RIP
Let . In this case,

, and thus

According to Theorem 2, and by Proposition 2, we can directly
claim the following corollary.
Corollary 3: Let be a sequence generated by the AIT

algorithm for . Assume that satisfies ,
and if we take

i) ;

TABLE III
RIP BASED CONDITIONS FOR DIFFERENT AIT ALGORITHMS

TABLE IV
SUFFICIENT CONDITIONS FOR DIFFERENT ALGORITHMS

ii) , where and .
Then

where with . Particularly,
when , it holds

According to Corollary 3, the RIP based sufficient conditions
for some typical AIT algorithms are listed in Table III.
Moreover, we note that the condition in Corollary 3 for Hard

algorithm can be further improved via using the specific expres-
sion of the hard thresholding operator. This can be shown as the
following theorem.
Theorem 4: Let be a sequence generated by Hard algo-

rithm for . Assume that satisfies ,
and if we take and then

where . Particularly, when , it holds

The proof of Theorem 4 is presented in Appendix F.

V. COMPARISON WITH PREVIOUS WORKS

This section discusses some related works of the AIT algo-
rithm, and then compares its computational complexity and suf-
ficient conditions for convergence with other algorithms.
1) On Related Works of the AIT Algorithm: In [34], Maleki

provided some similar results for two special AIT algorithms,
i.e., Hard and Soft algorithms with and for
the noiseless case. The sufficient conditions for convergence are

and for Hard and Soft algorithms, respec-
tively. In [35], Zeng et al.improved and extended Maleki's re-
sults to a wide class of the AIT algorithm with step size .
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The sufficient condition based on coherence was improved to
, where the boundedness parameter can be

found in Table I. Compared with these two tightly related works,
several significant improvements are made in this paper.

i) Weaker convergence conditions. The conditions ob-
tained in this paper is weaker than those in both [34] and
[35]. More specifically, we give a unified convergence
condition based on the introduced gRIP. Particularly, as
shown in Theorem 3, the coherence based conditions
for convergence are , which is much
better than the condition obtained in [35].
Moreover, except Hard algorithm, we firstly show the
convergence of the other AIT algorithms based on RIP.

ii) Better convergence rate. The asymptotic linear conver-
gence rate was justified in both [34] and [35]. However, in
this paper, we show the global linear convergence rate of
the AIT algorithm, which means it converges at a linear
rate from the first iteration.

iii) More general model. In this paper, besides the noise-
less model , we also consider the performance
of the AIT algorithm for the noisy model ,
which is very crucial since the noise is almost inevitable
in practice.

iv) More general algorithmic framework. In both [34] and
[35], the AIT algorithm was only considered with unit
step size . While in this paper, we show that
the AIT algorithm converges when is in an appropriate
range.

Among these AIT algorithms, Hard algorithm has been
widely studied. In [36], it was demonstrated that if has
unit-norm columns and coherence , then has the -RIP
with

(15)

In terms of RIP, Blumensath and Davies [33]justified the per-
formance of Hard algorithm when applied to signal recovery
problem. It was shown that if satisfies a certain RIP with

, then Hard algorithm has global convergence guar-
antee. Later, Foucart improved this condition to or

[4] and further improved it to
(Theorem 6.18, [9]). Now we can improve this condition to

as shown by Theorem 4.
2) On Comparison With Other Algorithms: For better com-

parison, we list the state-of-the-art results on sufficient condi-
tions of some typical algorithms including BP, OMP, CoSaMP,
Hard, Soft, Half and general AIT algorithms in Table V.
From Table V, in the perspective of coherence, the sufficient

conditions of AIT algorithms are slightly stricter than those of
BP and OMP algorithms except Soft algorithm. However, AIT
algorithms are generally faster than both BP and OMP algo-
rithms with lower computational complexities, especially for
large scale applications due to their linear convergence rates.
As shown in the next section, the number of iterations required
for the convergence of the AIT algorithm is empirically of the
same order of the original sparsity level , that is, .
At each iteration of the AIT algorithm, only some simple ma-
trix-vector multiplications and a projection on the vector need
to be done, and thus the computational complexity per itera-
tion is . Therefore, the total computational complexity of

