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1. INTRODUCTION

Market platforms are increasingly important in today’s economy. Familiar examples
include platforms for retail goods like eBay, StubHub, Christie’s, Sotheby’s, and Man-
heim, but more recently, internet technology has even given rise to platform markets
for freelance labor, like Upwork. These firms are all major players in their respective
economic spheres. American car dealers sourced 30% of their used inventory from auc-
tion houses in 2007 (see Roberts [2013]). In 2014 eBay reported USD$82.95 billion in
sales volume and 8.5% annual growth after nearly two decades in business.1 Christie’s,
Sotheby’s, StubHub, Manheim, and Upwork each host annual transaction volumes in
the billions or hundreds of millions of dollars. These firms each have a distinguishing
characteristic in common: none of them engage as active participants in the transactions
they host, none directly buy or sell services, and none maintain any inventories of their
own goods. In other words, each firm’s platform exists solely for the purpose of creating
a forum where buyers and sellers can easily match for trade.

While much research has focused on static auctions, much less is known about the
role of market design in shaping bidding incentives, welfare, and revenues in dynamic
platform markets. On a platform, a large number of buyers and sellers participate in
essentially simultaneous auctions each period, and agents know that if they are unsuc-
cessful in consummating a trade today, they can return to the market in future periods
to try again. In this paper we provide a rich model of such an auction platform in which
buyers are matched to the sellers’ auction listings each period, auction winners (and the
associated sellers) exit the market, and new players enter each period. We include a
costly endogenous entry decision, and endogenous bidding choice to capture the time
and effort costs of participation.

Our rich model captures the salient features of platform markets and allows for a
broad class of spot-market pricing mechanisms within individual listings. The model
characterizes market evolution over time, but a curse of dimensionality arises from an
intractably large state space when even moderately large numbers of agents participate.
This problem creates an important barrier to empirical work, and to solve it we also
develop a more tractable version of the model with a continuum of buyers and sellers.
Our first contribution is proving that the equilibria of the continuum model provide a
reasonable approximation of equilibria of the finite model, and the continuum model
can therefore be used as a basis for empirical work. Our formal justification of the
continuum model as an approximation to the finite one is, to the best our knowledge, a
novel contribution within the platform markets literature.

1Information downloaded from
https:investors.ebayinc.comsecfiling.cfm?filingID=1065088-15-54&CIK=1065088 on 11/17/2015.

https://investors.ebayinc.com/secfiling.cfm?filingID=1065088-15-54&CIK=1065088
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Figure 1. Static Versus Dynamic Demand Shading Incentives
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We use our limit approximation to build an empirical model of dynamic bidding be-
havior within a homogeneous goods market hosted on eBay. Market dynamics produce
incentives for demand shading (i.e., bidding strictly below one’s private valuation) even
when the spot-market pricing rule has the familiar second-price form. Intuitively, de-
mand shading arises from the idea that if the hypothetical spot-market price rose too
high, the bidder would prefer to forgo a purchasing opportunity today (even one below
her private valuation) in expectation of paying a lower price tomorrow. This opportunity
cost determines the degree of demand shading: if market conditions tomorrow are ex-
pected to be favorable to buyers, then incentives to bid aggressively today are weakened.
Given a value for the time discount factor, this demand shading factor is nonparamet-
rically identified from observables that are readily available on many platform markets
like eBay. We also show that when the spot-market pricing rule is non-second-price,
the strategic incentive to shade bids present in static settings is layered on top of the
dynamic incentives in a parsimonious way. This model extension is important since
many electronic auction pricing rules (including eBay’s) are known to deviate from the
standard second-price form in empirically relevant ways. We outline conditions under
which the static and dynamic demand shading factors can be separately identified.

Interestingly, our empirical analysis reveals that the degree of bid shading incentivized
through intertemporal opportunity costs is significantly larger than demand shading
generated by the use of a non-truthful spot-market auction mechanism. Figure 1, gen-
erated using our structural estimates, demonstrates this point. In the upper pane the
45◦-line (solid) is plotted against the dynamic bidding strategy resulting from the two
most commonly used spot-market mechanisms: second price (dash-dot line) and first
price (dashed line). The lower pane plots the win probability for context. The difference
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between the dash-dot line and the dashed line represents the influence of static incen-
tives for shaping bidding behavior, and the difference between the solid line and the
dash-dot line represents the influence of dynamic incentives. The conclusion we draw
from the plot is that dynamic incentives tied to opportunity costs play a clearly domi-
nant role in shaping behavior. For all bidder types with non-trivial win probabilities the
dynamic demand shading factor is an order of magnitude larger than the static demand
shading factor. To the best of our knowledge, ours is the first study to highlight the
importance of dynamic demand shading incentives relative to the traditional demand
shading incentives present in static auctions.

Decentralized auction platforms like eBay facilitate the interaction of a set of hetero-
geneous buyers and sellers on opposite sides of the market. Agents on each side of
the market have preferences over the number of agents present on the other side of the
market. For example, buyers would like the platform to be used by many sellers and
few buyers to reduce bidding competition in the auctions. In our setting the agents also
have preferences over the types of agents on the other side of the market. For example,
sellers would prefer the buyers to have high values since this would increase the bids
in the auctions. The fact that agents care both about the number and type of agents on
both sides of the market makes our model more complex than many commonly used
in the platform economics literature. In addition, our model raises new and interesting
issues when it comes to, for example, analyzing the effects of participation costs on the
endogenous composition of platform market participants.

Finally, the dynamic demand shading incentives and platform composition effects
interact in complex ways. For example, any change in the market structure that increases
the continuation values of the average buyer (e.g., making the allocation more efficient)
will increase bid shading. At the same time, increased efficiency may encourage low-
value buyers to leave the market as their probability of winning an auction drops. These
countervailing effects make it unclear whether a platform must necessarily benefit from
improvements in market efficiency.

We use our model and an extensive dataset on new Amazon Kindle Fire tablets to
estimate structural model primitives including the buyer-seller matching process, the
monetized cost of participation, and the steady-state distributions of buyer valuations
and seller reserve prices. The inclusion of a per-period participation cost—representing
the value of foregone time and effort to find a listing to bid on—turns out to be an impor-
tant regulator of the number and types of buyers in the market. While the participation
cost we find is low, on the order of $0.10, it has a non-trivial impact on low-value buyers
who must repeatedly bid in order to win an item.
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A key feature of our proposed estimator is that it requires only observables that are
readily available on many platform websites. In particular, if bid submission times are
randomly ordered, then some auction participants watching an item with intent to bid
may be prematurely priced out of the spot market before they get a chance to submit
their bid. Therefore, the total number of unique bidders within a given eBay auction
constitutes a lower bound on the actual number of competitors. Our nonparametric
identification argument for the dynamic structural model accounts for this source of
sample selection, and requires only that we observe this lower bound on auction partic-
ipation, the seller reserve price, and the highest losing bid.

Having estimated the economic primitives of our model, we perform three compara-
tive statics exercises. Our first one investigates the efficiency of the decentralized auction
platform. Even when the spot-market mechanism is known to allocate efficiently within
a given auction—where we adopt the usual notion of efficiency as the tendency for goods
to be allocated to those who value them most—platforms like eBay still exhibit search
frictions due to their sheer size, which leads to inefficiency. To fix ideas, consider a very
simple platform market where each period there are two identical auctions and four
bidders participating; two with high private values and two with low values. The social
planner concerned with allocative efficiency would prefer that one high type and one
low type be matched to each auction, thereby ensuring that (in any monotone bidding
equilibrium) both units of the good will go to high-value buyers. However, because of
private information and random matching, there is always positive probability that one
of two things will go wrong within a given auction. First, a high-value buyer that ought
to receive the good in an efficient allocation may end up competing against another high-
value buyer, which means that one of them will not receive a unit of the good. Second,
an auction may fail to attract any high-value buyers, which means a low-value buyer
will receive the good when she would not under an efficient outcome.

We measure the inefficiency in various ways. As a robustness check, we conduct what
we refer to as a “model anemic” analysis that employs only our raw data and estimates of
the buyer-seller matching process to place a lower bound on the frequency of inefficiency
with as few assumptions as possible. We find that at least 28% of auctions result in
inefficient allocations. Next, in order to identify the precise frequency and deadweight
loss of inefficient allocations on eBay, we take additional measurements using our full
structural model. We find that 36% of auction listings allocate inefficiently, leading to
a deadweight loss of roughly 14% of total possible gains from trade. We then compute
a series of counterfactuals to study alternative platform designs that are increasingly
“centralized,” meaning that eBay hosts the same number of items for sale using fewer
multiple unit auctions. A fully centralized mechanism would be a single multi-unit
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auction that clears the market for all goods posted by sellers once per day. We find
that most of the welfare gains from centralization can be recovered by moving from
single-unit auctions to 2- or 3-unit auctions.

As for sellers, one might naturally assume that increased efficiency would lead to
increased revenue as well. However, this turns out not to be the case because of two
effects. First, platform composition (PC) effects alter the profile of buyers in the market
as low-value buyers exit due to a drop in their probability of winning. Second, dynamic
incentive (DI) effects (i.e., the demand shading driven by opportunity costs) alters the
bidding behavior of the remaining agents. Empirically, the net effect is that centralization
results in a small loss of revenue to sellers.

Our second counterfactual exercise considers the relative importance of PC and DI ef-
fects for market efficiency. To this end, we consider an increase of the participation costs
for bidders from our estimated level of $0.0657 up to a value of $10.00. The changing
cost generates PC effects on the steady-state ratio of buyers to sellers and the distribution
of buyer types in the market by altering the cutoff type of buyer that is just indifferent
to participating on the platform. The participation cost change also produces DI effects
by influencing opportunity costs since entering the market next period costs more when
κ increases. We compare the relative magnitudes of these two effects through a counter-
factual decomposition, and we find that PC effects are between two and ten times more
important than the DI effects for driving market efficiency.

The final comparative static we consider is an analysis of seller behavior. Over half of

sellers in our data set reserve prices at $0.99, the default reserve price on eBay.2 Within a
dynamic platform market, optimal reserve price calculations diverge from classic mech-
anism design results by Myerson [1981] since sellers may also return to the market in
a future period to re-list their good if it does not sell today. We show that, under our
point estimates, the most profitable reserve price given a supply cost of $0 is roughly
$85, but the benefit relative to a reserve price of $0 is less than $1. The extremely small
benefit we estimate resolves the puzzle of why sellers typically choose not behave strate-
gically. Our second and third counterfactual exercises together provide the first dynamic
platform characterization analogous to a classic result by Bulow and Klemperer [1996]
within static auctions: although it is possible to use market design to shape bidding
behavior, participation and market composition are more important concerns.

The remainder of this paper has the following structure. In Sections 2 and 3 we de-
velop a theory of bidding within a dynamic platform, and we establish our large market

2On eBay.com, the term for what we call reserve price here is actually “starting price,” and the term
“reserve price,” as employed by eBay, refers to a hidden starting price. However, since the term reserve
price is used more commonly among economists for what eBay calls a starting price, we maintain the
traditional academic parlance to avoid confusion among our target audience.
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approximation result. In Section 4 we use this model to specify a parsimonious struc-
tural model of eBay, which we show is identified from observables. We also propose
a semi-nonparametric estimator based on B-splines. In section 5 we present our model
estimates. Finally, section 6 presents our counterfactuals on welfare, the relative impor-
tance of selection and dynamic incentives, and optimal reserve prices. Most of the proofs
are relegated to an online technical appendix.

1.1. Related Literature. Ours is not the first paper to study a dynamic bidding model
where intertemporal opportunity costs shape behavior. The earliest structural work in
this vein, Jofre-Bonet and Pesendorfer [2003], focuses on firms’ time-varying production
capacity constraints (work backlogs) in repeated procurement auctions, with more re-
cent extensions by Balat [2013]. Platform markets, by contrast, typically host sales for
consumer products where bidders have single-unit demands and are thought to perma-
nently exit the market after transacting once. Several other papers study such markets,
including Zeithammer [2006], Said [2011], Coey, Larsen, and Platt [2016], and Backus
and Lewis [2016], with the latter two papers being most closely related to ours.

Coey et al. develop a model of eBay with the goal of understanding why auctions
and fixed-price listings both co-exist on the same platform. Their model is agnostic
about buyer consumption utility, and all demand-side heterogeneity is driven by hard
deadlines by which buyers must transact. The model of Backus and Lewis is most
similar to ours. Their focus is on estimating a rich demand model with heterogeneous
buyer preferences and flexible substitution patterns for distinct goods, while our model
depicts heterogeneous buyer preferences for homogeneous goods. Given the complexity
of the type space they study, their identification strategy naturally requires a richer set
of observables than ours. In contrast, our paper takes a different focus from the above
two papers by studying market composition (selection of buyers into the market), the
efficiency of market allocations, and evaluating a set of market redesign counterfactuals.
Because of the various modeling choices driven by distinct sets of research questions, we
view these three papers as complementary to one another.

Our paper makes several new contributions, both methodological and applied. First,
empirical work necessarily focuses on markets with finitely many agents, but existing
models (including ours) employ a continuum steady-state model for tractability. We pro-
vide rigorous micro-foundations to this simplification by starting with a more realistic
(though intractable) finite model, and then we prove that the continuum steady-state
model is a limiting approximation. Second, our foundational theory and identification
argument are both fully non-parametric aside from basic regularity conditions. Much
existing empirical work on eBay either assumes that all bids within each auction are

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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directly observed by the econometrician or resorts to parametric assumptions (e.g., Pois-
son distributed auction sizes) in order to correct for problems of limited observables (e.g.,
when some bidder identities are unobserved). Our identification argument corrects for
limited observables without imposing parametric forms. Our empirical implementation
provides strong evidence for the benefits of added flexibility in the model.

Third, our model allows for multiple sources of demand shading incentives by accom-
modating a variety of spot-market pricing mechanisms. Aside from providing generality,
our model neatly decomposes dynamic demand shading incentives (intertemporal op-
portunity costs) from static demand shading incentives (strategic calculations specific to
spot-market competition). As it turns out the former are much more important than the
latter (see Figure 1); to the best of our knowledge we are the first to uncover this empiri-
cal insight. Fourth, our model contains an explicit search cost among the set of structural
primitives. This allows us to monetize wasted resources due to time and effort involved
in search and helps explain buyer selection into the market. Fifth, we explore a novel
set of market re-design experiments that allow us to characterize counterfactual steady
states under alternative, more efficient market structures. These counterfactuals illumi-
nate the various mechanisms driving allocative inefficiency on eBay while controlling
for changes in market buyer composition and bidding behavior.

