
CONVEX NON-CONVEX IMAGE SEGMENTATION

RAYMOND CHAN∗, ALESSANDRO LANZA† , SERENA MORIGI‡ , AND FIORELLA

SGALLARI§

Abstract. A convex non-convex variational model is proposed for multiphase image segmen-
tation. We consider a specially designed non-convex regularization term which adapts spatially to
the image structures for better controlling of the segmentation and easy handling of the intensity
inhomogeneities. The nonlinear optimization problem is efficiently solved by an Alternating Direc-
tions Methods of Multipliers procedure. We provide a convergence analysis and perform numerical
experiments on several images, showing the effectiveness of this procedure.
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1. Introduction. The fundamental task of image segmentation is the partition-
ing of an image into regions that are homogeneous according to a certain feature,
such as intensity or texture, to identify more meaningful high level information in the
image. This process plays a fundamental role in many important application fields
like computer vision, e.g. for object detection, recognition, measurement and track-
ing. Many successful methods for image segmentation are based on variational models
where the regions of the desired partition, or their edges, are obtained by minimizing
suitable energy functions. The most popular region-based segmentation model, the
Mumford-Shah model, is a non-convex variational model which pursues a piecewise
constant/smooth approximation of the given image where the boundaries are referred
as the transition between adjacent patches of the approximation [26]. Many convex
relaxation models have been proposed in literature to overcome the numerical diffi-
culties of a non-convex problem [4, 5, 6, 22] at the same time accepting a compromise
in terms of segmentation quality.

In this work we propose the following Convex Non-Convex (CNC) variational
segmentation model given by the sum of a smooth convex (quadratic) fidelity term
and a non-smooth non-convex regularization term:

min
u∈Rn

J (u;λ, T, a) , J (u;λ, T, a) :=
λ

2
‖u− b‖22 +

n∑
i=1

φ (‖(∇u)i‖2;T, a) , (1.1)

where λ > 0 is the regularization parameter, b ∈ Rn is the (vectorized) observed image,
(∇u)i ∈ R2 represents the discrete gradient of image u ∈ Rn at pixels i, ‖ · ‖2 denotes
the `2 norm and φ( · ;T, a) : [ 0,+∞)→ R is a parameterized, piecewise-defined non-
convex penalty function with parameters T > 0, a > 0 and with properties that will
be outlined in Section 2. In particular, the parameter a allows to tune the degree
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of non-convexity of the regularizer, while the parameter T is devised to represent
a given gradient magnitude threshold above which the boundaries surrounding the
features in the image are considered salient in a given context. This parameter thus
plays a fundamental role in selecting which pixels do not have to be considered as
boundaries of segmented regions in the image. The role of the penalty function φ in the
regularization term of functional J in (1.1) is twofold. Within the first interval [0, T ),
φ smooths the image values, since they belong to the inner parts of the regions to be
segmented. In the interval [T,+∞), φ is flat and hence it penalizes, in approximately
the same way, all the possible gradient magnitudes.

The functional J in (1.1) is non-smooth and can be convex or non-convex de-
pending on the parameters λ and a. In fact, the quadratic fidelity term is strongly
convex and its positive second-order derivatives hold the potential for compensating
the negative second-order derivatives in the regularization term.

The idea of constructing and then optimizing convex functionals containing non-
convex (sparsity-promoting) terms, referred to as CNC strategy, was first introduced
by Blake and Zisserman in [2], then proposed by Nikolova in [28] for the denoising
of binary images and was studied very recently by Selesnik and others for different
purposes, see [37], [9], [38], [32], [17], [20], [21] for more details. The attractiveness of
such CNC approach resides in its ability to promote sparsity more strongly than it
is possible by using only convex terms while at the same time maintaining convexity
of the total optimization problem, so that well-known reliable convex minimization
approaches can be used to compute the (unique) solution.

In this paper, we propose a two-stage variational segmentation method inspired
by the piecewise smoothing proposal in [5] which is a convex variant of the classical
Mumford-Shah model. In the first stage of our method an approximate solution u∗

to the optimization problem (1.1) is computed. Once u∗ is obtained, then in the
second stage the segmentation is done by thresholding u∗ into different phases. The
thresholds can be given by the users or can be obtained automatically using any
clustering method, such as the K-means algorithm. As discussed in [5], this allows
for a K-phase segmentation (K ≥ 2) by choosing (K − 1) thresholds after u∗ is
computed in the first stage. In contrast, many multiphase methods such as those in
[45],[16],[23],[24] require K to be given in advance which implies that if K changes,
the minimization problem has to be solved again.

The main contributions of this paper are summarized as follows.
• A new variational CNC model for multiphase segmentation of images is pro-

posed, where a non-convex regularization term allows for penalizing both the
non-smoothness of the inner segmented parts and the length of the bound-
aries;

• Sufficient conditions for convexity are derived for the proposed model;
• A specially designed ADMM-based numerical algorithm is introduced to-

gether with a specific multivariate proximal map;
• The proof of convergence of the minimization algorithm is provided which

paves the way to analogous proof for similar CNC algorithms.

1.1. Related work. Image segmentation is a relevant problem in the under-
standing of high level information from image vision. There exist many different ways
to define the task of segmentation ranging from template matching, component la-
belling, thresholding, boundary detection, texture segmentation just to mention a few,
and there is no universally accepted best segmentation procedure. The proposed work
belongs to the class of region-based (rather than edge-based) variational models for
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multiphase segmentation without supervision constraints. Many variational models
have been studied for image segmentation since the Mumford-Shah functional was in-
troduced in [26]. A prototypical example is the Chan-Vese [7] model, which seeks the
desired segmentation as the best piecewise constant approximation to a given image
via a level set formulation. A variety of methods have been developed to generalize
it and overcome the problem to solve nonconvex optimization problems. Specifically,
in [22], the piecewise constant Mumford-Shah model was convexified by using fuzzy
membership functions. In [36], a new regularization term was introduced which allows
to choose the number of phases automatically. In [45][44], efficient methods based on
the fast continuous max-flow method were proposed. The segmentation method re-
cently proposed by Cai, Chan and Zeng in [5] aims to minimize a convex version of
the Mumford-Shah functional [26] by finding an optimal approximation of the image
based on a piecewise smooth function. The main difference between our method and
the approach in [5] is the regularization term: in [5], it consists in the sum of a smooth-
ing term and a total variation term, where the latter replaces the non-convex term
measuring the boundary length in the original Mumford-Shah model. However, it is
well known that using non-convex version of such total variation regularizer holds the
potential for more accurate penalizations [18], [19]. In our variational model (1.1) we
devise a unique regularization function which forces at the same time the smoothing
of the approximate solution in the inner parts and the preservation of the features
(corners, edges,..) along the boundaries of the segmented parts. This latter property
is achieved by means of a non-convex regularizer. However, the CNC strategy applied
to the solution of the optimization problem allows us to overcome the well-known nu-
merical problems for the solution of the non-convex piecewise smooth Mumford-Shah
original model.

This work is organized as follows. In Section 2 we characterize the non-convex
penalty functions φ( · ;T, a) considered in the proposed model. In Section 3 we provide
a sufficient condition for strict convexity of the cost functional in (1.1) and in Sec-
tion 4 we illustrate in detail the ADMM-based numerical algorithm used to compute
approximate solutions of (1.1). A proof of convergence of the numerical algorithm is
given in Section 5. Some segmentation results are illustrated in Section 6. Conclusions
are drawn in Section 7.

2. Design of the non-convex penalty functions. In this section we design a
penalty function φ : R+ → R suitable for our purposes. In particular, the regulariza-
tion term in the proposed model (1.1) has a twofold aim: in the first domain interval
[0, T ) it has to behave like a smoothing regularizer, namely a quadratic penalty, and
in the second interval [T,∞) it serves to control the length of the region boundaries,
and is realized by a concave penalty function prolonged with a horizontal line.

To fulfill the above requirements we used a piecewise polynomial function defined
over three subdomains [0, T ), [T, T2) and [T2,∞), with the following properties:

• φ continuously differentiable for t ∈ R+

• φ twice continuously differentiable for t ∈ R+ \ {T, T2}
• φ convex and monotonically increasing for t ∈ [0, T )

• φ concave and monotonically non-decreasing for t ∈ [T, T2)

• φ constant for t ∈ [T2,∞)

• inf
t∈R+\{T,T2}

φ′′ = −a.
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Recalling that the independent variable t of φ(t;T, T2, a) represents the gradient
magnitude, the free parameter T allows to control the segmentation, in particular
it defines the lower slope considered as acceptable boundary for the segmentation
process. The parameter a is used to make the entire functional J in (1.1) convex,
as will be detailed in Section 3. Finally, the parameter T2 is defined to allow for a
good balancing between the two terms in the functional. In particular, the graph of
the φ penalty function must be pushed down when a increases. At this aim, we set
T2 as T2(a) in such a way that the slope in T given by φ′(T ;T, T2, a) = (T2 − T )a
is a monotonically decreasing function of the parameter a. For example, if we set
φ′(T ;T, T2, a) = 1/a then T2 = T + 1

a2 . Therefore, in the following we restrict the
number of free parameters to a and T only.

The minimal degree polynomial function fulfilling the above requirements, turns
out to be the following piecewise quadratic penalty function:

φ(t;T, a) :=


φ1(t;T, a) = a(T2−T )

2T t2 t ∈ [0, T )

φ2(t;T, a) = −a2 t
2 + aT2t− aTT2

2 t ∈ [T, T2)

φ3(t;T, a) = aT2(T2−T )
2 t ∈ [T2,∞)

(2.1)

which has been obtained by imposing the following constraints:
• φ1(0;T, a) = φ′1(0;T, a) = 0

• φ1(T ;T, a) = φ2(T ;T, a)

• φ′1(T ;T, a) = φ′2(T ;T, a)

• φ′2(T2;T, a) = 0

• φ′′2(t;T, a) = −a ∀t ∈ [T, T2)

• φ3 constant ∀t ∈ [T2,∞)

In Figure 2.1 we show the plots of the penalty functions φ(t;T, a) for three different
values a ∈ {3, 5, 7} with fixed T = 0.2. The solid dots in the graphs represent the
points (T, φ(T ;T, a)) which separate the convex segment φ1 from the non-convex ones
φ2 - φ3.

This choice of a simple second-order piecewise polynomial as penalty function is
motivated by computational efficiency issues as better detailed in Section 4.

3. Convexity Analysis. In this section, we analyze convexity of the optimiza-
tion problem in (1.1). More precisely, we seek for sufficient conditions on the parame-
ters λ, T, a ∈ R∗+ (the set of positive real numbers) such that the objective functional
J ( · ;λ, T, a) in (1.1) is strictly convex. In the previous section we designed the penalty
function φ( · ;T, a) in (2.1) in such a way that it is continuously differentiable but not
everywhere twice continuously differentiable. This choice, that was motivated by the
higher achievable flexibility in the shape of the function, prevents us from using only
arguments based on second-order differential quantities for the following analysis of
convexity.

We rewrite J ( · ;λ, T, a) in (1.1) in explicit double-indexed form:

J (u;λ, T, a) =
∑

(i,j)∈Ω

λ

2
(ui,j − bi,j)2

+
∑

(i,j)∈Ω

φ

(√
(ui+1,j − ui,j)2

+ (ui,j+1 − ui,j)2
; T, a

)
, (3.1)
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Fig. 2.1. Plots of the penalty function φ defined in (2.1) for different values of the concavity
parameter a. The solid dots indicate the point which separates the subdomains [0, T ) and [T,∞).

where Ω represents the image lattice defined as

Ω :=
{

(i, j) ∈ Z2 : i = 1, . . . , d1, j = 1, . . . , d2

}
, (3.2)

and where a standard first-order forward finite difference scheme has been used in
(3.1) for discretization of the first-order partial derivatives. We notice that convexity
conditions for the functional J depend on the particular finite difference scheme used
for discretization of the gradient. Nevertheless, the procedure used below for deriving
such conditions can be adapted to other discretization choices.

In the following, we give four lemmas which allow us to reduce convexity anal-
ysis from the original functional J ( · ;λ, T, a) of n variables to simpler functions
f( · ;λ, T, a), g( · ;λ, T, a) and h( · ;λ, T, a) of three, two and one variables, respec-
tively. Then in Theorem 3.5 we finally state conditions for strict convexity of our
functional J ( · ;λ, T, a) in (1.1).

