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Abstract

We propose a definition of mass for characteristic hypersurfaces in
asymptotically vacuum space-times with non-vanishing cosmological con-
stant Λ ∈ R

∗, generalising the definition of Trautman and Bondi for Λ = 0.
We show that our definition reduces to some standard definitions in sev-
eral situations. We establish a balance formula linking the characteristic
mass and a suitably defined renormalised volume of the null hypersurface,
generalising the positivity identity of one of us (PTC) and Paetz proved
when Λ = 0.
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1 Introduction

While the notion of total mass of general relativistic gravitating systems with
Λ ≤ 0 is well understood by now (cf., eg., [8] and references therein), the notion
of energy in the radiating regime in the presence of a positive cosmological
constant appears to be largely unexplored (see, however, [2, 3, 32]). The object
of this work is to contribute to filling this gap.

In this paper we address the question of properties of total mass and energy
for radiating systems when Λ 6= 0. This will be done in the spirit of the
pioneering work by Bondi et al. [5, 31], by analysing the asymptotic behavior of
the gravitational field on characteristic hypersurfaces extending to asymptotic
regions. Many formal aspects of the problem turn out to be independent of
the sign of the cosmological constant, and while we are mainly interested in
the case Λ > 0, we allow Λ < 0 wherever relevant as several results below
apply regardless of the sign of Λ. The case Λ < 0 becomes a useful test-bed
for the quantities involved in those aspects thereof which are well understood.
It should, however, be emphasised that many of our results, such as e.g. the
balance equation (5.56), are new both for Λ < 0 and Λ > 0.

It should be kept in mind that an elegant approach to the definition of energy
has been proposed in [1] for field configurations that asymptotically approach
a preferred background with Killing vectors. This provides a widely accepted
definition of asymptotic charges in the case where Λ ≤ 0. The approach of [1]
does not work for non-trivial radiating fields with Λ > 0, where no natural
asymptotic background is known to exist. In retrospect, our work below can
be used to provide such a background, namely the metric obtained by keeping
only the leading order terms of g in Bondi coordinates, but the decay rates of
the metric to this background do not appear to be compatible with what is
needed in the Abbott-Deser prescription.

The first issue that one needs to address is that of boundary conditions
satisfied by the fields. A popular approach is to assume smooth conformal
compactifiability of the space-time, and we develop a framework which covers
such fields. We start by deriving in Section 2 below the restrictions on the free
characteristic initial data that follow from existence of smooth conformal com-
pactification. In particular, in Proposition 2.1 below we generalise to all Λ ∈ R

a result established in [34] for Λ = 0, that existence of a smooth conformal
compactification guarantees existence of Bondi coordinates in which the metric
coefficients have full asymptotic expansions in terms of inverse powers of the
Bondi coordinate rBo. In Section 3 we review those aspects of the characteristic
Cauchy problem which are relevant for the issues at hand. In Section 4 we de-
rive the asymptotic expansions of the metric along the characteristic surfaces.
Our analysis is similar in spirit to that of [18, 28]; however, here the asymptotic
expansions have to be carried-out to higher orders because of new Λ-dependent
nonlinear couplings between some asymptotic expansion coefficients. We also
allow matter sources, while vacuum was assumed in [28]. In particular in Sec-
tion 4.8 we derive the conditions (4.43) on the free initial data in Bondi-type
coordinates which are necessary for absence of log terms in the metric.

The asymptotic expansions of Section 4 lead naturally, in Section 5, to the
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definition of a quantity analogous to the Trautman-Bondi mass. We derive there
a key integral identity expressing this mass in terms of the free initial data and
the renormalised volume of the characteristic surface, Equation (5.56). This is
one of the main results of this work.

When Λ = 0, our mass identity (5.56) reduces to the one derived in [17]
(compare [33]), giving then an elementary proof of positivity of the Trautman-
Bondi energy for space-times containing globally smooth light-cones extending
smoothly to I +. (As is well known the global structure of such space-times
depends crucially upon the sign of Λ, see Figure 1.1.) In addition to the renor-

Figure 1.1: Globally smooth light-cones in space-times with a smooth conformal
completion at a conformal boundary I at timelike infinity (Λ > 0, left) or
spacelike infinity (Λ < 0, right).

malised volume, boundary terms, and volume integrals involving the free data,
the new formula, for asymptotically empty metrics with Λ 6= 0, involves several
terms depending upon coefficients determined by the asymptotic behaviour of
the fields multiplied by Λ. One can think of this equation as a balance formula
relating the mass with the remaining quantities at hand.

To get some insight into the formula, in the remaining sections we turn
our attention to the case Λ < 0, where energy is much better understood. We
review the notion of coordinate mass in Section 6. We calculate the various
quantities appearing in the mass identity (5.56) for the Birmingham metrics
and the Horowitz-Myers (HM) metrics in Section 7. In Section 8 we derive
simple formulae for the Hamiltonian mass for asymptotically Birmingham and
asymptotically Horowitz-Myers metrics, in all space-times dimensions n + 1 ≥
4,1 and for smoothly conformally compactifiable four-dimensional space-times
with an ultrastatic conformal boundary. These formulae are used to show that
the Hamiltonian mass coincides with the characteristic mass for a family of null
hypersurfaces. In Appendix A we examine separately various contributions to
our “energy balance” equation for Horowitz-Myers metrics.

Unless explicitly indicated otherwise, we assume throughout that Λ 6= 0.

1This extends the analysis in [10] and references therein to higher dimensions with the
above boundary conditions.
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2 Boundary conditions

Consider an (n + 1)-dimensional smoothly conformally compactifiable space-
time (M , g), n ≥ 2, solution of the vacuum Einstein equations with cosmological
constant Λ 6= 0. By definition, there exists a manifold (M̃ , g̃) with boundary
∂M̃ and a defining function Ω for ∂M̃ such that

g = Ω−2g̃ , ∂M̃ = {Ω = 0} , dΩ(p) 6= 0 for p ∈ ∂M̃ . (2.1)

Again by definition, both Ω and g̃ are smooth.

2.1 Bondi coordinates

In the asymptotically flat case, in spacetime dimension 4 and assuming Λ =
0, Bondi et al. have introduced a set of coordinates convenient for analysing
gravitational radiation [5]. We will refer to them as Bondi coordinates. In these
coordinates the metric takes the form

g = g00du
2 − 2e2ωdr du− 2r2UAdx

Adu+ r2 hABdx
AdxB︸ ︷︷ ︸

=:h

, (2.2)

where the determinant of hAB is r-independent.2 (One further requires the fields
g00, UA, ω and hAB to fulfill appropriate asymptotic conditions.) When using
Bondi coordinates, we will decorate all fields and coordinates with a symbol
“Bo”. Existence of such coordinates in asymptotically vacuum space-times with
Λ = 0 and admitting smooth conformal completions has been established in [34],
and in [14] for polyhomogeneous I ’s.

We wish to prove existence of such coordinates, and to derive the asymptotic
behaviour of smoothly compactifiable metrics in those coordinates in a neigh-
borhood of the conformal boundary, with Λ ∈ R

∗. It turns out that, similarly
to the Λ = 0 case (cf., e.g., [14, Section 4], compare [28]), smoothness imposes
restrictions on some lower-order coefficients in the asymptotic expansion of the
free data on the null hypersurfaces meeting the conformal boundary smoothly
and transversally.

Let, thus, Λ ∈ R, and let y0 : ∂M̃ → R be a smooth function defined on an
open subset of the conformal boundary ∂M̃ , with dy0 without zeros, such that
the level sets

Sc := {y0 = c} ⊂ ∂M̃

of y0 form a smooth foliation by spacelike submanifolds. Passing to a subset of
∂M̃ if necessary, we can assume that y0 is defined throughout ∂M̃ .

So far y0 has only been defined on the conformal boundary. Note that
the gradient of y0 within the boundary will be necessary timelike when ∂M̃ is
timelike, and spacelike when ∂M̃ is spacelike. Nevertheless, we will extend y0

to a function in space-time so that ∇y0 is null regardless of the causal character
of the conformal boundary.

2We have used the symbol ω = ω(u, r, xA) for a function which is usually denoted by β in
the literature to avoid a conflict of notation with a constant β elsewhere in the paper.
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Now, at every p ∈ Sc there exists a unique vector X̊p which is null, fu-
ture directed, outwards pointing, orthogonal to TpSc, and normalised to unit
length with respect to some smooth auxiliary Riemannian metric. This defines
a smooth vector field X̊ on ∂M̃ . We choose time-orientation so that −Xp points
towards the physical space-time.

Let γp denote a maximally extended null geodesic with initial tangent −X̊p

at p. Standard transversality and injectivity-radius arguments show that there
exists a neighborhood O of M̃ such that for every c ∈ R the union of the
(images of the) null geodesics

Nc := ∪p∈Scγp

forms a smooth null hypersurface, with ∪cSc foliating O.
To obtain Bondi-type coordinates we proceed now as follows:

1. Let xA denote local coordinates on Sc, in 3 + 1 space-time dimensions
we choose the conformal representative ˚̃gAB of the metric induced on Sc
by g̃ to take a canonical form. For example, if S0 is diffeomorphic to a
two-dimensional sphere, we choose ˚̃gAB to be the canonical metric sAB
on S2. In higher dimension one might wish to require instead that the

volume element

√
det˚̃gAB takes a convenient form, depending upon the

geometry of the conformal boundary.

2. We extend the local coordinates xA from ∂M̃ to O by requiring the xA’s
to be constant along the null geodesics γp.

3. Let q ∈ O, then q belongs to some null geodesic γp defined above. We
define the function u by letting u(q) = y0(p). In other words, u is defined
to be equal to c on Nc.

4. Set x := Ω, the conformal compactifying factor as in (2.1). Passing to a
subset of O if necessary, the functions (u, x, xA) form a coordinate system
on O. By construction the curves s 7→ (u, x = s, xA) are null geodesics
initially normal to Sc:

g̃(∂x, ∂x) = 0 , g̃(∂x, ∂xA)|x=0 = 0 . (2.3)

We recall the usual calculation, which uses the fact that ∂x is tangent to
null geodesics, ∇∂x∂x = κ∂x for some function κ:

∂x(g̃(∂A, ∂x)) = g̃(∇∂x∂A, ∂x) + g̃(∂A,∇∂x∂x)

= g̃(∇∂A∂x, ∂x) + κg̃(∂A, ∂x) =
1

2
∂A(g̃(∂x, ∂x)) + κg̃(∂A, ∂x)

= κg̃(∂A, ∂x) . (2.4)

Thus
∂x(g̃(∂A, ∂x)) = κg̃(∂A, ∂x) ,

which provides a linear homogeneous ODE in x for g̃(∂A, ∂x), with van-
ishing initial data at x = 0. We conclude that

g̃(∂x, ∂x) = 0 , g̃(∂x, ∂xA) = 0 . (2.5)

6



Equivalently, the level sets of u are null hypersurfaces generated by the
integral curves of ∂x.

The Bondi radial coordinate rBo (the subscript “Bo” stands for “Bondi”) is
defined by setting

rBo :=

(
det gAB

det˚̃gAB

) 1
2(n−1)

=
1

x

(
det g̃AB

det˚̃gAB

) 1
2(n−1)

, (2.6)

where n is the space-dimension.
The final coordinate system (uBo, rBo, x

A
Bo) is obtained by setting, in addi-

tion to (2.6),

uBo := u , xABo := xA =⇒ ∂x = ∂rBo
∂x ∂rBo

, ∂xA = ∂xABo
+ ∂x

∂xABo

∂x .

It follows from (2.5) together with the last implication that

g̃(∂rBo
, ∂rBo

) = 0 = g̃(∂rBo
, ∂xABo

) , g̃(∂xA , ∂xB ) = g̃(∂xABo
, ∂xBBo

) ,

which shows that, on O, the metric satisfies indeed the Bondi conditions

g̃rBox
A
Bo

= 0 = g̃rBorBo
,
√

det gxABox
B
Bo

= rn−1
√

det˚̃gxABox
B
Bo
. (2.7)

Equation (2.6) implies that rBo has a full asymptotic expansion in terms of
powers of x:

rBo =
1

x
+ (rBo)0(u, xA) + (rBo)1(u, xA)x+ . . . , (2.8)

where the asymptotic expansion coefficients (rBo)n are functions of (u, xA).
This can be inverted to give a full asymptotic expansion

x =
1

rBo
+

(rBo)0(u, xA)

r2Bo

+
(rBo)0(u, x

A)2 + (rBo)1(u, xA)

r3Bo

+ . . . .

(Indeed, if we set y := 1/rBo, then (2.6) becomes

y = x

(
det˚̃gAB
det g̃AB

) 1
2(n−1)

, (2.9)

and existence of a smooth function x = x(y) follows from the implicit function
theorem.)

Since all metric functions are smooth in (u, xA, x), they have complete
asymptotic expansions in terms of 1/rBo, with coefficients depending smoothly
upon (uBo, x

A
Bo).

As a special case of the construction above, we have proved:
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Proposition 2.1 Let N be a null hypersurface intersecting smoothly and transver-
sally a section S of conformal infinity in a smoothly conformally compactifiable
space-time with cosmological constant Λ ∈ R. There exist adapted coordinates
(r, xA) on N in which the restrictions gAB to N of the metric functions gAB
take the form

gAB = r2
(
˚̃gAB(xC) +O(r−1)

)
, (2.10)

with r−2gAB having full asymptotic expansions in terms of inverse powers of
r. These coordinates can be chosen to satisfy the Bondi conditions (2.7) near
N . In dimension 3 + 1 the metric ˚̃g on S can be arbitrarily chosen, in higher

dimension

√
det˚̃g can be arbitrarily chosen.

In what follows we wish to address two questions:

1. Assuming vacuum, can the expansion above be made more precise? and

2. How to read-off the mass from the above expansions?

For this, some preliminary results will be needed.
Since the case Λ = 0 has been satisfactorily covered elsewhere (cf. [13, 17]

and references therein), from now on we assume

Λ 6= 0 . (2.11)

2.2 Fefferman-Graham expansions

Recall that smooth conformal compactifiability of a metric satisfying the vacuum
Einstein equations implies existence of a coordinate system

(x, xa) ≡ (x, x0, xA)

near ∂M̃ in which the metric admits a Fefferman-Graham expansion [20, 26]:
We can write the metric as

g = x−2ℓ2( ± dx2 + g̃ab(x, x
c)dxadxb) , (2.12)

where ℓ is a constant related to the cosmological constant, and where the sign
in front of dx2 is the negative of the sign of Λ. For even values of n we have

g̃ab(x, x
c) = ˚̃gab(x

c) + (g̃2)ab(x
c)x2 + . . .+ (g̃n−2)ab(x

c)xn−2

+(g̃n)ab(x
c)xn + (g̃log)ab(x

c)xn log x+ o(xn) . (2.13)

Here ∂M̃ is the zero-level set of x, the tensor field

˚̃g := ˚̃gabdx
adxb

is a representative of the conformal class of metrics induced by g̃ on ∂M̃ (Rie-
mannian if Λ > 0, Lorentzian if Λ < 0), and for i = 1, . . . n − 1 the smooth
tensor fields

g̃i := (g̃i)abdx
adxb and g̃log := (g̃log)abdx

adxb
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on ∂M̃ are uniquely determined by ˚̃g and its derivatives, with g̃2k+1 ≡ 0 for
2k + 1 < n. We will interchangeably write (g̃i)ab and (g̃ab)i in what follows.

For odd values of n the expansion reads instead

g̃ab(x, x
c) = ˚̃gab(x

c) + (g̃2)ab(x
c)x2 + . . .+ (g̃n−1)ab(x

c)xn−1

+(g̃n)ab(x
c)xn + o(xn) , (2.14)

with again g̃2k+1 ≡ 0 for 2k + 1 < n.
We have, both for even and odd n ≥ 3,

(g̃2)ab = − 1

n− 2

(
R̊ab −

R̊

2(n − 1)
˚̃gab

)
, (2.15)

where R̊ab is the Ricci tensor of the metric ˚̃g.
As an example, if g is a Birmingham metric, (6.1) below, with zero mass,

we set
dx

x
= − dr

ℓ
√

r2

ℓ2
+ β

=⇒ r = ℓ

(
1

x
− βx

4

)
, (2.16)

where a convenient choice of an integration constant has been made. The metric
becomes

g = x−2ℓ2

(
dx2 −

(
1 +

βx2

4

)2

ℓ−2dt2 +

(
1 − βx2

4

)2

h̊

)
. (2.17)

In any case, we are led to consider metrics of the form

g = x−2ℓ2( ± dx2 +˚̃g + g̃2x
2 +O(xp)) , (2.18)

with
˚̃g(∂x, ·) = 0 = g̃2(∂x, ·) = ∂x̊g̃ = ∂xg̃2 , (2.19)

where p = 4 in dimensions n ≥ 5, p = 3 in dimension n = 3, and p is any
number smaller than four when n = 4 (in that last dimension O(xp) with p < 4
can in fact be replaced by O(x4 lnx)).

2.3 The next term and the geometry of N̊

We will see below that, in a characteristic-Cauchy-problem context, the reg-
ularity properties of the space-time metric are determined by the first three
coefficients in the expansion (2.10). This raises the question, whether or not
conformal smoothness implies that some of those coefficients are zero. The aim
of this section is to show that the next-to-leading term in the expansion (2.10)
will not vanish in general. This will be done by relating this term to the trace-
free part of the extrinsic curvature, within the conformal boundary, of a section
N̊ of ∂M̃ .

Consider, thus a null hypersurface N with field of future-directed null tan-
gents L such that the closure N in M̃ of N intersects ∂M̃ transversally in a

9



smooth spacelike submanifold N̊ . Let B denote the “null extrinsic curvature”
of N ,

B(X,Y ) := g(∇XL, Y ) , (2.20)

defined for X,Y tangent to N . We will invoke the Fefferman-Graham expan-
sions, and the law of conformal transformations of the objects involved.

In what follows we use the notation of [7, Appendix A]. From that last
reference we have

Γ
0
AB = −1

2
ν0∂1gAB . (2.21)

Hence, when L = ∂r,

BAB = g(∇AL, ∂B) = −g(∇A∂B, L) = −g(∇A∂B , ∂r)

= −gµrΓµAB = −g0rΓ0
AB = −ν0Γ0

AB =
1

2
∂1gAB

= χAB , (2.22)

with χ as in (3.8) below.
Let

g̃ = Ω2g

be the unphysical conformally rescaled metric. Let I ≡ ∂M̃ be the conformal
boundary, which in vacuum is spacelike if Λ > 0 and timelike if Λ < 0. In what
follows we will assume that Λ < 0; the argument applies to the case Λ > 0 after
obvious modifications.

Let Ñ be the inwards-directed g̃-unit normal to I . Let S be a smooth
spacelike hypersurface in M̃ meeting I orthogonally at N̊ . Let T̃ denote a
future-directed g̃-unit normal to S . Let L̃ be a smooth-up-to-boundary field
of tangents of generators of N . There exists a strictly positive function ω so
that

L̃ = ω(T̃ − Ñ) at N̊ . (2.23)

Here N is thought to lie to the past of S and is thus the boundary of the past
domain of dependence of S in the unphysical, conformally rescaled space-time
(and hence also in the physical space-time).