Our theoretical large-market approximation results belong to a larger body of research
which we briefly survey here. Early papers focused on conditions under which under-
lying game-theoretic models could be used as strategic micro-foundations for general
equilibrium models (e.g., Hildenbrand [1974], Roberts and Postlewaite [1976], Otani and
Sicilian [1990], Jackson and Manelli [1997]). Other early papers focused on conditions
under which generic games played by a finite number of agent approach some limit
game played by a continuum of agents (e.g., Green [1980], Green [1984], and Sabourian
[1990]). A more recent branch of this literature applies these ideas to simplify the analy-
sis of large markets with an eye to real-world applications (e.g., Fudenberg, Levine, and
Pesendorfer [1998]; MacLean and Postlewaite [2002]; Budish [2008]; Kojima and Pathak
[2009]; Weintraub, Benkard, and Roy [2008]; Krishnamurthy, Johari, and Sundararajan
[2014]; and Azevedo and Leshno [2016]).

Another related paper is Hickman [2010] that shows that the pricing rule on eBay is
actually a hybrid of a first-price and a second-price mechanism. Hickman, Hubbard,
and Paarsch [2016] explore the empirical implications of the non-standard pricing rule
on eBay within a static, one-shot auction model with no binding reserve prices. We build
on these two papers in the following ways. First, our model incorporates both dynamic
and static demand shading incentives. Second, we extend Hickman et al. [2016] to allow
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for binding reserve prices, which affects identification of the bidder arrival process and
the private value distribution in complicated ways.

2. A MODEL OF PLATFORM MARKETS

Here we develop our model of a dynamic platform market; we will state important
results here, but the associated proofs, being fairly lengthy, are left to a technical ap-
pendix. Both buyers and sellers participate in platform markets, but our focus will be
on the strategic choices of the buyers within the market. We treat sellers collectively as
a source of exogenous supply, and we take their decisions (e.g., entry/exit and reserve

prices) as exogenous and fixed within the model.3 This modeling choice is driven by the
fact that observables tied to the seller side of our the eBay market are less amenable to
econometric identification, making empirical work a challenge.

The market evolves in discrete time with periods indexed t ∈ {0, 1, 2, ...}. We refer
to the set of buyers present at the start of period t as potential entrants; each period
they make decisions based on the observed number and type distribution of the other
potential entrants and their own types. The first choice each potential entrant must
make in a period is whether or not to enter the market and participate in the platform.
We denote the choice to participate as Enter and refer to the agents that make this choice
as entrants. The choice to not participate is denoted Out. If there is no history in which
an agent chooses to Enter, then we assume that agent exits the game immediately and
permanently. Otherwise any agent that chooses Out simply moves on to the next period.

After choosing Enter, each entrant formulates a strategic bid, knowing that she will be
randomly matched to an auction listing where the number and types of other entrants
matched to that particular auction will be unobservable to her. The form of the random
matching process, the steady-state distribution of entrant types, and the exogenous dis-
tribution of reserve prices is known to agents at the point when they choose their bids.
We assume a simultaneous-move spot market; in other words, bidders maintain their
ex-ante planned bid throughout the period, and refrain from updating it during the life

of their matched auction listing.4 The auctions are resolved using the relevant price set-
ting mechanism (e.g., a first-price or second-price rule). If a buyer wins the spot-market

3As we discuss in greater length in section 6.3, given a production cost of $0, the sellers earn less than
$1 in increased revenue by moving from a reserve price of $0 to the revenue maximizing reserve price.

4The question of intra-auction dynamics has been treated by Nekipelov [2007] and Hopenhayn and
Saeedi [2016], and involves substantial complications that are beyond the scope of the current exercise.
Other eBay models that view individual auction listings essentially as sealed-bid games include Bajari and
Hortaçsu [2003], Hickman et al. [2016], Coey et al. [2016], and Backus and Lewis [2016]. We find evidence
in our empirical exercise (see Figure 1) and Section 5 below) consistent with the idea that incentives tied
to inter-auction dynamics occupy a predominant role in bidders’ payoffs.

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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auction, then she exits the game at the end of the period. All surviving buyers remain
in the market for the next period. We summarize the timing in Figure 2.

Figure 2. Timing within a period
Period	t	 Period	t+1	Period	t-1	

Entry	
decisions	
made	

Entrants	
matched	
to	seller	
auc2ons	

Auc2ons	
resolved	

Trade	conducted,	
agents	exit,	and	

new	agents	added	

Buyers	
submit	
bids	

With an eye toward facilitating empirical work, several challenges must be addressed.
Real-world platforms involve large but finite numbers of buyers and sellers, but comput-
ing equilibria for such markets is intractable. Therefore, our strategy here is to develop
a simplified version of reality with a model having infinitely many economic agents.
We then prove that this simplification is empirically relevant in the following sense: a
bidder’s dynamic value function under the limit model approximates the value function
arising from the finite model, and the approximation becomes arbitrarily accurate as
the number of agents in the market increases. This suggests that the tractable contin-
uum model can be used in empirical work on platform markets with a large number
of participants. Although our primary focus here is empirical, it is also worth noting
that this result provides a novel theoretical contribution to the large markets literature as
discussed in the previous section. Whenever possible, we develop theoretical results in
terms that apply for arbitrary, well-behaved spot-market pricing rules so that our model

may serve as a general framework for the analysis of platform markets.5

2.1. Model Primitives. We index buyers with i, and the value that buyer i places on the
product is denoted vi. We assume throughout that buyers have demand for a single unit,
and the buyers’ values for the good do not change with time. A buyer that wins a good
on the eBay platform and pays a price of p receives a payoff in that period of

vi − p− κ

where κ is a per-period bidding cost paid by entrants regardless of whether they win.
We assume κ > 0; this may reflect the opportunity cost of time spent searching for a
listing and participating in the market, or it may reflect an actual monetary participation

5Part of our definition of a “well-behaved” pricing rule is one that only allocates the object to the
highest bidder with positive probability, which we implicitly assume moving forward. In our empirical
application we consider data from eBay, which uses an unusual hybrid pricing rule combining elements
of both second-price and first-price auctions. See Section 2.1 for further discussion.
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fee that the platform designer imposes. If an entrant does not engage in trade, her payoff
is simply −κ. A buyer that chooses not to enter the market earns a payoff of 0. Moving
forward, we will use the terms “bidding cost” and “participation cost” interchangeably
in reference to the parameter κ.

In our limit results we consider a sequence of games indexed by N. All of the games
have a finite number of buyers and sellers, and we will often refer to the N-agent game.
The variable N scales the number of buyers in the game at t = 0 and the number of new
buyers entering the game each period. The reader should note that N is an index of size
and does not imply that game has precisely N players.

All variables pertaining to the N-agent game are superscripted with N. Each period

SN
t = dNS∞e sellers have goods for sale, where S∞ is the measure of sellers each period

of the continuum game. Each seller has a reserve price R that is drawn randomly from

the distribution GR.6 GR may have a mass point, but only at the lowest possible reserve
price, r = 0, and has a density gR(R|R > 0) that is strictly bounded away from zero over
the rest of its support (0, r]. The realized distribution of reserve prices in the N-agent

game in period t is denoted GN
R,t. The numbers of potential entrant buyers at t = 0 is

denoted CN
0 .7 We assume that as N → ∞

CN
0

N
→ C∞

0 ∈ R++.

The population of potential entrants in period t is CN
t . The parameter µ scales the

number of new potential entrants added at the end of each period relative to the number
of potential entrants present in period 0. In the N-agent game, Nature generates dNµe
new potential entrants at the end of each period and adds them to the set of potential

entrants. We use the variable ωN
t =

(
CN

t
N , SN

t
N

)
to track the number of buyers and sellers

at the beginning of period t. ΩN ⊂ Ω denotes the set of ω ∈ Ω compatible with the
definition of the N-agent game.

Each time Nature generates a new potential entrant buyer, her private value v is drawn
from an atomless cumulative density function (CDF) TV(·) with probability density func-
tion (PDF) tV(·). We assume that tV is strictly positive over the support [0, 1]. The

measure FN
V,t describes the distribution of potential entrant values at the beginning of

period t of the N-agent game, including both newly generated potential entrants and

ones remaining from period (t − 1), and FN
V,t is an element of the space of probability

6We use the letter G to refer to the cumulative density functions (CDF) of variables that are observable
to the econometrician, and we reserve F to denote a CDF of an unobservable variable from the econome-
trician’s perspective.

7Since the letter B is used later on to denote bids, we chose C for “consumer” to represent the number
of buyers flowing into the market each period.
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measures over [0, 1], denoted ∆([0, 1]). Unless stated otherwise, ∆([0, 1]) is endowed with
the weak-* topology. We let ∆N([0, 1]) denote the set of empirical probability measures
that can be generated by N realizations of [0, 1] and endow this space with the relative
topology inherited from ∆([0, 1]).

Before deciding whether to enter, a potential entrant observes her own value for the
good, the bidding cost, and the number and value distribution of the other potential
entrants in the game. An entrant makes her choice of a bid without knowing either the
number or identity of the other agents participating in the particular auction to which he
or she is matched. We now describe the stochastic matching process that assigns bidders
to auctions. Our formalization is designed to capture the important aspects of a scenario
where bidders randomly arrive at the platform market (e.g., the eBay homepage) at some
point during the day, search for the desired product, and bid on one of the items that
they happen to see (e.g., an auction listing near the top of the first page of eBay’s keyword
search results). We implicitly assume that the buyers bid only once within each period
(e.g., a day).

We denote the number of entrants and sellers in period t as CN
t and SN

t respectively.8

The buyers and sellers are randomly ordered into queues with the ordering independent
across periods. Nature sequentially matches each seller in the respective queue with the
next k ∈ {0, 1, ...} buyers from the buyer queue where k is a realization of random
variable K that is distributed according to probability mass function π(K; λ). For now,
we impose no functional form on π, meaning the parameter vector λ = {λ0, λ1, λ2, . . .} ∈
R∞ is left unrestricted.

We set the mean of K to be equal to E[K] = CN
t /SN

t , and this condition implicitly
determines λ. This leads us to refer to λ as the market tightness parameter since it is de-
termined by the buyer-seller ratio. Intuitively, if we consider a limit where the number
of entering buyers and sellers grows without bound, then in the limit all of the entrants
are matched into auctions. In the finite model, if the supply of entrants is not com-
pletely assigned to auctions, the unassigned buyers are referred to as unmatched buyers.
Unmatched buyers proceed to the next period without transacting.

Assumption 2.1. We require that π satisfy the following conditions
(1) Bidders are matched to an auction almost surely as the number of players grows
(2) π is continuous in ω, FV , and GR

8Since all sellers enter, SN
t = SN

t . We employ this notation for expositional simplicity.
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(3) A local limit theorem applies, meaning that for the sequence (K1, K2, ...) with ZN =

∑N
i=1 Ki and ψ denoting the density function of the normal distribution we have√

NVar[K]Pr{ZN = k} → ψ

(
k− NE[K]√

NVar[K]

)
uniformly over k ∈ Z (1)

The most novel assumption is item (3), which requires that a local limit theorem ap-
ply. We use this assumption to approximate the probability mass function of sums of
realizations of K using the probability density function of the normal distribution. Local
limit theorems apply to many distributions of common interest including, for example,

the generalized Poisson distribution used in our estimator.9 This level of generality will
allow for a flexible empirical model specification later on.

Myerson [1998] showed that in games with stochastic participation, such as the spot
market in our model, beliefs about the total number of competitors from the perspective
of a bidder in the auction are not the same as beliefs from the perspective of an out-
side observer (e.g., a seller or the platform designer). From the perspective of a bidder
matched into an auction, let M be a random variable representing the number of com-
petitors she faces and πM(M; λ) denote its PMF. As Myerson showed, π and πM are the
same distribution if and only if K is a Poisson random variable, a concept he referred to
as environmental equivalence. Otherwise, the bidder’s beliefs about M are

πM(m; λ) = Pr [m opponents|λ] = π(m + 1; λ)
(m + 1)

E[K]

Conditional on being matched, a particular bidder wins her auction if her bid is larger
than the maximum of all competing bids and the seller’s reserve price. Ties between
highest bidders are resolved by assigning the item to the tied bidders with equal prob-
ability, but if the highest bid is tied with the reserve price, then we assume the bidder
wins the item.

2.2. Equilibrium Bids. In this section we discuss the structure of the equilibrium under
the assumption of a second-price auction (SPA) rule since we can provide closed form
solutions for some equilibrium quantities. As we show in Section 4.1.3, our general
insights apply straightforwardly to other pricing mechanisms as well.

Bidding strategies can be written as functions O : [0, 1]×Ω× ∆([0, 1])× ∆([0, 1]) →
[0, 1] with a typical bid denoted O(vi, ωN

t , FN
V,t, GN

R,t) (O for “offer”). The entry decision

for participating buyers is a function of the form θ : [0, 1]×Ω× ∆([0, 1])× ∆([0, 1]) →
{Enter, Out} with a typical realization θ(vi, ωN

t , FN
V,t, GN

R,t). We let Σ denote the buyers’
strategy space.

9See McDonald [2005] for more details and examples of local limit theorems.
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We use the notation xN(b, ωN
t , FN

V,t, GN
R,t) = 1 (0) to denote the random event that

a buyer wins (loses) an auction with a bid of b, and pN(b, ωN
t , FN

V,t, GN
R,t) denotes the

random transfer from the buyer to the seller/eBay conditional on a bid of b.10 To simplify
notation we also define

χN(b, ωN
t , FN

V,t, GN
R,t) = EN

t

[
x(b, ωN

t , FN
V,t, GN

R,t)
]

ρN(b, ωN
t , FN

V,t, GN
R,t) = EN

t

[
p(b, ωN

t , FN
V,t, GN

R,t)
]

Note that ρ represents expected transfers that are not conditional on sale. That is, each

entering bidder has an ex-ante expectation to pay ρN(b) in the spot market, although
under any winner-pay pricing rule only one bidder will pay a positive amount ex-post.
For compactness we frequently suppress the notation for the aggregate state. We often
also suppress the bid argument and assume the agent is following the equilibrium (or
candidate equilibrium) strategy. We superscript the expectation operator to emphasize
that we are referring to the N-agent game.