Lemma 3.1. The function J ( · ;λ, T, a) : Rn → R defined in (3.1) is strictly
convex if the function f( · ;λ, T, a) : R3 → R defined by

f(x1, x2, x3;λ, T, a) =
λ

6

(
x2

1 + x2
2 + x2

3

)
+ φ

(√
(x2 − x1)

2
+ (x3 − x1)

2
; T, a

)
(3.3)

is strictly convex.
Proof. First, we notice that the functional J in (3.1) can be rewritten as

J (u;λ, T, a) = A(u) +
∑

(i,j)∈Ω

λ

2
u2
i,j

+
∑

(i,j)∈Ω

φ

(√
(ui+1,j − ui,j)2

+ (ui,j+1 − ui,j)2
; T, a

)
, (3.4)
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where A(u) is an affine function of u. Then, we remark that each term of the last
sum in (3.4) involves three different pixel locations and that, globally, the last sum
involves each pixel location three times. Hence, we can clearly write

J (u;λ, T, a) = A(u) +
∑

(i,j)∈Ω

λ

6

(
u2
i,j + u2

i+1,j + u2
i,j+1

)
+

∑
(i,j)∈Ω

φ

(√
(ui+1,j − ui,j)2

+ (ui,j+1 − ui,j)2
; T, a

)
= A(u) +

∑
(i,j)∈Ω

f(ui,j , ui+1,j , ui,j+1;λ, T, a) . (3.5)

Since the affine function A(u) does not affect convexity, we can conclude that the
functional J in (3.5) is strictly convex if the function f is strictly convex.

Lemma 3.2. The function f( · ;λ, T, a) : R3 → R defined in (3.3) is strictly
convex if the function g( · ;λ, T, a) : R2 → R defined by

g(y1, y2;λ, T, a) =
λ

18

(
y2

1 + y2
2

)
+ φ

(√
y2

1 + y2
2 ; T, a

)
(3.6)

is strictly convex.
The proof is provided in the Appendix.

Lemma 3.3. Let ψ: R2 → R be a radially symmetric function defined as

ψ(x) := z (‖x‖2) , z: R+ → R , z ∈ C1 (R+) . (3.7)

Then, ψ is strictly convex in x if and only if the function z̃: R→ R defined by

z̃(t) := z(|t|) (3.8)

is strictly convex in t.
The proof is provided in the Appendix.

Lemma 3.4. The function g( · ;λ, T, a) : R2 → R defined in (3.6) is strictly convex
if and only if the function h( · ;λ, T, a) : R→ R defined by

h(t;λ, T, a) =
λ

18
t2 + φ(|t|;T, a) (3.9)

is strictly convex.
The proof is immediate by applying Lemma 3.3 to the function g in (3.6).

Theorem 3.5. Let φ( · ;T, a) : R+ → R be the penalty function defined in (2.1).
Then, a sufficient condition for the functional J ( · ;λ, T, a) in (1.1) to be strictly
convex is that the pair of parameters (λ, a) ∈ R∗+× R∗+ satisfies:

λ > 9 a ⇐⇒ λ = τc 9 a, τc ∈ (1,+∞) . (3.10)
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Proof. It follows from Lemmas 3.1, 3.2 and 3.4 that a sufficient condition for the
functional J ( · ;λ, T, a) in (1.1) to be strictly convex is that the function h( · ;λ, T, a)
in (3.9) is strictly convex. Recalling the definition of the penalty function φ( · ;T, a)
in (2.1), h( · ;λ, T, a) in (3.9) can be rewritten in the following explicit form:

h(t;λ, T, a) =


h1(t;λ, T, a) =

(
λ
18 −

a
2 + a T2

2T

)
t2 |t| ∈ [0, T )

h2(t;λ, T, a) =
(
λ
18 −

a
2

)
t2 + aT2|t| − aTT2

2 |t| ∈ [T, T2)

h3(t;λ, T, a) = λ
18 t

2 + aT2(T2−T )
2 |t| ∈ [T2,+∞)

(3.11)

Clearly, the function h above is even, piecewise quadratic and, as far as regularity is
concerned, it is immediate to verify that h ∈ C∞(R \ {±T,±T2}) ∩ C1(R). In par-
ticular, the first-order derivative function h′ : R→ R and the second-order derivative
function h′′ : R \ {±T,±T2} → R are as follows:

h′(t;λ, T, a) =


h′1(t;λ, T, a) =

(
λ
9 − a+ aT2

T

)
t |t| ∈ [0, T )

h′2(t;λ, T, a) =
(
λ
9 − a

)
t+ aT2 sign(t) |t| ∈ [T, T2)

h′3(t;λ, T, a) = λ
9 t |t| ∈ [T2,+∞)

(3.12)

h′′(t;λ, T, a) =


h′′1(t;λ, T, a) = λ

9 − a+ aT2

T |t| ∈ [0, T )

h′′2(t;λ, T, a) = λ
9 − a |t| ∈ (T, T2)

h′′3(t;λ, T, a) = λ
9 |t| ∈ (T2,+∞)

. (3.13)

We notice that the functions h in (3.11) and h′ in (3.12) are both continuous at points
t ∈ {±T,±T2}, whereas for the function h′′ in (3.13) we have at points t ∈ {T, T2}
(analogously at points t ∈ {−T,−T2}):

T : lim
t↑T

h′′1(t;λ, T, a) = λ
9 − a+ aT2

T 6= λ
9 − a = lim

t↓T
h′′2(t;λ, T, a)

T2 : lim
t↑T2

h′′2(t;λ, T, a) = λ
9 − a 6= λ

9 = lim
t↓T2

h′′3(t;λ, T, a)
. (3.14)

After recalling that λ, T, a > 0 and T2 > T , we notice that

h′′1(t;λ, T, a) =
λ

9
+
a

T
(T2 − T ) > 0 , h′′3(t;λ, T, a) =

λ

9
> 0 , (3.15)

hence the function h is strictly convex for |t| ∈ [0, T ) and |t| ∈ (T2,∞). A sufficient
condition (it is also a necessary condition since the function is quadratic) for h to be
strictly convex in |t| ∈ (T, T2) is that the second-order derivative h′′2(t;λ, T, a) defined
in (3.13) is positive. This clearly leads to condition (3.10) in the theorem statement.
We have thus demonstrated that if (3.10) is satisfied then h is strictly convex for
t ∈ R \ {±T,±T2}.

It remains to handle the points ±T,±T2 where the function h does not admit
second-order derivatives. Since h is even and continuously differentiable, it is sufficient
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to demonstrate that if condition (3.10) is satisfied then the first-order derivative h′ is
monotonically increasing at points t ∈ {T, T2}. In particular, we aim to prove:

T :

{
h′(t1;λ, T, a) < h′(T ;λ, T, a) ∀t1∈ (0, T )

h′(t2;λ, T, a) > h′(T ;λ, T, a) ∀t2∈ (T, T2)
(3.16)

T2 :

{
h′(t2;λ, T, a) < h′(T2;λ, T, a) ∀t2∈ (T, T2)

h′(t3;λ, T, a) > h′(T2;λ, T, a) ∀t3∈ (T2,+∞)
(3.17)

Recalling the definition of h′ in (3.12), we obtain:

T :

{ (
λ
9 − a+ aT2

T

)
t1 <

(
λ
9 − a

)
T + aT2 ∀t1∈ (0, T )(

λ
9 − a

)
t2 + aT2 >

(
λ
9 − a

)
T + aT2 ∀t2∈ (T, T2)

(3.18)

T2 :

{ (
λ
9 − a

)
t2 + aT2 < λ

9T2 ∀t2∈ (T, T2)

λ
9 t3 > λ

9T2 ∀t3∈ (T2,+∞)
(3.19)

and, after simple algebraic manipulations:

T :


(
λ
9 − a︸ ︷︷ ︸
>0

+ aT2

T︸︷︷︸
>0

)
(t1 − T )︸ ︷︷ ︸

<0

< 0 ∀t1∈ (0, T )

(
λ
9 − a

)︸ ︷︷ ︸
>0

(t2 − T )︸ ︷︷ ︸
>0

> 0 ∀t2∈ (T, T2)
(3.20)

T2 :


(
λ
9 − a

)︸ ︷︷ ︸
>0

(t2 − T2)︸ ︷︷ ︸
<0

< 0 ∀t2∈ (T, T2)

λ
9︸︷︷︸
>0

(t3 − T2)︸ ︷︷ ︸
>0

> 0 ∀t3∈ (T2,+∞)
(3.21)

Since λ, T, a > 0 and we are assuming λ> 9a, 0 < t1 < T < t2 < T2 < t3, inequalities
in (3.20) and (3.21) are clearly satisfied, hence the proof is completed.

We conclude this section by highlighting some important properties of the func-
tional J ( · ;λ, T, a) in (1.1).

Definition 3.6. Let Z : Rn → R be a (not necessarily smooth) function. Then,
Z is said to be µ-strongly convex if and only if there exists a constant µ > 0, called the
modulus of strong convexity of Z, such that the function Z(x)− µ

2 ‖x‖
2
2 is convex.

Proposition 3.7. Let φ( · ;T, a) : R+ → R be the penalty function defined
in (2.1) and let the pair of parameters (λ, a) ∈ R∗+× R∗+ satisfy condition (3.10).
Then, the functional J ( · ;λ, T, a) in (1.1) is proper, continuous (hence, lower semi-
continuous), bounded from below by zero, coercive and µ-strongly convex with modulus
of strong convexity (at least) equal to

µ = λ − 9 a = 9 a (τc − 1) . (3.22)

The proof is provided in the Appendix.
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4. Applying ADMM to the proposed CNC model. In this section, we
illustrate in detail the ADMM-based [3] iterative algorithm used to numerically solve
the proposed model (1.1) in case that the pair of parameters (λ, a) ∈ R∗+× R∗+ satisfies
condition (3.10), so that the objective functional J (u;λ, T, a) in (1.1) is strongly
convex with modulus of strong convexity given in (3.22). Towards this aim, first
we resort to the variable splitting technique [1] and introduce the auxiliary variable
t ∈ R2n, such that model (1.1) is rewritten in the following linearly constrained
equivalent form:

{u∗, t∗} ← arg min
u,t

{
λ

2
‖u− b‖22 +

n∑
i=1

φ
(
‖ti‖2;T, a

) }
(4.1)

subject to : t = Du , (4.2)

where D := (DT
h , D

T
v )T ∈ R2n×n with Dh, Dv ∈ Rn×n the finite difference operators

approximating the first-order horizontal and vertical partial derivatives, respectively,
according to the standard forward scheme considered in the previous section, and

where ti :=
(
(Dhu)i , (Dvu)i

)T ∈ R2 represents the discrete gradient of the image
u at pixel i. The auxiliary variable t is introduced to transfer the discrete gradi-
ent operators (∇u)i in (1.1) out of the non-convex non-smooth regularization term
φ(‖ · ‖2;T, a).

To solve problem (4.1)–(4.2), we define the augmented Lagrangian functional

L(u, t; ρ) =
λ

2
‖u− b‖22 +

n∑
i=1

φ
(
‖ti‖2;T, a

)
− 〈 ρ, t−Du 〉 +

β

2
‖t−Du‖22 , (4.3)

where β > 0 is a scalar penalty parameter and ρ ∈ R2n is the vector of Lagrange
multipliers associated with the system of linear constraints in (4.2). We then consider
the following saddle-point problem:

Find (u∗, t∗; ρ∗) ∈ Rn× R2n× R2n

s.t. L (u∗, t∗; ρ) ≤ L (u∗, t∗; ρ∗) ≤ L (u, t; ρ∗)

∀ (u, t; ρ) ∈ Rn× R2n× R2n , (4.4)

with the augmented Lagrangian functional L defined in (4.3).
Given the previously computed (or initialized for k = 1) vectors t(k−1) and ρ(k),

the k-th iteration of the proposed ADMM-based scheme applied to the solution of the
saddle-point problem (4.3)–(4.4) reads as follows:

u(k) ← arg min
u∈Rn

L(u, t(k−1); ρ(k)) , (4.5)

t(k) ← arg min
t∈R2n

L(u(k), t; ρ(k)) , (4.6)

ρ(k+1) ← ρ(k) − β
(
t(k) − Du(k)

)
. (4.7)

In Section 5 we will show that, under mild conditions on the penalty parameter β,
the iterative scheme in (4.6)–(4.7) converges to a solution of the saddle-point problem
(4.4), that is to a saddle point (u∗, t∗; ρ∗) of the augmented Lagrangian functional in
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(4.3), with u∗ representing the unique solution of the strongly convex minimization
problem (1.1).

In the following subsections we show in detail how to solve the two minimization
sub-problems (4.5) and (4.6) for the primal variables u and t, respectively, then we
present the overall iterative ADMM-based minimization algorithm.

4.1. Solving the sub-problem for u. Given t(k−1) and ρ(k), and recalling the
definition of the augmented Lagrangian functional in (4.3), the minimization sub-
problem for u in (4.5) can be rewritten as follows:

u(k) ← arg min
u∈Rn

{
λ

2
‖u− b‖22 +

〈
ρ(k), Du

〉
+
β

2

∥∥t(k−1) −Du
∥∥2

2

}
, (4.8)

where constant terms have been omitted. The quadratic minimization problem (4.8)
has first-order optimality conditions which lead to the following linear system:(

I +
β

λ
DTD

)
u = b +

β

λ
DT

(
t(k−1) − 1

β
ρ(k)

)
. (4.9)

The term DTD in (4.9) represents the 2D discrete Laplace operator. The coefficient
matrix of the linear system (4.9) is symmetric positive definite and highly sparse,
therefore (4.9) can be solved very efficiently by the iterative (preconditioned) Conju-
gate Gradient method. Moreover, under appropriate assumptions about the solution
u near the image boundary, the linear system can be solved even more efficiently. For
example, under periodic boundary conditions the matrix DTD is block circulant with
circulant blocks, so that the coefficient matrix in (4.9) can be diagonalized by the
2D discrete Fourier transform (FFT implementation). However, it is well known that
imposing periodic boundary conditions can lead to artifacts in the solution due to
artificially introduced image discontinuities. By using more natural reflective or anti-
reflective boundary conditions, no artificial discontinuities near the image boundary
are introduced, hence higher quality solutions can be obtained. As illustrated in [27]
and [10], under reflective and anti-reflective boundary conditions the coefficient ma-
trix in (4.9) can be diagonalized by the 2D discrete cosine and sine transforms (FCT
and FST implementations), respectively. Therefore, at any ADMM iteration the lin-
ear system (4.9) can be solved by one forward and one inverse 2D FFT/FCT/FST,
each at a cost of O(n log n).