Let x be a defining function for I , and let the conformal factor be Ω = x.
Using rBo ≈ 1/x (compare (2.8)) as the parameter along the generators in the
physical space-time, with L = ∂rBo

, we see that the function ω in (2.23) can be
chosen so that

L = Ω2L̃ , (2.24)

and note that with this choice the vector field L̃ extends smoothly across the
conformal boundary {x = 0}. Letting χ̃AB denote the corresponding “unphys-
ical χ-tensor” of N , we have

χ̃AB = B̃AB = −g̃(∇̃A∂B , L̃)

= −Ω2g(∇A∂B +
1

Ω
(∇AΩ∂B + ∇BΩ∂A − gAB∇Ω), L̃)

= −g(∇A∂B +
1

Ω
(∇AΩ∂B + ∇BΩ∂A − gAB∇Ω), L)

= χAB +
1

Ω
L(Ω)gAB . (2.25)

10



On the other hand, on N̊ it holds that

χ̃AB |N̊ = −g̃(∇̃A∂B , ω(T̃ − Ñ)) = ω(K̃AB − H̃AB) , (2.26)

where H̃ is the extrinsic curvature tensor of I in (M , g̃), and K̃ is that of S .
The Fefferman-Graham expansion shows that the trace-free part of H̃ van-

ishes at I , so that

χ̃AB|N̊ = ωK̃AB|{x=0} . (2.27)

For further reference we note that the trace-free part of H̃ is in fact O(x2) when
a) I is locally conformally flat, or when b)

R̊AB is proportional to ˚̃gAB . (2.28)

In order to determine K̃ we use the coordinates of (2.12)-(2.13). In these
coordinates let S be given by the equation

x0 = f(x, xA) = f0(x
A) + xf1(x

A) +O(x2) , (2.29)

with smooth functions f0, f1 (in fact, f1 vanishes if S meets the boundary
orthogonally, but this is not needed for our conclusions below), then

T̃ = εα̃−2(dx0 − ∂Af0dx
A − f1dx+O(x)) ,

where α̃ is determined by the condition g̃(T̃ , T̃ ) = ε ∈ {±1}:

α̃2 = ε(̊g̃
00 − 2̊g̃

0A
∂Af0 +˚̃g

AB
∂Af0∂Bf0 + f21 +O(x)) . (2.30)

We emphasise that if the intersection of S with I is a smooth spacelike sub-
manifold of I , as assumed here, then both α̃ and α̃−1 are smooth.

We will denote by eA the tangential lift of ∂A to the graph of f :

eA = ∂A + ∂Af∂0 =: eA
µ∂µ .

For small x the metric g̃ := x2g behaves as

g̃ →x→0
˚̃g := ℓ2(dx2 +˚̃gab(x

c)dxadxb) . (2.31)

The Christoffel symbols
˚̃
Γαβγ of the asymptotic metric ˚̃g read

˚̃
Γcab ≡ Γ[̊g̃]cab =: Γ̊cab ,

˚̃
Γ1
µν =

˚̃
Γµ1ν = 0 .

This can be used to determine the asymptotic behaviour of K̃AB :

K̃AB = −g̃(∇̃eAeB , T̃ ) = −(eA(eB
µ) + Γ̃µαβeA

αeB
β)T̃µ

= −εα̃−2

(
∂A∂Bf0 − Γ̊CAB∂Cf0︸ ︷︷ ︸

=:D̊AD̊Bf0

+Γ̊0
AB + 2(̊Γ0

0(A − ∂Cf0Γ̊
C
0(A)∂B)f0

+(̊Γ0
00 − Γ̊C00∂Cf0)∂Af0∂Bf0

)
+O(x)

= ˚̃KAB +O(x) , (2.32)
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where
˚̃KAB := K̃AB|x=0 . (2.33)

Using (2.25) and (2.27) we obtain

σAB = ω0(
˚̃KAB −

˚̃gCD ˚̃KCD

n− 1
˚̃gAB) +O(x) , (2.34)

where ω0 := ω|x=0.
We conclude that on characteristic hypersurfaces smoothly meeting I we

have σAB = O(1) for large r, with

σ|x=0 being non-zero in general.

As an example, consider the case Λ < 0 with

a metric g̃ab|x=0 which is static up to a conformal factor. (2.35)

We can then rescale the metric, and adjust the x-coordinate accordingly, so
that g̃ab|x=0 is in fact x0-independent. A further, x0-independent, rescaling can
be done so that g̃00 is constant. We can further choose manifestly static local
coordinates, where by definition g̃A0|x=0 = 0 (this can be done globally when
g̃A0dx

A is exact, which will certainly be the case if N̊ is simply connected).
Setting X = ∂0 and using

∂0g̃ab = L∂0 g̃ab = ∇̃aXb + ∇̃bXa = −2Γ̃0
ab ,

we see that all the Γ̊0
ab’s vanish, and in fact Γ̊a0b = 0. With these choices we will

have
˚̃KAB ∼ ˚̃gAB (2.36)

if and only if

D̊AD̊Bf0 −
D̊CD̊Cf0
n− 1

˚̃gAB = 0 . (2.37)

We conclude that under (2.35) and (2.37) we have

σAB = O(r−1) ⇐⇒ |σ|2 = O(r−6) (2.38)

for large r.
We also see that the (2.36) is a necessary and sufficient condition for (2.38)

in any case.

3 Characteristic hypersurfaces

Throughout this section we allow arbitrary space-time dimension n+ 1 ≥ 4.
As a first step towards understanding the mass of characteristic hypersur-

faces, a review of the characteristic Cauchy problem for the Einstein equations
is in order.
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3.1 Wave-map gauge

Let, thus N be a characteristic hypersurface. Following [7], we split the Ein-
stein equations along N into constraint and evolution equations using the gen-
eralized wave-map gauge [7, 21], which is characterized by the vanishing of the
generalized wave-gauge vector :

Hλ = 0 , (3.1)

which is defined as

Hλ := Γλ − V λ , where V λ := Γ̂λ +W λ , Γλ := gαβΓλαβ , Γ̂λ := gαβΓ̂λαβ .
(3.2)

Here Γ̂ are the Christoffel symbols of an auxiliary target space metric ĝ, which
can be chosen as convenient for the problem at hand. The gauge source func-
tions W λ = W λ(xµ, gµν) can be freely specified and are allowed to depend
upon the coordinates chosen and the metric itself, but not upon derivatives
thereof. In (3.2) and in what follows we decorate objects associated with the
target metric ĝ with the hat symbol “ˆ”.

3.2 Characteristic surfaces, adapted null coordinates and as-
sumptions on the metric

It is convenient to use coordinates adapted to the characteristic surface, called
adapted null coordinates (x0 = u, x1 = r, xA), A ∈ {2, . . . , n}. The coordinate
r > r0 ≥ 0, where we allow a boundary or a vertex at a value r = r0 possibly
different from zero, parametrizes the null geodesics issuing from {r0} and gener-
ating the null hypersurface, which coincides with the set {u = 0}. The xA’s are
local coordinates on the level sets {u = 0, r = const.}. The trace of the metric
on the characteristic surface can then be written as (we will interchangeably
use x0 and u)

g = gµνdx
µdxν = g00(du)2 + 2ν0dudr + 2νAdudx

A + ǧ , (3.3)

where we use the notation

ν0 := g0r , νA := g0A , ǧ := gABdx
AdxB . (3.4)

Here and throughout an overline denotes the restriction of a space-time object
to N .

Under the hypotheses of Proposition 2.1, for r large we can write

gAB = h̊ABr
2 + (gAB)−1 r + (gAB)0 +O(r−1) , (3.5)

where we use the symbol h̊ to denote the standard metric on the boundary
manifold, and (gAB)−i = (gAB)−i (xC), i ∈ N, are some smooth tensors on
that manifold. We also require that O(r−1) terms remain O(r−1) under xC-
differentiation, and becomeO(r−2) under r-differentiation; similarly for O(r−n).

The restriction of the inverse metric to N takes the form

g# = 2ν0∂u∂r + grr∂r∂r + 2grA∂r∂A + gAB∂A∂B , (3.6)
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where gAB is the inverse of gAB and

ν0 := g0r =
1

ν0
, grA = −ν0νA = −ν0gABνB , grr =

(
ν0
)2 (

νAνA − g00
)
.

(3.7)
The null second fundamental form of N is intrinsically defined and does

not depend on transverse derivatives of the metric, see (2.20). In adapted null
coordinates it reads (compare (2.22))

χAB =
1

2
∂rgAB . (3.8)

The expansion, also called divergence, of the characteristic surface will be de-
noted by

τ := χA
A = gABχAB , (3.9)

while the trace-free part of the null second fundamental form

σA
B = χA

B − 1

2
τδA

B (3.10)

is called the shear of N .
The constraint equations for the characteristic problem will be referred to

as Einstein wave-map gauge constraints. In space-time dimension n + 1 ≥ 3
they read [7]

(∂r − κ) τ +
1

n− 1
τ2 = −|σ|2 − 8πT rr , (3.11)

(
∂r +

1

2
τ + κ

)
ν0 = −1

2
V

0
, (3.12)

(∂r + τ) ξA = 2∇̌Bσ
B
A − 2

n− 2

n− 1
∂Aτ − 2∂Aκ− 16πT rA , (3.13)

(
∂r +

1

2
ν0V

0
)
νA =

1

2
ν0

(
V
A − ξA − gBC Γ̌ABC

)
, (3.14)

(∂r + τ + κ) ζ =
1

2
|ξ|2 − ∇̌Aξ

A − Ř

+ 8π
(
gABTAB − T

)
︸ ︷︷ ︸

=:S

+2Λ , (3.15)

(
∂r +

1

2
τ + κ

)
grr =

1

2
ζ − V

r
, (3.16)

where

|σ|2 := σA
BσB

A , |ξ|2 := gABξAξB , ξA := gABξB , T := gµνT µν . (3.17)

All objects associated with the one-parameter family of Riemannian metrics ǧ
are decorated with the check symbol “ˇ”. The boundary conditions needed to
integrate (3.11)-(3.16) starting from a light-cone vertex r0 = 0 follow from the
requirement of smoothness of the metric there, see [7, Section 4.5].
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The function κ is defined through the equation

∇∂r∂r = κ∂r (3.18)

and reflects the freedom to choose the coordinate r which parametrizes the null
geodesic generators of N . The “auxiliary” fields ξA and ζ have been introduced
to transform (3.11)-(3.16) into first-order equations. The field ξA ≡ −2Γ

r
rA

represents connection coefficients, while the field ζ is the divergence of the family
of suitably normalized null generators normal to the spheres of constant radius r
and transverse to the characteristic surface. In coordinates adapted to the light-
cone as in [7] the space-time formula for ζ reads (compare [7, Equations (10.32)
and (10.36)]; note, however, that there is a term τg11/2 missing at the right-
hand side of the second equality in (10.36) there)

ζ := (2∂r + 2κ+ τ)grr + 2Γ
r ≡ 2gABΓ

r
AB + τgrr . (3.19)

To integrate the wave-map gauge constraints (3.11)-(3.16) one also needs
the components V

µ
, which are determined by the wave-map gauge (3.1)-(3.2).

We have, in adapted null coordinates [7, Appendix A, Equations (A.29)-(A.31)],

Γ
0 ≡ gλµΓ

0
λµ ≡ ν0

(
ν0∂0g11 − τ

)
, (3.20)

Γ
1 ≡ gλµΓ

1
λµ ≡ −∂1g11 + g11ν0

(
1

2
∂0g11 − ∂1ν0 − τν0

)

+ν0gAB∇̌BνA − 1

2
ν0gAB∂0gAB , (3.21)

Γ
A ≡ gλµΓ

A
λµ ≡ ν0νA

(
τ − ν0∂0g11

)
+ ν0gAB(∂0g1B + ∂1νB − ∂Bν0)

−2ν0νBχB
A + Γ̌A . (3.22)

Now, from the restriction to N of (3.1) and together with the first equation of

(3.2) one finds that the choice of the target metric only redefines the fields Γ̂
µ

and W
µ

entering in the definition of V
µ

= Γ̂
µ

+W
µ

without changing V
µ

itself.
Therefore only V

µ
enters in the Einstein wave-map gauge constraint equations,

and so only the explicit form of those fields is relevant in the equations of
interest to us.

An adapted coordinate system on a characteristic surface N will be called
Bondi type if the coordinates satisfy Bondi conditions on N , but not necessarily
away from N , reserving the name Bondi coordinates for coordinate systems
which satisfy Bondi’s condition everywhere.

We will start by deriving the asymptotic expansions of all relevant fields
in Bondi-type coordinates on the characteristic surface; it appears that the
calculations are simplest in those coordinates. We have [29, Equation (5.5)]

ϕBo = rBo , ∂0gBo
rr = 0 , ∂0gBo

rA = 0 , gABBo ∂0g
Bo
AB = 0 , (3.23)

where ϕ is defined by τ = 2∂r logϕ, as well as

V
0
Bo = −τBoν0Bo , (3.24)

V
A
Bo = gCDBo

(
Γ̌Bo

)A
CD

− ν0Bo∇̌AνBo
0 + ν0Bo

(
∂rBo

+ τBo
)
νABo , (3.25)

V
r
Bo = ν0Bo∇̌Aν

A
Bo −

(
∂rBo

+ τBo + ν0Bo∂rBo
νBo
0

)
grrBo . (3.26)
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As mentioned previously the Einstein wave-map gauge constraints form a hier-
archical system of ODEs along the null generators of the characteristic surface
which can be solved step-by-step.

4 Asymptotic solutions of the characteristic wave-
map gauge constraints, Λ 6= 0

Throughout this section we assume that the space-dimension n = 3.
In [28] asymptotic solutions of the Einstein wave-map gauge constraints

(3.11)-(3.16) with Λ = 0 have been obtained in the form of polyhomogeneous
expansions of the solution at infinity, i.e., expansions in terms of inverse powers
of r and of powers of log r. Our aim is to obtain similar expansions when Λ 6= 0,
with the goal to find a formula for the characteristic mass.

We will assume that for large r

σBo
A
B =

(
σBo

A
B
)
2
r−2
Bo +

(
σBo

A
B
)
3
r−3
Bo +O(r−4

Bo ) , (4.1)

which is compatible with, and more general than, Proposition 2.1. Here σBo

is the shear of N in Bondi coordinates, with σBo
A
B := gBCσBo(∂A, ∂C). As

already mentioned, wherever needed in the calculations that follow we will
assume that differentiation of error terms O(rα) with respect to angles preserves
the O(rα) behaviour, while differentiation with respect to r produces terms
which are O(rα−1).

(It follows from our calculations below that the hypothesis (4.1) is equivalent
to

σA
B =

(
σA

B
)
2
r−2 +

(
σA

B
)
3
r−3 +O(r−4) , (4.2)

where r is an affine coordinate along the generators of N .)

4.1 Matter fields

We start by analyzing the influence of the matter fields on the asymptotic
expansion of the metric in Bondi-type coordinates. Our aim is to determine a
decay rate of the energy-momentum tensor which is compatible with finite total
mass. The decay rates for various components of the energy-momentum tensor
will be chosen so that they do not affect the leading-order behavior, as arising
in the vacuum case, of the solutions of the equations in which they appear.

For the convenience of the reader we repeat here the relevant equations in
Bondi-type gauge (see [29, Equations (5.11)-(5.15)] with the contribution from
the cosmological constant Λ added here):

κBo − 1

2
rBo

(
|σBo|2 + 8πT

Bo
rr

)
= 0 , (4.3)

(∂rBo
+
rBo

2
(|σBo|2 + 8πT

Bo
rr ))ν0Bo = 0 , (4.4)

(∂rBo
+ τBo)ξBo

A − 2∇̌Bσ
Bo
A
B + ∂Aτ

Bo + rBo∂A(|σBo|2 + 8πT
Bo
rr ) = −16πT

Bo
rA , (4.5)

∂rBo
νABo + (∇̌A + ξABo)ν

Bo
0 = 0 , (4.6)
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(∂rBo
+ τBo +

rBo

2
(|σBo|2 + 8πT

Bo
rr ))ζBo + ŘBo − |ξBo|2

2
+ ∇̌Aξ

A
Bo =

8π(gABBo T
Bo
AB − T

Bo
)︸ ︷︷ ︸

SBo

+ 2Λ , (4.7)

grrBo + (τBo)−1(ζBo − 2ν0Bo∇̌Aν
A
Bo) = 0 . (4.8)

In Bondi-type coordinates, the relation

τBo =
2

rBo

is independent of the cosmological constant and of matter fields.
It follows from (4.3), which can be solved algebraically for κBo, that a term

O(r−αrr

Bo ) in T
Bo
rr with αrr > 2 produces an O(r−αrr+1

Bo ) term in κBo (see also
the discussion in Section 4.2 and Equation (4.21)):

T
Bo
rr = O(r−αrr

Bo ) , αrr > 2 =⇒ κBo = (κBo)vacuum +O(r−αrr+1
Bo ) . (4.9)

Next, from (4.4) we find

ν0Bo = (ν0Bo)vacuum +O(r−αrr+2
Bo ) . (4.10)

In the ξBo
A -constraint equation (4.5), the assumption

T
Bo
rA = O(r−αrA+1

Bo ) , 4 6= αrA , 4 6= αrr , (4.11)

leads to
ξBo
A = (ξBo

A )vacuum +O(r−αrA+2
Bo ) +O(r−αrr+2

Bo ) , (4.12)

where the values αrA = 4 and αrr = 4 have been excluded to avoid here a sup-
plementary annoying discussion of logarithmic terms (note that the logarithmic
terms will be discussed in detail in the sections that follow):

αrA = 4 or αrr = 4 =⇒
ξBo
A = (ξBo

A )vacuum +O(r−αrA+2
Bo ) +O(r−αrr+2

Bo ) +O(r−2
Bo log rBo) . (4.13)

From now on we assume (4.11). To preserve the vacuum asymptotics ξBo
A =

O(r−1
Bo ) we will moreover require

αrr > 3 , αrA > 3 . (4.14)

(Anticipating, we have excluded the case αrr = 3, which introduces 1/rBo terms
in ν0Bo, which lead subsequently to logarithmically divergent terms in νABo. We
further note that αrA = 3 will produce an additional (ξBo

A )1-term that would

not integrate away in mTB and would remain as a supplementary (T
Bo
rA)2-term

in our final mass identity (5.56) below.)
Integration of (4.6) gives

νABo = (νABo)vacuum +O(r−αrA+1
Bo ) +O(r−αrr+1

Bo )

⇐⇒ νBo
A = (νBo

A )vacuum +O(r−αrA+3
Bo ) +O(r−αrr+3

Bo ) . (4.15)
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Finally, the asymptotic behavior ξBo
A = O(r−1

Bo ) together with (4.7) and (4.8)
show that: a term O(r−αS

Bo ) in SBo with αS < 2 would change the leading order
behavior of ζBo; αS = 2 would change the leading order term of ζBo; αS = 3
would lead to a logarithmic term in ζBo. This leads to

SBo = O(r−αS

Bo ) , αS > 3 , αrr 6= 5 ,

=⇒ ζBo = (ζBo)vacuum +O(r−αS+1
Bo ) +O(r−αrA+1

Bo ) +O(r−αrr+3
Bo ) , (4.16)

grrBo = (grrBo)vacuum +O(r−αS+2
Bo ) +O(r−αrA+2

Bo ) +O(r−αrr+4
Bo ) , (4.17)

and note that a factor r2Bo in the O(r−αrr+3
Bo ) terms in ζBo arises from the

4πrBoT
Bo
rr ζ

Bo term in (4.7), taking into account the 2ΛrBo/3 leading behavior
of ζBo.

We conclude that the leading order of all quantities of interest will be pre-
served if we assume that

αrr > 3 , αrA > 3 , αS > 3 . (4.18)

Keeping in mind our main assumptions, that all fields can be expanded in terms
of inverse powers of rBo to the order needed to perform our expansions, possibly
with some logarithmic coefficients, we will allow below matter fields for which
(4.18) holds.