All agents discount future payoffs using a per-period discount factor δ ∈ (0, 1). The
value function given a (symmetric) equilibrium strategy vector σ = (θ,O) for a bidder
that chooses Enter is

VN(vi, ωN
t , FN

V,t, GN
R,t|σ) = χNvi − ρN − κ + (1− χN)δEN

t

[
VN(vi, ωN

t+1, FN
V,t+1, GN

R,t+1|σ)
]

For a buyer that chooses Out we have

VN(vi, ωN
t , FN

V,t, GN
R,t|σ) = δEN

t

[
VN(vi, ωN

t+1, FN
V,t+1, GN

R,t+1|σ)
]

We use the notation VN(vi, ωN
t , FN

V,t, GN
R,t|σ′i , σ−i) when buyer i uses strategy σ′ and all

other agents follow σ.
When facing an SPA mechanism, it is an equilibrium in weakly un-dominated strate-

gies for a bidder to bid his value for the good minus the opportunity cost of winning. In
the static, one-shot setting, the opportunity cost is 0 since outside options are assumed
not to exist. In our dynamic model, the opportunity cost of winning today is the con-
tinuation value the bidder receives if she instead returns to the market to bid again in a
future period. Therefore we can write

O(vi, ωN
t , FN

V,t, GN
R,t) = vi − δEN

t

[
VN(vi, ωN

t+1, FN
V,t+1, GN

R,t+1|σ)
]

We use the following definition of an equilibrium in our finite games.11

10For example, pN(b, ωN
t , FN

V,t, GN
R,t) = 0 if the buyer does not win the auction.

11Given the dynamic nature of our game, a solution concept that incorporates some notion of perfection
might be expected. Consider the two ways in which an ε-BNE can yield an ε > 0. First, it may be that
the agent does not exactly optimize with respect to high probability events, which results in a small loss
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Definition 2.2. The strategy vector σ = (θ,O) and the initial state ωN
0 ∈ ΩN and

FN
V,0, GN

R,0 ∈ ∆N([0, 1]) is an ε-Bayes-Nash Equilibrium (ε -BNE) of the N-agent game

if for all bidder values v we have

For all σ′i ∈ Σ, VN(vi, ωN
0 , FN

V,0, GN
R,0|σ) + ε ≥ VN(vi, ωN

0 , FN
V,0, GN

R,0|σ′i , σ−i)

We now show that there exists a 0-BNE for our large finite model if there exists an
equilibrium for the static version of our auction model (i.e., when δ = 0). Our proof is
constructive in the sense that it uses the equilibrium of the static version of the model
to solve for an equilibrium of our dynamic model. For those interested in applying our
work to other settings, this is useful since equilibrium existence in static auctions has
been established for a wide array of pricing rules. From a theoretical perspective, it
is interesting to note that an equilibrium of a static model can be easily mapped into
an equilibrium of our dynamic model. The key insight is that each agent’s effective
valuation is her private value minus the opportunity cost of winning. Proposition 2.3
makes it possible to apply our identification strategy to non-SPA pricing rules.

Proposition 2.3. Suppose that if δ = 0 there exists an equilibrium σ̃ =
(
θ̃, Õ

)
. Then we can

define the equilibrium σ = (θ,O) when δ > 0 as

θ(v, ωN
t , FN

V,t, GN
R,t)) = θ̃(v− δEN

t

[
VN(v, ωN

t+1, FN
V,t+1, GN

R,t+1|σ)
]

, ωN
t , FN

V,t, GN
R,t)

O(v, ωN
t , FN

V,t, GN
R,t)) = Õ(v− δEN

t

[
VN(v, ωN

t+1, FN
V,t+1, GN

R,t+1|σ)
]

, ωN
t , FN

V,t, GN
R,t)

3. CONTINUUM MODEL

In the finite model, the agents condition their actions on the state of the economy (i.e.,
ωt, FN

V,t, and GN
R,t). The set of values that these variables can assume grows exponentially

with N. The finite model suffers a curse of dimensionality in the sense that computing an
equilibrium requires describing a strategy that is a best response to each element of the
exponentially growing set of possible states. This makes the the finite model intractable
to solve for even moderately large numbers of agents.

In the continuum model that we introduce in this section, the evolution of the state
of the economy is deterministic, but must be consistent with the equilibrium strategy.
What makes the estimation and simulation of the continuum model tractable is that
the equilibrium strategies need only condition on the deterministic path of the state
of the economy. After establishing existence of a stationary equilibrium of our limit

with high probability. Second, the strategy may not optimize with respect to very rare events. Failing
to optimize with respect to rare events can be approximately optimal but severely violate perfection. As
we discuss in more detail below, the thrust of our analysis is to compute stationary equilibria of the limit
game. A stationary strategy can be an ε-BNE even though perfection is not even approximately satisfied
at histories of the finite game in which the market aggregates differ significantly from the stationary state.

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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model, we show that it is an ε-BNE of the large finite model of interest and that we can
take ε → 0 as N → ∞. As a result, we use the terms “continuum model” and “limit
model” interchangeably. Associated proffs are lengthy and therefore relegated to an
online technical appendix.

3.1. The Continuum Model. Our continuum model features positive measures of buy-
ers and sellers that are individually of measure 0. The measure of buyers in period
t = 0 is C∞

0 , and the type distribution of the buyers at t = 0 is FV,0. The measure of
potential entrants at the beginning of period t is denoted C∞

t . A measure of potential
entrants equal to µ is added to the economy at the end of each period, and the distribu-
tion of the values of these new potential entrant buyers is equal to TV . In each period
there is a measure S∞

t of sellers with reserve prices distributed exactly as GR. We let
ωt = (C∞

t , S∞
t ).

If a measure C∞
t of buyers choose to enter the auction market, the buyers are randomly

assigned to auctions with each auction receiving k bidders with probability π(k, λ) sat-
isfying the regularity conditions mentioned in the previous section and E[K] = C∞

t /S∞
t .

Given the number of bidders assigned to each seller’s auction, the allocation and price
setting procedure within each auction is executed as in the finite model. We note at this
point that our continuum model is “large” in the sense that the actions of individual
bidders have no effect on the aggregate distribution of auction outcomes. However,
the actions of individual bidders have a large effect on the auction to which they have
been assigned. The tractability of the continuum model derives from the fact that, given
knowledge of the equilibrium strategy, the distribution of types in the economy evolves
deterministically. We use similar notation to describe the limit model, although we drop
the superscript N when referring to objects pertinent to the continuum model. We use
the notation

χ(b, ωt, FV,t, GR) = Et [x(b, ωt, FV,t, GR)]

ρ(b, ωt, FV,t, GR) = Et [p(b, ωt, FV,t, GR)]

The expectation operator refers to the agent’s uncertainty regarding the other buyers
that are participating in the auction to which he or she is matched. Again we supress
the aggregate variables and the specific bid when confusion will not result.

The value function in the continuum game given a (symmetric) equilibrium strategy
vector σ = (θ,O) for a buyer that chooses Enter is

V(vi, ωt, FV,t, GR|σ) = χvi − ρ− κ + (1− χ)δV(vi, ωt+1, FV,t+1, GR|σ),

and for a buyer that chooses Out we have

V(vi, ωt, FV,t, GR|σ) = δV(vi, ωt+1, FV,t+1, GR|σ).

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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Note the absence of the expectation operators in the limit model. This is because the
evolution of market aggregates is deterministic once a strategy and (ω0, FV,0, GR) have

been fixed.12 Moreover, the evolution of market aggregates is unaffected by the actions
of any single measure 0 agent.

Equilibrium requires that the actions taken are optimal with respect to the determinis-
tic path of the state variables. We focus on stationary equilibria, which implies that the
economic aggregates are constant across time and the agent actions are optimal with re-
spect to the fixed aggregate state the agents face. θ refers to the stationary entry strategy
of the buyers, and β refers to a stationary bidding strategy.

Definition 3.1. The strategy vector σ = (θ, β) and the state ω ∈ Ω and FV ∈ ∆([0, 1]) is
a Stationary Competitive Equilibrium (SCE) if for all values v we have

(1) For all σ′i ∈ Σ,

V(vi, ω, FV , GR|σ) ≥ V(vi, ω, FV , GR|σ′i , σ−i)

(2) θ(v) = Enter if and only if

χvi − ρ− κ + (1− χ)δV(vi, ωt+1, FV , GR|σ) ≥ 0

(3) ω = ωt and FV = FV,t+1 are consistent with the laws of motion of the game.

In a stationary equilibrium, the agents bid the same amount in each period, meaning
that the bidding function can be written β : [0, 1] → [0, 1]. In equilibrium, the entry
decision must take the form

θ(vi, ω, FV , GR) = Enter if and only if χ (vi − δV∞(vi, ω, FV , GR|σ))− ρ ≥ κ

Any buyer that is indifferent between entering and staying out must have a continuation
value of 0 since, due to stationarity, if she is indifferent today she will be indifferent
in every future period. This implies that new entrants will either exit immediately or
enter the market in every period. Because of this structure, we can describe the entry
strategies through a cutoff function e(ω, FV , GR) = inf

v
{v : χv− ρ ≥ κ} and

θ(vi, ω, FV , GR) = Enter if and only if v ≥ e(ω, FV , GR) (2)

Once again, under the SCE with a second-price spot-market rule, buyers submit bids
equal to the opportunity cost of re-entering the market next period:

β(vi) = vi − δV(vi, ω, FV , GR|σ) (3)

12The uncertainty regarding the events that will take place in the current period are accounted for
through our use of the expected allocation (χ) and expected transfer (ρ).
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In the interest of generality, we extend our framework to account for a variety of pay-
ment rules. For our large-market approximation results to hold for platforms with non-
second-price spot-market mechanisms, we require the following assumptions on the
equilibrium strategies:

Assumption 3.2. The best responses by the buyers in the continuum game are continuous in the
sup-norm with respect to the parameter λ and the distribution of bids of the entrants as long as
the distribution of bids admits a PDF that is bounded from above.

Fix a distribution of bids that admit a PDF gB bounded from above. We assume that we can
choose some ϕ ∈ (0, 1) such that for any best response by the buyers, denoted b, to (ω, gB, GR)

and any v > v′ we have

b(v)− b(v′) ∈
[

ϕ(v− v′),
v− v′

ϕ

]
(4)

For the duration of this paper, we take assumption 3.2 as given. Given Theorem 2.3,
we could have equivalently required continuity of the bidding equilibrium of the static

game (δ = 0).13 In summary we can describe any stationary equilibrium as a vector of
strategies, σ = (e, β), and stationary aggregate states ,(ω, FV , GR). Our next result shows
that there exists a stationary equilibrium of the continuum model.

Proposition 3.3. A stationary competitive equilibrium exists in the continuum model, and a
positive mass of buyers choose to enter the market if κ is not too large.

The main difficulties in the proof are (1) proving we can limit consideration to a com-
pact strategy space and (2) ruling out a number of utility discontinuities that naturally
arise in auction markets. Once we handle these issues, our proof relies on a traditional
fixed point argument.

3.2. Approximating the Large Finite Model. Our goal is to prove that the limit model
approximates the large finite model. The foundation of our proofs is a mean field result
that proves that the evolution of the limit game economy and the economy of a finite
model with sufficiently many players are approximately the same over finite horizons.
Mean field results usually require strong continuity conditions on the evolution of the
economic primitives and on the strategies adopted by the agents, and proving disconti-
nuities do not arise is challenging.

We must also demonstrate that the expected buyer utility in the large finite game and
the limit game are approximately the same, which is challenging in our model. Since the

13In the SPA we have β̃(v) = v, which clearly satisfies assumption 3.2. Since the value function must
be strictly increasing with a slope less than 1, we know that v− δV(v) satisfies Equation (4). Therefore the
SPA satisfies assumption 3.2.

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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within-period matching process samples without replacement from a finite set of buyers,
there is correlation across auction outcomes in the finite game that is not present in the
limit game. Moreover, there is also a positive probability that a positive mass of buyers
is unmatched in the finite game. We show that these problems vanish as the size of the
market increases.

We can translate these insights into our approximation result, which proves that any
exact equilibrium strategy of the limit game is an ε−BNE of the finite game with suffi-
ciently many players.

Proposition 3.4. Consider an SCE (σ, ω, FV , GR) and assume e(ω, FV , GR) < 1. For any
ε > 0 we can choose N∗ and η > 0 such that for all N > N∗, σ is an ε − BNE strategy if(

ωN
0 , FN

V,0, GN
R,0

)
satisfies∥∥∥ωN

0 −ω
∥∥∥+ ∥∥∥FN

V,0 − FV

∥∥∥+ ∥∥∥GN
R,0 − GR

∥∥∥ < η (5)

This result is significant because it establishes that a bidder’s value function within the
finite game is approximated by the limiting value function, which is the justification for
why we use the limit model as the basis of our empirical framework. Proposition 3.4 may
be seen as providing an approximation to the actual equilibrium being played within
the data-generating process, but it admits an alternative interpretation of a behavioral
strategy as well. If one assumes that agents are subject to small computation costs, then
in large markets it may be that they follow SCE behavioral predictions in lieu of solving
a complex optimization problem for a vanishing benefit. Finally, note that while our
result requires that the aggregate states be close in period 0, if we assume that seller
and bidder types are drawn from FV and GR with numbers close to N ∗ C∞ and N ∗ S∞,

then
(

ωN
0 , FN

V,0, GN
R,0

)
→ (ω, FV , GR) almost surely as N → ∞. In other words, Equation

(5) above becomes increasingly likely to hold as N → ∞. Moving forward, we assume
that our data-generating process is of sufficient size for the limiting model to provide an
accurate approximation to bidders’ equilibrium payoffs.

4. AN EMPIRICAL MODEL OF DYNAMIC PLATFORM MARKET BIDDING

We now shift focus to developing a structural model based on the assumption that
bidders within the finite (but large) marketplace of eBay behave according to the approx-
imately optimal SCE described above. Letting L denote sample size (where an auction is

the unit of observation), the observables, {k̃l, rl, yl}L
l=1, are assumed to include k̃l, the ob-

served number of bidders within the lth auction; rl, the reserve price; and yl, the highest
losing bid. For the purpose of our discussion of identification, we leave the bidder arrival
process π(·; λ) nonparametric and the market tightness parameter vector λ is allowed to
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be infinite-dimensional with λk = Pr[K = k], k = 0, 1, 2, . . .. For convenience we drop the
parameter argument in the PMF π(·) unless context requires specificity. Following the
previous section, we assume measure µ of new buyers exogenously flow into the market
each period, and we also assume that the various type distributions—TV , FV , GR—are
maintained in steady state, where the following identity ensures a stationary market:

µtV(v) = χ(β(v)) fV(v)
C∞

S∞ = χ(β(v)) fV(v)E[K]. (6)

As before, β(v) is the symmetric equilibrium bidding strategy, χ(b) is the probability of
winning a spot-market auction with a bid of b, and C∞/S∞ is the market-wide buyer-
seller ratio. The left-hand side of Equation (6) is the measure of buyers of type v entering
the market, and the right-hand side is the density of buyers of type v who win an auction
and exit the market after transacting.