4.2. Solving the sub-problem for t. Given u(k) and ρ(k), and recalling the
definition of the augmented Lagrangian functional in (4.3), the minimization sub-
problem for t in (4.6) can be rewritten as follows:

t(k) ← arg min
t∈R2n

{
n∑
i=1

φ
(
‖ti‖2;T, a

)
+
β

2

∥∥ t− r(k)
∥∥2

2

}
, (4.10)

where the vector r(k) ∈ R2n, which is constant with respect to the optimization
variable t, is given by:

r(k) = Du(k) +
1

β
ρ(k) . (4.11)

By rewriting the cost functional in (4.10) in explicit component-wise form, we obtain:

t(k) ← arg min
t∈R2n

n∑
i=1

{
φ
(
‖ti‖2;T, a

)
+
β

2

∥∥ ti − r(k)
i

∥∥2

2

}
, (4.12)
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with r
(k)
i :=

(
Du(k)

)
i

+
(
ρ(k)

)
i
/ β and where

(
Du(k)

)
i
,
(
ρ(k)

)
i
∈ R2 denote the dis-

crete gradient and the associated pair of Lagrange multipliers at pixel i, respectively.
The minimization problem in (4.12) is thus equivalent to the following n independent
2-dimensional problems:

t
(k)
i ← arg min

ti∈R2

{
φ
(
‖ti‖2;T, a

)
+
β

2

∥∥ ti − r(k)
i

∥∥2

2

}
, i = 1, . . . , n . (4.13)

Since we are imposing that condition (3.10) is satisfied, such that the original
functional J (u;λ, T, a) in (1.1) is strictly convex, we clearly aim at avoiding non-
convexity of the ADMM sub-problems (4.13). In the first part of Proposition 4.1
below, whose proof is provided in the Appendix, we give a necessary and sufficient
condition for strict convexity of the cost functions in (4.13).

Proposition 4.1. Let T, a, β ∈ R∗+ and r ∈ R2 be given constants, and let
φ( · ;T, a) : R+ → R be the penalty function defined in (2.1). Then, the function

θ(x) := φ (‖x‖2;T, a) +
β

2
‖x− r‖22 , x ∈ R2 , (4.14)

is strictly convex (convex) if and only if the following condition holds:

β > a (β ≥ a ). (4.15)

Moreover, in case that (4.15) holds, the strictly convex minimization problem

arg min
x∈R2

θ(x) (4.16)

admits the unique solution x∗∈ R2 given by the following shrinkage operator:

x∗ = ξ∗r , with ξ∗ ∈ (0, 1] (4.17)

equal to
a) ξ∗ = κ1 if ‖r‖2 ∈

[
0, κ0

)
b) ξ∗ = κ2 − κ3/‖r‖2 if ‖r‖2 ∈

[
κ0, T2

)
c) ξ∗ = 1 if ‖r‖2 ∈ [T2,+∞)

(4.18)

with

κ0 = T +
a

β
(T2 − T ), κ1 =

T

κ0
, κ2 =

β

β − a
, κ3 =

aT2

β − a
. (4.19)

Based on (4.14)–(4.15) in Proposition 4.1, we can state that all the problems in
(4.13) are strictly convex if and only if the following condition holds:

β > a . (4.20)

In case that (4.20) is satisfied, the unique solutions of the strictly convex problems
(4.13) can be obtained as reported in the second part of Proposition 4.1, that is:

t
(k)
i = ξ

(k)
i r

(k)
i , i = 1, . . . , n , (4.21)

where the shrinkage coefficients ξ
(k)
i ∈ (0, 1] are computed according to (4.18). We no-

tice that coefficients κ0, κ1, κ2, κ3 in (4.19) are constant during the ADMM iterations,
hence they can be precomputed once and for all at the beginning. The solutions of
problems (4.13) can thus be determined very efficiently by the closed forms given in
(4.18), with computational cost O(n).
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4.3. ADMM-based minimization algorithm. To summarize previous re-
sults, in Algorithm 1 we report the main steps of the proposed ADMM-based iterative
scheme used to solve the saddle-point problem (4.3)–(4.4) or, equivalently (as it will
be proven in the next section), the minimization problem (1.1). We remark that the
constraint on the ADMM penalty parameter β in Algorithm 1 is more stringent than
that in (4.20) which guarantees the convexity of the ADMM subproblem for the pri-
mal variable t. Indeed, the more stringent requirement is needed for the analysis of
convergence that will be carried out in the Section 5.

Algorithm 1 ADMM-based scheme for the solution of CNC problem (1.1)

input: observed image b ∈ Rn

output: approximate solution u∗∈ Rn of (1.1)

parameters: MODEL: T > 0 and λ, a > 0 s.t. λ > 9 a according to (3.10)

ADMM: β > 0 s.t. β ≥ max{2a , a λ
λ−8a} according to (5.13)

1. initialization: t(0) = D b, ρ(1) = 0

2. for k = 1, 2, 3, . . . until convergence do:

3. · update primal variables:

4. · compute u(k) by solving (4.9)

5. · compute t(k) by (4.11), (4.18) and (4.21)

6. · update dual variable:

7. · compute ρ(k+1) by (4.7)

8. end for

9. u∗ = u(k)

5. Convergence analysis. In this section, we analyze convergence of the pro-
posed ADMM-based minimization approach, whose main computational steps are
reported in Algorithm 1. In particular, we prove convergence of Algorithm 1 in case
that conditions (3.10) and (5.13) are satisfied.

To simplify the notations in the subsequent discussion, we give the following
definitions concerning the objective functional in the (u, t)-split problem (4.1)–(4.2):

G(u, t) :=
λ

2
‖u− b‖22︸ ︷︷ ︸
F (u)

+

n∑
i=1

φ
(
‖ti‖2;T, a

)
︸ ︷︷ ︸

R(t)

, (5.1)

where the parametric dependencies of the fidelity term F (u) on λ and of the regular-
ization term R(t) on T and a are dropped for brevity. The augmented Lagrangian
functional in (4.3) can thus be rewritten more concisely as

L(u, t; ρ) = F (u) + R(t) − 〈 ρ, t−Du 〉 +
β

2
‖t−Du‖22 , (5.2)

and the regularization term in the original proposed model (1.1), referred to as R(u),
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reads

R(u) = R(Du) . (5.3)

To prove convergence, we follow the same methodology used, e.g., in [42], for
convex optimization problems, based on optimality conditions of the augmented La-
grangian functional with respect to the pair of primal variables (u, t) and on the
subsequent construction of suitable Fejér-monotone sequences. However, in [42] and
other works using the same abstract framework for proving convergence, such as [43]
where convex non-quadratic fidelity terms are considered, the regularization term of
the convex objective functional is also convex (Total Variation semi-norm in [42, 43]).
In contrast, in our CNC model (1.1) the total objective functional J is convex but the
regularizer is non-convex. This calls for a suitable adaptation of the above mentioned
proofs, in particular of the proof in [42], where the same `2 fidelity term as in our
model (1.1) is considered.

Our proof will be articulated into the following parts:

1. derivation of optimality conditions for problem (1.1);

2. derivation of convexity conditions for the augmented Lagrangian in (5.2);

3. demonstration of equivalence (in terms of solutions) between the split problem
(4.1)–(4.2) and the saddle-point problem (4.3)–(4.4);

4. demonstration of convergence of Algorithm 1 to a solution of the saddle-point
problem (4.3)–(4.4), hence to the unique solution of (1.1).

5.1. Optimality conditions for problem (1.1). Since the regularization term
in our model (1.1) is non-smooth non-convex, unlike in [42] we need to resort also to
concepts from calculus for non-smooth non-convex functions, namely the generalized
(or Clarke) gradients [11]. In the following we will denote by ∂x[ f ](x∗) and by
∂̄x[ f ](x∗) the subdifferential (in the sense of convex analysis [33, 34]) and the Clarke
generalized gradient [11], respectively, with respect to x of the function f calculated
at x∗.

In Lemma 5.1 below we give some results on locally Lipschitz continuity for the
functions involved in the subsequent demonstrations, which are necessary for the
generalized gradients being defined. Then, in Proposition 5.2, whose proof is given in
[20], we give the first-order optimality conditions for problem (1.1).

Lemma 5.1. For any pair of parameters (λ, a) satisfying condition (3.10), the
functional J in (1.1) and, separately, the regularization term R in (5.3) and the
quadratic fidelity term, are locally Lipschitz continuous functions.

Proof. The proof is immediate by considering that the quadratic fidelity term
and, under condition (3.10), the total functional J in (1.1), are both convex functions,
hence locally Lipschitz, and that the regularization term R in (5.3) is the composition
of locally Lipschitz functions (note that the penalty function φ( · ;T, a) defined in (2.1)
is globally L-Lipschitz continuous with L = a(T2 − T )), hence locally Lipschitz.

Proposition 5.2. For any pair of parameters (λ, a) satisfying condition (3.10),
the functional J : Rn → R in (1.1) has a unique (global) minimizer u∗ which satisfies

0 ∈ ∂u [J ] (u∗) , (5.4)

where 0 denotes the null vector in Rn and ∂u
[
J
]
(u∗) ⊂ Rn represents the subdif-

ferential (with respect to u, calculated at u∗) of functional J . Moreover, it follows
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that

0 ∈ DT ∂̄t [R ] (Du∗) + λ (u∗ − b) , (5.5)

where ∂̄t
[
R
]
(Du∗) ⊂ R2n denotes the Clarke generalized gradient (with respect to t,

calculated at Du∗) of the non-convex non-smooth regularization function R defined in
(5.1).

5.2. Convexity conditions for the augmented Lagrangian in (5.2). Sub-
sequent parts 3. and 4. of our convergence analysis require that the augmented
Lagrangian functional in (5.2) is jointly convex with respect to the pair of primal
variables (u, t). In [42, 43], where the regularization term is convex, such property
is clearly satisfied for any positive value of the penalty parameter β. In our case,
where the regularization term is non-convex, this is not trivially true and needs some
investigation, which is the subject of Lemma 5.3 and Proposition 5.4 below.

Lemma 5.3. Let F : Rn → R be the fidelity function defined in (5.1), D ∈ R2n×n

the finite difference matrix defined in Section 4, b ∈ Rn, v ∈ R2n given constant
vectors and λ ∈ R∗+, γ ∈ R free parameters. Then, the function Z : Rn → R defined
by

Z(u;λ, γ) := F (u) − γ

2
‖Du− v‖22 =

λ

2
‖u− b‖22 −

γ

2
‖Du− v‖22 (5.6)

is convex in u if and only if

γ ≤ λ

8
. (5.7)

Moreover, if the parameter λ satisfies condition (3.10), (5.7) becomes

γ ≤ τc
9

8
a , τc ∈ (1,+∞) . (5.8)

Proof. The function Z in (5.6) is quadratic in u, hence it is convex in u if and
only if its Hessian HZ ∈ Rn×n is at least positive semidefinite, that is if and only if

HZ = λ I − γ DTD � 0 , (5.9)

where I denotes the n × n identity matrix. Since the matrix DTD ∈ Rn×n is sym-
metric and positive semidefinite, it admits the eigenvalue decomposition

DTD = V EV T , E = diag(e1, e2, . . . , en) , V TV = V V T = I , (5.10)

with ei ∈ R+, i = 1, . . . , n, indicating the real non-negative eigenvalues of DTD.
Replacing (5.10) into (5.9), we obtain:

HZ = λ I − γ V TEV = V T (λI − γ E)V

= V T diag(λ− γ e1, λ− γ e2, . . . , λ− γen)V � 0 . (5.11)

Condition (5.11) is equivalent to

λ− γei ≥ 0 ∀i ∈ {1, . . . , n} ⇐⇒ λ− γmax
i
ei ≥ 0 ⇐⇒ γ ≤ λ

maxi ei
. (5.12)
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Finally, since DTD represents the standard finite difference discretization of the 2D
Laplace operator, for which maxi ei = 8, condition (5.7) and condition (5.8) follow.