TABLE V
SUFFICIENT CONDITIONS FOR DIFFERENT ALGORITHMS

the AIT algorithm is . While the total computational
complexities of BP and OMP algorithms are generally
and , respectively. It should
be pointed out that the computational complexity of OMP al-
gorithm is related to the commonly used halting rule of OMP
algorithm, that is, the number of maximal iterations is set to be
the true sparsity level .
Another important greedy algorithm, CoSaMP algorithm,

identifies multicomponents (commonly ) at each iteration.
From Table V, the RIP based sufficient condition of CoSaMP
is and a deduced coherence based sufficient
condition is . In the perspective of coherence, our
conditions for AIT algorithms are better than CoSaMP, though
this comparison is not very reasonable. On the other hand,
our conditions for AIT algorithms except Hard algorithm are
generally worse than that of CoSaMP in the perspective of RIP.
However, when the true signal is very sparse, the conditions of
AIT algorithms may be better than that of CoSaMP. At each
iteration of CoSaMP algorithm, some simple matrix-vector
multiplications and a least squares problem should be con-
sidered. Thus, the computational complexity per iteration of
CoSaMP algorithm is generally ,
which is higher than those of AIT algorithms, especially when

is relatively large.
Besides BP and greedy algorithms, another class of tightly

related algorithms is the reweighted techniques that have been
also widely used for solutions to regularization with

. Two well-known examples of such reweighted tech-
niques are the iterative reweighted least squares (IRLS) method
[23] and the reweighted minimization (IRL1) method [20].
The convergence analysis conducted in [24] shows that the
IRLS method converges with an asymptotically superlinear
convergence rate under the assumption that possesses a
certain null-space property (NSP). However, from Theorem
2, the rates of convergence of AIT algorithms are globally
linear. Furthermore, Lai et al. [42] applied the IRLS method to
the unconstrained minimization problem and also extended
the corresponding convergence results to the matrix case. It
was shown also in [43] that the IRL1 algorithm can converge
to a stationary point and the asymptotic convergence speed
is approximately linear when applied to the unconstrained

minimization problem. Both in [42] and [43], the authors
focused on the unconstrained minimization problem with a
fixed regularization parameter , while in this paper, we focus
on a different model with an adaptive regularization parameter.
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Fig. 2. The trend of with respect to .

VI. DISCUSSION

In this section, we numerically discuss some practical issues
on the implementation of AIT algorithms, especially, the ef-
fects of several algorithmic factors including the estimated spar-
sity level parameter, the column-normalization operation, dif-
ferent step-size strategies as well as the formats of different
thresholding operators on the performance of AIT algorithms.
Moreover, we will further demonstrate the performance of sev-
eral typical AIT algorithms including Hard, Half and SCAD
via comparing with many state-of-the-art algorithms such as
CGIHT [50], CoSaMP [14], 0-ALPS(4) [6] in the perspective
of the 50% phase transition curves [47], [49].

A. Robustness of the Estimated Sparsity Level
In the preceding proposed algorithms, the specified sparsity

level parameter is taken exactly as the true sparsity level ,
which is generally unknown in practice. Instead, we can often
obtain a rough estimate of the true sparsity level. Therefore, in
this experiment, we will explore the performance of the AIT
algorithm with a variety of specified sparsity levels. We varied
from 1 to 150 while kept . The experiment setup is

the same with Section VI. A.
From Fig. 3, we can observe that these AIT algorithms are

efficient for a wide range of . Interestingly, the point
is a break point of the performance of all these AIT algorithms.
When , all AIT algorithms fail to recover the original
sparse signal, while when , a wide interval of is al-
lowed for small recovery errors, as shown in Fig. 3(b) and (d).
In the noise free case, if , the feasible in-
tervals of the specified sparsity level are for SCAD
and Soft, for Half and for Hard, respectively.
This observation is very important for real applications of AIT
algorithms because is usually unknown. In the noisy case, if

, the feasible intervals of sparsity level
are for SCAD, for Soft, for Half and

for Hard, respectively.