In what follows we will actually assume

T
Bo
rr = O(r−4

Bo ) , T
Bo
rA = O(r−3

Bo ) , gABBo T
Bo
AB − T

Bo
= O(r−3

Bo ) . (4.19)

Note that the third equation in (4.19) is less restrictive than (4.18), allowing a
logarithmic term in the asymptotic expansion of ζBo. This term however will be
of the order log rBo/r

2
Bo and will not influence our result for the characteristic

mass. It is accounted for in the correction term in (4.36) below. An analog
statement holds for the fall-off behavior and the correction term in (5.16) below
in affine coordinates.

When solving the wave-map gauge constraints we keep in mind that we
eventually want to determine the expansion coefficient

(
gBo
00

)
1
, as needed to

calculate the mass. This determines how far the intermediate asymptotic ex-
pansions need to be carried-out.

4.2 Solving equation (3.11)

The first equation of (3.23) implies τBo = 2r−1
Bo and using this one directly finds

from (3.11) in Bondi-type coordinates, cf. (4.3),

κBo =
1

2
rBo

(
|σBo|2 + 8πT

Bo
rr

)
. (4.20)

Note for further reference that this means

(
κBo
)
n

=
1

2

[
|σBo|2n+1 + 8π(T

Bo
rr )n+1

]
(4.21)

for the expansion coefficients of κBo, where we have assumed that n is positive.
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4.3 Expansion of ν0
Bo

Inserting (3.24) and (4.20) into (3.12) in Bondi-type coordinates yields, cf. (4.4),

[
∂rBo

+
rBo

2

(
|σBo|2 + 8πT

Bo
rr

)]
ν0Bo = 0 , (4.22)

and from (4.1) we have

|σBo|2 =
|σBo|24
r4Bo

+
|σBo|25
r5Bo

+
|σBo|26
r6Bo

+O(r−7
Bo ) . (4.23)

Using this and (4.19) we find the solution of (4.22)

ν0Bo =
(
ν0Bo

)
0

(
1 +

1

4

[
|σBo|24 + 8π(T

Bo
rr )4

]
r−2
Bo

+
1

6

[
|σBo|25 + 8π(T

Bo
rr )5

]
r−3
Bo

)
+O(r−4

Bo ) , (4.24)

where
(
ν0Bo

)
0

is a global integration function.

4.4 Expansion of ξBo
A

Using ∂Aτ
Bo = 0, (3.13) in Bondi-type coordinates takes the form

(
∂rBo

+ τBo
)
ξBo
A = 2∇̌Bσ

Bo
A
B − 2∂Aκ

Bo − 16πT
Bo
rA , (4.25)

cf. (4.5). Using again (4.19), (4.23) as well as [28, Equations (3.24)-(3.26)] (as
revisited to include matter fields)

∇̌Bσ
Bo
A
B = (ΞBo)

(2)
A r2Bo + (ΞBo)

(3)
A r3Bo +O(r−4

Bo ) , (4.26)

where

(ΞBo)
(2)
A := ∇̊B

(
σBo

A
B
)
2
, (ΞBo)

(3)
A := ∇̊B

(
σBo

A
B
)
3
+

1

2
∇̊A|σBo|24+4π∇̊A(T

Bo
rr )4 ,

(4.27)
the solution of (4.25) reads

ξBo
A = 2(ΞBo)

(2)
A r−1

Bo − 2
[
∇̊B

(
σBo

A
B
)
3
− 8π(T

Bo
rA)3

] log rBo

r2Bo

+C
(ξB)
A r−2

Bo +O(r−3
Bo ) , (4.28)

where the coefficients C
(ξB)
A = C

(ξB)
A (xC) are global integration functions.

It follows from Proposition 2.1 that existence of a smooth conformal com-
pletion at infinity requires the relation

∇̊B

(
σBo

A
B
)
3

= 8π(T
Bo
rA)3 . (4.29)
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4.5 Expansion of νABo

Equation (3.14) in Bondi-type coordinates does not depend upon Λ and reads,
cf. (4.6),

∂rBo
νABo = −

(
∇̌A + ξABo

)
νBo
0 . (4.30)

Now, the transformation from the affine parameter r, described in Section
3.2, to rBo is given by (see [17, Equation (51) there])

rBo = r − τ2/2 +O(r−1) . (4.31)

This implies that gABBo is of the form

gABBo = h̊ABr−2
Bo +

(
gABBo

)
3
r−3
Bo +O(r−4

Bo ) , (4.32)

Using the form (4.24) of ν0Bo, keeping in mind the relation ν0Bo = 1/νBo
0 and the

form (4.28) of ξBo
A , we find the solution of (4.30)

νABo =
(
νABo

)
0

+ h̊AB∇̌B

(
ν0Bo

)−1

0
r−1
Bo

+

[(
ν0Bo

)−1

0
h̊AB∇̊C

(
σBoC
B

)
2

+
1

2

(
gABBo

)
3
∇̌B

(
ν0Bo

)−1

0

]
r−2
Bo

+
2

3
h̊AB

[
∇̊A

(
σBoA
B

)
3
− 8π(T

Bo
rB)3

] log rBo

r2Bo

−1

3

[
2

3
h̊AB

(
−∇̊A

(
σBoA
B

)
3

+ 8π(T
Bo
rB)3

)

+2
(
gABBo

)
3
∇̊A

(
σBoA
B

)
2

+ h̊ABC
(ξC)
B −

(
gABBo

)
4
∇̊B

(
ν0Bo

)−1

0

+h̊AB
(
ν0Bo

)
2
∇̊B

(
ν0Bo

)−1

0
+
(
ν0Bo

)−1

0
h̊AB∇̊B

(
ν0Bo

)
2

]
r−3
Bo

+o(r−3
Bo ) , (4.33)

where
(
νABo

)
0

is a global integration function.
Note that the coefficient of the logarithmic term vanishes when (4.29) holds.

4.6 Expansion of ζBo

Inserting τBo = 2r−1
Bo and (4.20) into (3.15) in Bondi-type coordinates yields,

cf. (4.7),

(
∂rBo

+
2

rBo
+
rBo

2
(|σBo|2 + 8πT

Bo
rr )
)
ζBo =

−ŘBo +
|ξBo|2

2
− ∇̌Aξ

A
Bo + 8π(gABBo T

Bo
AB − T

Bo
) + 2Λ . (4.34)

In order to solve this equation we start by defining

ζBo := ζBo
Λ=0 + δζBo , (4.35)

where ζBo
Λ=0 is the solution of (4.34) in the case Λ = 0. Its asymptotic expansion

is known: [28, Equation (3.40)] gives the formula in general coordinates for
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general R̊, while [29, Equation (5.23)] the one in Bondi-type coordinates with
R̊ = 2) and reads

ζBo
Λ=0 = − R̊

rBo
+
(
ζBo
Λ=0

)
2
r−2
Bo + o(r−2

Bo ) , (4.36)

where
(
ζBo
Λ=0

)
2

is a global integration function and R̊ denotes the leading order

coefficient of the asymptotic expansion of Ř in terms of r, which coincides with
the Ricci scalar of the boundary metric limr→∞ r−2gABdx

AdxB . The expansion
of δζBo on the other hand can be calculated by subtracting (4.34) from the
corresponding equation in the case Λ = 0, leading to

(
∂rBo

+ τBo + κBo
)
δζBo = 2Λ . (4.37)

This equation can be solved by using (4.19), (4.20) as well as (4.23) and we end
up with

δζBo =
2Λ

3
rBo −

Λ

3

[
|σBo|24 + 8π(T

Bo
rr )4

]
r−1
Bo +

Λ

3

[
|σBo|25 + 8π(T

Bo
rr )5

] log (rBo)

r2Bo

+
(δζBo)2
r2Bo

+ o(r−2
Bo ) , (4.38)

where (δζBo)2 is again a global integration function. Summing up the solution
of (4.34) in Bondi-type coordinates reads

ζBo =
2Λ

3
rBo −

(
R̊+

2Λ

3
(κBo)3

)
r−1
Bo

+
2Λ

3
(κBo)4

log rBo

r2Bo

+
(ζBo)2
r2Bo

+ o(r−2
Bo )

=
2Λ

3
rBo −

(
R̊+

Λ

3

[
|σBo|24 + 8π(T

Bo
rr )4

])
r−1
Bo

+
Λ

3

[
|σBo|25 + 8π(T

Bo
rr )5

] log rBo

r2Bo

+
(ζBo)2
r2Bo

+ o(r−2
Bo ) , (4.39)

and we have combined both integration functions (δζBo)2 and
(
ζBo
Λ=0

)
2

into

(ζBo)2.
In view of the analysis of Section 2, existence of a smooth conformal com-

pletion leads to the condition

(
κBo
)
4

= 0 ⇐⇒ |σBo|25 + 8π(T
Bo
rr )5 = 0 . (4.40)

4.7 Analyzing (3.16)

Inserting (3.26) into (3.16) in Bondi-type coordinates and keeping in mind that,
by (4.22), ∂rBo

ν0Bo = −κBo one finds, cf. (4.8),

grrBo + (τBo)−1
(
ζBo − 2ν0Bo∇̌Aν

A
Bo

)
= 0 (4.41)
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for (3.16) in Bondi-type coordinates, which is an algebraic equation for grrBo.
Inserting the asymptotic expansions (4.24), (4.33) and (4.39) we found for ν0Bo,
νABo and ζBo respectively we obtain the asymptotic expansion

grrBo = −Λ

3
r2Bo +

(
ν0Bo

)
0
∇̌A

(
νABo

)
0
rBo +

(
R̊

2
+

Λ

3

(
κBo
)
3

)
− Λ

3
(κBo)4

log rBo

rBo

+

((
ν0Bo

)
0

[
∇̊A

(
νABo

)
2

+
(
ν0Bo

)
2
∇̊A

(
νABo

)
0

]
− 1

2
(ζBo)2

)
r−1
Bo

+o(r−1
Bo ) , (4.42)

where, as before, R̊ is the Ricci scalar of the boundary metric limr→∞ r−2gABdx
AdxB

and ∇̊A is the associated covariant derivative.
Note that the coefficient of the logarithmic term in (4.39) vanishes if (4.40)

holds.

4.8 No-logs

Consider characteristic initial data on N such that the functions r−2
Bog

Bo
AB have

a full asymptotic expansion in terms of inverse powers of rBo. From what has
been said it follows that the equations

∇̊B

(
σBo

A
B
)
3
− 8π(T

Bo
rA)3 = 0 = |σBo|25 + 8π(T

Bo
rr )5 , (4.43)

(see (4.29) and (4.40)) provide a necessary condition for conformal smoothness
of the associated space-time. It is likely that an analysis along the lines of [18],
using [22, 23, 30], will prove that these equations are also sufficient in space-
times with conformally well-behaved matter fields (cf. [23–25]), but we have
not investigated this.

When one, or both, of Equations (4.43) fails, the characteristic initial data
set will have a full polyhomogeneous expansion at infinity. One expects that
the evolved metric will similarly have a polyhomogeneous expansion, but no
evolution theorems guaranteeing this are available so far even in vacuum.

As such, the no-logs conditions (4.43) require the data to be transformed to
Bondi coordinates, if not already so given. When Λ = 0, a coordinate-invariant
version of the no-logs conditions has been established by Paetz in [28]. It would
be of interest to find the equivalent of his conditions for Λ ∈ R

∗.

5 Characteristic mass

Throughout this section we assume that the space-time dimension is n+ 1 = 4.

5.1 The Trautman-Bondi mass

In [5, 31, 35], assuming Λ = 0 and in space-dimension n = 3, it was proposed
how to define the mass of a null hypersurface N at a given moment of “retarded
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time” u at the cross-section N̊ where it intersects null infinity I +. This mass,
usually referred to as the Trautman-Bondi mass, is defined as

mTB =
1

4π

∫

N̊

M dµh̊ , (5.1)

where3 dµh̊ =

√
det h̊ABdx

2dx3, and where M denotes the mass aspect function

M : N̊ → R (compare, e.g., [5, 31]),

M :=
1

2

(
gBo
00

)
1
. (5.2)

The definition uses Bondi coordinates, as seen in Section 2.1, and recall that
(gBo

00 )k denotes the coefficient in front of 1/rkBo in an asymptotic expansion of
gBo
00 for large rBo, in particular

gBo
00 = −1 +

(
gBo
00

)
1

rBo
+ o(r−1

Bo ) .

Our aim is to obtain an analogue of the Trautman-Bondi mass in space-times
with Λ 6= 0. We seek to derive a formula which applies to a class of space-times
which includes vacuum space-times with a smooth conformal completion at
null infinity I +, such that the characteristic surface intersects I + in a smooth
cross-section N̊ .

From our point of view, the key justification of (5.2) as providing a good
candidate for the integrand for a total mass is the fact that M is one of the non-
local integration function which arise when solving the characteristic equations
when Λ = 0. It turns out that this remains true for Λ 6= 0.

Consider, thus, characteristic data in Bondi-type coordinates, defined per-
haps only for large values of rBo. The space-time metric on N = {uBo = 0}
can then be written as

g = gBo
00 du

2
Bo + 2νBo

0 duBodrBo + 2νBo
A duBodx

A
Bo + ǧBo . (5.3)

Now, Bondi et al. assume

lim
rBo→∞

νABo = 0 , lim
rBo→∞

ν0Bo = 1 , lim
rBo→∞

(
r−2
Bog

Bo
AB

)
= h̊AB . (5.4)

It follows from Proposition 2.1 that the last equation in (5.4) is justified under
the hypotheses there. However, it is not clear at all whether the first two can
be assumed to hold for all retarded times in general: When Λ < 0 this is part of
asymptotic conditions which are usually imposed in this context, but which one
might not want to impose in some situations. However, when Λ > 0 there is
little doubt that all three conditions in (5.4) can be simultaneously satisfied for
all times by a restricted class of metrics only. For this reason we have allowed

3Bondi et al. introduced this formalism in the asymptotically flat case, where h̊AB ≡ sAB ,
the standard metric on S2. In anticipation of other boundary topologies, e.g. a torus, we will
use the symbol h̊ to denote the chosen metric on the relevant manifold.
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general fields
(
νABo

)
0

and
(
ν0Bo

)
0

(xB) when solving the constraint equations so
far.

Nevertheless, it is easy to see that the first two equations (5.4) are deter-
mined by the propagation of the coordinates u and xA away from the initial
data surface N , and can always be imposed on the N as long as one does
not assume that they hold at later times. In particular, the first two equations
in (5.4) imply no loss of generality as long as no evolution equations are used.
Since we only work at N , and use only the constraint equations, we will assume
(5.4) from now on.

5.2 The characteristic mass in Bondi-type coordinates

The asymptotic expansion of gBo
00 needed to obtain the mass aspect function

can be calculated using the third equation in (3.7) in Bondi-type coordinates

gBo
00 = gBo

ABν
A
Boν

B
Bo − (νBo

0 )2grrBo . (5.5)

and we note again (cf. (4.32)) that gABBo is of the form

gABBo = h̊ABr−2
Bo +

(
gABBo

)
3
r−3
Bo +O(r−4

Bo ) . (5.6)

Using this and (4.42) leads us to

gBo
00 =

(
h̊AB

(
νABo

)
0

(
νBBo

)
0
−
(
ν0Bo

)−2

0
(grrBo)−2

)
r2Bo

+
(
gBo
AB

)
−1

(
νABo

)
0

(
νBBo

)
0
rBo

+
(
νABo

)
0

[
2̊hAB

(
νBBo

)
2

+
(
gBo
AB

)
0

(
νBBo

)
0

]

−
(
ν0Bo

)−1

0

[ (
ν0Bo

)−1

0
(grrBo)0 + 2 (grrBo)−2

(
νBo
0

)
2

]

−
(
ν0Bo

)−2

0
(grrBo)log,1

log rBo

rBo

+

((
νABo

)
0

[
2̊hAB

(
νBBo

)
3

+ 2
(
gBo
AB

)
−1

(
νBBo

)
2

+
(
gBo
AB

)
1

(
νBBo

)
0

]

−
(
ν0Bo

)−1

0

[ (
ν0Bo

)−1

0
(grrBo)1 + 2 (grrBo)−1

(
νBo
0

)
2

+ 2 (grrBo)−2

(
νBo
0

)
3

])
r−1
Bo

+o(r−1
Bo ) , (5.7)

where we can directly read off an expression for the mass aspect function M :

M =
1

2

(
gBo
00

)
1

=
1

2

((
νABo

)
0

[
2̊hAB

(
νBBo

)
3

+ 2
(
gBo
AB

)
−1

(
νBBo

)
2

+
(
gBo
AB

)
1

(
νBBo

)
0

]

−
(
ν0Bo

)−1

0
(grrBo)1 + 2 (grrBo)−1

(
νBo
0

)
2

+ 2 (grrBo)−2

(
νBo
0

)
3(

ν0Bo

)
0

)
. (5.8)

24



Now, using that νBo
0 = 1/ν0Bo (cf. (3.7)) and (4.24), we have

νBo
0 =

(
ν0Bo

)−1

0

(
1 −

(
ν0Bo

)
2
r−2
Bo −

(
ν0Bo

)
3
r−3
Bo

)
+O(r−4

Bo )

=
(
ν0Bo

)−1

0

(
1 − 1

4

[
|σBo|24 + 8π(T

Bo
rr )4

]
r−2
Bo

−1

6

[
|σBo|25 + 8π(T

Bo
rr )5

]
r−3
Bo

)
+O(r−4

Bo ) . (5.9)

Inserting this and the expansion coefficients of grrBo and νABo we calculated before
M reads

M =
(
νABo

)
0

[
h̊AB

(
νBBo

)
3

+
(
gBo
AB

)
−1

(
νBBo

)
2

+
1

2

(
gBo
AB

)
1

(
νBBo

)
0

]

+
(
ν0Bo

)−1

0

1

2

(
1

2

(
(ζBo)2 + ∇̌A

(
νABo

)
0

[
|σBo|24 + 8π(T

Bo
rr )4

])

−∇̊A

(
νABo

)
2
−
(
ν0Bo

)−1

0

Λ

4

[
|σBo|25 + 8π(T

Bo
rr )5

])

−1

8

[
|σBo|24 + 8π(T

Bo
rr )4

]
∇̊A

(
νABo

)
0
. (5.10)

We return, now, to the definition of the characteristic mass, (5.1), and
assume in the remainder of the present work that the boundary conditions on
ν0Bo and νABo, introduced in (5.4), hold. With these boundary conditions, and
using the fact that the divergence terms in (5.10) will integrate out to zero, we
find

mTB =
1

16π

∫

N̊

(ζBo)2 dµh̊ +
Λ

12π

∫

N̊

(
νBo
0

)
3
dµh̊

=
1

16π

∫

N̊

(ζBo)2 dµh̊ −
Λ

72π

∫

N̊

[
|σBo|25 + 8π(T

Bo
rr )5

]
dµh̊ . (5.11)

5.3 The characteristic mass in terms of characteristic data

To continue, we want to relate the fields occurring in Bondi-type coordinates
to their representation in coordinates where r is an affine parameter along
the radial null outgoing geodesics of g. We start with (ζBo)2 and follow the
argumentation in [17, leading to Equation (51) there], which we repeat here for
the convenience of the reader.