Proposition 5.4. For any given vector of Lagrange multipliers ρ ∈ R2n, the
augmented Lagrangian functional L(u, t; ρ) in (5.2) is proper, continuous and coercive
jointly in the pair of primal variables (u, t). Moreover, in case that condition (3.10)
is satisfied, L(u, t; ρ) is jointly convex in (u, t) if the penalty parameter β satisfies

β ≥ a
λ

λ− 8a
, (5.13)

or, equivalently

β ≥ 9 a
τc

9τc − 8
, τc ∈ (1,+∞) . (5.14)

Proof. Functional L(u, t; ρ) in (5.2) is clearly proper and continuous in (u, t). For
what concerns coercivity, we rewrite L(u, t; ρ) as follows:

L(u, t; ρ) = F (u) + R(t) +
β

2
‖t−Du‖22 − 〈ρ, t−Du〉 (5.15)

= F (u) + R(t) +
β

2

∥∥∥t−Du− 1

β
ρ
∥∥∥2

2
− 1

2β
‖ρ‖22 . (5.16)

We notice that the second term in (5.16) is bounded and the last term does not
depend on (u, t), hence they do not affect coercivity of L(u, t; ρ) with respect to (u, t).
Then, the first and third terms in (5.16) are jointly coercive in u and the third term
is coercive in t, hence L(u, t; ρ) is coercive in (u, t).

Starting from (5.15), we have:

L(u, t; ρ) = F (u) − γ1

2
‖Du‖22 + R(t) +

γ2

2
‖t‖22

+
γ1

2
‖Du‖22 −

γ2

2
‖t‖22 +

β

2
‖t−Du‖22 − 〈ρ, t−Du〉

= − 〈ρ, t−Du〉︸ ︷︷ ︸
L1(u,t)

+ F (u) − γ1

2
‖Du‖22︸ ︷︷ ︸

L2(u)

+ R(t) +
γ2

2
‖t‖22︸ ︷︷ ︸

L3(t)

+
β + γ1

2
‖Du‖22 − β 〈Du, t〉 +

β − γ2

2
‖t‖22︸ ︷︷ ︸

L4(u,t)

, (5.17)

where γ1 and γ2 are scalars satisfying

γ1 ≤ τc
9

8
a , γ2 ≥ a , (5.18)

such that, according to condition (5.8) in Lemma 5.3 and condition (4.15) in Proposi-
tion 4.1, the terms L2(u) and L3(t) in (5.17) are convex in u and t (hence also in (u, t)),
respectively. The term L1(u, t) is affine in (u, t), hence convex. For what concerns

L4(u, t), it is jointly convex in (u, t) if it can be reduced to the form +
∥∥ c1Du− c2t∥∥2

2

with c1, c2 > 0. We thus impose that the coefficients of the terms ‖Du‖22 and ‖t‖22 in
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(5.17) are positive and that twice the product of the square roots of these coefficients
is equal to the coefficient of the term −〈Du, t〉 in (5.17), that is:

β > − γ1 , β > γ2 , β (γ1 − γ2) = γ1γ2 . (5.19)

Simple calculations prove that conditions in (5.18)-(5.19) are equivalent to the follow-
ing:

β =
γ1γ2

γ1− γ2
, (γ1, γ2)∈ Γ :=

{
(γ1, γ2)∈ R2: γ1 > γ2, γ1 ≤ τc

9

8
a, γ2 ≥ a

}
. (5.20)

We notice that the set Γ in (5.20) is not empty and contains only strictly positive
pairs (γ1, γ2). Hence, there exist triplets (β, γ1, γ2) such that (5.20) is satisfied and the
augmented Lagrangian functional in (5.17) is convex. By simple analysis, we can see
that the range of the function β(γ1, γ2) = γ1γ2/(γ1 − γ2) with (γ1, γ2) ∈ Γ coincides
with (5.14) and, after recalling that λ = τc9a, with (5.13). This completes the proof.

5.3. Equivalence between problems (4.1)–(4.2) and (4.3)–(4.4). The op-
timality conditions derived in subsection 5.1, together with the convexity conditions in
subsection 5.2 and the results in the following Lemmas 5.5–5.6 allow us to demonstrate
in Theorem 5.7 that the saddle-point problem in (4.3)–(4.4) is equivalent (in terms of
solutions) to the minimization problem in (4.1)–(4.2). In particular, we prove that,
for any pair (λ, a) satisfying (3.10) and any β satisfying (5.14), the saddle-point prob-
lem (4.3)–(4.4) has at least one solution and, very importantly, all its solutions will
provide pairs of primal variables (u∗, t∗) with t∗ = Du∗, which solve the split problem
(4.1)–(4.2), and thus u∗ represents the unique global minimizer of the strongly convex
functional J in (1.1).

Lemma 5.5. Assume that Z = Q + S, Q and S being lower semi-continuous
convex functions of Rn into R, S being Gâteaux-differentiable with differential S′.
Then, if p∗ ∈ Rn, the following two conditions are equivalent to each other:

1) p∗ ∈ arg infp∈Rn Z(p) ;

2) Q(p)−Q(p∗) + 〈S′(p∗), p− p∗ 〉 ≥ 0 ∀p ∈ Rn.

Moreover, in case that the function Q has a (separable) structure of the type
Q(p) = Q(p1, p2) = Q1(p1) +Q2(p2) with p1 ∈ Rn1 and p2 ∈ Rn2 (and n1 + n2 = n)
disjoint subsets of independent variables, then conditions 1) and 2) above are also both
equivalent to the following condition:

3)

 p∗1 ∈ arg infp1∈Rn1

{
Z1(p1) := Z(p1, p

∗
2)
}

p∗2 ∈ arg infp2∈Rn2

{
Z2(p2) := Z(p∗1, p2)

} with (p∗1, p
∗
2) = p∗.

Proof. Equivalence of conditions 1) and 2) is demonstrated in [14], Proposition
2.2. If condition 1) is true, that is p∗ is a global minimizer of the function Z over its
domain Rn, then clearly p∗ is also a global minimizer of the restriction of Z to any
subset of Rn containing p∗. Hence, condition 1) implies condition 3). To demonstrate
that condition 3) implies condition 2), which completes the proof, first we rewrite in
explicit form the two objective functions Z1 and Z2 defined in condition 3):

Z1(p1) = Q1(p1) +Q2(p∗2) + S1(p1), S1(p1) := S(p1, p
∗
2) , (5.21)

Z2(p2) = Q1(p∗1) +Q2(p2) + S2(p2), S2(p2) := S(p∗1, p2) . (5.22)
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Assume now that condition 3) holds. Then, by applying the equivalence of conditions
1) and 2), condition 3) can be rewritten as follows:{

Q1(p1) +����Q2(p∗2)−Q1(p∗1)−����Q2(p∗2) + 〈S′1(p∗1), p1 − p∗1 〉 ≥ 0 ∀p1 ∈ Rn1

����Q1(p∗1) +Q2(p2)−����Q1(p∗1)−Q2(p∗2) + 〈S′2(p∗2), p2 − p∗2 〉 ≥ 0 ∀p2 ∈ Rn2
. (5.23)

By summing up the two inequalities in (5.23), we obtain:

Q1(p1) +Q2(p2)−Q1(p∗1)−Q2(p∗2)

+
〈 (
S′1(p∗1), S′2(p∗2)

)
,
(
p1 − p∗1, p2 − p∗2

) 〉
≥ 0 ∀ (p1, p2) ∈ Rn1× Rn2

≡ Q(p1, p2)−Q(p∗1, p
∗
2)

+
〈 (
S′1(p∗1), S′2(p∗2)

)
,
(
p1, p2)−

(
p∗1, p

∗
2

) 〉
≥ 0 ∀ (p1, p2) ∈ Rn1× Rn2

≡ Q(p)−Q(p∗) + 〈S′(p∗), p− p∗ 〉 ≥ 0 ∀ p ∈ Rn, (5.24)

which coincides with condition 2), thus completing the proof.

Lemma 5.6. For any pair of parameters (λ, a) satisfying condition (3.10), any
penalty parameter β fulfilling condition (5.14) and any vector of Lagrange multipliers ρ,
the augmented Lagrangian functional L in (5.2) satisfies the following:

(u∗, t∗) ∈ arg min
u,t
L (u, t; ρ) ⇐⇒


u∗ ∈ arg min

u
L (u, t∗; ρ)

t∗ ∈ arg min
t
L (u∗, t; ρ)

. (5.25)

Proof. According to the results in Proposition 5.4, in case that the parameters
(λ, a) and β satisfy conditions (3.10) and (5.14), respectively, the augmented La-
grangian L(u, t; ρ) in (5.2) is proper, continuous, coercive and convex jointly in the
pair of primal variables (u, t). In particular, within the proof of Proposition 5.4 we
highlighted how for any β satisfying (5.14) there exist at least one pair of scalar coef-
ficients (γ1, γ2) such that the augmented Lagrangian functional can be written in the
form

L(u, t; ρ) = − 〈 ρ, t−Du 〉︸ ︷︷ ︸
L1(u,t)

+ F (u) − γ1

2
‖Du‖22︸ ︷︷ ︸

L2(u)

+ R(t) +
γ2

2
‖t‖22︸ ︷︷ ︸

L3(t)

+ ‖c1Du− c2t‖22︸ ︷︷ ︸
L4(u,t)

, (5.26)

with functions L1,L2,L3,L4 being convex in (u, t). In order to apply Lemma 5.5, we
rewrite (5.26) in the following equivalent form:

L(u, t; ρ) =

Q1(u)︷ ︸︸ ︷
F (u) − γ1

2
‖Du‖22 + 〈 ρ,Du 〉 +

Q2(t)︷ ︸︸ ︷
R(t) +

γ2

2
‖t‖22 − 〈 ρ, t 〉︸ ︷︷ ︸

Q(u,t)

+ ‖c1Du− c2t‖22︸ ︷︷ ︸
S(u,t)

. (5.27)
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From the convexity of functions L2 and L3 in (5.26), it clearly follows that Q1 and
Q2, and hence Q, in (5.27) are convex as well. Moreover, function S in (5.27) is
clearly convex and Gâteaux-differentiable. Hence, by simply applying the property of
equivalence of conditions 1) and 3) in Lemma 5.5, statement (5.25) follows and the
proof is completed.

Theorem 5.7. For any pair of parameters (λ, a) satisfying condition (3.10)
and any parameter β fulfilling condition (5.14), the saddle-point problem (4.3)–(4.4)
admits at least one solution and all the solutions have the form (u∗, Du∗; ρ∗), with u∗

denoting the unique global minimizer of functional J in (1.1).

The proof is postponed to the appendix.

5.4. Convergence of Algorithm 1 towards a solution of (4.3)–(4.4).
Given the existence and the good properties of the saddle points of the augmented
Lagrangian functional in (5.2), highlighted in Theorem 5.7, it remains to demonstrate
that the ADMM iterative scheme outlined in Algorithm 1 converges towards one of
these saddle points, that is towards a solution of the saddle-point problem (4.3)–(4.4).
This is the goal of Theorem 5.8 below.

Theorem 5.8. Assume that (u∗, t∗; ρ∗) is a solution of the saddle-point problem
(4.3)–(4.4). Then, for any pair of parameters (λ, a) satisfying condition (3.10) and
any parameter β fulfilling condition

β > max
{

2a , 9a
τc

9τc − 8

}
, (5.28)

the sequence
{

(u(k), t(k); ρ(k))
}+∞
k=1

generated by Algorithm 1 satisfies:

lim
k→+∞

u(k) = u∗ , (5.29)

lim
k→+∞

t(k) = t∗ = Du∗ . (5.30)

The proof is postponed to the appendix.

We conclude this analysis with the following final theorem, whose proof is imme-
diate given Theorem 5.7 and Theorem 5.8 above.

Theorem 5.9. Let the pair of parameters (λ, a) satisfy condition (3.10) and let
the parameter β satisfy condition (5.28). Then, for any initial guess, the sequence{
u(k)}+∞k=1 generated by Algorithm 1 satisfies:

lim
k→+∞

u(k) = u∗ , (5.31)

with u∗ denoting the unique solution of problem (1.1).

6. Experimental Results. We tested the performance of the proposed segmen-
tation algorithm on 2D synthetic and real images.

In the first two examples we investigate the performance of the proposed segmen-
tation approach, named OUR, also providing a comparison with the most relevant al-
ternative method, namely the two-step segmentation method presented in [5]. Then,

18



in the third example, the comparison is extended to some other recently proposed
state-of-the-art multiphase segmentation methods.

We recall that OUR segmentation algorithm consists of two steps. In the first
step an approximate solution of the optimization problem (1.1) is computed by the
ADMM iterative algorithm described in Algorithm 1 until the relative change of u
is below a fixed small tolerance ε. In the second step the segmented regions are
obtained according to a thresholding process. The tolerance ε were fixed to be 10−4,
for all the experiments. For what concerns the algorithm parameters, first we fixed
the convexity coefficient to a value τc = 1.01 so as to use an almost maximally non-
convex regularizer with the constraint that the total functional is convex. Then, λ
and a have been chosen such that (3.10) is satisfied and β according to (5.13). In all
the results of the presented experiments, the boundaries of the segmented regions are
superimposed on the given images.