B. With vs Without Normalization
As shown in Algorithm 1, the column-normalization on the

measurement matrix is required in consideration of a clearer
definition of the introduced gRIP and more importantly, better
theoretical analyses. However, in this subsection, we will con-
duct a series of simulations to show that such requirement is
generally not necessary in practice. The experiment setup is sim-
ilar to Section VI. A. More specifically, we set

and . The nonzero components of were gen-
erated randomly according to the standard Gaussian distribu-
tion. The matrix was generated from i.i.d Gaussian distribu-
tion without normalization. In order to adopt Al-
gorithm 1, we let be the corresponding column-normalized

Fig. 3. On robustness of the specified sparsity level. (a) The trends of the
recovery precision with different estimated sparsity levels in noiseless case.
(b) he detailed trends of the recovery precision with different estimated spar-
sity levels in noiseless case. (c) The trends of the recovery precision with dif-
ferent estimated sparsity levels in noiseless case. (d) The detailed trends of the
recovery precision with different estimated sparsity levels in noisy case. (a) Ro-
bust (Noiseless), (b) Detail (Noiseless), (c) Robust (Noisy), (d) Detail (Noisy).

TABLE VI
THE RECOVERY PRECISION OF DIFFERENT AIT ALGORITHMS WITH OR

WITHOUT COLUMN-NORMALIZATION (NOISELESS CASE)

TABLE VII
THE RECOVERY PRECISION OF DIFFERENT AIT ALGORITHMS WITH OR

WITHOUT COLUMN-NORMALIZATION (WITH 60 DB NOISE)

factor matrix of (i.e., is a diagonal matrix and its diagonal
element is the -norm of the corresponding column of ), and

be the corresponding column-normalized measure-
ment matrix. Assume that is a recovery via Algorithm 1 cor-
responding to , then is the corresponding recovery
of . For each algorithm, we conducted 10 times experiments
independently in both noiseless and noise (signal-to-noise ratio
(SNR): 60dB) cases, and recorded the average recovery preci-
sion. The recovery precision is defined as , where and

represent the recovery and original signal, respectively. The
experiment results are shown in Tables VI and VII.
From Tables VI and VII, we can see that the column-normal-

ization operator has almost no effect on the performance of the
AIT algorithm in both noiseless and noise cases. Therefore, in
the following experiments, we will adopt the more practical AIT
algorithm without the column-normalization for better compar-
ison with the other algorithms.
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C. Constant vs Adaptive Step Size
From Algorithm 1, we only consider the constant step-size.

However, according to many previous and empirical studies [6],
[46], we have known that certain adaptive step-size strategies
may improve the performance of AIT algorithms. In this subsec-
tion, we will compare the performance of two different step-size
schemes, i.e., the constant step-size strategy and an adaptive
step-size strategy introduced in [46] via the so-called 50% phase
transition curve [49]. More specifically, the adaptive step-size
scheme can be described as follows. Assume that is the -th
iteration, then at -th iteration, the step size is set as

(16)

where is the support set of is the measurement ma-
trix and is the measurement vector. Similar to [46], we will
call the AIT algorithm with such adaptive step-size strategy the
normalized AIT (NAIT) algorithm, and correspondingly, sev-
eral typical AIT algorithms such as Hard, Soft, Half and SCAD
algorithms with such adaptive step-size strategy NHard, NSoft,
NHalf and NSCAD for short, respectively. Note that NHard al-
gorithm studied here is actually the same with the normalized
iterative hard thresholding (NIHT) algorithm proposed in [46].
50% phase transition curve was first introduced in [48]

and has been widely used to compare the recovery ability for
different algorithms in compressed sensing [47], [49]. For
a fixed , any given problem setting can depict a
point in the space . For any algorithm,
its 50% phase transition curve is actually a function on the

space. More specifically, if the point
lies below the curve of the algorithm, i.e., ,
then it means the algorithm could recover the sparse signal from
the given -problem with high probability, otherwise
the successful recovery probability is very low [48]. Moreover,
the 50% phase transition curve usually depends on the prior
distribution of as depicted in many researches [27], [47],
[49].
In these experiments, we consider two common distributions

of , the first one is the standard Gaussian distribution, and the
second one is a binary distribution, which takes or 1 with
an equal probability. For any given , the measurement
matrix is generated from the Gaussian distribution