For simplicity of discussion, consider the decision problem of a bidder who has de-
cided to enter and finds herself competing within a spot-market auction; we will re-
fer to her as bidder 1. As before, denote the total number of opponents she faces by
M ≡ K − 1 ≥ 0 and recall that from 1’s perspective πM(·) may not be the same distri-
bution as π(·). Prior to bidding, 1 observes her own private valuation v and she views
her opponents’ private values as independent realizations of a random variable V ∼ FV

having strictly positive density fV on support [v, v], with v > 0.14 The theory from
the previous section depicted a set of potential buyers, some of whom choose to enter
the bidding market and some of whom don’t, with (2) determining the relevant cutoff.
However, since we are unable to collect real-world observations on non-entrants, we shift
notation slightly from the previous section and adopt the convention that TV and FV are
steady-state distributions for buyer types who choose Enter. This is possible because in
an SCE of the limit model, if it is optimal for a buyer to enter (stay out) in a given period,
it will always be optimal for her to enter (stay out) in every future period until she wins
an auction and exits. Therefore, v is interpreted as the infra-marginal type who is just
indifferent to entering, and our counterfactual investigation will focus only on scenarios
involving subsets of current market entrants. We normalize payoffs of non-entrants to
zero, leading to the following which we refer to as the “zero surplus condition:”

Assumption 4.1. V(v) = 0.

Bidder 1 views the bids of her opponents as a random variable B = β(V) ∼ GB(B) =

FV
[
β−1(B)

]
with support [b, b]. Let BM denote the maximal bid among all of bidder 1’s

14Nothing in our theory relied on values being drawn from the specific [0, 1] interval, so it is innocuous
to have values drawn from some other interval of real numbers.
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opponents with distribution defined by GBM(BM) = ∑∞
m=1

πM(m)
1−πM(0)GB(BM)m. In order to

win, player 1’s bid must exceed the realized value of a random variable

Z ≡
{

R if M = 0,
max{R, BM} otherwise.

15

Note then that the distribution of Z is the same as the win probability function, or

χ(b) ≡ E[xB(b)] =GR(b)
∞

∑
m=0

πM(m)GB(b)m (7)

4.1. Model Identification. We first establish nonparametric identification results in Sec-
tions 4.1.1–4.1.2 for a baseline case with second-price spot-market auctions. In this set-
ting a buyer’s tendency for demand shading derives entirely from dynamic incentives.
In Section 4.1.3 we extend our identification result to the case where the spot-market
game is non-second price, which creates additional demand shading incentives. This
extension will be useful in dealing with data from eBay, which employs a hybrid pricing
mechanism that exhibits elements of both first-price and second-price rules.

4.1.1. Baseline Model: Second-Price, Sealed-Bid Spot-Market Auctions. A second-price spot-
market mechanism implies an expected payment function of the form

ρ(b) ≡ E[pB(b)] =πM(0)GR(b)E[R|R ≤ b]

+ [1− πM(0)]
∫ b

b
t
[
gR(t)GBM(t) + GR(t)gBM(t)

]
dt. (8)

Since the market is in steady-state, we can simplify notation from the previous section
and express the Bellman equation and dynamic bidding strategy as

V(v) = max
b∈R+

{
χ(b)v− ρ(b)− κ + [1− χ(b)] δV(v)

}
and (9)

β(v) = v− δV(v). (10)

In other words, bidders in the dynamic, second-price platform market shade their de-
mand according to the option value of returning to the market the next period in the
event of a loss. The demand shading factor, given by bidder 1’s continuation value,

15Recall that within the model bidders formulate their bids before being matched to an auction and
observing the realization of R, which is independent of B. This assumption is motivated by the idea that
intertemporal incentives play a predominant role in determining bidders’ payoffs, and therefore they feel
no need to update strategies according to the finer details of any one given auction. One implication of
the model provides a means for a partial test of this assumption. If R and B are independent random
variables, then the highest losing bid and the reserve price should be uncorrelated. We find in our data
that the correlation coefficient between the highest losing bid and the reserve price is small (-0.015) and
statistically indistinguishable from zero.
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δV(v), is uniquely characterized by three things: the per-period entry cost, κ, the distri-
bution of bids, GB(b), and the market tightness parameters λ that determine the overall
ratio of buyers and sellers. Thus, mapping bids into private values requires first identi-
fying these three objects. The model is said to be identified if there exists a unique set of
structural primitives that could rationalize a given realization of the joint distribution of

observables, {k̃l, rl, yl}L
l=1. The structural primitives to identify are λ, κ, FV , and TV .

Note that (10) implies V(v) = v−β(v)
δ . By substituting this expression into Equation

(9), and using the shorthand b∗ = β(v), we can rearrange terms to get

v = b∗
1− δ (1− χ(b∗))

1− δ
− δ

1− δ

(
ρ(b∗) + κ

)
≡ β−1(b∗). (11)

The expression for the inverse bidding function above demonstrates that if the econo-
metrician can identify λ, κ, GR, and GB from the observables, then for a given discount
factor δ we can reverse engineer the value v that rationalizes any bid b as a best response
to prevailing market conditions.

4.1.2. Identification of the Bid Distribution and Bidder Arrival Process. One challenge to our
empirical work is that the observed number of bidders in each auction, K̃, is only a
lower bound on the actual number of bidders matched to the auction, K. Due to ran-
dom ordering of bid submission times across all bidders intend to compete, some may
find that their planned bid was surpassed before they had a chance to submit it to the
server. These bidders will never be visible to the econometrician, even though they were
matched to the auction and competing for the sale.

To solve this problem we incorporate an explicit model of the sample selection process
into our identification strategy. In doing so we adopt an approach similar to that of
Hickman et al. [2016] who proposed a model of a filter process executed by Nature that

randomly withholds some bidders from the econometrician’s view.16 For a given auction
with k total matched bidders, this filter process first randomly assigns each bidder an
index {1, 2, . . . , k} that determines the ordering of bid submission times. Nature then
visits each bidder in the order of her index within the list, keeping a running record
of the current lead bidder and current price as she goes. As Nature visits each bidder
in the list, she only records bid tenders that cause her running record of the price or
lead bidder to update; i.e., those that exceed the second highest from among previous
bid tenders. Otherwise, Nature skips bidder i’s submission as if it never happened, and

reports to the econometrician only the record of price path updates, which reveals k̃ ≤ k
observed bidder identities. This filter process is meant to depict the way information is
recorded on real-world platform markets like eBay, and it opens up the possibility that

16In a similar setting, Platt [2015] explored parametric inference assuming that K is Poisson distributed.



22 HOW EFFICIENT ARE DECENTRALIZED AUCTION PLATFORMS?

some bidders will not appear to have participated, even though they had participated
by watching the item with intent to bid. This view of intra-auction dynamics assumes
that the ordering of bidders’ submission times is random and not a function of bidder
characteristics.

By explicitly modeling this source of sample selection, one can nonparametrically

identify λ from the observed lower bounds k̃. Since the filter process does not depend
on the particular distribution of K, the distribution of K̃ conditional on a given k can be
characterized without knowing λ. Moreover, since a bidder’s visibility to the econome-
trician only depends on whether her bid exceeds the second-highest preceeding bid, the
researcher can easily simulate the filter process without knowing GB or FV to compute

conditional probabilities Pr[k̃|k] for various (k̃, k) pairs.17 We adopt a special notation

for this object, P0(k̃, k) ≡ Pr[k̃|k], and treat it as an observable. Since k̃ is observable, we

can use this information to express its PMF, denoted π̃(k̃), as a function of the market

tightness parameters λ: π̃(k̃) = ∑∞
k=k̃ P0(k̃, k)π(k; λ).

However, this equation will not suffice as a basis for identification and estimation
in our case. Unlike Hickman et al., our empirical application requires us to allow for
binding reserve prices. These introduce a second layer of selection, driving a further

wedge between actual participation k and observed participation, k̃. Not only do some
bidders go unobserved because the filter process witholds them from view, but an ad-
ditional fraction of bidders, who would have otherwise been reported by Nature, go
unobserved because their bids fall below the reserve price. This second layer of selection
produces substantial complications as GB now determines how the second source of se-
lection influences the relation between the distribution of observed K̃ and the underlying
distribution of actual K.

In order to solve this problem we propose an adjusted filter process wherein, for each
auction, Nature randomly draws k from π(k), r from GR. Each bidder is endowed
with an iid private value vi drawn from FV . The bidders formulate their strategic bids

without knowing the realization of k or r,18 and Nature then compiles a reported list of
bidders for the econometrician in two steps. First, she visits each bidder and dismisses
anyone whose strategic bid does not meet the reserve price r. Second, Nature assigns
the remaining set of k′ ≤ k bidders random indices i ∈ {1, 2, . . . , k′}, and then executes

17Hickman et al. [2016] simulated 1012 auction filter processes to obtain a lower-diagonal matrix of
conditional probabilities Pr[k̃|k], for each k̃ ≤ k and k ≤ 100. With that many simulations, the element-
wise approximation error is on the order of

√
10−12 = 10−6, and their simulated matrix can be re-used for

any setting in which E[K] ≤ 40.
18Recall that the bidders formulated their bids before being assigned to a particular auction.
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the standard filter process algorithm for computing and reporting k̃, conditional on r.

Finally, Nature reports k̃ and r to the econometrician.
In order to characterize the conditional distribution of K̃ given r, first note that if there

are K = k total bidders, the probability that exactly j of them are screened out by r is

(k
j)GB(r)j [1− GB(r)]

k−j. Now suppose there are K̃ observed bidders in an auction with

N total bidders. We can combine the two levels of selection in the adjusted filter process
with the following equation:

Pr[K̃ = k̃|K = k, r] =
k−k̃

∑
j=0

(
k
j

)
GB(r)j [1− GB(r)]

k−j P0(k̃, k− j) (12)

The sum is to account for the fact that any number of bidders between 0 and k − k̃
could be screened out by selection on reserve prices. The trailing term accounts for the
standard filter process running its course with the surviving set of bidders. Equation (12)
allows us to characterize the distribution of observed K̃ conditional on the observable
reserve price r, as

π̃(k̃|r) =
∞

∑
k=k̃

Pr[k̃|k, r]π(k; λ). (13)

Estimation of λ can no longer be separated from GB because Equation (13) above involves
both of these objects. Fortunately though, this is merely a matter of implementation,
as the following demonstrates that the model is nonparametrically identified from the
available observables.

Proposition 4.2. For a given discount factor δ, the market tightness parameters λ, bidding
cost κ, and steady-state measures FV , µ, and TV are nonparametrically identified from the joint
distribution of the observables {k̃l, rl, yl}L

l=1 when the spot market mechanism is a sealed-bid,
second-price auction.

Proof. H(·) denotes the distribution of the highest losing bid from the econometrician’s
perspective, and H(·) takes the form

H(b) =
∞

∑
k=2

π(k; λ)

1− π(0; λ)− π(1; λ)

(
GB(b)k + kGB(b)k−1 [1− GB(b)]

)
. (14)

H(b) is a weighted average of the distributions of second order statistics from samples of
varying k, where the weights are the probability that a given k will occur as the number
of bidders matched to a particular listing. If we let ϕ (H(b); λ) = GB(b) denote the
inverse of (14), then it follows that, holding λ fixed, ϕ is monotone in H(b) for each
b. Combined with the fact that H(b) and π̃(k|r) are known, this implies that λ and GB
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are identified from the observables and from equations (13) and (14). Moreover, GR is
directly observable from data.

Given these three pieces, it also follows that the win probability χ(b) and the expected
winner payment ρ(b) are identified through equations (7) and (8) above. To identify the
participation cost, combine Equation (9) with the zero surplus condition (4.1) to find the
following relation

χ(v)v− ρ(v) = κ (15)

In other words, the marginal market participant reaps just enough benefit in expectation
to offset the cost of participation.

With χ(b), ρ(b), and κ known, Equation (11) shows that β−1 is also identified if the dis-
count factor δ is known, and in turn, the private value distribution is identified through
the relationship FV(v) = GB[β(v)]. With FV known, µ is identified through either of
the following two equivalent expressions which determine the mass of transactions each
period, and therefore the total mass of buyers exiting the market:

µ =
∫ v

v
χ [β(v)] fV(v)dv

= [1− π(0)] GR(b) +
∫ b

b
gR(r)

(
∞

∑
k=1

π(k)
[
1− GB(r)k

])
dr

(16)

Finally, once µ is known TV is identified through Equation (6). �

4.1.3. Model Identification Under Alternative Spot Market Mechanisms. We now extend our
identification result to cover platform markets that use alternative spot-market pricing
mechanisms. Alternative spot-market mechanisms in which the winner’s bid directly in-
fluences the current-period sale price will produce incentives for demand shading above
and beyond the dynamic demand shading incentives described above. Proposition 2.3
combined with identification arguments from the empirical literature on static auctions
allow us to disentangle these incentives and identify the bidders’ underlying valuations.

We shift notation slightly and use ρ(b) to denote the expected payment under the
prevailing spot market mechanism, whatever it may be. We find it useful to refer to a
bidder’s private value minus her opportunity cost as her dynamic value, denoted ṽv ≡
v− δV(v).. Proposition 2.3 implies that we can re-cast the bidder’s decision problem as

choosing a functional β̃ : ṼV → R+ to optimize an alternative but equivalent objective

β̃(ṽv) = arg max
b

{
χ(b)ṽv − ρ(b)

}
, (17)

In other words, under alternative spot-market pricing rules agents shade demand as if
they were in a static one-shot auction, but where shading is relative to their dynamic

value ṽv. If the right set of observables are available to identify the mapping β̃ that
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would arise in a static, one-shot auction with allocation rule χ and pricing rule ρ, then
the value function V and the private value v from the dynamic auction market are also

identified. To see why, note that by plugging the optimizer β̃ into Equation (9) and

rearranging we get V(v) =
χ[β̃(ṽv)]v−ρ[β̃(ṽv)]−κ

1−δ(1−χ[β̃(ṽv)])
. Using the shorthand b∗ = β̃(ṽv) = β(v)

and substituting in the definition of ṽv, we can rearrange terms further to get

v = ṽv

(
1− δ [1− χ (b∗)]

1− δ

)
− δ

1− δ

(
ρ (b∗) + κ

)
= β−1(b∗). (18)

In the case of a second-price spot market, Equation (18) reduces to Equation (11) above.