Example 1.

original OUR u∗ CCZ u∗ difference

CCZ region 1 CCZ region 2 CCZ region 3 CCZ region 4

OUR region 1 OUR region 2 OUR region 3 OUR region 4

Fig. 6.1. Segmentation of the geometric image.

φ2 + φ3 (T=0.1) φ2 + φ3 (T = 0.05) φ2 + φ3 (T = 8 × 10−4)

Fig. 6.2. Segmentation of the geometric image by OUR for different T values.

This example demonstrates the performance of the proposed CNC segmentation
model compared with the convex two-phase model proposed in [5], named CCZ in the
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following. In order to highlight the benefits of using a non-convex penalty function
we applied both methods to the segmentation of a noisy synthetic image, named
geometric, containing four basic shapes, with three different gray intensities, on a
white background.

In the first row of Fig. 6.1, from left to right, we show the given image corrupted by
an additive Gaussian noise with noise level 0.02, the approximate solution u obtained
by Algorithm 1 (OUR) in 7 iterations and by the convex two-phase algorithm (CCZ)
in 31 iterations, and the difference between the u∗’s obtained by OUR and CCZ
algorithms.

For the second thresholding step in both algorithms the thresholds were fixed to
be ρ1 = 0.85 , ρ2 = 0.90 and ρ3 = 0.99.

The four different regions segmented by the CCZ and OUR methods are shown in
the second and third rows of Fig.6.1, respectively. The boundaries of all the results are
shown with red color and superimposed on the given images. CCZ fails to detect region
3 (light gray shapes) and it smoothes out the boundaries. This behavior is justified
from the fact that the well-known TV regularizer used in [5] is defined as the `1-norm,
which inevitably curtails originally salient boundaries to penalize their magnitudes.
In particular, as discussed in [40], the TV of a feature is directly proportional to its
boundary size, so that one way of minimizing the TV of that feature would be to
reduce its boundary size, in particular by smoothing corners. Moreover, the change
in intensity due to TV regularization is inversely proportional to the scale of the
feature, so that very small-scaled features are removed, thus causing failures in the
segmentation procedure.

By exploiting the penalty term φ introduced in our model, the pixels whose
gradient is above the threshold T are identified by the function pieces φ2 and φ3

defined in (2.1) that represent a very good approximation of the perimeter function
introduced in the Mumford-Shah original model. Therefore our model well preserves
the sharp boundary shape as illustrated in Fig. 6.1(third row).

In Fig. 6.2 we compare the effects of the parameter T on the segmentations
obtained by OUR. In particular, we depict in blue the pixels treated by the functions
φ2 and φ3 for different values of the parameter T : T = 0.1 first column, T = 0.05
second column, and T = 8 × 10−4 third column. With the larger T we can detect
clearly only the boundary of the darker rectangle, while with the other parameters
we can distinguish the two gray rectangles, Fig. 6.2 (middle), and with the smallest
T we can easily detect the four simple shapes.

Example 2.
In this example we demonstrate the benefit of the penalty function introduced in

the proposed model to allow for segmentations that reproduce sharp boundaries and
detect inhomogeneous regions.

Fig. 6.3(a) shows the image rectangles of dimension 400×400, that we want to
segment into K = 2 parts: vertical rectangles and background, where the rectangles
are characterized by intensity inhomogeneity. The segmentation results obtained by
the proposed method are shown in Fig. 6.3(b) using yellow-colored boundaries. The
penalty function used in our model allows for preserving the sharp features of the
boundaries (e.g., corners) even in the darker regions where the intensity gradient
characterizing the boundary is very small.

This is a simple example belonging to the class of piecewise smooth segmentation
problems for which the model CCZ in [5] has been devised. The segmentation results
obtained by CCZ are shown in Figs. 6.3(c)-(d) using, in the second phase, a manually
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(a) Given image (b) OUR CCZ (ρ = 0.19) (c) CCZ and K-means (d)

(e) Sandberg et al. [36] (f) Bae et al. [45] (g) Chan-Vese [7] (h) Dong. et al. [13]

Fig. 6.3. Segmentation of the rectangles image.

tuned optimal threshold value ρ = 0.19 and a K-means algorithm, respectively. The
former can better reproduce the segmented boundaries, however both the results
present rounded corners. This effect is again motivated by the approximation of the
perimeter with the `1-norm regularization term in the CCZ model.

A set of state-of-the-art two-phase segmentation methods, including the unsuper-
vised model by Sandberg et al. [36], the max-flow model by Yuan et al. [45], the
Chan-Vese [7] and the frame-based variational framework by Dong. et al. [13] are
evaluated and compared with our model. The codes we used are provided by the
authors, and the parameters in the codes were chosen by trial and error to give the
best results of each method. In Figs. 6.3(e)-(h) the resulting segmentations are over-
imposed to the original image by using yellow-colored boundaries. We can observe
that all the methods fail in segmenting the darker part of the rectangles in the syn-
thetic image, the method CCZ (Fig. 6.3(d)) fails only when the automatic K-means
post-processing is applied, while our method achieves extremely accurate results.

Example 3.
In this example, we test OUR method on real, more complex, images and compare

it with some state-of-the-art alternative approaches for multi-region image segmenta-
tion. Figure 6.4 shows segmentation results obtained on a real image brain, a MRI
brain scan of dimension 583 × 630, when K = 3 phases are seeked for: white, gray
and black colored regions. For multiphase segmentation, the thresholds ρi used in
the second phase can be chosen according to the ones obtained by K-means or can
be tuned, in both cases without recomputing the first more expensive phase, in order
to achieve specific segmentation results. In particular, for this example we used the
thresholds ρ1 = 0.18 and ρ1 = 0.56 for both methods OUR and CCZ.

By comparing images in Fig. 6.4(b) and Fig. 6.4(c), we can observe more detailed
and complete small features in the results by OUR model, which, nevertheless, gives
comparable result to CCZ model. Other comparisons are illustrated in the second
row of Fig. 6.4. We notice that the results obtained by the methods proposed by
Sandberg et al. [36] (Fig. 6.4(b)), Yuan et al. [45] (Fig. 6.4(c)), and Chan-Vese [8]
(Fig. 6.4(d)) are less satisfactory than those achieved by OUR and CCZ.
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(a) original (b) OUR (c) CCZ

(d) Sandberg et al. [36] (e) Yuan et al. [45] (f) Chan-Vese [7]

Fig. 6.4. Segmentation of brain image into K = 3 regions: dark gray, light gray, white.

(a) original (b) Sandberg et al. [36] (c) Yuan et al. [45] (d) Chan-Vese [8]

(e) OUR region 1 (f) OUR region 2 (g) OUR region 3 (h) OUR

Fig. 6.5. Segmentation of anti-mass image into K = 3 regions: light gray (region 1), dark gray
(region 2), black (region 3).

Another challenging segmentation problem is presented in Fig. 6.5: the multi-
phase segmentation of the anti-mass image with dimension 480 × 384 pixels into
K = 3 regions (see Fig. 6.5(a)) identified as light gray, dark gray and black. Also in
this case, we compared OUR with alternative state-of-the-art segmentation methods.
In particular, in the first row of Fig. 6.5, the segmentation results obtained by the
Sandberg et al. [36] (6.5(b)), the Yuan et al. [45] (6.5(c)), and the Chan-Vese [8]
models (6.5(d)) are reported.

Figures 6.5(e)-(g) show the segmented regions by OUR, and in Fig. 6.5(h) the full
segmentation is shown by visualizing the three gray levels. We can appreciate how
our method can reveal different meaningful high-level structures in the image which
are not captured by the other over-detailed segmentations.
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7. Conclusions. We presented a Convex Non-Convex variational model for mul-
tiphase image segmentation. The minimized energy functional is made of a standard
strictly convex quadratic fidelity term and a new non-convex regularization term de-
signed for penalizing simultaneously the non-smoothness of the segments inner regions
and the length of the segments boundaries. A sufficient condition for strict convexity
of the functional has been derived. This result allows to benefit from the advantages
of using such non-convex regularizer while, at the same time, maintaining strict (or,
better, strong) convexity of the optimization problem to be solved. An efficient itera-
tive minimization algorithm based on the ADMM method has been proposed, which
required to derive a new proximity operator associated with the proposed regular-
ization function. An analysis of convergence of the minimization algorithm has been
presented which paves the way for analogous demonstrations for other Convex Non-
Convex models. Experiments demonstrate the effectiveness of the proposed method,
also in comparison with some alternative state-of-the-art segmentation approaches.
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APPENDIX.

Proof of Lemma 3.2.
Proof. Let x := (x1, x2, x3)T ∈ R3. Then, the function f( · ;λ, T, a) in (3.3) can

be rewritten in more compact form as follows:

f(x;λ, T, a) =
λ

6
xTx + φ

(√
xTQx ; T, a

)
, (7.1)

with the matrix Q ∈ R3×3 defined as

Q =

 2 −1 −1
−1 1 0
−1 0 1

 . (7.2)

We introduce the eigenvalue decomposition of the matrix Q in (7.2):

Q = V ΛV T , Λ = diag(3, 1, 0) , V V T = V TV = I , (7.3)

where I denotes the 3 × 3 identity matrix and orthogonality of the modal matrix
V in (7.3) follows from symmetry of matrix Q. Then, we decompose the diagonal
eigenvalues matrix Λ in (7.3) as follows:

Λ = ZΛ̃Z , Z = diag(
√

3, 1, 1) , Λ̃ = diag(1, 1, 0) . (7.4)

Substituting (7.4) into (7.3), then (7.3) into (7.1), we obtain the following equivalent
expression for the function f :

f(x;λ, T, a) =
λ

6
xTx + φ

(√
xTV ZΛ̃Z V T x ; T, a

)
. (7.5)

Recalling that the property of convexity for a function is invariant under non-singular
linear transformations of its domain, we introduce the following one for the domain
R3 of function f above:

x = Ty , T := V Z−1 ∈ R3×3 , (7.6)

which is non-singular due to V and Z being non singular matrices. By defining as
fT := f ◦ T the function f in the transformed domain, we have:

fT (y;λ, T, a) =
λ

6
yTZ−2y + φ

(√
yT Λ̃ y ; T, a

)
. (7.7)

Recalling the definitions of Z and Λ̃ in (7.4), we can write (7.7) in explicit form:

fT (y;λ, T, a) =
λ

6

(
y2

1

3
+ y2

2 + y2
3

)
+ φ

(√
y2

1 + y2
2 ; T, a

)
=

λ

6

(
2

3
y2

2 + y2
3

)
+

λ
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(
y2

1 + y2
2

)
+ φ

(√
y2

1 + y2
2 ; T, a

)
=

λ

6

(
2

3
y2

2 + y2
3

)
+ g(y1, y2;λ, T, a) , (7.8)

where the function g in (7.8) is defined in (3.6). Since the first term in (7.8) is
(quadratic) convex, a sufficient condition for the function fT in (7.8) to be strictly
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convex is that the function g in (3.6) is strictly convex. This concludes the proof after
recalling that the function f is strictly convex if and only if the function fT is strictly
convex.

Proof of Lemma 3.3.
Proof. It follows immediately from the definition of strict convexity that a function

of R2 into R is strictly convex if and only if the restriction of the function to any
possible straight line of R2 is strictly convex. Due to the radial symmetry property of
function ψ in (3.7), the restriction of ψ to a generic straight line l is identical to the
restriction of ψ to any other straight line obtained by rotating l around the origin.
Hence, ψ is strictly convex if and only if all its restrictions to horizontal straight
lines (any other direction, e.g. vertical, could be chosen as well) with non-negative
intercept are strictly convex.

We denote by h0 and hk the functions from R into R corresponding to the re-
striction of ψ to the horizontal straight line with null intercept, namely the horizontal
coordinate axis, and to any horizontal straight line with positive intercept k > 0,
respectively. From the definition of the function ψ in (3.7), we have:

h0(t) = ψ (t, 0) = z (|t|) , t ∈ R , (7.9)

hk(t) = ψ (t, k) = z
(√

t2 + k2
)
, t ∈ R , k > 0 . (7.10)

Since the function ψ in (3.7) is strictly convex if and only if both h0 in (7.9) and hk
in (7.10) are strictly convex, it is clear that a necessary condition for ψ to be strictly
convex is that h0 in (7.9) is strictly convex. It thus remains to demonstrate that
h0 being strictly convex is also a sufficient condition for ψ to be strictly convex or,
equivalently, that strict convexity of h0 in (7.9) implies strict convexity of hk in (7.10)
for any positive k.

The functions h0 and hk in (7.9)–(7.10) are clearly even and, since we are assuming
z ∈ C1(R+), we have that hk ∈ C1(R) and h0 ∈ C0(R)∩C1(R \{0}). In particular, the
first-order derivatives of h0 and hk are as follows:

h′0(t) = z′(|t|) sign(t) , t ∈ R \{0} , (7.11)

h′k(t) = z′
(√

t2 + k2
) t√

t+ k2
, t ∈ R . (7.12)

We note that h0 is continuously differentiable also at the point t = 0 if and only if
the right-sided derivative of the function z at 0 is equal to 0.