First, we have

rBo = r − τ2
2

+O(r−1) . (5.12)

Next, the transformation formulae for τ and ζ (compare (3.19)) read:

τBo(rBo) =
∂r

∂rBo
τ(r(rBo)) =

2

rBo
, (5.13)

ζBo = 2(gBo)AB(Γ
Bo

)rBo
AB + τBo(gBo)rBorBo

= 2(gBo)AB
(∂rBo

∂xk
∂xi

∂xABo

∂xj

∂xBBo

Γkij +
∂rBo

∂r

∂2r

∂xABo∂x
B
Bo

)
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+τ
∂r

∂rBo

∂rBo

∂xi
∂rBo

∂xj
gij

= 2gAB
∂rBo

∂r

∂r

∂xABo

∂r

∂xBBo

κ+ 2gAB
∂rBo

∂xC
∂r

∂xABo

∂r

∂xBBo

ΓC11︸︷︷︸
=0

+
∂rBo

∂r
ζ + 2gAB

∂rBo

∂xC
Γ̃CAB + 2 gABχAB︸ ︷︷ ︸

=τ

∂rBo

∂xC
ν0νC

−2gAB
∂rBo

∂r

∂r

∂xBBo

ξA + 2τgAB
∂rBo

∂xA
∂r

∂xBBo

+ 4gAB
∂rBo

∂xC
∂r

∂xBBo

σA
C

+2gAB
∂rBo

∂r

∂2r

∂xABo∂x
B
Bo

+ τ
∂r

∂rBo

∂rBo

∂xA
∂rBo

∂xB
gAB

=
∂rBo

∂r
ζ + 2

∂rBo

∂r
∆ǧr +O(r−3

Bo ) , (5.14)

where ∆ǧ is the Laplace operator of the two-dimensional metric ǧABdx
A
Bodx

B
Bo.

To continue we need the asymptotic expansion of ζ and therefore solve the
respective constraint equation (3.15). Note that we have already done this in
Bondi-type coordinates, but we also need the result in affine coordinates.

We begin with the same procedure as in Section 4.6 and define

ζ := ζΛ=0 + δζ , (5.15)

where ζΛ=0 is the solution of (3.15) in the case Λ = 0. Its asymptotic expansion
is known and reads [28, Equation (3.40)]

ζΛ=0 = − R̊
r

+ (ζΛ=0)2 r
−2 + o(r−2) , (5.16)

with (ζΛ=0)2 being a global integration function. We assume that the relevant
fields satisfy analog fall-off behavior in affine coordinate r as we assumed in
Bondi-type coordinate rBo (cf. Equations (4.1) and (4.19)). The equation for
δζ reads

(∂r + τ + κ) δζ = 2Λ . (5.17)

From now on we choose the coordinate r so that κ = 0. We start by solving
the Raychaudhuri equation (3.11) in this gauge and obtain the expansion of τ

τ =
2

r
+
τ2
r2

+
2
[
|σ|24 + 8π(T rr)4

]
+ τ22

2r3

+
2
[
|σ|25 + 8π(T rr)5

]
+ 2τ2

[
|σ|24 + 8π(T rr)4

]
+ τ32

4r4
+O(r−5) , (5.18)

where τ2 is a global integration function and |σ|2n are the expansion coefficients
of |σ|2:

|σ|2 =
|σ|24
r4

+
|σ|25
r5

+O(r−6) . (5.19)
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Using (5.18) we find from (5.17)

δζ = Λ

(
2r

3
− τ2

3
+
τ22 − 2τ3

3r
+

3τ2τ3 − τ32 − 2τ4
3

log r

r2

)

+
δζ2
r2

+ o(r−2) , (5.20)

where δζ2 is again a global integration function. Summing, and combining the
two integration functions (ζΛ=0)2 and δζ2 into ζ2 the solution of (3.15) gives

ζ =
2Λ

3
r − Λτ2

3
−
(
R̊+

Λ(2τ3 − τ22 )

3

)
r−1

+
Λ
(
3τ2τ3 − τ32 − 2τ4

)

3

log r

r2
+
ζ2
r2

+ o(r−2) . (5.21)

Using this and the asymptotic expansion of ∆ǧr (compare [17, Equation (51)])

∆ǧr =
∆h̊τ2

2r2
+O(r−3) (5.22)

and expressing (5.14) in terms of rBo one obtains

(ζBo)2 = ζ2 +
R̊

2
τ2 + ∆h̊τ2

+
Λ

3


−

|σBo|25 + 8π
(
T
Bo
rr

)
5

3
+ τ2

[
|σ|24 + 8π(T rr)4

]

 , (5.23)

ζBo
log,2 =

Λ

3

(
2τ2

[
|σ|24 + 8π(T rr)4

]
− |σ|25 − 8π(T rr)5

)
. (5.24)

Inserting (5.23) into (5.10) and using the boundary conditions on ν0Bo and νABo,
introduced in (5.4), we find

M =
1

4

(
ζ2 +

R̊

2
τ2 + ∆h̊τ2

)
− 1

2
∇̊A

(
νBo
A

)
0

− Λ

12

(
|σBo|25 + 8π(T

Bo
rr )5 − τ2

[
|σ|24 + 8π(T rr)4

])
. (5.25)

We now calculate the expansions of |σ|2 and |σBo|2 to insert explicit expres-
sions for the coefficients occurring in M . Further we want to relate the relevant
coefficients of the energy-momentum tensor in Bondi-type coordinates to their
representation in affine coordinates. For |σ|2 one obviously has

|σ|2 =
|σ|24
r4

+
|σ|25
r5

+O(r−6)

=

(
σA

B
)
2

(
σB

A
)
2

r4
+ 2

(
σA

B
)
2

(
σB

A
)
3

r5
+O(r−6) , (5.26)
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and performing a coordinate transformation and replacing the dependence on
r with rBo we obtain

|σBo|2 =

(
σA

B
)
2

(
σB

A
)
2

r4Bo

+ 2

(
σA

B
)
2

(
σB

A
)
3
−
(
σA

B
)
2

(
σB

A
)
2
τ2

r5Bo

+O(r−6
Bo )

=
|σ|24
r4Bo

+
|σ|25 − 2|σ|24τ2

r5Bo

+O(r−6
Bo ) . (5.27)

By assumption, or by smooth conformal compactifiability we can write T
Bo
rr

in the form

T
Bo
rr =

(T
Bo
rr )4
r4Bo

+
(T

Bo
rr )5
r5Bo

+O(r−6
Bo ) . (5.28)

Performing a coordinate transformation we find an analog expansion for T rr in
affine coordinates and replacing again the dependence on r with rBo we obtain

T
Bo
rr =

(
T rr
)
4

r4Bo

+

(
T rr
)
5
− 2

(
T rr
)
4
τ2

r5Bo

+O(r−6
Bo ) . (5.29)

Therefore we end up with the following formula for the mass aspect expressed
through characteristic data

M =
1

4

(
ζ2 +

R̊

2
τ2 + ∆h̊τ2

)
− 1

2
∇̊A

(
νBo
A

)
0

+
Λ

12

(
3τ2

[
|σ|24 + 8π(T rr)4

]
−
[
|σ|25 + 8π

(
T rr
)
5

])
. (5.30)

Using again the definition of the characteristic mass and bearing in mind that
the divergence terms will vanish after integration over N̊ we find

mTB =
1

16π

∫

N̊

(
ζ2 +

R̊

2
τ2

)
dµh̊

+
Λ

48π

∫

N̊

(
3τ2

[
|σ|24 + 8π(T rr)4

]
−
[
|σ|25 + 8π

(
T rr
)
5

])
dµh̊ . (5.31)

5.4 The characteristic mass and the renormalized volume

We are ready to prove our final formula for the characteristic mass, which will
be in terms of geometric fields defined on a characteristic surface parametrized
by an affine parameter r ranging from r0 to infinity. In the case of a light-cone
we take r0 = 0, but we allow non-zero r0 to cover other situations of interest.

We first note the asymptotic expansion of
√

det gAB for large r, which is
obtained by using the considerations in [28, leading to equation (3.13) there]
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and our result for the expansion of τ , (5.18):

√
det gAB = r2

√
det h̊AB

(
1 − τ2

r
+
τ22 − 2

[
|σ|24 + 8π(T rr)4

]

4r2

+
2τ2

[
|σ|24 + 8π(T rr)4

]
−
[
|σ|25 + 8π(T rr)5

]

6r3
+ O(r−4)

)
.(5.32)

Using this, dµǧ =
√

det gABdx
2dx3 and the expansion (5.21) of ζ we find

∫

N̊

ζdµǧ =
2Λ

3
r3
∫

N̊

dµh̊
︸ ︷︷ ︸
=:µ̊

h
(N̊ )

−Λr2
∫

N̊

τ2dµh̊ − r

∫

N̊

R̊dµh̊

−Λr

∫

N̊

([
|σ|24 + 8π(T rr)4

]
− 1

2
τ22

)
dµh̊

−Λ

3
log r

∫

N̊

([
|σ|25 + 8π(T rr)5

]
− 2
[
|σ|24 + 8π(T rr)4

]
τ2

)
dµh̊

+

∫

N̊

[
ζ2 + R̊τ2

]
dµh̊ −

Λ

12

∫

N̊

τ32dµh̊

+
Λ

18

∫

N̊

(
19τ2

[
|σ|24 + 8π(T rr)4

]
− 2
[
|σ|25 + 8π(T rr)5

])
dµh̊ + o(1) . (5.33)

From (3.15) with κ = 0 and the Gauss–Bonnet theorem we have,

∫

N̊

(∂r + τ)ζdµǧ = −4πχ(N̊ ) +

∫

N̊

(
1

2
|ξ|2 + S

)
dµǧ + 2Λ

∫

N̊

dµǧ , (5.34)

where χ(N̊ ) is the Euler characteristic of N̊ . The integral in the last term of
that equation is the area of the constant-r sections of N , and we define the
volume function V (r) to be its integral

V (r) :=

∫ r

r̃=r0

dV (r̃)

dr̃
dr̃ =

∫ r

r̃=r0

∫

N̊

dµǧdr̃ . (5.35)

Remark 5.1 We note that V (r) is uniquely defined up to the choice r0 of the
origin of r and up to scaling on each generator.

When cross-sections of I are negatively curved compact manifolds, the
asymptotic conditions imposed in our construction define the scaling uniquely.

When cross-sections of I are flat compact manifolds, the asymptotic con-
ditions imposed in our construction define the scaling up to a constant. This
freedom can be gotten rid of by requiring the h̊-volume of the cross-section to
take some convenient value, e.g. one or (2π)2.

When cross-sections of I are two-dimensional spheres, the asymptotic con-
ditions imposed in our construction define the scaling uniquely up to the action
of the group of conformal transformations of S2. This freedom reflects the fact
that in this case mTB is not a mass but the time-component of a covector.
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A redefinition of r0 affects the explicit formula for V as a function of r, and
hence the numerical value of the “renormalized volume”, to be defined shortly.
When N is a globally smooth light-cone, or is a smooth hypersurface emitted
from a submanifold of codimension larger than one, then the origin of the affine
parameter r0 = 0 is determined by the location of the “emitting” submanifold,
which gets rid of the last ambiguity. ✷

Using ∂r
√

det gAB = τ
√

det gAB we find

∂r

∫

N̊

ζdµǧ = −4πχ(N̊ ) + 2Λ
dV (r)

dr
+

∫

N̊

(
1

2
|ξ|2 + S

)
dµǧ , (5.36)

which we can integrate in r starting from r = r0

lim
r→∞

(∫

N̊

ζdµǧ + 4πχ(N̊ )r − 2ΛV (r)

)

= lim
r→r0

∫

N̊

ζdµǧ + 4πχ(N̊ )r0 +

∫ ∞

r=r0

∫

N̊

(
1

2
|ξ|2 + S

)
dµǧdr . (5.37)

We leave the symbol limr→r0 in the last equation to accommodate a vertex at
r = r0, where ζ is singular, but note that light-surfaces emanating from smooth
space co-dimension-two submanifolds will also be of interest to us. One needs
to make sure to use appropriate boundary conditions for the lower bound of the
integration depending on what kind of characteristic surface is studied. In the
case of a light-cone, i.e. a null-hypersurface emanating from a point at r0 = 0,
the necessary boundary conditions follow from regularity at the tip of the cone
as has been discussed in [7, Section 4.5].

When the first term in the last line vanishes, we can infer non-negativity of
the left-hand side by assuming the dominant energy condition for non-vanishing
matter fields. This condition implies then [29]

S := 8π(gABTAB − T ) ≥ 0 (5.38)

which means that the right-hand side of (5.37) is manifestly non-negative. As-
suming that the right-hand side of (5.37) is finite, we see that the divergent
terms in 2ΛV (r) and 4πχ(N̊ )r need to cancel those in the expression on the
right-hand side of (5.33) exactly. To make this precise we continue by calcu-
lating an explicit expression for the volume function V (r). We start by using
again (5.32) and find

dV (r)

dr
=

∫

N̊

dµǧ = r2µh̊(N̊ ) − r

∫

N̊

τ2dµh̊

+
1

2

∫

N̊

(
1

2
τ22 −

[
|σ|24 + 8π(T rr)4

])
dµh̊

+
1

6r

∫

N̊

(
2
[
|σ|24 + 8π(T rr)4

]
τ2 −

[
|σ|25 + 8π(T rr)5

])
dµh̊

+O(r−2) . (5.39)
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It follows that there exist constants so that the function V (r) has an asymptotic
expansion of the form

V (r) =
1

3
r3µh̊(N̊ ) + V−2r

2 + V−1r + Vlog log r + V0 + V1r
−1 + o(r−1) .

We define the renormalized volume Vren as “the finite left-over in the expansion”:

Vren := V0 .

One can think of Vren as the global integration function arising from integrat-
ing the equation for dV/dr. The numerical value of Vren is defined up to the
ambiguities pointed out in Remark 5.1.

Integrating (5.39) we obtain in fact

−2ΛV (r) = Λ

[
− 2

3

((
r − τ2

2

)3
+
(τ2

2

)3)
µh̊(N̊ ) − 2Vren

+r

∫

N̊

([
|σ|24 + 8π(T rr)4

])
dµh̊

+
1

3
log r

∫

N̊

([
|σ|25 + 8π(T rr)5

]
− 2
[
|σ|24 + 8π(T rr)4

]
τ2

)
dµh̊

]

+O(r−1) , (5.40)

thus

Vren = lim
r→∞

[
V (r) − r3

3
µh̊(N̊ ) +

r2

2

∫

N̊

τ2dµh̊

+
r

2

∫

N̊

([
|σ|24 + 8π(T rr)4

]
− 1

2
τ22

)
dµh̊

+
1

6
log r

∫

N̊

([
|σ|25 + 8π(T rr)5

]
− 2
[
|σ|24 + 8π(T rr)4

]
τ2

)
dµh̊

]
. (5.41)

Now, by (5.37) and using (5.33) and (5.40),

lim
r→∞

(∫

N̊

ζdµǧ + 4πχ(N̊ )r − 2ΛV (r)

)

= lim
r→∞

(
− r

∫

N̊

R̊dµh̊ + 4πχ(N̊ )r

)
− Λ

12

∫

N̊

τ32dµh̊

+
Λ

18

∫

N̊

(
19τ2

[
|σ|24 + 8π(T rr)4

]
− 2
[
|σ|25 + 8π(T rr)5

])
dµh̊

+

∫

N̊

(
ζ2 + R̊τ2

)
dµh̊ − 2ΛVren

= lim
r→r0

∫

N̊

ζdµǧ + 4πχ(N̊ )r0 +

∫ ∞

r=r0

∫

N̊

(
1

2
|ξ|2 + S

)
dµǧdr . (5.42)
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Next we rewrite (5.31) as

16πmTB =

∫

N̊

(
ζ2 + R̊τ2

)
dµh̊ −

∫

N̊

R̊

2
τ2dµh̊

+
Λ

3

∫

N̊

(
3τ2

[
|σ|24 + 8π(T rr)4

]
−
[
|σ|25 + 8π

(
T rr
)
5

])
dµh̊ , (5.43)

and find, by (5.42) and (5.43), using
∫
N̊
R̊dµh̊ = 4πχ(N̊ ),

16πmTB = lim
r→r0

∫

N̊

ζdµǧ + 4πχ(N̊ )r0 +

∫ ∞

r=r0

∫

N̊

(
1

2
|ξ|2 + S

)
dµǧdr

−
∫

N̊

R̊

2
τ2dµh̊ + 2ΛVren +

Λ

12

∫

N̊

τ32 dµh̊

− Λ

18

∫

N̊

(
τ2

[
|σ|24 + 8π(T rr)4

]
+ 4
[
|σ|25 + 8π(T rr)5

])
dµh̊ . (5.44)

We continue with a generalisation of the arguments leading to equation (43)
in [17]. Indeed, we allow the case r0 6= 0. Next, for further reference, we allow an
asymptotic behaviour for small r for light-cones emanating from a submanifold
of general space co-dimension d, and not only a light-cone. Finally, for future
reference the following calculations, up to the resulting expansion of τ , (5.53),
are performed for arbitrary space-time dimensions n+ 1 ≥ 3.

Keeping in mind the expansion (2.10) for large r, we note that

τ =

{
n−1
r + τ2

r2
+O(r−3) , for large r,

d−1
r +O(1) , for small r .

(5.45)

Here the behaviour for small r is the one which occurs when the set {r = 0} has
space co-dimension d (e.g., d = n for a light-cone emanating from a point). If
r0 > 0 we assume that τ is smooth up-to-boundary when the boundary r = r0
is approached.

Next, let

τ1 :=
n− 1

r
. (5.46)

This is the value of τ for a light-cone in Minkowski space-time, and it follows
from (2.10) that this is the value approached asymptotically along null hyper-
surfaces meeting I smoothly and transversally. Let

δτ := τ − τ1

denote the deviation of τ from its asymptotic value for large r, then

δτ =

{ τ2
r2 +O(r−3) , for large r ;
d−n
r +O(1) , for small r .

(5.47)

(Note that δτ is diverging at the same rate as τ for small r when d 6= n.) From
the Raychaudhuri equation (3.11) with κ = 0 one finds that δτ satisfies the
equation

dδτ

dr
+

(
δτ

n− 1
+

2

r

)
δτ = −|σ|2 − 8πT rr . (5.48)
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Define

Ψ ≡ r−2Φ := r−2 exp

(∫ r

r∗

(
δτ

n− 1
+

2

r̃

)
dr̃

)
,

for some r∗ (possibly depending upon xA) which will be irrelevant for our final
formula (5.53) below except for the requirement that the integral converges.
Thus

1

Φ

dΦ

dr
=

δτ

n− 1
+

2

r
, (5.49)

so that (5.48) is equivalent to

1

Φ

d (Φ δτ)

dr
= −|σ|2 − 8πT rr , (5.50)

Using (5.47), we are led to the following three equivalent expressions for the
function Ψ:

Ψ(r, xA) =





exp

(
−
∫ ∞

r

δτ

n− 1
(s, xA)ds+ C1(xA)

)
; (5.51a)

exp

(∫ r

r0

δτ

n− 1
(s, xA)ds +C2(xA)

)
; (5.51b)

r
d−n
n−1 exp

(
1

n− 1

∫ r

0

[
δτ(s, xA) − d− n

s

]
ds+ C3(x

A)

)
, (5.51c)

for some functions Ci(x
A), depending upon the choice of r∗. In (5.51b) we have

assumed that r0 > 0, while (5.51c) holds when δτ(r, xA) ∼ (d−n)r−1 for small
r, compare (5.47).

We emphasise that both Φ and Ψ are auxiliary functions which are only
needed to derive (5.53) below, and there is some freedom in their definition. In
particular either of the functions Ci(x

A), i = 1, 2, 3, can be chosen to be zero if
convenient for a specific problem at hand, and we note that the Ci(x

A)’s cancel
out in the final expression for τ in any case.

We further stress that in the special case of a light-cone we have d = n and
treating the case for small r separately is not necessary. In this case (5.51b)
coincides with (5.51c).