Proposition 4.3. For a given discount factor δ, the market tightness parameters λ, bidding cost
κ, and steady-state measures FV , µ, and TV are nonparametrically identified under any spot
market mechanism for which either

(1) the optimizer of (17) is scalar-valued and the allocation rule χ(b) and pricing rule ρ(b)
can be identified from the available observables {k̃l, rl, yl}L

l=1; OR

(2) the optimizer of (17) could be identified from the available observables {k̃l, rl, yl}L
l=1 if

they were generated from a sample of static, one-shot auction games.

Proof. The argument for identification of λ, GB, and GR is the same as in Proposition 4.2.
For case (1), assuming that χ(b) and ρ(b) can be expressed as a function of observable

objects (including λ, GB, and GR), equations (15) and (17) identify κ, β̃(·), and ṽv. For
case (2), consider a hypothetical alternative world where the same set of observables
were actually generated from a sample of static, one-shot auctions, based on underlying
private valuations ṽv. If the observables (including λ, GB, and GR) are known to identify

the inverse bid mapping in that static world, then once again we can treat κ, β̃(·), and ṽv

as known.
Finally, Equation (18) maps each observed bid b into a private value v that rationalizes

b as a best response to market conditions both within-period and future. This implies
that FV is identified, after which equations (6) and (16) identify µ and TV similarly as
before. �

Proposition 4.3 is useful because it broadens the applicability of our model and method-
ology to allow for empirical work for any spot-market mechanism that admits a mono-
tone equilibrium in the static setting and in which the pricing and allocation rules can be
expressed in terms of λ, GR, and GB. The structural auctions literature has established
a broad array of nonparametric identification results for settings of static, one-shot auc-
tions, beginning with the work of Guerre, Perrigne, and Vuong [2000] and Athey and
Haile [2002]. The result above allows for the researcher in a dynamic marketplace to
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use established, static-market identification strategies in a variety of settings, provided
they can be adapted to handle stochastic participation with a known matching process
π(·; λ). The ability to incorporate established identification strategies for static auctions
will be useful as we develop an estimator for eBay data, which uses a pricing rule that
is a non-standard combination of both first-price and second-price rules.

4.2. A Two-Stage, Semi-Parametric Estimator. Thus far in our discussion we have left
the bidder arrival process π(k; λ) unrestricted in order to demonstrate that the theo-
retical model is sufficient on its own (given our observables) to identify the structural
primitives without resorting to parametric assumptions. In this section we develop an
estimator to implement our identification strategy, but for the sake of tractability we
assume K follows a generalized Poisson distribution with PMF

π(K = k; λ) = Pr [K = k|λ] = λ1(λ1 + kλ2)
k−1 e−(λ1+kλ2)

k!
, λ1 > 0, |λ2| < 1,

due to Consul and Jain [1973]. One advantage to our approach described below is that
it is easily adaptable to more complex functional forms if the researcher is concerned
about mis-specification problems. A fully nonparametric estimator involves additional
complications beyond the scope of this work; see online empirical appendix for a breif
discussion. The first two moments of the generalized Poisson distribution are E[K] =
λ1/(1− λ2) and Var[K] = E[K]/(1− λ2)

2. Intuitively, the parameter λ2 regulates the
dispersion of the random variable K. The generalized Poisson reduces to a regular
Poisson distribution when λ2 = 0, but exhibits fatter tails when λ2 > 0 and thinner tails
when λ2 < 0. Developing an estimator based on finite-dimensional λ avoids significant
complications that we discuss briefly below, but which are beyond the scope of this work.

Recall that bidder 1’s beliefs about the number of her opponents, M, follows

πM(m, λ) = π(m + 1; λ)(m + 1)
(1− λ2)

λ1

Since the generalized Poisson with λ2 > 0 (< 0) admits an unusually high (low) number
of large auctions relative to the standard Poisson distribution, each bidder believes that,
conditional on herself having been matched into an auction, it is likely that it will be
one with many (few) other bidders. It is easy to confirm that by plugging in λ2 = 0
participant beliefs πM become Poisson like outsider beliefs π.

Following our identification argument, GB and λ must be jointly estimated, which
rules out many common methods such as kernel smoothing. For our purpose, we opt
for the method of sieves approach (see Chen [2007]) where a finite-dimensional, para-
metric form is imposed on GB in finite samples and made to be ever more flexible as

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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the sample size increases. We choose to specify GB as a B-spline, which is a linear com-
bination of globally defined basis functions that mimic the behavior of piecewise, local
splines (the name “B-splines” is short for basis splines). By the Stone–Weierstrass Theo-
rem, B-splines can be used to approximate any continuous function to arbitrary precision

given sufficiently many basis functions.19 B-splines provide a remarkable combination
of flexibility and numerical convenience that is ideally suited to our application.

Let nb = {nb1 < nb2 < · · · < nb,Ib+1} be a set of knots on bid domain [b̂, b̂] =

[minl{yl}, maxl{yl}] that create a partition of Ib subintervals. This need not be a uniform

partition, but we do require that nb1 = b̂ and nb,Ib
= b̂ so that the partition spans the

entire domain space. The knot vector, in combination with the Cox-de Boor recursion

formula, uniquely defines a set of Ib + 3 cubic B-spline basis functions Fbi : [b̂, b̂] →
R, i = 1, . . . , Ib + 3 that give us our parameterization of the bid distribution:

ĜB(b; αb) =
Ib+3

∑
i=1

αb,iFbi(b).
20

We also follow this approach for estimating GR and FV . Let nr = {nr1 < nr2 < · · · <
nr,Ir+1} and nv = {nv1 < nv2 < · · · < nv,Iv+1} denote knot vectors for the reserve price
distribution and private value distribution, defining Ir and Iv subintervals, respectively.

The former is chosen to span [r, r̂] = [0.99, maxl{rl}] and the latter spans [v̂, v̂], with the
bounds to be estimated. These knot vectors determine our other basis functions Fri :
[r, r̂] → R, i = 1, . . . , Ir + 3 and Fvi : [v̂, v̂] → R, i = 1, . . . , Iv + 3 which in turn render

our parameterizations ĜR(r; αr) = ∑Ir+3
i=1 αriFri(r) and F̂V(v; αv) = ∑Iv+3

i=1 αviFvi(v).
Following our identification argument, we separate estimation into two stages. In the

first stage we flexibly estimate λ, GB, and GR, and in the second stage we construct the

remaining objects χ(·), ρ(·), κ, β̃−1(·), β−1(·), V(·), FV(·), µ, and TV as functions of first-
stage parameter estimates. Note that Stages 1 and 2 differ in that Stage 1 is an estimation
step, but Stage 2 is a purely computational step based on the outputs from Stage 1.

4.2.1. Stage 1: λ, GB, and GR. Recalling that the matrix of conditional probabilities

P0(k̃, k) is known beforehand, in a slight adjustment of notation we now define the

19Unlike global polynomials (e.g., Chebyshev), B-splines are capable of accommodating an unbounded
degree of curvature at a point with finitely many terms if the researcher has a priori information on
regions of the functional domain where such flexibility is needed.

20A standard text on B-splines is de Boor [2001]. See also [Hickman et al., 2016, Online Appendix]
for a brief but detailed primer on construction of B-spline basis functions, their derivatives, and their
advantages for empirical work in economics.
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model-generated conditional PMF of K̃ given r as

π̃(k̃|r; λ, αb) =
K

∑
k=k̃

{
k−k̃

∑
j=0

(
k
j

)
ĜB(r; αb)

j [1− ĜB(r; αb)
]k−j P0(k̃, k− j)

}
π(k; λ).

where K is an upper bound on the auction sizes we consider. We also adopt the following
as the empirical analog of the conditional PMF:

ˆ̃π(k̃|r) =
L

∑
l=1

1(k̃l = k̃)
K
(

r−rl
hR

)
∑L

t=1K
(

r−rt
hR

) ,

where 1(·) is an indicator function, K is a boundary-corrected kernel function, and hR

is an appropriately chosen bandwidth.21 Finally, we define the model-generated highest
loser bid distribution as

H(b; λ, αb) =
∞

∑
k=2

π(k; λ)
(
GB(b; αb)

k + kGB(b; αb)
k−1 [1− GB(b; αb)]

)
1− π(0; λ)− π(1; λ)

,

and its empirical analog as Ĥ(b) = ∑L
l=1 1(yl ≤ b)/L. Using these separate pieces we

can define a method of moments estimator as

(λ̂, α̂b) = arg min
(λ,αb)∈RIb+5

L

∑
l=1

{[
π̃(k̃l|rl; λ, αb)− ˆ̃π(k̃l|rl)

]2
+
[
H(yl; λ, αb)− Ĥ(yl)

]2}
subject to αb1 = 0, αb,Ib+3 = 1,

αb,i ≤ αb,i+1, i = 1, . . . , Ib + 2.

(19)

In words, the estimate (λ̂, α̂G) is chosen to make the model-generated conditional dis-

tribution of K̃ match its empirical analog as closely possible.22 The constraints on the
empirical objective function enforce boundary conditions and monotonicity of our pa-

rameterization for ĜB.23

21The boundary-corrected kernel function we use follows Karunamuni and Zhang [2008]; see Hickman
and Hubbard [2015] for an in-depth discussion of its advantages and uses in structural auctions models.

22hello world
23One of the numerical benefits of using B-splines is their ease of incorporating shape restrictions,

many of which can be imposed as simple linear constraints on the parameter values themselves. For
example, under the Cox-de Boor recursion formula (with concurrent boundary knots), exactly one basis
function is nonzero at the lower boundary, Fb1(b) = 1, and exactly one basis function is nonzero at
the upper boundary, Fb,Ib+3(b) = 1. Therefore, enforcing boundary conditions is equivalent to setting
the first and/or last parameter value equal to the known boundary value(s) of the B-spline function,
which also cuts down on computational cost by reducing the number of free parameters. Monotonicity
is also quite simple: [de Boor, 2001, p.115] showed that a B-spline function ĜB(b; αb) will be monotone
increasing (decreasing) if and only if the parameters themselves are ordered monotonically increasing
(decreasing). This avoids the necessity of imposing a set of complicated, nonlinear (and potentially non-
convex) constraints on the objective function values, as would be the case with global polynomials, in
order to enforce appropriate shape restrictions which ensure our solution is a valid CDF.



HOW EFFICIENT ARE DECENTRALIZED AUCTION PLATFORMS? 29

Finally, we separately estimate ĜR by a method of moments procedure as

α̂r = arg min
αr∈RIr+3

L

∑
l=1

{[
ĜR(rl; αr)− G̈R(rl)

]2}
subject to αr1 = G̈R(r), αr,Ir+3 = 1,

αri ≤ αr,i+1, i = 1, . . . , Ir + 2,

(20)

where G̈R(r) = ∑L
l=1 1(rl ≤ r)/L is the empirical CDF of reserve prices.

4.2.2. Stage 2: Having these estimates in hand, we are able to directly re-construct the
remaining structural primitives. Some Stage 2 objects will depend on the time discount
factor, and where this is the case we so note by including δ as a parameter argument for
the relevant functional.

Before moving on, a word on spot market mechanisms is in order. Prevailing wisdom
in empirical work has often held that eBay employs a standard second-price auction
mechanism. Recent work has shown that non-trivial differences exist due to bid incre-
ments, which we denote by ∆ > 0. If a bidder wins, then the price will be set equal to
Z + ∆. However, a complication arises when the winning bid and Z are within ∆ of each
other, as this would involve a price Z + ∆ that exceeds the winner’s bid. In that case, the
price is set equal to the winner’s bid as in a first-price mechanism. Thus, eBay’s pricing
rule follows p(b) = min{Z + ∆, b}.

Hickman [2010] proved the existence and uniqueness of a monotone Bayes-Nash bid-
ding equilibrium under this pricing rule in a static, one-shot auction where the number
of bidders is known. He also showed that this equilibrium involves demand shading be-
cause there is a positive probability that the winner’s own bid will determine the price
she pays. Hickman et al. [2016] showed, in a static bidding game with stochastic partici-
pation and no binding reserve prices, that a bidder’s private value is identified from the
distribution of bids through the equation

v = b +
GBM(b)− GBM [τ(b)]

gBM(b)
, τ(b) =

{
b if b ≤ b + ∆
b− ∆ otherwise,

(21)

where τ(b) is a threshold function determining the point below one’s own bid that
triggers a first-price outcome.

Proposition 4.3 enables us to adapt Equation (21) above for the static inverse bid func-

tion β̃−1 in our model, but two adjustments are required since bidders in our spot-
market game are best responding to the random variable Z, rather than just to BM.

First, the boundary condition for a bidder’s static decision problem is now β̃−1(b) =

b + GR(b)−GR[τ(b)]
gR(b)

, since the only way for bidder type b to win is the event where M = 0.
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Second, letting GZ(z) denote the CDF of Z, our inverse static bid function is given by

ˆ̃β−1(b; λ̂, α̂b, α̂r) = ˆ̃vb = b +
ĜZ(b; λ̂, α̂b, α̂r)− ĜZ

[
τ(b); λ̂, α̂b, α̂r

]
ĝZ(b; λ̂, α̂b, α̂r)

. (22)

Using Stage 1 estimates we can construct the allocation rule and the distribution of Z:

χ(b; λ̂, α̂b, α̂r) =ĜR(b; α̂r)
∞

∑
m=0

πM(m; λ̂)ĜB(b; α̂b)
m

=ĜZ(b; λ̂, α̂b, α̂r), b ≥ 0, and

(23)

Equation (23) is a straightforward adaptation of (7), and we extend the domain of the
function so that the right-hand side of the first line can also represent the distribution of
the random variable Z. Taking into account the form of the hybrid pricing rule, we can
also construct the payment function:

ρ(b; λ̂, α̂b, α̂r) = rGR(r; α̂r) +
∫ τ(b)

r
(t + ∆)ĝZ(t; λ̂, α̂b, α̂r)dt

+ b
(

ĜZ[b; λ̂, α̂b, α̂r]− ĜZ[τ(b); λ̂, α̂b, α̂r]
)

.

(24)

The first term on the right-hand side is for the event where a second-price rule is trig-
gered, and the second is for the event where a first-price rule is triggered. Recall that we
allow for the possibility that GR has a mass point at the lower bound of its support.