We now assume that the function h0 in (7.9) is strictly convex. This implies that
the first-order derivative function h′0 is monotonically increasing on its entire domain
R\{0}. It thus follows from the definition of h′0 in (7.11) that the first-order derivative
function z′ is nonnegative and monotonically increasing on R+. We then notice that,
for any given k > 0, the first-order derivative function h′k in (7.12) is continuous
(since z′ is continuous on R+ by assumption) and odd (hence h′k(0) = 0). Finally, by
recalling that the composition and the product of positive, monotonically increasing
functions is monotonically increasing, it follows that h′k in (7.12) is monotonically
increasing on the entire real line, hence hk in (7.10) is strictly convex. This completes
the proof.

Proof of Proposition 3.7.
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Proof. The functional J ( · ;λ, η, a) in (1.1) is clearly proper. Moreover, since
the functions φ( · ;T, a) and ‖ · ‖2 are both continuous and bounded from below by
zero, J is also continuous and bounded from below by zero. In particular, we notice
that J achieves the zero value only for u = b with b a constant image. The penalty
function φ( · ;T, a) is not coercive, hence the regularization term in J is not coercive.
However, since the fidelity term is quadratic and strictly convex, hence coercive, and
the regularization term is bounded from below by zero, J is coercive.

As far as strong convexity is concerned, it follows from Definition 3.6 that the
functional J ( · ;λ, T, a) in (1.1) is µ-strongly convex if and only if the functional

J̃ (u;λ, T, a, µ) defined as

J̃ (u;λ, T, a, µ) :=
λ

2
‖u− b‖22 +

n∑
i=1

φ (‖(∇u)i‖2;T, a)︸ ︷︷ ︸
J (u;λ,T,a)

− µ

2
‖u‖22

= A(u) +
λ− µ

2
‖u‖22 +

n∑
i=1

φ (‖(∇u)i‖2;T, a) (7.13)

is convex, where A(u) is an affine function of u. We notice that the functional J̃
in (7.13) almost coincides with the original functional J in (1.1), the only difference
being the coefficient λ− µ instead of λ. Hence, we can apply the results in Theorem
3.5 and state that J̃ in (7.13) is convex if condition (3.10) is satisfied with λ − µ
in place of λ. By substituting λ − µ for λ in condition (3.10), deriving the solution
interval for µ and then taking the maximum, one obtains equality (3.22).

Proof of Proposition 4.1.
Proof. The demonstration of condition (4.15) for strict convexity of the function

θ in (4.14) is straightforward. In fact, the function θ can be equivalently rewritten as

θ(x) = φ (‖x‖2;T, a) +
β

2
‖x‖22︸ ︷︷ ︸

θ̄(x)

+ A(x) , x ∈ R2 , (7.14)

with A(x) an affine function, so that a necessary and sufficient condition for θ to be
strictly convex is that the function θ̄ in (7.14) is strictly convex. We then notice that
θ̄ is almost identical to the function g in (3.6), the only difference being the coefficient
β/2 that for g reads λ/18. By setting λ/18 = β/2 ⇐⇒ λ = 9β, the two functions
coincide. Condition for strict convexity of g in (3.10) reads as λ > 9 a, hence by
substituting λ = 9β in it we obtain condition (4.15) for strict convexity of θ.

We remark that condition β > a reduces to β ≥ a when only convexity is required.

For the proof of statement (4.17), according to which the unique solution x∗ of
the strictly convex problem (4.16) is obtained by a shrinkage of vector r, we refer the
reader to [20][Proposition 4.5].

We now prove statement (4.18). First, we notice that if ‖r‖2 = 0, i.e. r is the null
vector, the minimization problem in (4.16) with the objective function θ(x) defined
in (4.14) reduces to

arg min
x∈R2

{
φ (‖x‖2;T, a) +

β

2
‖x‖22

}
. (7.15)
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Since the former and the latter terms of the cost function in (7.15) are a monotonically
non-decreasing and a monotonically increasing functions of ‖x‖2, respectively, the
solution of (7.15) is clearly x∗ = 0. Hence, the case ‖r‖2 = 0 can be easily dealt with
by taking any value ξ∗ in formula (4.17). We included the case ‖r‖2 = 0 in formula
a) of (4.18). In the following, we consider the case ‖r‖2 > 0.

Based on the previously demonstrated statement (4.17), by setting x = ξ r, ξ ≥ 0,
we turn the original unconstrained 2-dimensional problem in (4.16) into the following
equivalent constrained 1-dimensional problem:

ξ∗← arg min
0≤ξ≤1

{
φ (‖ξr‖2 ;T, a) +

β

2
‖ξr − r‖22

}
← arg min

0≤ξ≤1

{
f(ξ) := φ (‖r‖2 ξ;T, a) +

β

2
‖r‖22

(
ξ2 − 2ξ

)}
, (7.16)

where in (7.16) we omitted the constants and introduced the cost function f : R+ → R
for future reference. Since the function φ in (7.16), which is defined in (2.1), is
continuously differentiable on R+, the cost function f in (7.16) is also continuously
differentiable on R+. Moreover, f is strictly convex since it represents the restriction
of the strictly convex function θ in (4.14) to the half-line ξ r, ξ ≥ 0. Hence, the
first-order derivative f ′(ξ) is a continuous, monotonically increasing function and a
necessary and sufficient condition for an inner point 0 < ξ < 1 to be the global
minimizer of f is that f ′(ξ) = 0. From the definition of f in (7.16) we have:

f ′(ξ) = ‖r‖2
[
φ′ (‖r‖2ξ;T, a) + β‖r‖2(ξ − 1)

]
, (7.17)

and, in particular:

f ′(0+) = − β ‖r‖22 < 0, f ′(1) = ‖r‖2 φ′ (‖r‖2;T, a) ≥ 0 . (7.18)

It follows from (7.18) that the solution of (7.16) can not be ξ∗ = 0, hence it is either
ξ∗ = 1 or an inner stationary point.

Recalling the definition of φ( · ;T, a) in (2.1), after some simple manipulations the
function f ′(ξ) in (7.17) can be rewritten in the following explicit form:

f ′(ξ) =



f ′1(ξ) = ‖r‖2
[
aT2−T

T ‖r‖2ξ +β‖r‖2(ξ − 1)
]
, ‖r‖2ξ ∈ [0, T ]

f ′2(ξ) = ‖r‖2
[
− a‖r‖2ξ + aT2 +β‖r‖2(ξ − 1)

]
, ‖r‖2ξ ∈ (T, T2]

f ′3(ξ) = ‖r‖2
[

0 +β‖r‖2(ξ − 1)
]
, ‖r‖2ξ ∈ (T2,+∞)

(7.19)

that is:

f ′(ξ) =



f ′1(ξ) = ‖r‖22
[ (
β − a+ aT2

T

)
ξ −β

]
, ξ ∈ D1 :=

[
0, T
‖r‖2

]
f ′2(ξ) = ‖r‖22

[
(β − a)ξ + a T2

‖r‖2 −β
]
, ξ ∈ D2 :=

(
T
‖r‖2 ,

T2

‖r‖2

)
f ′3(ξ) = ‖r‖22

[
βξ −β

]
, ξ ∈ D3 :=

[
T2

‖r‖2 ,+∞
)

(7.20)
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Denoting by ξ∗1 , ξ∗2 , ξ∗3 the points where f ′1, f ′2, f ′3 in (7.20) equal zero, respectively,
we have:

ξ∗1 =
T

T + (T2 − T ) aβ
, ξ∗2 =

β

β − a
− aT2

β − a
1

‖r‖2
, ξ∗3 = 1 . (7.21)

However, for ξ∗1 , ξ∗2 and ξ∗3 in (7.21) to be acceptable candidate solutions of problem
(7.16), they must belong to the domains D1, D2, D3 of f ′1, f ′2, f ′3, respectively, and
obviously also to the optimization domain O := [0, 1] of problem (7.16). We have:

{
ξ∗1 ∈ D1 if ‖r‖2 ∈

(
0, T + (T2 − T ) aβ

]
ξ∗1 ∈ O ∀ ‖r‖2

=⇒ ξ∗1 ∈ D1 ∩ O if

‖r‖2 ∈
(

0, T + (T2 − T ) aβ

] (7.22)

 ξ∗2 ∈ D2 if ‖r‖2 ∈
(
T + (T2 − T ) aβ , T2

)
ξ∗2 ∈ O if ‖r‖2 ∈

[
a
βT2, T2

] =⇒ ξ∗2 ∈ D2 ∩ O if

‖r‖2 ∈
(
T + (T2 − T ) aβ , T2

)(7.23)

{
ξ∗3 ∈ D3 if ‖r‖2 ∈

[
T2,+∞

)
ξ∗3 ∈ O ∀ ‖r‖2

=⇒ ξ∗3 ∈ D3 ∩ O if

‖r‖2 ∈
[
T2,+∞

) (7.24)

The proof of statement (4.18) is thus completed.

Proof of Theorem 5.7.
Proof. Based on the definition of the augmented Lagrangian functional in (5.2),

we rewrite in explicit form the first inequality of the saddle-point condition in (4.4):

L (u∗, t∗; ρ) = ���F (u∗) +���R(t∗) +�������β

2
‖t∗ −Du∗‖22 − 〈 ρ, t∗ −Du∗ 〉

≤ L (u∗, t∗; ρ∗) = ���F (u∗) +�
��R(t∗) +�������β

2
‖t∗ −Du∗‖22 − 〈 ρ∗, t∗ −Du∗ 〉

⇐⇒ 〈 ρ∗ − ρ, t∗ −Du∗ 〉 ≤ 0 ∀ ρ ∈ R2n , (7.25)

and, similarly, the second inequality:

L (u∗, t∗; ρ∗) = F (u∗) + R(t∗) +
β

2
‖t∗ −Du∗‖22 − 〈 ρ∗, t∗ −Du∗ 〉

≤ L (u, t; ρ∗) = F (u) + R(t) +
β

2
‖t−Du‖22 − 〈 ρ∗, t−Du 〉

∀ (u, t) ∈ Rn× R2n . (7.26)

In the first part of the proof, we prove that if (u∗, t∗; ρ∗) is a solution of the
saddle-point problem (4.3)–(4.4), that is it satisfies the two inequalities (7.25) and
(7.26), then u∗ is a global minimizer of the functional J in (1.1).

Since (7.25) must be satisfied for any ρ ∈ R2n, we have:

t∗ = Du∗ . (7.27)
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The second inequality (7.26) must be satisfied for any (u, t) ∈ Rn× R2n. Hence, by
taking t = Du in (7.26) and, at the same time, substituting in (7.26) the previously
derived condition (7.27), we obtain:

J (u∗;λ, T, a) = F (u∗) + R(Du∗)

≤ J (u;λ, T, a) = F (u) + R(Du) ∀ u ∈ Rn . (7.28)

Inequality (7.28) indicates that u∗ is a global minimizer of the functional J in (1.1).
Hence, we have proved that all the saddle-point solutions of problem (4.3)–(4.4), if
there exists one, are of the form (u∗, Du∗; ρ∗) , with u∗ denoting a global minimizer
of J .

In the second part of the proof, we prove that at least one solution of the saddle-
point problem exists. In particular, we prove that if u∗ is a global minimizer of J in
(1.1), then there exists at least one pair (t∗, ρ∗)∈ R2n×R2n such that (u∗, t∗; ρ∗) is a
solution of the saddle-point problem (4.3)–(4.4), that is it satisfies the two inequalities
(7.25) and (7.26). The proof relies on a suitable choice of the vectors t∗ and ρ∗. We
take:

t∗ = Du∗ , (7.29)

ρ∗ ∈ ∂̄t [R ] (Du∗) such that DTρ∗ + λ (u∗ − b) = 0 , (7.30)

where the term ∂̄t [R ] (Du∗) indicates the Clarke generalized gradient (with respect to
t, calculated at Du∗) of the nonconvex regularization functionR defined in (5.1). We
notice that a vector ρ∗ satisfying (7.30) is guaranteed to exist thanks to Proposition
5.2. In fact, since here we are assuming that u∗ is a global minimizer of functional J ,
the first-order optimality condition in (5.5) holds true.