, and the nonzero components of the original -sparse
signal are generated independently and identically distribu-
tion (i.i.d.) according to the Gaussian or binary distributions.
For any experiment, we consider it as a successful recovery if

where is the original sparse signal and is the corresponding
recovery signal. We set . To de-
termine , we exploit a bisection search scheme as the
same as the experiment setting in [47]. We compare the 50%
phase transition curves of Hard, Soft, Half and SCAD algo-
rithms with their adaptive step-size versions, i.e., NHard, NSoft,
NHalf, NSCAD in Fig. 4.
From Fig. 4(a) and (c), we can see that the performances of

all AIT algorithms except Soft algorithm adopting the adaptive
step-size strategy (16) are significantly better than those of the

Fig. 4. 50% phase transition curves of different AIT algorithms with two
different step-size schemes. (a) AIT algorithms with an adaptive step size
for Gaussian case. (a) AIT algorithms with an adaptive step size for Binary
case. (c) AIT algorithms with a constant step size for Gaussian case. (d) AIT
algorithms with a constant step size for Binary case. (a) NAIT for Gaussian
case, (b) NAIT for Binary case, (c) AIT for Gaussian case, (d) AIT for Binary
case.

corresponding AIT algorithms with a constant step size in the
Gaussian case. In this case, NSCAD has the best performance,
then NHalf and NHard, while NSoft is the worst. The perfor-
mance of NSCAD is slightly better than those of NHalf and
NHard, and much better than NSoft. While for the binary case,
as shown in Fig. 4(b) and (d), NSCAD breaks down with the
curve fluctuating around 0.1 while NHalf and NHard still per-
form well. In the binary case, Soft as well as NSoft perform the
worst. In addition, we can see that the performances of Soft and
NSoft are almost the same in all cases, which means that such
adaptive step-size strategy (16) may not bring the improvement
on the performance of Soft algorithm. Moreover, some inter-
esting phenomena can also be observed in Fig. 4, that is, the per-
formance of the AIT algorithm depends to some extent on the
choice of the thresholding operator, and for different prior dis-
tributions of the original sparse signal, the AIT algorithm may
perform very different. For these phenomena, we will study in
the future work.

D. Comparison With the State-of-the-Art Algorithms
We also compare the performance of several AIT algo-

rithms including NHard, NSCAD and NHalf with some typical
state-of-the-art algorithms such as conjugate gradient iterative
hard thresholding (CGIHT) [50], CoSaMP [14], 0-ALPS(4) [6]
in terms of their 50% phase transition curves. For more other
algorithms like MP [3], HTP [7], OMP [10], CSMPSP [51],
CompMP [52], OLS [53] etc., their 50% phase transition curves
can be found in [49], and we omit them here. For all considered
algorithms, the estimated sparsity level parameters are set to be
the true sparsity level of . The result is shown in Fig. 5.
From Fig. 5, we can see that almost all algorithms have better

performances for the Gaussian distribution case than for the
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Fig. 5. 50% phase transition curves of different algorithms. (a) Gaussian dis-
tribution case. (b) Binary distribution case.

binary distribution case, especially NSCAD algorithm. More
specifically, as shown in Fig. 5(a), for the Gaussian distribution,
NSCAD has the best performance among all these algorithms,
and NHalf is slightly worse than NSCAD and better than the
other algorithms. While in the binary case, it can be seen from
Fig. 5(b), all AIT algorithms perform worse than the other algo-
rithms like CGIHT, CoSaMP, 0-ALPS(4), especially, NSCAD
algorithm is much worse than the other algorithms. These exper-
iments demonstrate that AIT algorithms are more appropriate
for the recovery problems that the original sparse signals obey
the Gaussian distribution.