At this point, we can recover the per-period entry cost as

κ̂ = χ(v̂b; λ̂, α̂b, α̂r)v̂b − ρ(v̂b; λ̂, α̂b, α̂r), (25)

as well as the dynamic inverse bid function and value function which are

v̂ = β̂−1
(

b; λ̂, α̂b, α̂r, δ
)
= ˆ̃vv

1− δ
[
1− χ(b; λ̂, α̂b, α̂r)

]
1− δ

−
δ
(

ρ(b; λ̂, α̂b, α̂r) + κ̂B

)
1− δ

(26)

V̂
(

v; λ̂, α̂b, α̂r, δ
)
=

v̂− ˆ̃vb.
δ

(27)

The private value distribution is a best-fit B-spline function. We begin by specifying a
grid of J = Iv + 1 points spanning the bid support, bJ = {b1, . . . , bJ}, and a knot vector

nv that spans
[
v̂, v̂
]
=
[

β̂−1
(

b̂; λ̂, α̂b, α̂r, δ
)

, β̂−1
(

b̂; λ̂, α̂b, α̂r, δ
)]

. This in turn defines our
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basis functions Fvi :
[
v̂, v̂
]
→ R, i = 1, . . . , Iv + 3, from which we can now compute αv:

α̂v = arg min
αv∈RIv+3

J

∑
j=1


[

ĜB
(
bj; α̂b

)
−

Iv+3

∑
i=1

αviFvi

[
β̂−1

(
bj; λ̂, α̂b, α̂r, δ

)]]2


subject to αv1 = 0, αv,Iv+3 = 1,

αvi ≤ αv,i+1, i = 1, . . . , Iv + 2.

(28)

Finally, the steady-state measure and distribution of new agents flowing into the market
each period are

µ̂ =
[
1− π

(
0; λ̂

)]
GR (b; α̂r) +

∫ b

b
gR (r; α̂r)

(
∞

∑
k=1

π
(

k; λ̂
) [

1− GB (r; α̂b)
k
])

dr (29)

tV

(
v; λ̂, α̂b; α̂r, δ

)
=

χ
[

β
(

v; λ̂, α̂b, α̂r, δ
)

; λ̂, α̂b, α̂r

]
fV (v; αv, δ) λ1

1−λ2

µ̂
. (30)

4.2.3. Asymptotics and Standard Errors. In an appendix we argue that our Stage 1 estima-

tors λ̂, α̂b, and α̂r fall within the class of Generalized Method of Moments estimators. As
such, it follows that they are consistent and asymptotically jointly normal, with known
formulae for computing standard errors. Since Stage 2 empirical objects are all smooth
functions of Stage 1 parameters, it follows that they are also asymptotically normal, and
their standard errors can be computed via the delta method. See the online empirical
appendix for a detailed discussion on computation of standard errors.

5. DATA AND RESULTS

We now implement our estimator using a unique dataset on Amazon Kindle Fire
tablet devices that we scraped from eBay during March through July 2013. Our scraping
algorithm allowed us to capture all item listings on eBay during that period, and for each
auction we downloaded and stored various .html files including the item listing page
and the bid history page. During the sample period we observed a total of 1,732 auction
listings of this item for an average of 11.25 per day. Each device is a second-generation
Kindle Fire tablet (original release date: September 14, 2012) listed as new and unused
or only lightly used. At the time, Amazon.com only offered one configuration of the

Kindle Fire.24

Each Kindle Fire tablet came pre-loaded with Amazon’s proprietary version of the
Android-based operating system that prevents the user from accessing the full Android

24Each device in our sample had a 7” screen (1024× 600 resolution), dual-core processor (1.2GHz clock
speed), 1GB RAM, 8GB internal storage, 802.11 b/g/n Wi-Fi, and ran on the Android 4.0.3 Ice Cream
Sandwich operating system.

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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app market, which makes the Kindle Fire a poor substitute for a standard tablet (e.g.,
Samsung Galaxy or Apple iPad) which can serve a dual role as a productivity tool or as
a highly versatile consumer electronic device.25 Rather, the Kindle Fire is specifically de-
signed to be a consumer access point exclusively to Amazon.com’s electronic media mar-
ket, which includes e-books, periodicals, audiobooks, music, and movies.26 Moreover, all
transactions during the sample period were covered by the eBay Money Back Guarantee
to insure consumers against unscrupulous sellers.27 These characteristics provide us with
an extensive dataset for a product with no existing close substitutes and a remarkable
degree of listing homogeneity. This allows us to avoid significant complications covered
by other work, such as identifying unobserved heterogeneity (Krasnokutskaya [2011] or
Roberts [2013], for example) or complex substitution patterns (Backus and Lewis [2016])
and instead focus on questions of allocative efficiency and market design.

5.1. Practical Concerns.

5.1.1. Intra-Auction Dynamics. For each auction listing, we observe the timing and amount
of each bid submission as well as the bidder identity that goes with the bid. As previ-
ous empirical work has recognized, one challenge for interpreting eBay data is a large
number of implausibly low bids early on in the typical auction. Many bidders place re-
peated bids, often within a few dollars or cents of each other, and then become inactive
long before the posted price approaches a reasonable level. Some bidders may engage in
non-equilibrium cheap-talk before bidding based on best-response calculations or partic-
ipate flippantly to pass time while web surfing. The question of intra-auction dynamics
is broad, complicated, and beyond the scope of this work.28 In our case, inter-auction
dynamics are the primary concern for answering our research questions on allocative
efficiency and market design.

We assume our bidders formulate their strategic bids and behave as if they are com-
peting in a simultaneous-move auction each period.29 To deal with observed early low
bids, we adopt the approach of Bajari and Hortaçsu [2003] by partitioning individual

25It requires specialized knowledge to un-install the proprietary operating system, and doing so is
costly since it invalidates all product guarantees issued by Amazon.com.

26Amazon.com also maintains its own limited app market—primarily dedicated to entertainment and
online shopping, but in June 2013 it contained less than one tenth the number of apps available in Apple’s
App Store for iPhones or Google Play for Android devices. See https://en.wikipedia.org/wiki/App_
Store_(iOS); https://en.wikipedia.org/wiki/Google_Play; and https://en.wikipedia.org/wiki/
Amazon_Appstore; information retrieved on 7/15/2016.

27As of 7/15/2016, details on eBay’s consumer protection program were available at
http://pages.ebay.com/ebay-money-back-guarantee/questions.html.

28The leading attempts in the literature to formalize intra-auction dynamics are Nekipelov [2007] and
Hopenhayn and Saeedi [2016].

29See Figure 1 and related discussion for evidence that incentives arising from inter-auction dynamics
are more important than incentives specific to the spot market itself.

https://en.wikipedia.org/wiki/App_Store_(iOS)
https://en.wikipedia.org/wiki/App_Store_(iOS)
https://en.wikipedia.org/wiki/Google_Play
https://en.wikipedia.org/wiki/Amazon_Appstore
https://en.wikipedia.org/wiki/Amazon_Appstore
http://pages.ebay.com/ebay-money-back-guarantee/questions.html
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Figure 3. Empirical Distributions: Time Remaining when Bids are Submitted
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auctions into two stages. During the first phase bidders may submit cheap-talk bids
that are viewed as uninformative of the other bidders’ final bids and the final sale price.
The second stage is treated as a sealed-bid auction.30 The bidders optimize their planned
bids and decline to update their bids within-period. Finally, consistent with the previous
section, the ordering of bidders’ submission times is assumed to be random rather than
coordinated.

This requires us to take a stand on differentiating between bids that are a meaningful
part of competition, and those that are superfluous. We define a serious bid as one that
affects the price path within the second stage of an auction. Likewise, a serious bidder is
one who is observed to submit at least one serious bid. Of course, the possibility always
exists that some bidders who are determined to be non-serious by the above criterion
had serious intent to compete for the item, but were priced out before submitting their
planned, serious bid during the terminal stage. This is, however, part of the problem
that our model of the adjusted filter process solves (i.e., observed participation by serious
bidders is merely treated as a lower bound on actual participation). Finally, note that
our definition of serious bidding will also count the top two submissions from within
the first stage of the auction as these bids fix the price at the start of the second stage of
the auction, so it is not the case that our analysis completely ignores what occurs prior
to the second stage of the auction.

We specify the terminal period as the last 60 minutes of an auction, during which
we see an average of 4.01 observed serious bidders per auction. Figure 3 shows the
empirical distribution for time remaining when the winning bid was submitted, which
occurs within the final 60 minutes in over 95% of auctions in the sample. The figure also

30While eBay auctions that run for several days can attract bids prior to the final moments, the vast
majority of eBay auctions are won by bidders who bid in the final moments and the terminal behavior of
the price path is largely independent of overall auction duration. This phenomenon was first documented
empirically by Roth and Ockenfels [2002].
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Table 1. Descriptive Statistics

Variable Mean Median St. Dev. Min Max # Obs

Time Remaining (minutes)
Winning Bid Submission: 6.69 0.11 38.31 0.00 593.30 1, 460

High Loser Bid Submission: 12.49 0.56 52.85 0.00 604.35 1, 397

Observed Participation
Ñ (serious bidders only): 4.01 4 1.82 0 12 1, 462

Monetary Outcomes
Sale Price: $124.96 $125.00 $17.74 $67.00 $190.00 1, 460

Highest Losing Bid: $123.84 $124.50 $17.34 $66.00 $189.50 1, 397
Seller Reserve Price: $33.56 $0.99 $45.27 $0.99 $175.00 1, 462

shows the empirical distribution for time remaining across all serious bid submissions
in the sample. These figures are not sensitive to alternate specifications of the terminal
period cutoff. If it is chosen as 80 minutes the mean number of serious bidders becomes
4.25, and if it is chosen as 40 minutes the mean number of serious bidders becomes 3.67.

Given our algorithm for distinguishing between serious and non-serious bid submis-
sions, there remains one final challenge. Bidders may choose to submit their strategic
bid at once to the server and make use of eBay’s automated proxy bidding, or they may
choose to incrementally raise their bid submissions up to the level of their strategic bid
on their own. Roughly one third of serious bidders are observed to engage in incre-
mental bidding. Since it is unclear how to interpret each individual bid submission that
affects the terminal price path, we assume that only the highest losing bid is fully reflec-
tive of equilibrium play. This leaves us with the three data points from each auction that

we need for identification: k̃l, the observed number of serious bidders, rl, the seller’s
reserve price, and yl, the highest loser bid from auctions with at least two bids. After
dropping .html pages for which our software was unable to parse data because of for-
matting problems, we have 1,462 total auctions, 2 of which logged no bids, and 1,397 of
which had 2 or more observed bidders so that we observed a highest losing bid. Table
1 displays descriptive statistics on bid timing, observed participation, sale prices, and
highest losing bids.

5.1.2. Model Tuning Parameters. Before implementing the estimator there remain several
free parameters from the previous section to pin down. The most important of these are
the knot vectors nb, nr, and nv. We adopt the convention that knots will be uniformly
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spaced, which then reduces the problem to choosing values for Ir, Iv, and Ib that dictate
the number of knots to use in the relevant B-spline function. For the first two we first
choose a grid of uniform points in [0, 1] (quantile rank space), and then we map these
back into R space (or V space) using the empirical quantile functions. This procedure
ensures that the influence of the data is spread evenly among the various basis functions.
For nb, we chose knots that are uniform in bid space. The reason for this is that αb di-

rectly parameterizes the parent distribution ĜB, but in our estimator we are matching the
empirical moments of the order statistic distribution H without knowing the quantiles
of GB ex ante.

In Stage 1 we chose Ib = 10, and we partitioned the reserve price support by the

quintiles of the empirical conditional distribution G̈R(r|R > r), meaning Ir = 5.31 This

gives us a total of 13 parameters for ĜB and 8 for ĜR. We chose Iv = 15 knots at the

quantiles of the distribution ĜB ◦ β̂, which is known from Stage 1. We chose Iv > Ib

because F̂V must conform to the nuances induced by all first-stage parameters in order
to accurately represent the implied private value distribution. We find that these choices

provide a good fit to the data and that adding more parameters renders little benefit.32

The interested reader is directed to Figure 9 in the online appendix, which displays the

complete set of knots and B-spline basis functions that make up ĜB, ĜR, and F̂V . This
figure is also meant to give the reader a sense for how knot location choice alters the
form of the basis functions.

The final free parameter is the time discount factor, δ. As in many other empirical con-
texts, this part poses a difficult challenge. Luckily, δ does not enter Stage 1 estimation,
so all of the necessary building blocks to compute the final structural primitives will
be unaffected. Several Stage 2 objects are also unaffected, including the static bid func-

tion β̃(·), the win probability χ(·), the expected payment function ρ(·), the per-period
bidding cost κ̂, and the exogenous, per-period measure of new agents flowing into the
market µ̂. However, the remaining objects including the dynamic bid function β(·), the
value function V(·), the steady-state private value distributions for market participants

F̂V(·) and new entrants TV(·) depend on δ. There is an intuitive reason why: these ob-
jects tell us something about the opportunity cost of losing today, and δ plays a pivotal
role in shaping this opportunity cost by determining agents’ attitude toward present
versus future consumption.

31The conditioning is due to the mass point at the lower bound.
32A fully semi-nonparametric estimation routine based on B-splines would involve specifying a rule

for optimal choice of I within finite samples and the rate at which I should increase as the sample size
L→ ∞. This is an interesting econometric question, but one which is beyond the scope of this paper.

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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Table 2. Estimation Results

Variable: λ1 λ2 κ µ

Point Estimate: 5.9100 0.2579 0.0654 0.9649
Standard Error: (0.384) (0.058) (0.0174) (0.0261)

In lieu of taking a stand on the particular value of δ applicable to our study, we
present results both here and in our counterfactual setting for a range of values of δ.
Where possible, we provide statistics that are stable across choice of δ. For example,
instead of providing a dollar value for deadweight loss, which is highly sensitive to δ,
we present deadweight loss as a percentage of the buyer’s value, which is stable across
different choices of δ.

5.2. Estimates. Table 2 displays point estimates and standard errors for the market tight-
ness parameters, the per-period bidding cost, and the per-period measure of new enter-
ing agents. Note that λ2 is significantly greater than 0 at the 1% level, which means our
estimates reject the assumption that auction size follows a standard Poisson distribu-
tion. In particular, the Poisson model substantially underestimates the dispersion in the
number of bidders matched to a given auction.