Due to (7.29), the first saddle-point condition in (7.25) is clearly satisfied. Proving
the second condition (7.26) is less straightforward: we need to investigate the optimal-
ity conditions of the functional L (u, t; ρ∗) with respect to the pair of primal variables
(u, t). We follow the same procedure used, e.g., in [42], which requires L (u, t; ρ∗) to
be jointly convex in (u, t). According to Proposition 5.4, in our case this requirement
is fulfilled if the penalty parameter β satisfies condition (5.14), which has thus been
taken as an hypothesis of this theorem. Hence, we can apply Lemma 5.6 and state
that (7.26) is satisfied if and only if both the following two optimality conditions are
met:

u∗ ∈ arg min
u
L (u, t∗; ρ∗) = arg min

u
L(u) (u) , (7.31)

t∗ ∈ arg min
t
L (u∗, t; ρ∗) = arg min

t
L(t) (t) , (7.32)

where in (7.31)–(7.32) we introduced the two functions L(u) and L(t) representing
the restrictions of functions L (u, t∗; ρ∗) and L (u∗, t; ρ∗) to only the terms depending
on the optimization variables u and t, respectively. In particular, after recalling the
definition of the augmented Lagrangian functional in (5.2), we have

L(u)(u) = F (u) − β1

2
‖t−Du‖22︸ ︷︷ ︸

Q(u)(u)

+
β + β1

2
‖t−Du‖22 + 〈 ρ∗, Du 〉︸ ︷︷ ︸

S(u)(u)

, (7.33)

L(t)(t) = R(t) +
β2

2
‖t−Du‖22︸ ︷︷ ︸

Q(t)(t)

+
β − β2

2
‖t−Du‖22 − 〈 ρ∗, t 〉︸ ︷︷ ︸

S(t)(t)

, (7.34)
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where, like in [42], L(u) and L(t) have been split into the sum of two functions with the
aim of then deriving optimality conditions for L(u) and L(t) by means of Lemma 5.5.
Unlike in [42], the ADMM quadratic penalty term β

2 ‖t−Du‖
2
2 has been split into two

parts (differently in L(u) and L(t)) in order to deal with the nonconvex regularization
term. In particular, the coefficients β1, β2 introduced in (7.33)–(7.34) satisfy

−β < β1 ≤ τc
9

8
a , a ≤ β2 < β , (7.35)

such that the terms S(u), S(t) in (7.33)–(7.34) are clearly convex and the terms Q(u),
Q(t) are convex due to results in Lemma 5.3 and Proposition 4.1, respectively. We
also notice that all the functions Q(u), Q(t), S(u), S(t) are proper and continuous and
that S(u), S(t) are Gâteaux-differentiable. Hence, we can apply Lemma 5.5 separately
to (7.33) and (7.34), to check if the pair (u∗, t∗) satisfies the optimality conditions
in (7.31) and (7.32), so that the second saddle-point condition (7.26) holds true. We
obtain:

F (u) − β1

2
‖t∗ −Du‖22 − F (u∗) +

β1

2
‖t∗ −Du∗‖22

−
〈

(β + β1)DT (t∗ −Du∗︸ ︷︷ ︸
0

)−DT ρ∗, u− u∗
〉
≥ 0 ∀ u ∈ Rn, (7.36)

R(t) +
β2

2
‖t−Du∗‖22 − R(t∗) − β2

2
‖t∗ −Du∗‖22

+
〈

(β − β2)(t∗ −Du∗︸ ︷︷ ︸
0

)− ρ∗ , t− t∗
〉
≥ 0 ∀ t ∈ R2n , (7.37)

where the term t∗−Du∗ in (7.36)–(7.37) is zero due to the setting (7.29). We rewrite
conditions (7.36)–(7.37) as follows:

F (u) − β1

2
‖t∗ −Du‖22 −

(
F (u∗) − β1

2
‖t∗ −Du∗‖22

)
−
〈
λ(u∗ − b)− λ(u∗ − b)−DTρ∗︸ ︷︷ ︸

0

+ β1D
T(t∗−Du∗), u− u∗

〉
≥ 0 ∀ u ∈ Rn,(7.38)

R(t) +
β2

2
‖t−Du∗‖22 −

(
R(t∗) +

β2

2
‖t∗ −Du∗‖22

)
−
〈
ρ∗ + β2 (t∗ −Du∗) , t− t∗

〉
≥ 0 ∀ t ∈ R2n , (7.39)

where in (7.38) we added and subtracted the term λ (u∗ − b) and added the null
term β1D

T(t∗−Du∗), and in (7.39) we added the null term β2 (t∗ −Du∗). The term
−λ (u∗− b)−DT ρ∗ in (7.38) is null due to the setting (7.30). By introducing the two
functions

U(u) := F (u)− β1

2
‖t∗ −Du‖22 , T (t) := R(t) +

β2

2
‖t−Du∗‖22 , (7.40)

which are convex under conditions (7.35) for the same reason for which the functions
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Q(u), Q(t) in (7.33)–(7.34) are convex, conditions (7.38)–(7.39) can be rewritten as

U(u) − U(u∗)−
〈 ∂u

[
U
]

(u∗)︷ ︸︸ ︷
λ (u∗ − b) + β1D

T(t∗−Du∗), u− u∗
〉
≥ 0 ∀ u ∈ Rn, (7.41)

T (t) − T (t∗) −
〈

ρ∗ + β2 (t∗ −Du∗)︸ ︷︷ ︸
∈ ∂t

[
T
]

(t∗)

, t − t∗
〉
≥ 0 ∀ t ∈ R2n, (7.42)

where we highlighted that the left side of the scalar product in (7.41) represents the
subdifferential (actually, the standard gradient) of function U calculated at u∗ and
that the left side of the scalar product in (7.42) is a particular vector belonging to the
subdifferential of function T calculated at t∗. This second statement comes from the
definition of function T in (7.40) and from settings (7.29)–(7.30).

Optimality conditions in (7.41)–(7.42) are easily proved by noticing that the left-
hand sides of (7.41)–(7.42) represent the Bregman distances associated with functions
U and T , respectively, which are known to be non-negative for convex functions.
Hence, the second saddle-point condition in (7.26) is satisfied and, finally, the second
and last part of the proof is completed.

Proof of Theorem 5.8.

Proof. Let us define the following errors:

ū(k) = u(k) − u∗, t̄(k) = t(k) − t∗, ρ̄(k) = ρ(k) − ρ∗. (7.43)

Since (u∗, t∗; ρ∗) is a saddle-point of the augmented Lagrangian functional in (4.3), it
follows from Theorem 5.7 that t∗ = D∗u. This relationship, together with the ADMM
updating formula for the vector of Lagrange multipliers in (4.7), yields:

ρ̄(k+1) = ρ̄(k) − β
(
t̄(k) −Dū(k)

)
. (7.44)

It then follows easily from (7.44) that∥∥ρ̄(k)
∥∥2

2
−
∥∥ρ̄(k+1)

∥∥2

2
= 2β

〈
ρ̄(k) , t̄(k) −Dū(k)

〉
− β2

∥∥t̄(k) −Dū(k)
∥∥2

2
. (7.45)

Compute a lower bound for the right-hand side of (7.45)

Since (u∗, t∗; ρ∗) is a saddle-point of the augmented Lagrangian functional in
(4.3), it satisfies the following optimality conditions (see (7.36)–(7.37) in the proof of
Theorem 5.7):

F (u) − β1

2
‖t∗ −Du‖22 − F (u∗) +

β1

2
‖t∗ −Du∗‖22

−
〈
DT
(

(β + β1)
(
t∗ −Du∗

)
− ρ∗

)
, u− u∗

〉
≥ 0 ∀ u ∈ Rn , (7.46)

R(t) +
β2

2
‖t−Du∗‖22 − R(t∗) − β2

2
‖t∗ −Du∗‖22

+
〈

(β − β2)(t∗ −Du∗)− ρ∗ , t− t∗
〉
≥ 0 ∀ t ∈ R2n . (7.47)
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Similarly, by the construction of
(
u(k), t(k)

)
in Algorithm 1, we have:

F (u) − β1

2
‖t(k−1) −Du‖22 − F (u(k)) +

β1

2
‖t(k−1) −Du(k)‖22

−
〈
DT
(

(β + β1)
(
t(k−1) −Du(k)

)
− ρ(k)

)
, u− u(k)

〉
≥ 0 ∀ u ∈ Rn , (7.48)

R(t) +
β2

2
‖t−Du(k)‖22 − R(t(k)) − β2

2
‖t(k) −Du(k)‖22

+
〈

(β − β2)(t(k) −Du(k))− ρ(k) , t− t(k)
〉
≥ 0 ∀ t ∈ R2n . (7.49)

Taking u = u(k) in (7.46), u = u∗ in (7.48) and recalling that 〈DTw, z〉 = 〈w,Dz〉 ,
by addition we obtain:

−
〈
ρ̄(k), Dū(k)

〉︸ ︷︷ ︸
A1

+ β
〈
t̄(k−1), Dū(k)

〉︸ ︷︷ ︸
B1

− (β + β1)
∥∥Dū(k)

∥∥2

2︸ ︷︷ ︸
C1

≥ 0 . (7.50)

Similarly, taking t = t(k) in (7.47) and t = t∗ in (7.49), after addition we have:〈
ρ̄(k), t̄(k)

〉︸ ︷︷ ︸
A2

+ β
〈
t̄(k), Dū(k)

〉︸ ︷︷ ︸
B2

− (β − β2)
∥∥t̄(k)

∥∥2

2︸ ︷︷ ︸
C2

≥ 0 . (7.51)

where, we recall, the parameters β1 and β2 in (7.50)–(7.51) satisfy the constraints in
(7.35).

By summing up (7.50) and (7.51), we obtain:〈
ρ̄(k), t̄(k) −Dū(k)

〉
− β

〈
t̄(k) − t̄(k−1), Dū(k)

〉
−
(

(β − β2)
∥∥t̄(k)

∥∥2

2
− 2β

〈
t̄(k), Dū(k)

〉
+ (β + β1)

∥∥Dū(k)
∥∥2

2

)
≥ 0

that is〈
ρ̄(k), t̄(k) −Dū(k)

〉
− β

〈
t̄(k) − t̄(k−1), Dū(k)

〉
− β + β3

2

∥∥t̄(k) −Dū(k)
∥∥2

2

−
((
−β2 −

β3

2
+
β

2

) ∥∥t̄(k)
∥∥2

2
− (β − β3)

〈
t̄(k), Dū(k)

〉
+

(
β1 −

β3

2
+
β

2

) ∥∥Dū(k)
∥∥2

2

)
≥ 0 ,

(7.52)

where we introduced the positive coefficient β3 > 0 (the reason will be clear later

on). We want that the last term in (7.52) takes the form −
∥∥ c1t̄(k) − c2Dū(k)

∥∥2

2
with

c1, c2 > 0. Hence, first we impose that the coefficients of
∥∥t̄(k)

∥∥2

2
and

∥∥Dū(k)
∥∥2

2
in

(7.52) are strictly positive, which yields:

β1 >
β3

2
− β

2
, β2 < −

β3

2
+
β

2
. (7.53)

Combining (7.53) with conditions (7.35), we obtain:

β3

2
− β

2
< β1 ≤ τc

9

8
a , a ≤ β2 < −

β3

2
+
β

2
, 0 < β3 < β − 2a . (7.54)

From condition on β3 in (7.54), the following constraint for β derives:

β > 2a . (7.55)
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We notice that condition (7.55) can be more stringent than (5.14), depending on τc,
hence it has been taken as an hypothesis of this theorem and will be considered,
together with (5.14), in the rest of the proof. From condition on β3 in (7.54) it also
follows that the coefficient β − β3 of the scalar product in (7.52) is positive.

Then, we have to impose that the coefficient of the term −
〈
t̄(k), Dū(k)

〉
in (7.52)

is twice the product of the square roots of the (positive) coefficients of
∥∥t̄(k)

∥∥2

2
and∥∥Dū(k)

∥∥2

2
, that is:

β − β3 = 2

√(
−β2 −

β3

2
+
β

2

)(
β1 −

β3

2
+
β

2

)
=⇒ β = β3 + 2

β1β2

β1 − β2
. (7.56)

By imposing condition on β3 in (7.54), namely β − β3 > 2a, it is easy to verify that
(7.56) admits acceptable solutions only in case that β1 > β2. By setting in (7.56)
β1 = τc

9
8 a and β2 = a, which are acceptable values according to this last result (since

τc > 1, clearly β1 > β2) and also to conditions (7.54), we obtain:

β = β3 + 2a
9 τc

9 τc − 8
. (7.57)

We now check if there exist acceptable values of the two remaining free parameters,
namely β and β3, such that (7.57) holds. We impose that β in (7.57) satisfies its con-
straint in (5.14), which guarantees convexity of the augmented Lagrangian functional,
and the derived condition in (7.55):

β3 + 2a
9 τc

9 τc − 8
≥ a

9 τc
9 τc − 8

β3 + 2a
9 τc

9 τc − 8
> 2a

=⇒


β3 ≥ −a 9 τc

9 τc − 8

β3 > −a 16

9 τc − 8

(7.58)

Since τc > 1 (and a > 0), both conditions in (7.58) are satisfied for any β3 > 0.
Hence, for β1 = τc

9
8 a, β2 = a and any 0 < β3 < β − 2a, with β > 2a, the last term

in (7.52) can be written in the form

−
∥∥ c1t̄(k) − c2Dū(k)

∥∥2

2
with

{
c1 = β−β3

2 − a
c1 = β−β3

2 + τc
9
8a

(7.59)

where c1, c2 > 0, c1 6= c2. Replacing the expression in (7.59) for the last term in
(7.52), we have:〈

ρ̄(k), t̄(k) −Dū(k)
〉
− β + β3

2

∥∥t̄(k) −Dū(k)
∥∥2

2
− β

〈
t̄(k) − t̄(k−1), Dū(k)

〉
−
∥∥ c1 t̄(k) − c2Dū(k)