Thus, using δτ = τ − τ1 and (5.46),

Ψ(r0, x
A)

Ψ(r, xA)
=





exp

(
− 1

n− 1

∫ r

r0

(
τ(s, xA) − n− 1

s

)
ds

)
; (5.52a)

(r0
r

) d−n
n−1

exp

(
1

n− 1

∫ r0

r

(
δτ(s, xA) − d− n

s

)
ds

)
, (5.52b)

with both (5.51a) and (5.51b) leading to (5.52a) as long as the right-hand-side
of (5.52a) converges, and with (5.52b) holding with r0 = 0 when δτ(r, xA) ∼
(d− n)r−1 for small r.

Integrating (5.50) and using (5.52a), without denoting the dependence on
coordinates xA explicitly in what follows,

τ =
n− 1

r
− r−2

[
Ψ(r)−1

∫ r

r̃=r0

(
|σ(r̃)|2 + 8πT rr(r̃)

)
Ψ(r̃)r̃2dr̃

− lim
s→r0

Ψ(s)

Ψ(r)

(
τ(s) − n− 1

s

)
s2
]
. (5.53)
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We can directly read off the expression for τ2 from this:

τ2 = − lim
r→∞

{
Ψ(r)−1

∫ r

r̃=r0

(
|σ(r̃)|2 + 8πT rr(r̃)

)
Ψ(r̃)r̃2dr̃

}

−
[

lim
r→∞

Ψ(r)−1

]
× lim
r→r0

[
Ψ(r)

(
n− 1

r
− τ

)
r2
]
. (5.54)

From now on we return to space-time dimension four:

n+ 1 = 4 .

Returning to (5.44), inserting the result for τ2 we just found, and using further

dµǧ = e−
∫∞
r

r̃τ−2
r̃

dr̃r2dµh̊ (5.55)

we obtain our final formula for the characteristic mass mTB of a null hypersur-
face N = [r0,∞) × N̊ :

mTB =
1

16π

∫ ∞

r=r0

∫

N̊

(
1

2
|ξ|2 + S

+

[
R̊

2
+

Λ

18

(
|σ|24 + 8π(T rr)4

)](
|σ|2 + 8πT rr

)
e
∫∞

r
r̃τ−2
2r̃

dr̃

)
dµǧdr

+
1

16π

[
4πχ(N̊ )r0

+ lim
r→r0

(∫

N̊

[
ζ +

(
R̊

2
+

Λ

18

(
|σ|24 + 8π(T rr)4

))(2

r
− τ

)
e
∫∞
r0

rτ−2
2r

dr
]
dµǧ

)]

+
Λ

192π

∫

N̊

τ32dµh̊ +
ΛVren

8π
− Λ

72π

∫

N̊

(
|σ|25 + 8π

(
T rr
)
5

)
dµh̊ . (5.56)

To obtain this equation, it is irrelevant which form of Ψ in (5.51) we take,
provided that the same formula is consistently used throughout. For example,
if Ψ(r) is given by (5.51a) with C1(x

A) = 0, then limr→∞ Ψ(r) equals one,
independently of whether r0 = 0 (so that the null hypersurface is singular at
r0) or r0 6= 0 (in which case the set {r = r0} has space co-dimension one).

In the special case of a light-cone, where d = n = 3, R̊ = 2 and r0 = 0,4

(5.56) simplifies to

mTB =
1

16π

∫ ∞

0

∫

N̊

(
1

2
|ξ|2 + S

+

[
1 +

Λ

18

(
|σ|24 + 8π(T rr)4

)](
|σ|2 + 8πT rr

)
e
∫∞

r
r̃τ−2
2r̃

dr̃

)
dµǧdr

+
Λ

192π

∫

N̊

τ32 dµh̊ +
ΛVren

8π
− Λ

72π

∫

N̊

(
|σ|25 + 8π

(
T rr
)
5

)
dµh̊ . (5.57)

4Recall that R̊ = 2 when N̊ is a two-sphere, R̊ = 0 for a torus, and R̊ < 0 for higher genus
topologies of I ≈ R× N̊ . In the case of a smooth-light cone the cross-sections are spherical
for small r, and therefore everywhere, so R̊ = 2.
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Assuming further a conformally smooth compactification and vacuum we have
|σ|25 = 0, and after some rearrangements we obtain the striking identity:

mTB =
1

16π

∫ ∞

0

∫

N̊

(
1

2
|ξ|2 + |σ|2e

∫∞
r

r̃τ−2
2r̃

dr̃

)
dµǧdr

+
Λ

8π

(
Vren +

1

12

∫

N̊

τ2

(
τ22
2

− |σ|24
3

)
dµh̊

)
, (5.58)

with τ2 ≤ 0 given by

τ2 = −
∫ ∞

0
|σ|2e−

∫∞
r

r̃τ−2
2r̃

dr̃r2dr . (5.59)

(Recall that τ2 = 0 if and only if the metric to the future of N is, at least
locally, the de Sitter or anti-de Sitter metric [6].)

6 Coordinate mass

In this section we assume that Λ < 0 and we allow arbitrary space-time dimen-
sion n+ 1 ≥ 4.

There exist several well-defined notions of mass for asymptotically hyper-
bolic initial data sets (cf., e.g., [1, 11, 16, 19, 36]), which typically coincide when-
ever simultaneously defined, some of them defined so forth only in dimension
3 + 1. Our aim, in this and in the next section, is to show that the character-
istic mass coincides with those alternative definitions in some cases of interest.
To set the stage, in this section we introduce the notion of “coordinate mass”
for two classes of metrics. (Compare [19, Section V] for a similar treatment in
dimension 3 + 1.)

6.1 Birmingham metrics

Consider an (n+ 1)-dimensional metric, n ≥ 3, of the form

g = −f(r)dt2 +
dr2

f(r)
+ r2 h̊AB(xC)dxAdxB︸ ︷︷ ︸

=:̊h

, (6.1)

where h̊ is a Riemannian Einstein metric on the compact manifold which, to
avoid a proliferation of notation, we will denote as N̊ ; we denote by xA the
local coordinates on N̊ . As discussed in [4], for any m ∈ R and ℓ > 0 the
function

f =
R̊

(n− 1)(n − 2)
− 2m

rn−2
− ε

r2

ℓ2
, ε ∈ {0,±1} , (6.2)

where R̊ is the (constant) scalar curvature of h̊, leads to a vacuum metric,

Rµν = ε
n

ℓ2
gµν , (6.3)
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where the positive constant ℓ is related to the cosmological constant as

1

ℓ2
= ε

2Λ

n(n− 1)
. (6.4)

Clearly, n is not allowed to equal two in (6.2), and we therefore exclude this
dimension in what follows.

The multiplicative factor two in front of m is convenient in dimension three
when h̊ is a unit round metric on S2, and we will keep this form regardless of
topology and dimension of N̊ .

There is a rescaling of the coordinate r = br̄, with b ∈ R
∗, which leaves

(6.1)-(6.2) unchanged if moreover

h̊ = b2̊h , m̄ = b−nm, t̄ = bt . (6.5)

We can use this to achieve

β :=
R̊

(n− 1)(n − 2)
∈ {0,±1} , (6.6)

which will be assumed from now on. The set {r = 0} corresponds to a singu-
larity when m 6= 0. Except in the case m = 0 and β = −1, by an appropriate
choice of the sign of b we can always achieve r > 0 in the regions of interest.
This will also be assumed from now on.

We define

the coordinate mass of the metric (6.1) with f given by (6.2) to be m.

Similarly, we define

the coordinate mass of any metric which asymptotes to (6.1)-(6.2) to be m.

Here, “asymptotes to” can e.g. be understood as

g = −(fm(R) + o(R2−n))dT 2 +
dR2

(fm(R) + o(R2−n))

+R2(̊hAB(xC) + o(1))dxAdxB , (6.7)

for large R, at fixed T , with fm = f given by (6.2).

6.2 Horowitz-Myers-type metrics

6.2.1 The metric

Consider an (n+ 1)-dimensional metric, n ≥ 3, of the form

g = f(r)dψ2 +
dr2

f(r)
+ r2 h̊AB(xC)dxAdxB︸ ︷︷ ︸

=:̊h

(6.8)
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where now h̊ is a Riemannian or pseudo-Riemannian Einstein metric on an
(n−1)-dimensional manifold N̊ with constant scalar curvature R̊ and, similarly
to the last section, the xA’s are local coordinates on N̊ .5 This metric can be
formally obtained from (6.1) by changing t to iψ. It therefore follows from the
discussion of Section 6.1 that for m ∈ R and ℓ ∈ R

∗ the function

f = β − 2m

rn−2
− ε

r2

ℓ2
, ε ∈ {0,±1} , β =

R̊

(n− 1)(n − 2)
, (6.9)

leads to a metric satisfying (6.3). Rescaling the coordinate r and the metric
h̊ by a suitable constant if necessary we can without loss of generality assume
that

β ∈ {0,±1} .
Suppose that f has zeros, and let us denote by r0 the largest zero of f . We

assume that r0 is of first order, and we restrict attention to r ≥ r0. Imposing
a suitable ψ0-periodicity condition on ψ ∈ [0, ψ0], the usual arguments imply
that the set {r = r0} is a rotation axis in a plane on which

√
r − r0 and ψ are

coordinates of polar type: Indeed, if we set

ρ = F (r) , with F =

∫ r

r0

1√
f(r)

dr =

√
r − r0

2
√
f ′(r0)

(1 +O(r − r0)) ,

we find

dr2

f
+ fdψ2 = dρ2 + f(F−1(ρ))dψ2 = dρ2 + (2f ′(r0))2(1 +O(ρ2))ρ2dψ2 ,

which defines a smooth metric near ρ = 0 if and only if

ψ = λℓα , (6.10)

where α is a new 2π-periodic coordinate, and

λ =
1

2ℓf ′(r0)
. (6.11)

In the case where
ε = −1 ,

one obtains Einstein metrics with a negative cosmological constant.
Whatever ε, a conformal completion at spacelike infinity can be obtained

by introducing a new coordinate x = ℓ/r, bringing g to the form

g = f(ℓx−1)ℓ2λ2dα2 +
ℓ2dx2

x4f(ℓx−1)
+ ℓ2x−2̊h

= x−2ℓ2( − (ε− βx2 +O(xn))λ2dα2 − (ε+ βx2 +O(xn))dx2 + h̊) .(6.12)

We see explicitly that the conformal class of metrics induced by x2g on the
boundary at infinity,

I = {x = 0} ≈ S1 × N̊ ,

is Lorentzian if h̊ is Lorentzian and if ε = −1.

5To avoid a proliferation of notation we use the symbol h̊ both for the metric on N̊

appearing in (6.1) and for the metric on the manifold N̊ relevant for (6.8). Typically (N̊ , h̊)
is a compact Riemannian manifold, while (N̊, h̊) in (6.8) will be Lorentzian with N̊ non-
compact.
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6.2.2 β = 0, n = 3

In [27] Horowitz and Myers consider the case n + 1 = 4, ε = −1,6 and choose
h̊ = −ℓ−2dt2 + dϕ2, with ϕ being a 2π-periodic coordinate on S1. Thus

g = −r
2

ℓ2
dt2 + f(r)ℓ2λ2dα2 +

dr2

f(r)
+ r2dϕ2 . (6.13)

Equation (6.12) shows that timelike infinity I ≈ R × S1 × S1 is conformally
flat:

x2g →r→∞ −dt2 + ℓ2(λ2dα2 + dx2 + dϕ2) . (6.14)

Some comments about factors of ℓ are in order: if we think of r as having
dimension of length, then ℓ, t and ψ also have dimension of length, m has
dimension lengthn−1, while f , x, and the xA’s (and thus ϕ) are dimensionless.

A uniqueness theorem for the metrics (6.13) has been established in [37].

6.2.3 β = ±1, n = 3

We consider the metric (6.8) with6 ε = −1 and h̊ of the form

h̊ =

{
dθ2 + sin2(θ) dϕ2, β = 1;

dθ2 + sinh2(θ) dϕ2, β = −1.
(6.15)

In regions where f is positive, one obtains a Lorentzian metric after a “double
Wick rotation”

θ = iℓ−1t , ϕ = iφ ,

resulting in

g = −r
2

ℓ2
dt2 +

dr2

f(r)
+ f(r)ℓ2λ2dα2 + r2

{
sinh2(ℓ−1t) dφ2, β = 1;
sin2(ℓ−1t) dφ2, β = −1.

(6.16)

Taking α and φ periodic one obtains again a conformal infinity diffeomorphic
to R × T

2. Note that the conformal metric at the conformal boundary is not
conformally stationary anymore, as opposed to the Horowitz-Myers metrics
(6.14). We have not attempted to study the nature of the singularities of g at
sinh(ℓ−1t) = 0 or at sin(ℓ−1t) = 0.

6.2.4 Negative coordinate mass

For completeness, we show that the metric (6.8) has the striking property that
its total coordinate mass is negative when m is positive; the latter is needed
for regularity of the metric. This has already been observed in [27] in space-
dimension three with a toroidal Scri. Here we check that this remains correct
in higher dimensions, for a large class of topologies of Scri.

Before continuing, we note that Lorentzian Horowitz-Myers-type metrics
with a smooth conformal compactification at infinity exist only with negative

6The case β = 0 and ε = 1 leads to a signature (+−−−) for large r; our signature (−+++)
is recovered by multiplying the metric by minus one, but then one is back in the case ε = −1
after renaming m to −m.
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Λ: Indeed, to obtain the right signature for large r when ǫ > 0 one needs to
multiply the metric by minus one. But then the resulting metric has negative
Ricci scalar, and hence solves Einstein equations with a negative cosmological
constant.

Somewhat more generally, consider those metrics of the form (6.8) for which

N̊ = Rt × Ň ,

where (Ň , ȟ) is a compact Riemannian manifold, and where

h̊ = −ℓ−2dt2 + ȟ , (6.17)

so that

g = f(r)dψ2 +
dr2

f(r)
+ r2

(
−ℓ−2dt2 + ȟ

)
. (6.18)

The question arises, how to define the mass of such a metric.
To avoid ambiguities, let us write fm for the function f of (6.9).
To assign a coordinate mass to a metric (6.18), we need to check whether

metrics satisfying (6.8)-(6.9) and (6.17) can be written in the form (6.7) by
setting r = r(ρ):

g = fm(r)ℓ2λ2dα2 +
dr2

fm(r)
+
r2

ℓ2
(−dt2 + ℓ2ȟ)

= −r
2

ℓ2
dt2 +

(
dr

dρ

)2 dρ2

fm(r)

+r2((1 +O(βr−2) +O(mr−n))λ2dα2 + ȟ) , (6.19)

where the error terms have to be understood for large r. We will have

g ≈ −fM(ρ)dt2 +
dρ2

fM (ρ)
+ ρ2(λ2dα2 + ȟ) ,

for some parameter M possibly different from m, provided that

r2 = ℓ2fM (ρ)(1 + o(ρ−n)) ,

(
dρ

dr

)2

fm(r) = fM (ρ)(1 + o(ρ−n)) , (6.20)

The first equation determines r as a function of ρ up to correction terms o(ρ−n).
Inserting the result into the second equation determines M , provided that the
asymptotic expansion of the left-hand side is compatible with that of the right-
hand side. However, it is straightforward to check that these equations are
compatible if and only if

β = 0 . (6.21)

We conclude that for metrics satisfying (6.8)-(6.9) and (6.17)

the coordinate mass is only defined if β = 0.

Assuming (6.21), after asymptotically solving the first equation in (6.20) and
inserting the result into the second one, we find that

ρ = r +
ℓ2M

rn−1
+O(r−(2n−1)) , (6.22)
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and that the coordinate mass equals

M = − m

n− 1
. (6.23)

In particular M is negative for positive m.

7 Examples

Throughout this section we allow arbitrary space-time dimension n + 1 ≥ 4.
We show that the numerical value of the Trautman-Bondi mass, as generalised
to higher dimensions below, and which coincides with the characteristic mass
defined in Section 5 in dimension 3+1, is proportional to the “coordinate mass”
for the metrics considered in Section 6. This, in itself, is not surprising, since
these metrics have only the mass parameter m as free parameter, so whatever
we will calculate must be a function of m. The main conclusion here appears to
be that mTB is a linear function of m, with a strictly positive proportionality
factor. A full agreement will be obtained in the analysis of the Hamiltonian
mass in Section 8 below, where the proportionality factors will also be matched.

In what follows, we seek to write the metrics under consideration in the
form (2.2),

g = guudu
2 − 2e2ωdr du− 2r2UAdx

Adu+ r2 hABdx
AdxB︸ ︷︷ ︸

=:h

, (7.1)

where the determinant of hAB is r-independent. By analogy with (5.1)-(5.2),
in space-time dimension n+ 1 we set

mTB =
1

8π
lim
r→∞

∫

N̊

(guu)n−2 dµh . (7.2)

This definition is motivated by the fact that, when solving the characteristic
constraint equations on a null hypersurface, the (guu)n−2-coefficient in the ex-
pansion of guu arises as a global integration function.

7.1 Birmingham metrics

Consider, first, the original Birmingham metrics (6.1),

g = −f(r)dt2 +
dr2

f(r)
+ r2̊h , (7.3)

with f given by (6.2). Introducing a new coordinate u = t−
∫ r
r∗ f

−1(s)ds, for
some conveniently chosen r∗, brings g to the desired form

g = −f(r)

(
du+

dr

f(r)

)2

+
dr2

f(r)
+ r2̊h

= −
(

R̊

(n− 1)(n − 2)
− 2m

rn−2
− ε

r2

ℓ2

)
du2 − 2du dr + r2̊h , (7.4)

where ε ∈ {±1} is the sign of the cosmological constant Λ = ε|Λ|, which we
allow to be either positive or negative.
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7.1.1 Mass and volume

The coordinate r provides obviously a radial Bondi coordinate. Moreover, the
equality ∂r = −∇u implies that r is also an affine parameter along the radial
null outgoing geodesics of g. When m = 0 we have the explicit formulae

u = t−





ℓ tan−1
(
r
ℓ

)
, ε = −1,

ℓ tanh−1
(
r
ℓ

)
, ε = 1,

}
β = 1;

−ε ℓ2r , β = 0;

−ℓ tanh−1
(
r
ℓ

)
, ε = −1,

−ℓ tan−1
(
r
ℓ

)
, ε = 1,

}
β = −1.

Equation (7.2) leads to a Bondi-Trautman–type mass

mTB =
m

4π

∫

N̊

dµh̊ ≡ m
µh̊(N̊ )

4π
. (7.5)

(Here the normalisation factor 8π in (7.2) is clearly convenient only when N̊

is a unit round two-dimensional sphere, but this issue will be of no concern
to us here.) We conclude that the characteristic mass of null hypersurfaces
asymptotic to the level sets of t is indeed proportional to the coordinate mass,
with a positive proportionality factor. We will see in Section 8.1 that the
proportionality factor is the same as the one occurring in the Hamiltonian
definition of mass, see (8.34) below.

7.1.2 The balance equation for Birmingham metrics

Consider metrics of the form

g = −f(r)dt2 +
dr2

f(r)
+ r2 h̊ABdx

AdxB︸ ︷︷ ︸
=:̊h

. (7.6)

Recall (7.4): setting u = t −
∫ r
r∗ f

−1(s)ds, for some conveniently chosen r∗,

brings g to a Bondi form provided that det h̊ is r-independent:

g = −fdu2 − 2du dr + r2̊h .