Figure 4 depicts point estimates for our Stage 1 distribution estimators (thick, solid
lines), point-wise confidence bounds for a selected grid of domain points (vertical box
plots), and the empirical distributions being matched by the model (thick, dashed lines).
The first panel shows the empirical CDF of observed bidders K̃ and the estimated dis-
tribution of total auction-level participation K. As the figure demonstrates, failing to
account for unobserved bidders within the spot market sample selection process would
lead to a very different view of the distribution of auction participation. This substantial
difference shows up in the mean of K̃ and K (4.07 versus 7.96 respectively) and the vari-
ance (3.19 versus 14.46 respectively). The lower two panels provide an idea of the model
fit. The middle one depicts model fit for the distribution of the highest loser bid and

includes an extra plot for the model-driven H
(

y; λ̂, α̂b

)
distribution, which is derived

from both the market tightness and parent bid distribution parameters. The lower panel
depicts model fit for the seller reserve price distribution. Note that in both cases, the B-
spline functions provide a very good fit to the underlying data. The difference between

the two cases is that in the latter our B-splines parameterize the distribution ĜR, which

is directly matched to its empirical quantiles, whereas in the former we parameterize ĜB

and then indirectly match the moments of the implied order statistic distribution H.
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Figure 4. Stage 1 Estimates
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Figure 5 presents the dynamic inverse bid functions β̂−1
(

b; λ̂, α̂b, α̂r, δ
)

which we es-

timate for a grid of values of the time discount factor δ between 0.75 and 0.98. Recall
from Figure 1 that the vast majority of demand shading is driven by the option value
of returning to the market in future periods if one does not win today. This continua-

tion value is primarily driven by three things: the equilibrium bid distribution ĜB, the
market tightness parameters λ, and the discount factor δ. Figure 5 depicts the important
role of this third piece. Since δ determines bidders’ attitudes toward trading off today’s
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Figure 5. Inverse Bid Function Estimates Given Various Values of δ
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Table 3. Mean Private Values and Information Rents For Various δ

Discount Factor δ: 0.75 0.81 0.87 0.8871 0.93 0.95 0.98

Mean
Private Value: $48.57 $51.29 $56.32 $59.63 $68.83 $86.15 $153.24

Mean Winner
Private Value: $208.39 $230.98 $269.26 $293.58 $358.55 $474.05 $875.56

Mean Winner
Information Rent: $54.66 $69.11 $94.08 $111.09 $157.44 $245.84 $583.91

Mean Information
Rent Percentage: 26.23% 29.92% 34.94% 37.84% 43.91% 51.86% 66.69%

consumption for tomorrow’s, a greater degree of patience requires larger values of v to
rationalize observed bids. Recalling that δ is a daily discount factor, if we adopt a value

of 0.98 then the 95th percentile of the private value distribution is over $1, 300, which we
consider to be implausibly high. When required to show a counterfactual result perti-

nent to a particular value of δ (e.g., Figure 1)33, we will use δ = 0.8871 as it is the median
of the set of δ values we consider. However, as we move on to welfare calculations in
our counterfactual analysis, we will focus discussion predominantly on measures that
are stable across choice of δ.

Table 3 displays various descriptive statistics derived from the Stage 2 estimates, in-
cluding average private values, average private values of winners, and information rents
defined as the difference between the winner’s private value and the spot-market price.

33The fact that dynamic demand shading incentives are more important than the static demand shading
incentives is not sensitive to the choice of δ within the range we consider.
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Figure 6. Type Density Estimates for δ = 0.8871
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The last row of the table shows information rents as a fraction of the winner’s pri-
vate value, on average. Finally, Figure 6 presents other Stage 2 estimates related to
the distribution of buyer values. The upper pane displays the PDF of the distribution
of market participants’ private values in steady state under our preferred specification,

f̂V(v; αv, δ = 0.8871) (dash-dot line) and the type distribution for new market entrants

each period, t̂V

(
v; λ̂, α̂b; α̂r, δ = 0.8871

)
(solid line) with point-wise confidence bounds

(vertical box plots). The PDFs tV and fV are tied together by the win probability, χ,
depicted as a function of buyer value. Although there are many buyers in the market
with low values in steady state, our model suggests that relatively few of these agents
enter the market each period. However, those low-value buyers that do enter must stay
in the market for a long period of time before winning, as indicated by the function χ.
On a related note, the delay between entry and trade implies that the lower-value buyers
are the ones most affected by the per-period participation cost, κ̂ = $0.065.

In comparing estimates for fV and tV in Figure 6, two important differences should be
noted. First, fV depicts the steady-state type distribution of the measure λ1/(1− λ2) =

7.96 of potential entrants in each period. On the other hand, tV represents the type
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distribution of the measure µ = 0.9649 of new potential entrants added to the market
each period in order to maintain the steady state. The second important difference
between fV and tV has to do with the probability that each agent type v will transact
and exit the market. Under fV there is a relatively large mass of low-value bidders, who
are not very likely to win each period, and so in turn they tend to pile up in the market
and remain for many periods until a success. On the other hand, tV depicts a selected
set of buyers who move in and out of the market each period. tV has a higher density of
high value agents than fV as these high value agents are more likely to transact and exit
the market each period than are low value agents.

6. COUNTERFACTUALS

We now perform a series of three counterfactual analyses to investigate the economic
implications of our structural model. The first explores market efficiency concerns. The
second decomposes the relative importance of what we refer to as platform composition
(PC) effects (i.e., market entry/exit when general conditions change) and dynamic incen-
tive (DI) effects (i.e., when bidding behavior changes in response to shifts in opportunity
costs). The third counterfactual exercise investigates optimal reserve price design in
the dynamic market setting where a seller may also return in a future period to re-list
his good if it does not sell today. For notational simplicity we omit the parameter ar-
guments of structural primitives unless needed for clarity. Appendix C in the online
supplement contains an overview of the algorithm used to compute equilibria for the
structural counterfactuals presented in this section.

6.1. Welfare Comparisons. Throughout this section we adopt the usual notion of auc-
tion efficiency as the tendency for goods to be allocated to those who value them most
within a given period. Recall that even when the spot-market mechanism is efficient
within a given auction, inefficiency may arise if multiple high value buyers are matched
to a particular auction. Our welfare calculations are meant to capture the frequency and
magnitude of these inefficiencies.

6.1.1. “Model Anemic” Inefficiency Calculations. In this section we use only our Stage 1
estimates to bound the percentage of auctions resulting in an inefficient sale. We refer to
these calculations as “model anemic” since they do not rely on our equilibrium bidding
model, and thereby employ the fewest possible assumptions. Rather, our model-anemic
calculations rely only on our filter process model to correct for sample selection in the
observed number of bidders in each auction.

To proceed, we must first find the cutoff between high-value buyers that ought to
receive the good in an efficient allocation and lower-value buyers that ought not. Since

http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
http://home.uchicago.edu/~hickmanbr/uploads/BCBH2016_OnlineSupplement.pdf
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the buyer-seller ratio is λ1/(1− λ2), the efficient cutoff in private value space is defined

by ve f f ≡ F−1
V

(
1− 1−λ2

λ1

)
. We can re-define this cutoff in bid space (where the raw data

live) as be f f ≡ G−1
B

(
1− 1−λ2

λ1

)
.

Since we only observe the highest losing bid within each auction, we can only pro-
vide a lower bound on the frequency of inefficient allocations using raw data and our
cutoff. Intuitively, if the highest losing bid in a given auction exceeds be f f , then the corre-
sponding losing bidder would have received the good under an efficient allocation. We
find that 28.47% of the auctions in our sample end with at least one losing bid above the

efficient cutoff.34 This measure is only a lower bound on the frequency of inefficiency be-
cause without observing more bids, we cannot account for auctions where two or more

losing bids surpassed be f f . 35 Another disadvantage of the model-anemic approach is
that it offers no way of measuring the magnitude of unrealized gains from trade. Such
an undertaking requires one to quantify the private values that underpin observed bids.

6.1.2. Structural Welfare Calculations. Our full Stage 2 structural estimates allow us to get
a more complete idea of the frequency and magnitude of market inefficiency. Recalling
that the probability that an entrant of type v wins an auction is χ [β(v)] and that the mass

of this type of buyer36 is fV(v)C∞/S∞, then we can write the probability of an inefficient
allocation as

Pr[Vwinner < ve f f ] =
∫ ve f f

v
χ [β(v)] fV(v)

C∞

S∞ dv.

Note that this measure is invariant to the choice of the time discount factor δ. Our point
estimates imply that 35.89% of Kindle auctions on eBay end with an inefficient outcome.
Deadweight loss calculations in levels will be sensitive to choice of δ. In order to address
this problem, we adopt a measure that we refer to as the efficiency ratio

Eu,δ =

∫ v
v sχu(βu(s)) fV,u(s)ds∫ v

ve f f
s fV,u(s)ds

where the numerator is the realized gains from trade in our market (within a given
period) and the denominator represents gains from trade generated by a fully efficient

34There is also a very small fraction of auctions that result in no sale due to high reserve price or K = 0
by random chance, but these scenarios happen too infrequently to be a significant source of welfare loss,
so we ignore them until the next section where our measurements use the full structural model.

35For each high-value bidder who loses an auction there is a low-value bidder in some other auction
who inefficiently wins, so high-value buyers losing and low-value buyers winning are simply two sides of
the same coin.

36Recall that the measure of sellers is normalized to 1, meaning the total measure of potential entrants
is the buyer-seller ratio C∞/S∞.
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allocation. The u subscript denotes number of units involved in each auction listing
for our counterfactual centralization analysis below; for now, we simply fix u = 1. By
expressing surplus as a fraction of total possible surplus, the influence of δ in the numer-
ator and denominator largely cancels out and we get a measure that is much more stable
across different assumptions on time discounting (see alternative calculations displayed
in the first row of Table 4). Although the efficiency ratio is (by construction) between
zero and one, we also compute the efficiency ratio under a hypothetical lottery system,
denoted Elott,δ, as the relevant minimum efficiency benchmark (see last row of Table 4).

With these definitions in hand, our point estimates imply that the fraction of total
deadweight loss is simply 1− E1,0.8871 = 0.135 under our preferred specification. To put
this number into context, deadweight loss under a lottery system (see Table 4) is esti-
mated to be 1− Elott,0.8871 = 0.53, meaning that eBay’s auction market platform achieves
only 76% of total gains from trade above the lottery benchmark. Note, however, that this
is only a partial equilibrium assessment. Were a social planner with complete knowledge
of the bidder values to implement the efficient allocation (or a random lottery) each pe-
riod, then the steady-state distribution of buyers’ values and the buyer-seller ratio would
change. However, we believe our figures have the benefit of giving a sense of the welfare
losses while imposing minimal structural assumptions on the estimates.

6.1.3. Counterfactual Market Centralization. We now consider the extent to which ineffi-
ciencies can be mitigated by changing the market structure to one in which the same
number of Kindles are allocated each period, but using fewer u-unit, uniform-price auc-
tions with u ≥ 2. Since new Kindles are relatively homogeneous products and all trans-
actions are covered by eBay’s consumer protection program, we think it is reasonable to
assume that buyers view them as nearly perfect substitutes for one another. This leads us
to think that our proposal to take steps toward more efficient market centralization us-
ing multi-unit auctions is feasible. In product categories where the items are not perfect
substitutes (e.g., used cars), the implications of selling disparate products in a multi-
unit auction become much more difficult to formalize. However, our estimates provide
a sense of the efficiency loss generated by search frictions when selling items through
decentralized, single-unit auctions as opposed to more centralized market mechanisms.

Several aspects of our model need to be slightly adjusted in the multi-unit setting
with u ≥ 2. First, each u-unit auction attracts a number of bidders Ku distributed as a
generalized Poisson random variable with expected value

E[Ku] =
λ1,u

1− λ2
= u
C∞

u
S∞ . (31)
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Table 4. Counterfactual Efficiency Ratios Eu,δ

# Units Discount Factor δ = Buyer-Seller Ratio
Per Listing 0.75 0.80 0.86 0.88 0.92 0.95 0.98 C∞

u /S∞, δ = 0.88

1 0.89 0.88 0.87 0.86 0.85 0.84 0.82 7.75
2 0.92 0.92 0.91 0.91 0.91 0.90 0.89 5.50
4 0.94 0.94 0.94 0.94 0.94 0.93 0.93 3.95
8 0.95 0.95 0.95 0.95 0.95 0.95 0.95 2.92

Lottery 0.58 0.54 0.49 0.47 0.41 0.35 0.26 7.75 (assumed)

which is just the ratio of buyers to u-unit auctions. We assume that λ2, the dispersion
parameter, is fixed at the estimated value and allow λ1,u, the size parameter, and C∞

u , the
measure of buyers, to adjust so that (31) is satisfied in our counterfactual equilibria.

In our status quo model, we assume that each seller draws an independent reserve
price from GR. In the multi-unit context, we assume that a single reserve price is drawn
that applies for all u units being auctioned. The use of a reserve price makes it possible
to make comparisons between the status quo setting and the uniform price setting we
study here. Each bidder submits a bid to the auction at which he or she is matched,
and the u highest bids that are larger than the auction’s reserve price win an item. Each

winning bidder then pays a sum equal to the largest of the (u + 1)th highest bid and the
reserve price.

Throughout this exercise we hold fixed the structural primitives such as the per-period
bidding cost κ, the measure of new potential entrants entering the game each period µ,
and the distribution of new potential entrant types tV . When we compute our counter-
factual equilibria, we let vu, λ1,u, FV,u, and fV,u adjust to satisfy our equilibrium condi-

tions.37

One of the general takeaways from this research is that understanding the impact of
platform market design on the participation decisions of agents is crucial. The social
planner’s welfare calculus will be strongly influenced by changes in entry behavior (e.g.,
how many low-value buyers leave the market?) and the steady state-distribution of pri-
vate values for market participants (e.g., how many low-value bidders accumulate in the
market when they are less likely to win an item?) Our limit model allows us to han-
dle these questions by computing the counterfactual, steady-state SCE given a platform
based on a u-unit spot-market mechanism. Table 4 provides results for counterfactual
efficiency ratio statistics for u ∈ {1, 2, 4, 8}. Recall from above that the efficiency ratio

37In all of the counterfactuals we present, vu is at least as large as in the data-generating process.
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Table 5. Counterfactual Mean Auction Revenues

# Units Discount Factor δ =
Per Listing 0.75 0.80 0.86 0.88 0.92 0.95 0.98

1 $115.05 $114.90 $114.71 $114.59 $114.37 $114.10 $113.65
2 $112.79 $112.33 $112.97 $112.72 $112.26 $111.96 $112.28
4 $111.73 $111.21 $111.09 $110.84 $110.40 $110.31 $111.30
8 $110.05 $109.54 $109.12 $108.94 $108.64 $108.81 $109.75

compares gains from trade in a single period of a u-unit auction platform market with
the welfare generated by an efficient allocation of the goods within that period.