∥∥2

2
≥ 0

⇐⇒ 2β
〈
ρ̄(k), t̄(k) −Dū(k)

〉
− β2

∥∥t̄(k) −Dū(k)
∥∥2

2
≥ ββ3

∥∥t̄(k) −Dū(k)
∥∥2

2

+ 2β2
〈
t̄(k) − t̄(k−1), Dū(k)

〉
+ 2β

∥∥ c1 t̄(k) − c2Dū(k)
∥∥2

2
. (7.60)

where in (7.60) we multiplied both sides by the positive coefficient 2β. We notice
that the left-hand side of (7.60) coincides with the right-hand side of (7.45), hence it
follows:∥∥ρ̄(k)

∥∥2

2
−
∥∥ρ̄(k+1)

∥∥2

2
≥ ββ3

∥∥t̄(k) −Dū(k)
∥∥2

2
+ 2β2

〈
t̄(k) − t̄(k−1), Dū(k)

〉︸ ︷︷ ︸
T

+ 2β
∥∥ c1 t̄(k) − c2Dū(k)

∥∥2

2
. (7.61)
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Compute a lower bound for the term T in (7.61).
We can write:〈

t̄(k) − t̄(k−1), Dū(k)
〉

=
〈
t̄(k) − t̄(k−1), Dū(k) −Dū(k−1)

〉
+
〈
t̄(k) − t̄(k−1), Dū(k−1) − t̄(k−1)

〉
+
〈
t̄(k) − t̄(k−1), t̄(k−1)

〉
. (7.62)

First, we notice that:〈
t̄(k) − t̄(k−1), t̄(k−1)

〉
=

1

2

(∥∥t̄(k)
∥∥2

2
−
∥∥t̄(k−1)

∥∥2

2
−
∥∥t̄(k) − t̄(k−1)

∥∥2

2

)
. (7.63)

Then, from the construction of t(k−1) (from u(k−1)), we have:

R(t) +
β2

2
‖t−Du(k−1)‖22 − R(t(k−1)) − β2

2
‖t(k−1) −Du(k−1)‖22

+
〈

(β − β2)(t(k−1) −Du(k−1))− ρ(k−1) , t− t(k−1)
〉
≥ 0 ∀ t ∈ R2n . (7.64)

Taking t = t(k−1) in (7.49) and t = t(k) in (7.64), we obtain:

R(t(k−1)) +
β2

2
‖t(k−1) −Du(k)‖22 − R(t(k)) − β2

2
‖t(k) −Du(k)‖22

+
〈

(β − β2)(t(k) −Du(k))− ρ(k) , t(k−1) − t(k)
〉
≥ 0 , (7.65)

R(t(k)) +
β2

2
‖t(k) −Du(k−1)‖22 − R(t(k−1)) − β2

2
‖t(k−1) −Du(k−1)‖22

+
〈

(β − β2)(t(k−1) −Du(k−1))− ρ(k−1) , t(k) − t(k−1)
〉
≥ 0 . (7.66)

By addition of (7.65) and (7.66), we have that

β
〈
t̄(k)−t̄(k−1), Dū(k)−Dū(k−1)

〉
+
〈
t̄(k)−t̄(k−1), ρ̄(k)−ρ̄(k−1)

〉
≥ (β−β2)

∥∥t̄(k)−t̄(k−1)
∥∥2

2
.

(7.67)
Recalling that

ρ̄(k) − ρ̄(k−1) = ρ(k) − ρ(k−1) = − β
(
t̄(k−1) −Dū(k−1)

)
, (7.68)

replacing (7.68) into (7.67) and then dividing by β, we obtain:〈
t̄(k)−t̄(k−1), Dū(k)−Dū(k−1)

〉
+
〈
t̄(k)−t̄(k−1), Dū(k−1)−t̄(k−1)

〉
≥ β − β2

β

∥∥t̄(k)−t̄(k−1)
∥∥2

2
.

(7.69)
From (7.62), (7.63) and (7.69), we have:〈
t̄(k) − t̄(k−1), Dū(k)

〉
≥ 1

2

(∥∥t̄(k)
∥∥2

2
−
∥∥t̄(k−1)

∥∥2

2
−
∥∥t̄(k) − t̄(k−1)

∥∥2

2

)
+
β − β2

β

∥∥t̄(k) − t̄(k−1)
∥∥2

2

=
1

2

(∥∥t̄(k)
∥∥2

2
−
∥∥t̄(k−1)

∥∥2

2
+

(
β − 2β2

β

)∥∥t̄(k) − t̄(k−1)
∥∥2

2

)
. (7.70)

Convergence results for sequences t(k), Du(k), ρ(k).
From (7.61) and (7.70), we obtain:∥∥ρ̄(k)

∥∥2

2
−
∥∥ρ̄(k+1)

∥∥2

2
≥ β2

∥∥t̄(k)
∥∥2

2
− β2

∥∥t̄(k−1)
∥∥2

2
+ β(β − 2β2)

∥∥t̄(k) − t̄(k−1)
∥∥2

2

+ ββ3

∥∥t̄(k) −Dū(k)
∥∥2

2
+ 2β

∥∥ c1t̄(k) − c2Dū(k)
∥∥2

2
, (7.71)
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that is: (∥∥ρ̄(k)
∥∥2

2
+ β2

∥∥t̄(k−1)
∥∥2

2

)
︸ ︷︷ ︸

s(k)

−
(∥∥ρ̄(k+1)

∥∥2

2
+ β2

∥∥t̄(k)
∥∥2

2

)
︸ ︷︷ ︸

s(k+1)

≥ β(β − 2β2)
∥∥t̄(k) − t̄(k−1)

∥∥2

2
+ ββ3

∥∥t̄(k) −Dū(k)
∥∥2

2

+ 2β
∥∥ c1t̄(k) − c2Dū(k)

∥∥2

2
≥ 0 , (7.72)

where we introduced the scalar sequence {s(k)}, which is clearly bounded from below
by zero. We notice that the coefficient β−2β2 in (7.72) is positive due to the constraint
β > 2a. Since the right-hand side of the first inequality in (7.72) is nonnegative, {s(k)}
is monotonically non-increasing, hence convergent. This implies that the right-hand
side of (7.72) tend to zero as k →∞. From these considerations and (7.72) it follows
that: {

ρ̄(k)
}
,
{
t̄(k)
}
,
{
Dū(k)

}
are bounded =⇒

{
ρ(k)

}
,
{
t(k)
}
,
{
Du(k)

}
bounded ,(7.73)

lim
k→∞

∥∥t̄(k) − t̄(k−1)
∥∥

2
= lim

k→∞

∥∥t(k) − t(k−1)
∥∥

2
= 0 , (7.74)

lim
k→∞

∥∥t̄(k) −Dū(k)
∥∥

2
= lim

k→∞

∥∥t(k) −Du(k)
∥∥

2
= 0 , (7.75)

lim
k→∞

∥∥c1t̄(k) − c2Dū(k)
∥∥

2
= 0 . (7.76)

Since the two coefficients c1, c2 in (7.76) satisfy c1, c2 6= 0, c1 6= c2, then it fol-
lows from (7.75)–(7.76) that both the sequences {t̄(k)} and {Dū(k)} tend to zero as
k →∞. Results in (7.73)–(7.76) can thus be rewritten in the following more concise
and informative form: {

ρ(k)
}

is bounded , (7.77)

lim
k→∞

t̄(k) = 0 ⇐⇒ lim
k→∞

t(k) = t∗ = Du∗ , (7.78)

lim
k→∞

Dū(k) = 0 ⇐⇒ lim
k→∞

Du(k) = Du∗ , (7.79)

where the last equality in (7.78) comes from the saddle-point properties stated in
Theorem 5.7. Since it will be useful later on, we note that it follows from (7.78) that

lim
k→∞

R(t(k)) = R(t∗) . (7.80)

Convergence results for sequence u(k).
We now prove that limk→∞ u(k) = u∗. Since (u∗, t∗; ρ∗) is a saddle point of the

augmented Lagrangian functional L(u, t; ρ), we have

L(u∗, t∗; ρ∗) ≤ L(u, t; ρ∗) ∀ (u, t) ∈ Rn× R2n . (7.81)

By taking u = u(k), t = t(k) in (7.81) and recalling the definition of L(u, t; ρ) in (5.2),
we have:

F (u∗) +R(t∗) − 〈 ρ∗, t∗ −Du∗︸ ︷︷ ︸
0

〉 +
β

2
‖ t∗ −Du∗︸ ︷︷ ︸

0

‖22

≤ F (u(k)) +R(t(k)) − 〈 ρ∗, t(k) −Du(k) 〉 +
β

2
‖t(k) −Du(k)‖22

⇐⇒ F (u∗) ≤ F (u(k)) + R(t(k)) − R(t∗)

− 〈 ρ∗, t(k) −Du(k) 〉 +
β

2
‖t(k) −Du(k)‖22 . (7.82)
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Taking u = u∗ in (7.48) and t = t∗ in (7.49), we obtain:

F (u∗) − β1

2
‖t(k−1) −Du∗‖22 − F (u(k)) +

β1

2
‖t(k−1) −Du(k)‖22

−
〈
DT
(

(β + β1)
(
t(k−1) −Du(k)

)
− ρ(k)

)
, u∗ − u(k)

〉
≥ 0 , (7.83)

R(t∗) +
β2

2
‖t∗ −Du(k)‖22 − R(t(k)) − β2

2
‖t(k) −Du(k)‖22

+
〈

(β − β2)(t(k) −Du(k))− ρ(k) , t∗ − t(k)
〉
≥ 0 . (7.84)

By summing up (7.83) and (7.84), we have:

F (u∗) ≥ F (u(k)) + R(t(k)) − R(t∗) +
β1

2
‖Du∗‖22 −

β1

2
‖Du(k)‖22

− β1

〈
t(k−1) , Du∗ −Du(k)

〉
− β2

2
‖t∗ −Du(k)‖22 +

β2

2
‖t(k) −Du(k)‖22

+
〈
(β + β1)

(
t(k−1) −Du(k)

)
− ρ(k), Du∗ −Du(k)

〉
−
〈

(β − β2)(t(k) −Du(k))− ρ(k) , t∗ − t(k)
〉
. (7.85)

Taking lim inf of (7.82) and lim sup of (7.85), and using the results in (7.77)–(7.80),
we have

lim inf F (u(k)) ≥ F (u∗) ≥ lim sup F (u(k)) . (7.86)

It follows from (7.86) that

lim
k→∞

F (u(k)) = F (u∗) . (7.87)

We now manipulate F (u(k)) as follows:

F (u(k)) =
λ

2
‖u(k) − b‖22 =

λ

2
〈u(k) − b , u(k) − b 〉

=
λ

2

〈
u(k) + u∗

2
− b , u(k) − b

〉
+
λ

2

〈
u(k) − u∗

2
, u(k) − b

〉
=

λ

2

〈
u(k) + u∗

2
− b , u

(k) + u∗

2
− b

〉
+
λ

2

〈
u(k) + u∗

2
− b , u

(k) − u∗

2

〉
+
λ

2

〈
u(k) − u∗

2
, u(k) − b

〉
=

λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2

2

+
λ

2

〈
u(k) − u∗

2
,
u(k) + u∗

2
− b+ u(k) − b

〉
=

λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2

2

+
λ

2

〈
u(k) − u∗

2
,
u(k) − u∗

2
+ u(k) + u∗ − 2b

〉
=

λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2

2

+
λ

2

∥∥∥∥u(k) − u∗

2

∥∥∥∥2

2

+ λ

〈
u(k) − u∗

2
,
u(k) + u∗

2
− b

〉
≥ λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2

2

+ λ

〈
u(k) − u∗

2
,
u(k) + u∗

2
− b

〉
. (7.88)
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On the other hand, we have that〈
ρ∗ , Du(k) −Du∗

〉
=
〈
ρ∗ , D(u(k) − u∗)

〉
=
〈
DT ρ∗ , u(k) − u∗

〉
= λ

〈
u∗ − b , u∗ − u(k)

〉
, (7.89)

where in (7.89) we have used the (optimality) condition (7.30). From (7.88) and (7.89)
it follows that

F (u(k)) +
〈
ρ∗ , Du(k) −Du∗

〉
≥ λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2

2

+ λ

〈
u(k) − u∗

2
,
u(k) + u∗

2
− b

〉
+ λ

〈
u∗ − b , u∗ − u(k)

〉
=

λ

2
‖u∗ − b‖22︸ ︷︷ ︸
F (u∗)

+
3

8
λ ‖u(k) − u∗‖22 , (7.90)

that is

F (u(k)) − F (u∗) +
〈
ρ∗ , Du(k) −Du∗

〉
≥ 3

8
λ ‖u(k) − u∗‖22 . (7.91)

Taking the limit for k →∞ of both sides of (7.91) and recalling (7.79) and (7.87), we
obtain:

0 ≥ lim
k→∞

3

8
λ ‖u(k) − u∗‖22 =⇒ lim

k→∞
u(k) = u∗ , (7.92)

thus completing the proof.
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