The inverse metric reads

g♯ ≡ gµν∂µ∂ν = f∂2r − 2∂u∂r + r−2̊h♯ ,

where h̊♯ = h̊AB∂A∂B is the metric inverse to h̊.
Similarly to the previous section, the integral curves of the vector field

−∇u = ∂r (7.7)

are affinely parameterized geodesics. Whenever det h̊ is r-independent, the
function r is therefore both an area coordinate and an affine parameter along
the generators of the null hypersurfaces {u = const}.
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Recall that Vren is defined as the limit, as r approaches infinity, of the volume
V (r) of the light-cone minus all diverging terms in an asymptotic expansion of
V (r) :

Vren = lim
r→∞

{
V (r) +

1

2

[
− 2

3
r3
∫

N̊

dµh̊ + r2
∫

N̊

τ2dµh̊ + r

∫

N̊

(
|σ|24 −

1

2
τ22

)
dµh̊

+
1

3
log r

∫

N̊

(
|σ|25 − 2|σ|24τ2

)
dµh̊

]}
<∞ (7.8)

(for simplicity a metric vacuum to sufficiently high order has been assumed in
(7.8)).

For the Birmingham metrics (6.13) we have Trr ≡ 0 ≡ S ≡ σ ≡ ξ ≡ τ2,
R̊ = 2, and the volume function is straightforward:

V (r) =

∫ r

r∗

∫

N̊

√
det gAB d

2x ds

=
µh̊(N̊ )

3
(r3 − r3∗) =⇒ Vren = −µh̊(N̊ )r3∗

3
.

The mass formula (5.10) reduces to

mTB =
1

16π

(
4πχ(N̊ )r∗+ lim

r→r∗

∫

N̊

ζdµǧ

)
+

ΛVren
8π

.

Note that this holds for any value of r∗. A natural choice would be to choose r∗
to be the location of the outermost past horizon, but we allow r∗ to be arbitrary.

Specialising to the Birmingham metrics we find, in space-time dimension
n+ 1 = 4,

16πmTB = 4πχ(N̊ )r∗+ lim
r→r∗

µh̊(N̊ )

(
−2r2

(
β

r
− 2m

r2
+
r

ℓ2

)
− 2Λr3

3

)

= 4πχ(N̊ )r∗+ µh̊(N̊ ) (−2r∗β + 4m)

= 4µh̊(N̊ )m, (7.9)

where we have used the Gauss-Bonnet theorem to cancel the term containing
the Euler characteristic χ(N̊ ) of N̊ with the term involving β.

7.2 Horowitz-Myers type metrics

We pass now to the metrics (6.8) with h̊ given by (6.17) and ψ replaced by λℓα,
with λ given by (6.11), and where α is 2π-periodic:

g = −r
2

ℓ2
dt2 +

dr2

f
+ fℓ2λ2dα2 + r2ȟ

= −r
2

ℓ2
dt2 +

dr2

f
+ r

2(n−2)
n−1 (fℓ2)

1
n−1

︸ ︷︷ ︸
=:r2Bo

(
fℓ2λ2

r2Bo

dα2 +
r2

r2Bo

ȟ

)

︸ ︷︷ ︸
r-independent determinant

. (7.10)

We want f to be positive for large r, and hence we need to assume that Λ < 0.
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7.2.1 Bondi coordinates, characteristic mass

Setting du = dt− ℓ f−1/2r−1dr we obtain

g = −r
2

ℓ2
du2 − 2r

f1/2ℓ
du dr + r2Bo

(
fℓ2λ2

r2Bo

dα2 +
r2

r2Bo

ȟ

)

= −r
2

ℓ2
du2 − 2r

f1/2ℓ

(
dr

drBo

)
du drBo + r2Bo

(
fℓ2λ2

r2Bo

dα2 +
r2

r2Bo

ȟ

)
. (7.11)

Note that the we have obtained Bondi coordinates only if the determinant ȟ is
t-independent, as otherwise the replacement of t by its expression in terms of u
and r introduces back r-dependence in the determinant of gAB. Equation (6.16)
clearly shows that this requires β = 0 in dimension n+ 1 = 4. Nevertheless we
continue our calculations without assuming the vanishing of β.

In space-time dimension n+ 1 = 4 we find

rBo = r +
βℓ2

4r
− ℓ2m

2r2
+O

(
r−3
)

⇐⇒ r = rBo −
βℓ2

4rBo
+
ℓ2m

2r2Bo

+O
(
r−3
Bo

)
,

(7.12)
leading to

guu = −
(
r2Bo

ℓ2
− β

2
+

m

rBo
+

β2ℓ2

16r2Bo

)
+O

(
r−3
Bo

)
. (7.13)

Equation (7.2) gives

mTB = −mµĥ(S1 × Ň)

8π
, (7.14)

where µĥ is the measure induced on S1 × Ň by the metric

ĥ := lim
r→∞

(
fℓ2λ2

r2Bo

dα2 +
r2

r2Bo

ȟ

)
= λ2dα2 + ȟ . (7.15)

In all dimensions, when β vanishes we find

mTB = −mµĥ(S1 × Ň)

4(n − 1)π
, (7.16)

and the above remains true whether or not β vanishes in odd space-dimensions
n. We see that in these case the characteristic mass coincides with the coordi-
nate mass, up to a volume normalisation factor related to the integrals involved.
We will see in Section 8.2 that, similarly to the Birmingham metrics, in space-
time dimension four the proportionality coefficient is the same as that for the
Hamiltonian mass, see (8.51) below.

In even space-dimensions n = 2k, when β does not vanish, a calculation
shows that the definition (7.2) gives instead the curious formula

mTB = −(m+ ckβ
kℓn−2)µĥ(S1 × Ň)

4(n − 1)π
, (7.17)

where ck ∈ R
∗ is a numerical coefficient depending upon k. For example, we

have

c2 =
1

6
, c3 = − 2

25
, c4 =

33

686
, c5 = − 644

19683
, c6 =

7735

322102
. (7.18)
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7.2.2 Renormalized volume

With the choice
ψ0 = 2πℓλ , (7.19)

where λ is given by (6.11), the curves obtained by letting ψ vary from zero to
ψ0 while keeping t fixed and r = r0, where f(r0) = 0 with f given by (6.9),
are closed geodesics for the metric (6.8): This follows from the fact that the
manifold {r = r0} is the fixed-point set of the group of isometries generated by
the Killing vector field ∂ψ, and is therefore totally geodesic. Those geodesics
will be referred to as core geodesics, or emission curves.

From the definition of r0 we have

r20
ℓ2

=
2m

r0
⇐⇒ r0 = (2mℓ2)

1
3 . (7.20)

It is remarkable that the null surfaces issuing normally from those geodesics
are smooth away from the emission curves, and their union covers the whole
space-time.

The contravariant metric g♯ associated to (7.11) equals

g♯ = f∂2r −
2ℓ
√
f(r)

r
∂u∂r + f−1ℓ−2λ−2∂2α + r−2∂2ϕ .

The vector field

−∇u =
ℓ
√
f(r)

r
∂r (7.21)

has vanishing Lorentzian length, and a standard argument shows that its inte-
gral curves are affinely parameterized geodesics. Hence the parameter s defined
as

ds

dr
=

r

ℓ
√
f(r)

⇐⇒ ∂s =
ℓ
√
f(r)

r
∂r (7.22)

is an affine parameter along the generators of the null hypersurfaces {u =
const}. (An explicit expression for s in terms of elliptic integrals in space-time
dimension n + 1 = 4 can be given, which again does not appear to be very
useful.)

We are ready to calculate the renormalized volume Vren. We have

V (s′) =

∫ s′

s=0

∫

N̊

√
det gAB d

2x ds =

∫ s′

s=0

∫

N̊

ℓλ
√
fr dα dϕ

ds

dr︸︷︷︸
r

ℓ
√

f(r)

dr

= µĥ(N̊ )

∫ r(s′)

r(0)
r2dr =

1

3
µĥ(N̊ )(r3(s′) − r30) . (7.23)

Here one should keep in mind that r3(s′) needs to be reexpressed in terms of
the affine parameter s′ before removing the singular part of V (s′). For this,
integration of (7.22) gives, for large r,

s = r − r0 +

∫ ∞

r0

(
r

ℓ
√
f
− 1

)
dr

︸ ︷︷ ︸
=:s∗

−ℓ
2m

2r2
− 3ℓ4m2

10r5
+O

(
r−8
)
, (7.24)
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with 0 < s∗ <∞ for m > 0.
It is convenient to introduce a dimensionless variable x through the formula

s = r0x = (2mℓ2)1/3x; set s∗ = (2mℓ2)1/3x∗. After inverting (7.24) one obtains

r3 − r30 =
1

2
ℓ2m

(
4x3 − 12x2(x∗ − 1) + 12x(x∗ − 1)2 − 4x3∗ + 12x2∗ − 12x∗ + 3

)
.

(7.25)
Inserting into (7.23) leads to

Vren =
1

6
ℓ2m

(
−4x3∗ + 12x2∗ − 12x∗ + 3

)
µĥ(N̊ )

=
1

6
ℓ2m

(
4(1 − x∗)

3 − 1
)

︸ ︷︷ ︸
≈−0.6793

µĥ(N̊ ) , (7.26)

where we have used

x∗ =

∫ ∞

1


 1√

1 − 1
x3

− 1


 dx ≈ 0.568815 . (7.27)

More information on the null geometry of Horowitz-Myers metrics, as well as
a term-by-term analysis of the balance equation, can be found in Appendix A.

8 Hamiltonian mass, Λ < 0

Until specified otherwise, we allow arbitrary space-time dimension n+ 1 ≥ 4.
The calculations of the mass so far might appear to be ad-hoc. In particular

one wonders, why the coordinates approach of Section 6.2.4 appears to allow
only the β = 0 case for HM-type metrics. As such, a systematic way of obtaining
an expression for the energy of a field configuration is to use a Hamiltonian
approach. Now, both families of metrics (6.1) and (6.18), with f given by
(6.2), are asymptotic, as r → ∞, to a background metric b obtained by setting
m = 0 in f (with different backgrounds for each family). When Λ < 0 one
can therefore use,7 in each case, the formalism of [9] (as already done in [19]
for (3 + 1)-dimensional asymptotically Kottler metrics), to define the mass of
g relative to b. Indeed, the Hamiltonian analysis in [9] shows that to every
spacelike hypersuface S and b-Killing vector X one can associate a Hamiltonian
mass H(X,S ) through the formula

H(X,S ) =
1

2

∫

∂S

U
αβdSαβ , (8.1)

where the integral over ∂S is understood as the limit of integrals over a family
of well behaved boundaries of sets which exhaust S . Here dSαβ is defined as
∂
∂xα y

∂
∂xβ

y dx0 ∧ · · · ∧ dxn, with y denoting contraction, and U
αβ is given by

U
νλ = U

νλ
βX

β +
1

8π
∆α[νXλ]

;α , (8.2)

U
νλ
β =

2|det bµν |
16π

√
|det gρσ|

gβγ(e2gγ[νgλ]κ);κ , (8.3)

7When Λ > 0 a Hamiltonian definition of mass requires somewhat different considerations,
see [12].

45



where a semicolon denotes covariant differentiation with respect to the back-
ground metric b, while

e :=

√
|det gρσ|√
|det bµν |

, (8.4)

∆αν :=

√
|det gρσ|√
|det bαβ |

gαν − bαν . (8.5)

8.1 Asymptotically Birmingham metrics

We wish, first, to calculate (8.1) for (n + 1) dimensional metrics with Birm-
ingham asymptotics, with a negative cosmological constant Λ (equivalently, in
(6.2) we take ε = −1), with the Killing vector ∂0 and with Σ = {t = const}.
For this, it is useful to introduce the following b–orthonormal frame:

e
0̂

=
1√

β + r2

ℓ2

∂0 , e
1̂

=

√
β +

r2

ℓ2
∂r , e

Â
=

1

r
ι
Â
, (8.6)

where ι
Â

is an orthonormal (ON) frame for the metric h̊. To avoid ambiguities:
the contravariant form of the background metric is, by definition

bµν∂µ ⊗ ∂ν := −e
0̂
⊗ e

0̂
+ e

1̂
⊗ e

1̂
+

n∑

A=2

e
Â
⊗ e

Â
. (8.7)

Here and in what follows in the current section we use

A ∈ {2, 3, ..., n} ,

and we shall use hatted indices to denote the components of a tensor field in
the frame eµ̂ defined in (8.6). The connection coefficients, defined as ∇eµ̂

eν̂ =

ω ρ̂ν̂µ̂eρ̂ with ∇ associated with b, read

ω
0̂1̂0̂

= − r

ℓ2
√

β+ r2

ℓ2

= − 1
√

β ℓ4

r2
+ℓ2

= −1
ℓ +O(r−2) ,

ω
1̂ÂB̂

= −
√

β+ r2

ℓ2

r bÂB̂ = −
√

β
r2

+ 1
ℓ2
bÂB̂ =

(
−1
ℓ +O(r−2)

)
bÂB̂ . (8.8)

The remaining possibly non-vanishing connection coefficients, not obtained
from the above by permutations of indices, are the ω

ÂB̂Ĉ
’s, with Â 6= B̂. For

example, in space-time dimension 3 + 1, if we use a coordinate system θ, ϕ on
N̊ in which h̊ takes, locally, the form dθ2 + sinh2 θ dϕ2 for k = −1, dθ2 + dϕ2

for k = 0, and dθ2 + sin2 θ dϕ2 for k = 1, we find

ω
2̂3̂3̂

=





− coth θ
r , k = −1 ,

0 , k = 0 ,
− cot θ

r , k = 1 .

(8.9)

However, the exact form above, and the one of ω
ÂB̂Ĉ

in general, is not needed
for what follows.
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We further have

X 0̂ =
√
β + r2

ℓ2
= r

ℓ +O(r−1) , (8.10)

e
1̂
(X 0̂) = (X 0̂);1̂ = −X

0̂;1̂
= X

1̂;0̂
= r

ℓ2
, (8.11)

with the third equality in (8.11) following from the Killing equations Xµ;ν +
Xν;µ = 0; all the remaining X µ̂’s and Xµ̂;ν̂ ’s are zero.

Let the tensor field eµν be defined by the formula

eµν := gµν − bµν . (8.12)

As already mentioned, we use hatted indices to denote the components of a
tensor field in the frame eµ̂, e.g. eµ̂ν̂ denotes the coefficients of eµν with respect
to that frame:

eµν∂µ ⊗ ∂ν = eµ̂ν̂eµ̂ ⊗ eν̂ .

Let the θÂ’s form a coframe dual to the eÂ’s. Then

θ0̂ ∧ . . . ∧ θn̂ =
√
|det bαβ |dx0 ∧ . . . ∧ dxn ,

and so on the level sets of t intersected with those of r we have

U
αβdSαβ|r=R = U

α̂β̂eα̂⌋eβ̂⌋(dx
0 ∧ . . . ∧ dxn)|r=R

=
U
α̂β̂

√
|det bαβ |

eα̂⌋eβ̂⌋(θ
0̂ ∧ . . . ∧ θn̂)|r=R

=
2U1̂0̂

√
|det bαβ |

θ2̂ ∧ . . . ∧ θn̂|r=R .

From (8.1) we thus find

H(X,S ) = lim
R→∞

∫

S∩{r=R}

U
1̂0̂

√
|det bαβ |

θ2̂ ∧ . . . ∧ θn̂ . (8.13)

We wish to analyze when the above limit exists. Since every θÂ comes with a
multiplicative factor of r in local coordinates on the level sets of R within S ,
again in local coordinates the integrand in (8.13) behaves as rn−1

U
1̂0̂. Now,

rn−1
U
1̂0̂
βX

β = rn−1
U
1̂0̂

0̂X
0̂ ≈ rn

ℓ
U
1̂0̂

0̂ ,

hence in the calculations we only need to keep track of those terms in U
1̂0̂

0̂/
√

|det bαβ |
which decay slower than r−n, or at that rate. Similarly one sees from (8.10)–
(8.11) that only those terms in

∆α̂ν̂ =
√
|det gρ̂σ̂| gα̂ν̂ − bα̂ν̂

(compare (8.5)) which are O(r−n), or which are decaying slower, will give a
non-vanishing contribution to the term involving the derivatives of X in the
integral (8.13).
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We will say that a metric is asymptotically Birmingham if there exists ǫ > 0
such that in the frame (8.6) it holds

eµ̂ν̂ = O(r−n/2−ǫ) , eρ̂(e
µ̂ν̂) = O(r−n/2−ǫ) , det(eµ̂ν̂) − 1 = O(r−n−ǫ) .

(8.14)
We note that we have imposed the volume-element condition to guarantee con-
vergence of mass integrals, see (8.16)-(8.17) below.

Recall that we only consider vector fields X which are b-Killing vector fields,
and therefore their tetrad components satisfy

|X ν̂ | + |∇̊µ̂X
ν̂ | ≤ Cr . (8.15)

We claim that (8.14) guarantee a finite total energy in vacuum. Indeed, this
follows from the standard integral identity (cf., e.g., [9]),

∫

{x0=0,r=R}
U
αβdSαβ = 2

∫

{x0=0,R0≤r≤R}
∇̊βU

αβdSα +

∫

{x0=0,r=R0}
U
αβdSαβ ,

(8.16)
with

16π∇̊βU
αβ =

(√
|det g|gαγ −

√
|det b|bαγ

)
bγβX

β

+
(
T̊

α
κ − T

α
κ

)
Xκ + 2Λ

(√
|det b| −

√
|det g|

)
Xβ

+
√

|det b|
(
QαβX

β +Qαβγ∇̊βXγ
)
, (8.17)

where Qαβ is a quadratic form in ea(e
bc), and Qαβγ is bilinear in ea(e

bc) and
eab, both with bounded coefficients. Finally,

8πT
λ
κ :=

√
|det g|

(
Rλκ −

1

2
gαβRαβδ

λ
κ + Λδλκ

)
, (8.18)

with T̊ λ
κ defined as in (8.18) with g replaced by b.

Passing with R to infinity in (8.16), under (8.14) the right-hand side con-
verges to a finite limit in vacuum, and one finds indeed that the resulting
Hamiltonians are finite.

If the metric is not vacuum, the same argument applies if one moreover
assumes that there exists ǫ > 0 such that

|T µ
ν − T̊

µ
ν | ≤ C(1 + r)−1−ǫ . (8.19)

We note that for the calculations of the boundary term the following, slightly
weaker, conditions suffice:

eµ̂ν̂ = o(r−n/2) , eρ̂(e
µ̂ν̂) = o(r−n/2) . (8.20)

The boundary conditions (8.20) ensure that one needs to keep track only of

those terms in U
1̂0̂ which are linear in eµ̂ν̂ and eρ̂(e

µ̂ν̂), when U
1̂0̂ is Taylor-

expanded around b.
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For example, if g has the same leading order terms as a Birmingham metric
(6.1)-(6.2) we find, writing f0 for f |m=0, using (8.6)

g♯ := gµ̂ν̂eµ̂eν̂ = −f0
f

(
e
0̂

)2
+
f

f0

(
e
1̂

)2
+

n−1∑

Â=2

(
e
Â

)2
, (8.21)

which yields

e0̂0̂ = − f0
f + 1 =

f−f0
f = −2mℓ2

rn

(
1 +O(r−2)

)
,

e1̂1̂ =
f0−f
f0

= −2mℓ2

rn

(
1 +O(r−2)

)
,

e
1̂
(e0̂0̂) = f0 ∂r

(
f−f0
f0

)
= 2nmℓ

rn

(
1 +O(r−2)

)
,

e
1̂
(e1̂1̂) = f0 ∂r

(
f−f0
f0

)
= 2nmℓ

rn

(
1 +O(r−2)

)
, (8.22)

with the remaining eµ̂ν̂ ’s and eσ̂(eµ̂ν̂)’s vanishing, so that Equations (8.20) are
satisfied for metrics with leading Birmingham asymptotics.