VII. CONCLUSION

We have conducted a study of a wide class of AIT algorithms
for compressed sensing. It should be pointed out that almost
all of the existing iterative thresholding algorithms like Hard,
Soft, Half and SCAD are included in such class of algorithms.
The main contribution of this paper is the establishment of the
convergence analyses of the AIT algorithm. In summary, we
have shown when the measurement matrix satisfies a certain
gRIP condition, the AIT algorithm can converge to the original
sparse signal at a linear rate in the noiseless case, and approach
to the original sparse signal at a linear rate until achieving an
error bound in the noisy case. As two special cases of gRIP, the
coherence and RIP based conditions can be directly derived for
the AIT algorithm. Moreover, the tightness of our analyses can
be demonstrated by two specific cases, that is, the coherence-
based condition for Soft algorithm is the same as those of OMP
and BP, and the RIP based condition for Hard algorithm is better
than the recent result obtained in Theorem
6.18 in [9]. Furthermore, the efficiency of the algorithm and the
correctness of the theoretical results are also verified via a series
of numerical experiments.
In Section VI, we have numerically discussed many practical

issues on the implementation of AIT algorithms, including the
specified sparsity level parameter , the column-normalization
requirement as well as different step-size setting schemes. We
can observe the following several interesting phenomena:

i) The AIT algorithm is robust to the specified sparsity level
parameter , that is, the parameter can be specified in a
large range to guarantee the well performance of the AIT
algorithm.

ii) The column-normalization of the measurement matrix
is not necessary for the use of AIT algorithms in the per-
spective of the recovery performance.

iii) Some adaptive step-size strategies may significantly im-
prove the performance of AIT algorithms.

iv) The performance of AIT algorithm depends to some ex-
tent on the prior distribution of the original sparse signal.
Compared with the binary distribution, AIT algorithms
are more appropriate for the recovery of the sparse signal
generated by the Gaussian distribution.

v) The performance of the AIT algorithm depends on the
specific thresholding operator.

All of these phenomena are of interest, and we will study them
in our future work.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: For any index set with and
a vector , since , then and norms are
dual to each other, which implies that

(17)

By Definition 1, then

(18)

It is obvious that

which implies the right-hand side of (9).
On the other hand, by (18), we can also observe that

(19)

and for any

(20)

Furthermore, it can be noted that

(21)
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since for and . Plugging (20)
and (21) into (19), it yields

which implies the left-hand side of (9). Therefore, the proof of
this proposition is completed.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: (i) The definition of gRIP induces
for all . Therefore, if we can claim the following two
facts: (a) , and (b) for all , then
Proposition 2 (i) follows.
We first justify the fact (a). Suppose the maximal element

of in magnitude appears at the -th row and the
-th column. Because for any , the -th diagonal elements of

equals to , we know . Without
loss of generality, we assume that . Let and
be the -th and -th column vector of , respectively, then
Definition 2 gives

Let and . Then

(22)

Then we prove the fact (b). For any vector and a subset
with , let and

. Then

for any . It implies that

By the definition of , it implies

(23)

According to (22) and (23), for all , it holds

(ii) From the inequality (9) and the equality (12), we know

(24)

To prove
(25)

note that equality (19) leads to

(26)

and further

(27)

where the last equality holds by the equivalent definition of RIP
(this can be also referred to Definition 1 in [4]). From (24)–(27),
we can conclude that

APPENDIX C
PROOF OF THEOREM 1

Proof: We prove this theorem by contradiction. Assume
satisfies and . Then

which implies

Let be the support of and be a subvector
of with the components restricted to . It follows

and further

(28)

for any . Since and , then
. For any , and by the definition of gRIP, we

have

By Lemma 1, there holds

By the assumption of this theorem, then

which contradicts with (28). Therefore, is the unique sparsest
solution.

APPENDIX D
PROOF OF THEOREM 2

Before justifying the convergence of the AIT algorithm based
on gRIP, we first introduce two lemmas.
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Lemma 2: For any , and , then

(29)

Moreover, if for , then

(30)

The proof of Lemma 2 is obvious since is convex
for and any , and for any .
We will omit it due to the limitation of the length of the paper.
Lemma 3: For any and , if , the

following inequality holds for the AIT algorithm:

(31)

where is the index set of the largest components of
in magnitude.