We would like to draw attention to two features of our results. First, welfare ratios are
remarkably stable within each alternative market structure across different specifications
of the time discount factor δ. Second, although the eBay platform fails to realize a
significant portion of possible gains from trade, it is very close to an alternative platform
structure that reaps nearly maximal social benefit. The majority of possible gains from
centralization can be realized by only 2- or 4-unit uniform-price auctions, so there is little
need shift toward a fully centralized market.

We have included the buyer-seller ratio to get a sense of the impact of centralization

on the composition of the bidders.38 There are two effects of note. First, as the market
centralizes, the low value bidders exit the market. Second, as the market centralizes the
ratio of buyers to sellers drops. The net effect is that as the market centralizes, the buyers
face fewer competitors, but the competitors are significantly stronger.

One might naturally expect that if eBay could re-design their platform market to in-
crease allocative efficiency, then it ought to be able to benefit by capturing some of the
increased gains from trade. However, a careful examination of the moving parts within
the model indicates that the sign of this effect is ambiguous. On the one hand, PC effects
arise from buyer exit at the low end of the type distribution. On the other hand, compli-
cated DI effects ensue: a given bidder above the new participation cutoff vu faces fewer
overall competitors in the market, but her remaining competitors have higher values on
average. These complex interactions make it difficult to derive predictions on bidding
behavior and the resulting effects of revenue. Table 5, which contains the mean revenues
generated per-auction as a function of u, demonstrates a somewhat counterintuitive re-
sult that the average sale price actually falls as u increases.

38We have included the buyer-seller ratio for the δ = 0.8871 case, but the ratios for other choices of
delta differ by less than 3%.
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Figure 7. The Efficiency-Revenue Link
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To help explain why revenue drops as efficiency rises, Figure 7 plots the probability
of winning for each type of agent and the equilibrium bid function for the u = 1 (solid

line) and u = 8 (dashed line) market structures.39 The win probability plot reveals that
for most agents (especially those most likely to win), increasing market efficiency raises
the probability that they will win a spot-market auction within a given period. This
raises their future continuation values, which in turn reduces their bids by promoting
further demand shading as shown in the second panel of Figure 7. Reduced bids then
translate into decreased revenues for both sellers and eBay, which charges commissions
on auction revenue. This highlights an interesting point: what is good for bidders and
market welfare is not necessarily good for platform market designers like eBay.

Finally, we would like to highlight the effect of centralization on the aggregate lifetime
participation costs (ALPC) paid by the agents, which are summarized in Table 6. For an
agent of type v, the expected lifetime participation costs paid by the agent is equal to
κ/χu(β(v)), which ought to be interpreted as the average participation cost paid by an
agent of type v before winning an auction. The ALPC refers to this quantity averaged
over the steady-state distribution of buyers multiplied by the buyer to seller ratio:

ALPCu,δ =
C∞

u
S∞

∫ ∞

0

κ

χu(βu(v))
fV,u(v)dv

There are two effects at work. First, when markets centralize, the ALPC paid by a
participant before winning an item goes slightly up on average. For example, when

δ = 0.88 and u = 1,40 each participant pays on average a total of $8.98 each over his
or her lifetime in the market. As one would expect, these costs are disproportionately

39The probability of winning in the u = 8 market is truncated, which reflects the fact that the infra-
marginal market participant bidder has a higher value under the u = 8 market structure.

40Since the estimation of κ is independent of δ, the figures discussed below are essentially identical for
all choices of δ.
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Table 6. Aggregate Lifetime Participation Costs ALPCu,δ

# Units Discount Factor δ =
Per Listing 0.75 0.80 0.86 0.88 0.92 0.95 0.98

1 $66.57 $67.77 $68.95 $69.58 $71.27 $72.97 $75.92
2 $47.80 $50.03 $52.33 $54.30 $58.08 $60.26 $61.33
4 $34.59 $36.09 $37.33 $38.07 $40.14 $44,86 $61.51
8 $22.55 $23.84 $26.05 $27.73 $32.46 $41.49 $65.59

borne by the lower value agents that must enter the market repeatedly to win an item.
Because many of these low value agents build up in the steady-state type distribution,
the aggregate lifetime participation cost is very high relative to κ. Expected lifetime
participation costs for winners in a period are much smaller as these are more likely to
be high value entrants that exit the market quickly. When δ = 0.88 and u = 8, each
participant pays on average a total of $9.50 over the course of his or her participation in
the market.

The larger effect is that fewer buyers participate in the market when u increases. The
buyer to seller ratio is 7.75 when δ = 0.88 and u = 1, while the ratio is only 2.92 when
δ = 0.88 and u = 8. The total participation cost incurred by all buyers is the product
of the average per-bidder cost and the ratio of buyers to sellers. As seen in Table 6, the
participation costs drop by roughly 60% as u moves from 1 to 8 for the δ = 0.88 case.

6.2. Relative Importance of Platform Composition and Dynamic Incentives. Our goal
in this section is to measure the relative importance of the DI and PC effects. As an
illustrative example, we consider increases to the per-period participation cost κ. Aside
from illuminating answers to questions of academic interest, this counterfactual may also
provide practical guidance to eBay and other online market designers regarding which
issues are of most importance when considering changes to a platform. There are two
effects when participation costs increase. First, agents’ continuation values drop, which
in turn reduces demand shading and increases their bids. Holding the reserve price
distribution GR fixed, these DI effects increase allocative efficiency since bids are now
more likely to exceed the reserve price R. Second, an increase of the participation cost
drives PC effects where low-value buyers exit the market, which reduces the buyer-seller
ratio and strengthens the steady-state distribution of active bidder types.

We consider a range of participation costs from the estimated status-quo value, which
we denote κ = $0.0657, through a maximum of $10. Our goal is to decompose the DI and
PC effects, which are tied together intricately in equilibrium. For each counterfactual we
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consider the status-quo equilibrium with κ and replace either the value function (which
drives the DI effect) or the buyer-seller ratio and bidder value distribution (which drives
the PC effect) of an alternative equilibrium with κ > κ. The reader should keep in mind
that neither of these exercises result in equilibrium outcomes; rather, they are meant to
serve as a decomposition of the PC and DI effects. We denote endogenous objects in an
equilibrium with cost κ using the subscript κ.

Let Rκ denote the ratio of entrants to sellers in an equilibrium with participation cost

κ.41 Note that fVκ and FVκ live on support [vκ, v] with v ≤ vκ whenever κ < κ. Since
we will be conducting out-of-equilibrium comparisons, we re-define the probability of a
buyer winning as

χκ(v; βκ, λκ, FVκ) = GR(βκ(v))
∞

∑
m=0

πM(m, λκ)FVκ(v)m

The first term captures the probability of an agent’s bid exceeding the reserve price. The
remaining terms are the probability that a buyer beats other competing bids. If all of
the κ subscripts take on the same value, then χκ is the probability a bidder with value v
wins an auction in a given period in a steady-state SCE with participation cost κ.

The allocative efficiency,W , is a function of the endogenous variables considered:

W(βκ, λκ, FVκ) ≡ Rκ

∫ v

v
sχκ(s; βκ, λκ, FVκ) fVκ(s)ds,

where for convenience we define FV,κ(v) = fV,κ(v) = 0 for each v ∈ [v, vκ].
Our metric for the role of DI effects in shaping allocative efficiency is the dynamic gap

DG(κ, κ) ≡ W(βκ, λκ, FVκ)−W(βκ, λκ, FVκ).

The dynamic gap is computed by comparing equilibrium allocative efficiency gener-
ated by κ to an out-of-equilibrium market that uses the same matching parameter and
steady-state distributions, but the bidding function from an equilibrium generated by a
participation cost κ > κ. The idea is to hold fixed the endogenous quantities that corre-
spond to PC effects (λ and FV) while allowing DI effects (the bidding function) to vary
with κ.

The platform gap, PG, captures the role of PC effects in allocative efficiency

PG(κ, κ) =W(βκ, λκ, FVκ)−W(βκ, λκ, FVκ)

This gap is computed by comparing equilibrium allocative efficiency generated by κ to
an out-of-equilibrium market with the same bidding function but matching parameters
and steady-state distributions of an equilibrium with a higher cost κ. Here we hold DI

41Including notation for both Rκ and λκ is not strictly necessary since the former can be computed
from the latter. However, we do so here for expositional clarity.
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Figure 8. Relative Size of Dynamic and Selection Gaps
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effects (the bidding function) fixed and vary endogenous quantities that correspond to
the PC effect (λ and FV).

As a first comment, the allocative efficiency must rise as bids rise since the bids are
more likely to surpass reserve prices. As higher values of κ are associated with lower
continuation values, and hence higher bids, the DI effect always increases allocative
efficiency as κ rises (i.e., DG(κ, κ) > 0 if κ > κ). Although the PC effect is of ambiguous
sign in theory, the PC effect is negative in our data. In Figure 8 we plot the ratio of the
platform gap to the dynamic gap. When participation costs are low, the platform gap
is only twice as powerful as the dynamic gap. However, as costs rise, the platform gap
becomes as much as ten times larger than the dynamic gap. In short, it appears that
understanding platform composition effects of market changes can be many times more
important than understanding the dynamic incentive effects of the changes.

6.3. Optimal Reserve Prices. As has been regularly noted about the eBay market place,
sellers tend to choose low reserve prices. In our data, almost 60% of the reserve prices
are set at the lowest possible value of $0.99. It is easy to see that such a price is not
optimal — a single seller could improve his profits if he set a reserve price equal to β(v),

the lowest possible equilibrium bid in the auction.42

Our goal is to assess the strength of the incentives of the sellers to carefully choose a
revenue maximizing reserve price. To place a number on this we consider the benefits
to a single seller of optimally choosing his or her reservation price relative to choosing
a reserve price of $0.99. For this exercise we assume that the seller has a supply cost of
$0. Since we are considering a deviation by a single seller in our limit game, the seller’s
deviation has no effect on market aggregates. As a result, we fix λ, FV , and (e, β) at their

42Such a reserve price would insure that if a single buyer was matched to the auction, the seller could
extract some value from that buyer. It would have no effect if two or more buyers were matched to the
auction as one of these buyers would necessarily set the sale price.
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status quo values. The problem the seller solves is:

maxr≥0Pr{B(1) ≥ r}E
[
max{r, BM + ∆}|B(1) ≥ r

]
where B(1) is the highest bid in the auction and BM is the highest competing bid.

Our results are remarkably stable across different choices of δ. The optimal reserve
price varies from a low of $84.90 to a high of $85.80. At the optimal reserve price, the
revenue generated is either $122.30 or $122.31 across all of the possible δ. This represents
an improvement of just $0.95 relative to a reserve price of $0.

The benefits from optimally choosing the reserve price are small because each seller
is matched with 7.96 bidders in expectation, which means that the competition between
bidders will be intense. Bulow and Klemperer [1996] show that choosing the reserve
price optimally is no better than adding a single extra bidder to the market. With almost
8 bidders on average already participating, it should not be surprising that there is little
room left for an optimal reserve price to have a significant effect on auction revenues.

7. CONCLUSION

Our goal has been to provide a model of a marketplace that is both rich enough to
capture the salient features of the market (e.g., the large number of auctions concluding
each day and the potential costs of participation) and yet remain tractable enough to fa-
cilitate empirical analysis using commonly available observables from platform markets.
To accomplish this, we have developed a model with a continuum of buyers and sellers
that is easy to estimate and solve, and we have shown that this model approximates the
more realistic setting with a finite number of agents. Moreover, we have also demon-
strated that the structural components of this simplified model can be identified from
observables that are commonly available from platform markets. In constructing these
identification results we have overcome several important problems including sample
selection in the number of spot-market competitors and allowing for a variety of pric-
ing rules. Finally, we have also proposed a simple but flexible GMM estimator to allow
researchers to estimate the structural primitives and, in turn, compute counterfactuals.

One immediate conclusion of our analysis relates to the importance of intertemporal
incentives. In online auction markets bid shading driven by the opportunity cost of
winning today (in light of further buying opportunities tomorrow) is likely to be much
larger in magnitude than the more commonly studied static bid shading incentives due
to non-truthful pricing mechanisms. This dynamic demand shading depends on three
main factors: market tightness (ratio of buyers to sellers), market composition (ratio of
high-value buyers to low-value buyers), and time preferences.
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Most platform markets exist in order to eliminate barriers to trade and allow for buyers
and sellers to interact in a relatively low-friction environment. However, their sheer size
may also give rise to search frictions which prevent market outcomes from attaining the
social ideal. Our model estimates within the context of the market for Kindle Fire tablets
facilitates an exploration of residual inefficiency in eBay’s decentralized, single-unit auc-
tion platform. We find that over 36% of the auctions end with an inefficient allocation,
and a 13.5% welfare loss can be attributed to the decentralized nature of the mecha-
nism. This outcome implies that the single-unit auction market attains three quarters of
total possible welfare improvement over a pure lottery system. By taking small steps to-
ward a more centralized market structure, such as by running multi-unit, uniform-price
auctions with as few as 4 units each, 2/3 of the welfare loss can be recovered.

We attempt to disentangle the welfare effects of dynamic incentives, which is the
primary source of bid shading, from the platform composition effects governing the
selection of buyer types into the market, which governs the steady-state distribution of
buyer values and the buyer-seller ratio. We consider different participation costs, and we
compute the magnitude of the welfare effects (relative to the status quo) of the dynamic
incentive and the platform effects. We find that the platform composition effects are at
least twice as important as the dynamic incentive effects. Our primary takeaway is that
understanding endogenous selection into the market is critically important for judging
the effects of possible mechanism changes.

In future work we hope to estimate a structural model of the sellers’ actions on the
eBay market platform. In a contemporaneous paper, we are estimating the value of
sellers of the Kindle product within the posted price Buy It Now market on eBay. The
posted price framework gives sellers a strong incentive to carefully balance the trade-off
between price and probability of sale, which makes the resulting estimates of seller reser-
vation value plausible. By integrating the estimates of bidder values from the auctions
with seller reservation values from the posted price setting, we hope to be able to derive
the optimal participation fee schedule for a profit-maximizing platform designer like
eBay, and the related welfare implications from the social planner’s perspective. How-
ever, until a credible estimate of seller values is available, these interesting and important
questions remain elusive.
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