Rather generally, under (8.20) one obtains, using bµ̂ν̂ = diag(−1,+1, · · · ,+1),

gµ̂ν̂ = bµ̂ν̂ − bµ̂α̂bν̂β̂e
α̂β̂ + o(r−n) , (8.23)

√
|det gµν | =

√
|det bµν |

(
1 +

1

2

(
e0̂0̂ − e1̂1̂ − bÂB̂e

ÂB̂
)

+ o(r−n)

)
, (8.24)

16πU1̂0̂
0̂√

|det bαβ|
=

2
√

|det bµν |√
|det gρσ|

g0̂γ̂(e2gγ̂[1̂g0̂]κ̂);κ̂

= 4g0̂γ̂g
γ̂[1̂g0̂]κ̂e;κ̂ + 2eg0̂γ̂(gγ̂[1̂g0̂]κ̂);κ̂

= −2g1κ̂e;κ̂ + 2eg0̂γ̂((bγ̂[1̂ + eγ̂[1̂)(b0̂]κ̂ + e0̂]κ̂));κ̂

= −2e;1̂ + 2b0̂γ̂(bγ̂[1̂b0̂]κ̂ + bγ̂[1̂e0̂]κ̂ + eγ̂[1̂b0̂]κ̂ + eγ̂[1̂e0̂]κ̂);κ̂ + o(r−n)

= −2e;1̂ + 2b0̂0̂(b
0̂[1̂e0̂]κ̂ + e0̂[1̂b0̂]κ̂);κ̂ + o(r−n)

= −2e;1̂ − (−b0̂0̂e1̂κ̂ + e0̂1̂b0̂κ̂ − e0̂0̂b1̂κ̂);κ̂ + o(r−n)

= −2e;1̂ − e1̂κ̂;κ̂ + e0̂1̂;0̂ + e0̂0̂;1̂ + o(r−n) . (8.25)

This can be further rewritten as

16πU1̂0̂
0̂√

|det bαβ|
= −2e;1̂ − e1̂1̂;1̂ − e1̂Â;Â + e0̂0̂;1̂ + o(r−n)

= e
1̂
(bÂB̂e

ÂB̂) + ω
Â1̂B̂

eÂB̂ − ωÂ1̂Âe
1̂1̂ − 1

r
D̊
Â
e1̂Â + o(r−n)

= e
1̂
(bÂB̂e

ÂB̂) +

√
β

r2
+

1

ℓ2

(
bÂB̂e

ÂB̂ − (n− 1)e1̂1̂
)

−1

r
D̊
Â
e1̂Â + o(r−n) , (8.26)

Here D̊
Â

denotes the covariant derivative on (N̊ , h̊), with e1̂Â being understood

as a vector field on N̊ , with Â, B̂ running from 2 to n.
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We also have

1

8π
∆α̂[1̂

(
X 0̂]
)
;α̂

=
1

16π

(
∆1̂1̂ − ∆0̂0̂

)
(X 0̂);1̂ =

r

16πℓ2

(
∆1̂1̂ − ∆0̂0̂

)

= − r

16πℓ2
bÂB̂e

ÂB̂ + o(r−n) . (8.27)

Inserting all this into (8.13) one is finally led to the following simple expression
for the Hamiltonian mass of asymptotically Birmingham metrics:

mHam = lim
R→∞

rn

16π

∫

S∩{r=R}

[(
1

ℓ2
+
β

r2

)(
r∂(bÂB̂e

ÂB̂)

∂r
− (n− 1)e1̂1̂

)

+
β

r2
bÂB̂e

ÂB̂

]
dn−1µh̊ , (8.28)

In space-time dimension n+1 = 4 this simplifies to the expression given in [19]:

mHam = lim
R→∞

R3

16πℓ2

∫

S∩{r=R}

[
r
∂e2̂2̂

∂r
+ r

∂e3̂3̂

∂r
− 2e1̂1̂

]
dn−1µh̊ . (8.29)

If in addition to (8.14) we assume that

eµ̂ν̂ = O(r−n) , eρ̂(e
µ̂ν̂) = O(r−n) (8.30)

(this is actually the fall-off rate for Birmingham metrics), (8.28) can be rewritten
in a form similar to (8.29) in higher dimensions as well:

mHam = lim
R→∞

rn

16πℓ2

∫

S∩{r=R}

[(
r∂(bÂB̂e

ÂB̂)

∂r
− (n− 1)e1̂1̂

)]
dn−1µh̊ . (8.31)

As an example, if g is the 3 + 1-dimensional Birmingham metric (6.1), we
find

mHam =
µh̊(N̊ )m

4π
, (8.32)

where

µh̊(N̊ ) :=

∫

N̊

dn−1µh̊ . (8.33)

We conclude that the Hamiltonian mass is proportional to m, with the same
proportionality factor as the characteristic mass of null hypersurfaces asymp-
totic to level sets of t, see (7.5):

mTB = mHam . (8.34)

When N̊ = T 2 (equivalently, β = 0) with area normalized to 4π we obtain
mHam = m. For β = ±1 it follows from the Gauss–Bonnet theorem that
µȟ(N̊ ) = 4π|1 − g∞|, where g∞ is the genus of N̊ , hence

mHam = |1 − g∞|m. (8.35)

One recovers mHam = m for N̊ = S2, but this will be true only up to a positive
proportionality factor for N̊ ’s of higher genus.
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8.2 Asymptotically HM-type metrics

The aim of this section is to derive a formula analogous to (8.31) for metrics with
Horowitz–Myers-type asymptotics. For this consider, as before, the background
metric

b := −e
0̂
⊗ e

0̂
+ e

1̂
⊗ e

1̂
+

n∑

A=2

e
Â
⊗ e

Â
,

where now instead of (8.6) we set

e
0̂

=
ℓ

r
∂0 , e

1̂
=

√
β +

r2

ℓ2
∂r , e

Â
=

1

r
ι
Â
, en̂ =

1

ℓλ
√
β + r2

ℓ2

∂α . (8.36)

Here ι
Â

is an ON frame for the metric ȟ as in the first line of (7.10), and in
this section we let

A,B ∈ {2, 3, ..., n − 1} , (8.37)

similarly for hatted indices.
A metric g will be said to be asymptotically HM along S , or simply asymp-

totically HM, if there exists a coordinate system (t, r, xA) and ǫ > 0 such that
at S := {t = 0} we have

det gµν
det bµν

= 1 +O(r−n−ǫ) , (8.38)

and if the frame components of g with respect to the frame (8.36) satisfy

eα̂β̂ := gα̂β̂ − bα̂β̂ = O(r−n/2−ǫ) , eµ̂(eα̂β̂) = O(r−n/2−ǫ) . (8.39)

This is formally the same as (8.14), but both the frame and the background
metric are different. (As before, the volume element condition is added to
guarantee convergence of mass integrals.)

The identity (8.16) shows as before that conditions (8.38)-(8.39) guarantee
a finite Hamiltonian mass in vacuum. We expect that the arguments of [15] can
be adapted to this case to show that the mass is independent of the freedom of
choice of coordinates and frames satisfying our conditions above, but we have
not attempted to check this.

Similarly to the Birmingham case, our calculations of the boundary integral
will be done with (8.39) replaced by the slightly weaker conditions

eα̂β̂ = o(r−n/2) , eµ̂(eα̂β̂) = o(r−n/2) , e = 1 + o(r−n/2) . (8.40)

The connection coefficients ωµ̂ν̂ρ̂ of the background metric b read

ω
0̂1̂0̂

= −
√

β+ r2

ℓ2

r = −
√

β
r2 + 1

ℓ2 = −1
ℓ +O(r−2) ,

ω
1̂ÂB̂

= −
√

β+ r2

ℓ2

r bÂB̂ ,

ω
1̂n̂n̂

= − r

ℓ2
√

β+ r2

ℓ2

= − 1
√

β ℓ4

r2
+ℓ2

= −1
ℓ +O(r−2) . (8.41)
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The remaining possibly non-vanishing connection coefficients, which are not
obtained from the above by permutations of indices, are the ω

ÂB̂Ĉ
’s, with A 6=

B. As in the previous section, the exact values of the ω
ÂB̂Ĉ

’s are not needed
in what follows. We further have,

X 0̂ = r
ℓ , (8.42)

e
1̂
(X 0̂) = (X 0̂);1̂ = −X

0̂;1̂
= X

1̂;0̂
= 1

ℓ

√
β + r2

ℓ2
= r

ℓ2
+O(r−1) , (8.43)

where all the remaining X µ̂’s and Xµ̂;ν̂ ’s are zero.
Writing f0 for f |m=0, from (8.6) we see that the HM-type metrics can be

written as

g♯ = −e
0̂
⊗ e

0̂
+
f

f0
e
1̂
⊗ e

1̂
+

n−1∑

Â=2

e
Â
⊗ e

Â
+
f0
f
en̂ ⊗ en̂ . (8.44)

This leads to

e1̂1̂ = g1̂1̂ − b1̂1̂ =
f

f0
− 1 =

f − f0
f0

= −2mℓ2

rn
(
1 +O(r−2)

)
,

e0̂0̂ = 0 = eÂB̂ , eµ̂ν̂ = 0 for µ 6= ν ,

en̂n̂ =
f0 − f

f
=

2mℓ2

rn
(
1 +O(r−2)

)
, (8.45)

which satisfies the decay conditions set forth above.
Quite generally, for metrics satisfying (8.40) we find as before

e = 1 +
1

2

(
e0̂0̂ − e1̂1̂ − bÂB̂e

ÂB̂ − en̂n̂
︸ ︷︷ ︸

)
+ o(r−n) , (8.46)

and note that (8.38) implies that the underbraced term is also o(r−n). Equa-
tion (8.25) still applies and, taking into account (8.37), gives

16πU1̂0̂
0̂√

|det bαβ|
= −2e;1̂ − e1̂1̂;1̂ − e1̂Â;Â − e1̂n̂;n̂ + e0̂0̂;1̂ + o(r−n)

= e
1̂

(
bÂB̂e

ÂB̂ + en̂n̂
)
− en̂(e1̂n̂) + ω

Â1̂B̂
eÂB̂ − ωÂ1̂Âe

1̂1̂

+ω
n̂1̂n̂

(
en̂n̂ − e1̂1̂

)
− 1

r
Ď
Â
e1̂Â + o(r−n)

= e
1̂

(
bÂB̂e

ÂB̂ + en̂n̂
)
− en̂(e1̂n̂) +

√
β

r2
+

1

ℓ2

(
bÂB̂e

ÂB̂ − (n− 2)e1̂1̂
)

+

(
β
ℓ4

r2
+ ℓ2

)−1/2(
en̂n̂ − e1̂1̂

)
− 1

r
Ď
Â
e1̂Â + o(r−n) . (8.47)

Here Ď
Â
e1̂Â is understood as the covariant divergence of the vector field e1̂ÂeÂ

with respect to the metric ȟ.
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Furthermore,

1

8π
∆α̂[1̂

(
X 0̂]
)
;α̂

=
1

16π

(
∆1̂1̂ − ∆0̂0̂

)
(X 0̂);1̂

=
1

16πℓ

(
∆1̂1̂ − ∆0̂0̂

)√
β +

r2

ℓ2
+ o(r−n)

= − 1

16πℓ

(
bÂB̂e

ÂB̂ + en̂n̂
)√

β +
r2

ℓ2
+ o(r−n) . (8.48)

Inserting all the results into (8.13) we finally find the following expression
for the Hamiltonian mass for asymptotically HM metrics, where we have used
the fact that some terms integrate out to zero:

mHam = lim
R→∞

rn

16πℓ2

∫

S∩{r=R}


 e

n̂n̂ − e1̂1̂√
βℓ2

r2
+ 1

+

√
1 +

βℓ2

r2

(
r∂(bÂB̂e

ÂB̂ + en̂n̂)

∂r
− (n− 2)e1̂1̂ − en̂n̂

)]
dn−1µĥ , (8.49)

where dn−1µĥ is the measure element associated with the metric (7.15). In
space-time dimension n+ 1 = 4 this coincides formally with (8.29)

mHam = lim
R→∞

r3

16πℓ2
×
∫

S∩{r=R}

[
r∂(e2̂2̂ + e3̂3̂)

∂r
− 2e1̂1̂

]
dn−1µĥ . (8.50)

As an example, if g is the 3+1-dimensional Horowitz-Myers metric, we find

mHam = −µĥ(N̊ )m

8π
, (8.51)

where

µĥ(N̊ ) := lim
R→∞

∫

S∩{r=R}
dn−1µĥ . (8.52)

This coincides with what we found for the coordinate mass of Horowitz–Myers
metrics, where however we had to restrict ourselves to the case β = 0. We see
that no such restriction arises for the Hamiltonian mass.

8.3 Fefferman-Graham asymptotics with an ultrastatic confor-
mal infinity

In this section we assume that n = 3 and Λ < 0, unless explicitly indicated oth-
erwise. We consider a vacuum space-time with a smooth conformal completion,
thus both the background metric b and g have a Fefferman-Graham expansion
as in (2.12) in a suitable coordinate system such that x = 0 at I :

b = x−2ℓ2(dx2 + b̃ab(x, x
c)dxadxb) ,

g = x−2ℓ2(dx2 + g̃ab(x, x
c)dxadxb) , (8.53)
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where (xa) = (t, xA), and with the coordinate components b̃ab asymptotic to
g̃ab as O(x3). Here we have used the same compactifying factor

Ω = x/ℓ

to pass from g to g̃ = Ω2g as from b to b̃ = Ω2b.
For simplicity we will assume an ultrastatic form of the conformal-boundary

metric

˚̃
b ≡ ˚̃

bab dx
adxb := b̃ab|x=0 dx

adxb = g̃ab|x=0 dx
adxb =: ˚̃gab dx

adxb ≡ ˚̃g , (8.54)

namely

b̃0A(0, xc) = 0 , ∂ab̃00(0, x
c) = 0 , ∂0b̃AB(0, xc) = 0 (8.55)

(compare the discussion after (2.35)). Note that this is compatible both with
asymptotically Birmingham and asymptotically Horowitz-Myers metrics. More
general metrics and sections of I will be considered in future work.

Let (b̃ab)n denote the coefficient of xn in a Taylor expansion of b̃ab at x =
0, similarly for (g̃ab)n. (The reader is warned that these coefficients do not
translate as such to expansion coefficients in e.g. Bondi coordinates, as rBo 6=
1/x in general even if ℓ = 1, see (8.78) below.) It follows from Section 2.2 that

(b̃ab)n = (g̃ab)n , n ∈ {0, 1, 2} and (b̃ab)1 = 0 . (8.56)

In the calculations below we will assume that

(b̃ab)3 = 0 . (8.57)

If this is not the case, in all the formulae below it suffices to replace (g̃ab)3 by
(g̃ab)3 − (b̃ab)3.

We wish to determine the characteristic mass of a null hypersurface asymp-
totic to a section of I with constant x0, and compare it with the Hamiltonian
mass mHam. Without loss of generality, after choosing a conformal gauge ap-
propriately, we can assume that b̃AB |x=0dx

AdxB has constant scalar curvature
β. It then follows from (2.15) that

(b̃0A)2 = 0 ⇐⇒ b̃0A = O(x3) . (8.58)

We pass now to the calculation of the Hamiltonian mass of g. Using e11 =
0 = e1̂1̂ and the first line of (8.26) (which applies here), we find quite generally
in dimension n, without assuming (8.55),

16πU1̂0̂
0̂√

|det bαβ |
= e1̂(bÂB̂e

ÂB̂) + (2ω0̂
Â1̂ − ω1̂

0̂Â)e0̂Â − ω1̂
ÂB̂e

ÂB̂ + o(xn) . (8.59)

Returning to the three-dimensional ultrastatic case, we choose the b-orthonormal
frame eα̂ as

e1̂ =
x

ℓ
∂x , e0̂ =

x

ℓ
√

|b̃00|
∂0 , eÂ =

x

ℓ
(ψÂ +O(x2)∂B +O(x3)∂0) , (8.60)
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where {ψÂ}Â=2,...,n is an ON frame for
˚̃
bABdx

AdxB . Let us denote by θµ̂ the
coframe dual to eν̂ , then

θ1̂ =
ℓ

x
dx , θ0̂ =

ℓ
√

|b̃00|
x

dx0 +O(x2)dxA , θÂ =
ℓ

x
(ιÂ +O(x2)dxa) , (8.61)

where ιÂ is a coframe dual to ψÂ. The components gµ̂ν̂ of the metric g with
respect to this frame read

g1̂1̂ = 1 , g1̂â = 0 , g0̂0̂ = −1 +
(g̃00)3

|b̃00|
x3 + o(x3) , (8.62)

g0̂Â =
(g̃0Â)3√
|b̃00|

x3 + o(x3) , gÂB̂ = bÂB̂ + (g̃ÂB̂)3x
3 + o(x3) , (8.63)

where (g̃0Â)3 denotes the ι-component of (g̃0A)3dx
A, as defined through the

formula

(g̃0A)3dx
A = (g̃0Â)3ι

Â; similarly (g̃AB)3dx
AdxB = (g̃ÂB̂)3ι

ÂιB̂ .

This leads to

eÂB̂ = −bÂĈbB̂D̂(g̃ĈD̂)3x
3 + o(x3) = −(g̃ÂB̂)3x

3 + o(x3) , (8.64)

e1̂µ̂ = 0 , e0̂0̂ = −(g̃00)3

|b̃00|
x3 + o(x3) , e0̂Â =

(g̃0Â)3√
|b̃00|

x3 + o(x3) , (8.65)

where, of course, bÂB̂ = bÂB̂ = δÂ
B̂

. Note that the condition e = 1 + o(x3),

which is equivalent to the ˚̃bab-tracelessness of (g̃ab)3, reads

−(g̃00)3

|b̃00|
+ bÂB̂(g̃ÂB̂)3 ≡ −(g̃00)3

|b̃00|
+˚̃b

AB
(g̃AB)3 = 0 . (8.66)

Setting
˚̃
bAB := b̃AB |x=0, and using ωα̂µ̂ν̂ = θα̂(eµ̂;ν̂), we find

Γ1
AB =

˚̃
bAB

x +O(x2) , ω1̂
ÂB̂ = 1

ℓ bÂB̂ +O(x3) , ω0̂
Â1̂ = O(x2) , (8.67)

ωÂ0̂Â = O(x4) , ω1̂
0̂Â = O(x4) . (8.68)

This leads to the following rewriting of (8.59):

16πU1̂0̂
0̂√

|det bαβ|
=

x

ℓ
∂x(bÂB̂e

ÂB̂) − 1

ℓ
bÂB̂e

ÂB̂ + o(x3)

= −2

ℓ
bÂB̂(g̃ÂB̂)3x

3 + o(x3) . (8.69)

Next, we choose X to be ∂0, so that

X = ∂0 =
ℓ
√

|b̃00|
x

e0̂ ≡ X 0̂e0̂ , X 0̂
;1̂ = −

√
|b̃00|
ℓx

+O(x) = X 1̂
;0̂ , (8.70)
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X 1̂
;â = O(x3) , X 0̂

;â = O(x2) , ∆1̂1̂ = o(x3) , ∆1̂â = 0 , (8.71)

∆0̂0̂ = e0̂0̂ + o(x3) , ∆0̂Â = e0̂Â + o(x3) , (8.72)

1

8π
∆α̂[1̂X 0̂]

;α̂ =

√
|b̃00|

16πℓx
e0̂0̂ + o(x2) = −

√
|b̃00|

16π
× (g̃00)3

|b̃00|ℓ
x2 + o(x2) . (8.73)

Hence, using (8.1)-(8.3), for any hypersurface S intersecting I in a section
{x0 = const}, after taking into account an overall minus sign because of the
change of orientation when replacing r by x = ℓ/r + ...,

mHam = − lim
x→0

ℓ2

x2

∫
U 1̂0̂

√
det˚̃bABd

2x

=
ℓ
√

|b̃00|
16π

∫ (
2bÂB̂(g̃ÂB̂)3 +

(g̃00)3

|b̃00|

)√
det˚̃bABd

2x

=
3ℓ

√
|b̃00|

16π

∫
bÂB̂(g̃ÂB̂)3

√
det

˚̃
bABd

2x . (8.74)

It is clearly convenient to normalise the asymptotic time coordinate x0 so that
(compare (2.17))

˚̃g00 ≡ b̃00|x=0 = −ℓ−2 ⇐⇒ ˚̃g
00

= −ℓ2 , (8.75)

leading finally to

mHam =
3

16π

∫
bÂB̂(g̃ÂB̂)3

√
det

˚̃
bABd

2x . (8.76)

Note that this coincides formally with both (8.31) and (8.49), but it was not a
priori clear to us that it should.