Proof: When , we need to show

(32)

then Lemma 1 shows that (31) holds for all .
Let be the index set of the largest components of in

magnitude, then , where represents the
index of the -th largest component of in magnitude.
We will prove (32) in the following two cases.
Case (i). If , then

(33)

Case (ii). If , then there exists such that

Otherwise and which contradicts with
and . Thus, and

(34)

Combining (33) and (34) gives (32).
Proof of Theorem 2: In order to prove this theorem, we

only need to justify the following two inequalities, i.e., for any
,

(35)

and for any ,

(36)

Then combining (35) and (36), it holds

Since under the assumption of this theorem, then
by induction for any , we have

First, we turn to prove the inequality (35). By the Step 1 of
Algorithm 1, for any ,

and we note that , then

For any and , let . Noting
that , it follows

Then we have

Therefore,

(37)

Since and then

and hence . For any , by (14) and the
definition of gRIP (8), it holds

(38)

and

(39)

Plugging (38) and (39) into (37), then

Thus, we have obtained the inequality (35).
Then we turn to the proof of (36). We will prove it in two

steps.
Step a): For any ,

(40)
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By Lemma 2,

(41)

Moreover, by the Step 3 of Algorithm 1 and Assumption 1, for
any :

and

Thus, for any , it holds

(42)

With (42) and by Lemma 2, we have

(43)

Plugging (41) and (43) into (40), it becomes

(44)

Furthermore, by the Step 2 of Algorithm 1, Assumption 1 and
Lemma 3, for any , we have:
a) if ;
b) if ;
c) .

By the above facts (a)-(c), it holds

(45)
and

(46)

where represents the cardinality of the index set .
Plugging (45), (46) into (44), it follows

(47)

Furthermore, we note that

where the first equality holds because , and the
second inequality holds because of Lemma 1. Therefore, (47)
becomes

(48)

where the second inequality holds by the fact (c), i.e.,
, the third inequality holds by Lemma 1 and

and the last inequality holds because
. Thus, it implies

(49)

Step b): By Lemma 2,

(50)

Moreover, by Lemma 1, it holds

(51)

where the last inequality holds for . We also have

(52)

Since , then
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Thus, it holds

(53)

Plugging (51), (52) and (53) into (50), and further since
, and thus

, it becomes

(54)

Thus, we have

(55)

From (49) and (55), for any , it holds

(56)

where the last equality holds for . Thus,
we have obtained (36).
Therefore, we end the proof of this theorem.

APPENDIX E
PROOF OF THEOREM 3

Proof: The proof is similar to that of Theorem 2. According
to the proof of Theorem 2, we have known that (37)–(39) hold
for all pairs of with , and thus obviously hold
for and . In the following, instead of the inequality
(35), we will derive a tighter upper bound of ,
that is,

(57)

Now we turn to prove the inequality (57). According to (4),
it can be observed that

Let and be the -th
element of . Since for all , then

for all . Moreover, by the definition of the coher-
ence , the absolutes of all the off-diagonal elements of

are no bigger than . Thus,

for any . As a consequence, it holds

Furthermore, for any ,

This implies

Therefore, we obtain the (57). According to the proof of The-
orem 2, we have that the inequality (36) still holds when
and , that is,

(58)

Similar to the rest of the proof of Theorem 2, combining (57)
and (58), we can conclude the proof of this theorem.

APPENDIX F
PROOF OF THEOREM 4

Proof: The proof of this theorem is also very similar to that
of Theorem 2. According to the proof of Theorem 2, we have
known that (35) holds for all pairs of with , and
thus obviously holds for and , that is,

(59)

where is the index set of the largest
components of and represent the support

sets of and , respectively. In the following, instead of the
inequality (36), we will derive a tighter upper bound of

, that is,

(60)

Now we turn to prove the inequality (60). It can be noted that

(61)

On one hand, since for any , then

(62)
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On the other hand, we can also observe that for any
, and thus

(63)

The first inequality holds by the following relation

for any . The second inequality holds due to the fol-
lowing facts:
a) for any
b) for any
c) ,

and hence

The last equality holds for . Plugging (62)
and (63) into (61), we have

where . The last inequality holds because
the sets and do not intersect with each
other and

and . Therefore, the above inequality implies (60).
Similar to the rest of the proof of Theorem 2, combining (59)

and (60), we can conclude the proof of this theorem.
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