We wish to compare (8.74) with the characteristic mass as defined by (5.1)-
(5.2). For this, we need to determine the mass aspect function M of (5.2).
If the zero-level set of uBo is asymptotic to the zero-level set of t, an asymp-
totic expansion of the solutions of the equations which determine the Bondi
coordinates shows that

t = uBo − ℓx− 1

6ℓ3
(g̃00)2x

3 +O(x4) , xA = xABo +
1

3
ℓ(b̃0A)2x

3 +O(x4) .

The above solution is obtained after imposing the condition that u is a retarded
null coordinate, hence t is an increasing function of r at fixed u, hence decreasing
in x at fixed u.

Changing coordinates, one finds

guBouBo
= x−2( − 1 + ℓ2(g̃00)2x

2 + ℓ2(g̃00)3x
3 +O(x4)) . (8.77)

It remains to replace x by a Bondi coordinate, defined through the formula

rBo =

(
det gAB

det˚̃bAB

)1/4

.
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A Mathematica calculation gives

1

x
=
rBo

ℓ
− ℓ

˚̃
b
AB

(g̃AB)2
4rBo

− ℓ3̊b̃
AB

(g̃AB)3
4r2Bo

+O(r−3
Bo ) . (8.78)

Inserting into (8.77), one finds that the mass aspect is

M ≡ (guBouBo
)1

2
=

1

2

(
ℓ3(g̃00)3 +

1

2
bÂB̂(g̃ÂB̂)3

)
=

3ℓ

4
bÂB̂(g̃ÂB̂)3 , (8.79)

where we have used (8.66). Comparing (8.76) and (5.1), we conclude that

mHam = mTB ,

as desired.

9 Conclusions

We have introduced a natural notion of total mass for characteristic hypersur-
faces in space-times with non-vanishing cosmological constant. The mass is
a natural generalisation of the Trautman-Bondi mass, as defined for Λ = 0.
We have proved a generalisation of the positivity identity of [17]. The iden-
tity introduces the renormalised volume as a new global quantity associated to
characteristic initial data sets. In the simplest case of light-cones in vacuum
this is the identity (5.58), which we rewrite as

mTB − Λ

8π

(
1

12

∫

N̊

τ2

(
τ22
2

− |σ|24
3

)
dµh̊ + Vren

)

=
1

16π

∫ ∞

0

∫

N̊

(
1

2
|ξ|2 + |σ|2e

∫∞
r

r̃τ−2
2r̃

dr̃

)
dµǧdr . (9.1)

The left-hand side involves the renormalised volume together with objects which
can be determined by looking at the asymptotic behaviour of the fields. This
provides a new global positivity statment, proving indeed that the left-hand
side of (9.1) is positive. It follows from [6] that the left-hand side vanishes if
and only if the space-time is de Sitter or anti-de Sitter to the future of the
light-cone.

The balance formula (9.1) raises the question of the right definition of mass
when Λ 6= 0. Recall that we used (5.1)-(5.2) to define mTB:

mTB =
1

8π

∫

N̊

(
gBo
00

)
1
dµh̊ . (9.2)

A first naive idea would be to define instead the left-hand side of (9.1) as
the mass, obtaining positivity as a corollary of (9.1). But the calculations in
Appendix A strongly suggest that a splitting of the left-hand side of (9.1) in a
renormalised-volume contribution and a mass contribution is meaningful.

The next idea would be to define the characteristic mass as

mc = mTB − Λ

8π

(
1

12

∫

N̊

τ2

(
τ22
2

− |σ|24
3

)
dµh̊

)
, (9.3)
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leading to the more elegant identity:

mc −
Λ

8π
Vren =

1

16π

∫ ∞

0

∫

N̊

(
1

2
|ξ|2 + |σ|2e

∫∞

r
r̃τ−2
2r̃

dr̃

)
dµǧdr . (9.4)

Alternatively, one could add an integral expression involving τ2 and |σ|4 to
the definition of mTB, adjusting (9.1) accordingly. Recall that (9.2) is equivalent
to (5.11), which for a smooth conformal completion reads

mTB =
1

16π

∫

N̊

(ζBo)2 dµh̊ . (9.5)

In the asymptotically flat case and with spherical cross-sections of I , the gauge-
invariant version of this formula is [17]

1

16π

∫

N̊

(ζ2 + τ2) dµh̊ , (9.6)

and one could use this formula as a definition of characteristic mass. (Whether
or not, and in which sense, this is gauge-invariant when Λ 6= 0 remains to be
seen). Recall that we have seen (cf. (5.31) in vacuum and with a smooth
conformal completion) that (9.5) translates instead into

mTB =
1

16π

∫

N̊

(ζ2 + τ2) dµh̊ +
Λ

16π

∫

N̊

τ2|σ|24 dµh̊ (9.7)

(note that the multiplicative factor R̊/2 in front of τ2 in our formula equals 1
for a sphere), when Λ 6= 0 and an affine parameter r is used.

As seen in Appendix A, we have τ2 6= 0 for asymptotically Horowitz-Myers
metrics, which suggests strongly that using τ32 -terms to redefine the mass is not
a good idea. Whether or not adding some τ2|σ|24-terms is meaningful requires
further analysis. We plan to return to this question in the future.

Yet another alternative is to define the renormalized volume as the whole
expression in brackets at the left-hand side of (9.1),

Vren 7→ Ṽ ren := Vren +
1

12

∫

N̊

τ2

(
τ22
2

− |σ|24
3

)
dµh̊ , (9.8)

leading similarly to a nicer identity:

mTB − Λ

8π
Ṽren =

1

16π

∫ ∞

0

∫

N̊

(
1

2
|ξ|2 + |σ|2e

∫∞

r
r̃τ−2
2r̃

dr̃

)
dµǧdr . (9.9)

Possibly, a mixture of the above will provide the most meaningful definitions.
Incidentally, Ṽ ren can be obtained by replacing r in the original definition

of V (r), where r is the affine coordinate normalised as before, by

r = r̃ +
τ2
2

+
a

r̃2
− 2τ2|σ|24

9r̃2
, (9.10)

where a is any function of the angular coordinates. In other words, set

Ṽ (r̃) := V (r̃ +
τ2
2

+
a

r̃2
− 2τ2|σ|24

9r̃2
) .
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Then Ṽ ren is the limit, as r̃ goes to infinity, of Ṽ (r̃) minus the sum of the terms
with positive powers of r̃ and the ln r̃ term. In fact, a change of variables of the
form

r = r̃ +
τ2
2

+
|σ|24
2r̃

− 2τ2|σ|24
9r̃2

+
τ2|σ|24
3r̃2

ln r̃ + o(r̃−2) (9.11)

gives

V (r) =
4π

3
r̃3 + Vren + o(r̃−1) . (9.12)

One wonders about the nature of (9.11). The naive guess would be that r̃ is
the Bondi coordinate. However, in our case we have (in vacuum, but allowing
|σ|5 6= 0)

rBo = r − τ2
2

+
|σ|24
4r

+
1

6

|σ|25 − 1
4 |σ|24τ2
r2

+O(r−3) , (9.13)

with inverse transformation

r = rBo +
τ2
2

− |σ|24
4rBo

+
|σ|24τ2 − |σ|25

6r2Bo

+O(r−3
Bo ) . (9.14)

We see that r̃ coincides with the Bondi coordinate at order zero, but differs at
the next order.

Which definition is most relevant, or indeed whether there exists a most
relevant definition at all, requires further studies.

In any case, we have shown in some well understood general cases with
Λ ≤ 0, as well as on specific examples, that the characteristic mass mTB defined
by (9.7) coincides with previously accepted definitions of mass.

We emphasise that both the definition of mass and the balance formula (9.1)
have a clear, geometric and gauge-independent, meaning; compare Remark 5.1.

A Null geometry of Horowitz-Myers metrics and the

balance equation

The mass identity (5.56) can be viewed as a balance formula. It is instructive to
work-out the contribution of each of the terms appearing there to the total mass
for the Horowitz-Myers metrics. For this we need to derive the asymptotics both
for small and large r of the fields appearing there. We consider the metric (6.8)
with f given by (6.9) and β = 0 in space-dimension equal to three.

Choosing s(r0) = 0, where r0 is the largest zero of f , from (7.22) we obtain
a small-r expansion, for r ≥ r0:

s =
2r0

ℓ
√
f ′(r0)

√
r − r0 +O((r − r0)

3
2 ) for r − r0 > 0 small , (A.1)

where we have assumed that f ′(r0) 6= 0. This implies, for small s,

r − r0 =
ℓ2f ′(r0)

4r20
s2 +O(s4) , (A.2)

f(r) =
(ℓf ′(r0))2

4r20
s2 +O(s4) . (A.3)
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Recall that the large-s behaviour of r has been derived in (7.24)-(7.25).
As in Section 3, we denote by ǧ the metric induced by g on the level sets of

u and r:

ǧ = f(r)ℓ2λ2dα2 + r2dϕ2 . (A.4)

Let xA denote the coordinates α and ϕ. In the affine parameterisation and in
the region where f is non-negative it holds that8

√
det ǧAB = rℓλ

√
f(r) = λ

ℓ2f ′(r0)

2
(s+O(s3)) for small s , (A.5)

νA = 0 , (A.6)

ξA = 0 , (A.7)

χ :=
1

2
∂sǧ =

ℓ
√
f(r)

2r
∂r(f(r)λ2ℓ2dα2 + r2dϕ2)

= ℓ
√
f(r)

(
∂rf(r)

2r
λ2ℓ2dα2 + dϕ2

)
(A.8)

≈ ℓ2f ′(r0)s+O(s3)

2r0

(
f ′(r0)

2r0
λ2ℓ2dα2 + dϕ2

)
for small s , (A.9)

τ := gABχAB = ℓ

(
∂rf(r)

2r
√
f(r)

+ r−2
√
f(r)

)
(A.10)

=

{
s−1 +O(s), for small s ;

2s−1 + 2(s∗ − r0)s−2 +O(s−3), for large s,
(A.11)

with s∗ = (2mℓ)1/3x∗, where x∗ is given by (7.27). Further

σ := χ− 1

2
τ gABdx

AdxB = ℓ
√
f(r)

(
∂rf(r)

2r
λ2ℓ2dα2 + dϕ2

)

−1

2
ℓ

(
∂rf(r)

2r
√
f(r)

+ r−2
√
f(r)

)
(fλ2ℓ2dα2 + r2dϕ2) (A.12)

=
ℓ

2

(
∂rf(r)

2r
√
f(r)

− r−2
√
f(r)

)
(
fλ2ℓ2dα2 − r2dϕ2

)
, (A.13)

σ♯ := gACσCB∂A ⊗ dxB

=
ℓ

2

(
∂rf(r)

2r
√
f(r)

− r−2
√
f(r)

)
(∂α ⊗ dα− ∂ϕ ⊗ dϕ) (A.14)

=

{
(1+O(s2))

2s (∂α ⊗ dα− ∂ϕ ⊗ dϕ), for small s;
(3ℓ2m+O(s−1))

2s4
(∂α ⊗ dα− ∂ϕ ⊗ dϕ), for large s,

(A.15)

|σ2| = 2 × ℓ2

4

(
∂rf(r)

2r
√
f(r)

− r−2
√
f(r)

)2

(A.16)

=

{
(1+O(s2))

2s2
, for small s;

(9ℓ4m2+O(s−1))
2s8 , for large s,

(A.17)

8We use the notation of [7], except that we denote here by ǧ the tensor field denoted by g̃
there.
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gss = gµν
∂s

∂xµ
∂s

∂xν
= grr

(
ds

dr

)2

= f

(
r

ℓ
√
f

)2

=
r2

ℓ2
, (A.18)

We will also need the following objects from [7], denoting by ∇̌ the derivative
operator associated with ǧ, when ǧ is viewed as a metric on the level sets of u
and r:

Γ
1

:= ν0gAB∇̌BνA − ∂1(ν0g
11
√

det ǧ)

ν0
√

det ǧ
− 1

2
ν0gAB∂0gAB +

1

2
ν0g11∂0g11 ,

ν0 := gus = gur
dr

ds
= − r

ℓ
√
f(r)

dr

ds
= − r

ℓ
√
f(r)

ℓ
√
f(r)

r
= −1 , (A.19)

ν0 :=
1

ν0
= −1 , (A.20)

Γ
s

= −∂s(ν0g
ss
√

det ǧ)

ν0
√

det ǧ
= −τgss − ∂sg

ss . (A.21)

From the definition of ζ (compare [7, Equations (10.33) and (10.36)],9 and note

that κ ≡ Γ
s
ss ≡ Γ

1
11 vanishes in affine parameterisation) we have

ζ := (2∂s + 2Γ
s
ss + τ)gss + 2Γ

s
= −τgss

= −ℓ−1

(
r∂rf(r)

2
√
f(r)

+
√
f(r)

)
(A.22)

=





−r20ℓ−2s−1 +O(s) , for small s;
−2rℓ−2 −mr−2 +O

(
r−5
)

= −2(s+ r0 − s∗)ℓ−2 − 2ms−2 +O
(
s−5
)
, for large s.

(A.23)

Recall that the vacuum Raychaudhuri equation with affine parameter s,

∂sτ +
τ2

2
+ |σ|2 = 0 , (A.24)

can be solved as

τ(s) =
2

s
− s−2Ψ−1

∫ s

0
|σ|2Ψs2ds , (A.25)

where

Ψ(s, ψ, ϕ) = exp

(
−
∫ ∞

s

s̃τ(s̃, ψ, ϕ) − 2

2s̃
ds̃

)
. (A.26)

As s tends to zero, the integral in (A.26) approaches infinity as 1
2 ln s, hence

the weight-factor Ψ behaves as a constant times s−1/2. This, together with
the 1/(2s2)-behaviour of |σ|2 for small s, leads in (A.25) to the required 1/s-
behaviour of τ for s approaching zero.

An alternative derivation of (A.22) proceeds by solving directly (3.15):

(∂s + τ) ζ =
1

2
|ξ|2 − ∇̌Aξ

A − Ř+ 8π
(
gABTAB − T

)
+ 2Λ . (A.27)

9Note a missing term τg11/2 in the rightermost term of [7, Equation (10.36)], which however
does not affect the formula we use.
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In the current case (A.27) reads

(
dr

ds
∂r + τ

)
ζ = 2Λ . (A.28)

It follows from (A.28) that

d(ζ
√

det ǧ)

ds
= 2Λ

√
det ǧ . (A.29)

Integrating in s, we find

(
ζ
√

det ǧ
)

(s) = lim
s→0

(
ζ
√

det ǧ
)

(s)
︸ ︷︷ ︸

−3mλ

+2Λ

∫ s

0

√
det ǧ ds

= λ( − 3m+
2Λ

3
(r3 − r30))

= λ( − 3m+
2Λ

3
(r3 − 2mℓ2)) , (A.30)

which coincides indeed with (A.22):

ζ
√

det ǧ = λ

(
m− 2r3

ℓ2

)
= λ

(
m+

2Λr3

3

)
.

We are ready now to check the contribution of various terms to the mass
identity (5.56) for the Horowitz-Myers metrics (6.13). For these metrics we
have Tµν ≡ 0 ≡ R̊ ≡ ξ ≡ |σ|24 ≡ |σ|25 (compare Equation (A.17)), and from
(7.14) and (5.56) we find

−2mµĥ(N̊ ) = 16πmTB = lim
s→0

∫

N̊

ζdµǧ +
Λ

12

∫

N̊

τ32 dµĥ + 2ΛVren . (A.31)

Recall that ǧ is defined as the angular part of the metric on the light-cone,

ǧ = gABdx
AdxB = fλ2ℓ2dα2 + r2dϕ2 .

and that the limiting metric ĥ defined in (7.15) is

ĥ = lim
r→∞

r−2ǧ = λ2dα2 + dϕ2 .

Keeping in mind that the measure associated with ĥ is

dµĥ = λdα dϕ ,

(A.5) and (A.23) lead to

lim
r→r0

∫

N̊

ζdµǧ = −r
2
0

ℓ2
× ℓ2f ′(r0)

2
× µĥ(N̊ )

= −r
2
0

ℓ2
× ℓ2f ′(r0)

2
×
(

1

2ℓf ′(r0)
× (2π)2

)
. (A.32)
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Equation (7.20) gives

f ′(r0) =
1

r0

(
2
r20
ℓ2

+
2m

r0

)
=

6m

r20
=

3(2mℓ2)
1
3

ℓ2
. (A.33)

We can thus rewrite (A.32) as

lim
r→r0

∫

N̊

ζdµǧ = −3m× µĥ(N̊ )

= −3m× 2π2ℓ

3(2mℓ2)
1
3

= −3m× 2π2

3

(
ℓ

2m

) 1
3

. (A.34)

The relation Λ = −3/ℓ2 and (A.31) give the balance formula

2mℓ2µĥ(N̊ ) = 3mℓ2µĥ(N̊ ) + 6Vren +
1

4

∫

N̊

τ32 dµĥ . (A.35)

We note that (A.11) gives τ2 = 2(s∗ − r0), and that (7.26) can be rewritten
as

Vren = −1

6

(
mℓ2µĥ(N̊ ) + 2

∫

N̊

(s∗ − r0)3dµĥ

)
, (A.36)

in agreement with (A.35).
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arXiv:1306.6204 [gr-qc]. MR 3383323

[31] R.K. Sachs, Gravitational waves in general relativity VIII. Waves in
asymptotically flat space-time, Proc. Roy. Soc. London A 270 (1962), 103–
126. MR MR0149908 (26 #7393)

[32] L.B. Szabados and P. Tod, A positive Bondi–type mass in asymptotically de
Sitter spacetimes, Class. Quant. Grav. 32 (2015), 205011, arXiv:1505.06637
[gr-qc].

[33] J. Tafel, On the energy of a null cone, Class. Quantum Grav. 31 (2014),
235011, [Class. Quant. Grav.31,235011(2014)].

[34] L.A. Tamburino and J.H. Winicour, Gravitational fields in finite and con-
formal Bondi frames, Phys. Rev. 150 (1966), 1039–1053.

65



[35] A. Trautman, Radiation and boundary conditions in the theory of grav-
itation, Bull. Acad. Pol. Sci., Série sci. math., astr. et phys. VI (1958),
407–412.

[36] X. Wang, Mass for asymptotically hyperbolic manifolds, Jour. Diff. Geom.
57 (2001), 273–299. MR MR1879228 (2003c:53044)

[37] E. Woolgar, The rigid Horowitz-Myers conjecture, (2016),
arXiv:1602.06197.

66


