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Abstract. The fermionic signature operator is constructed in Rindler space-time.
It is shown to be an unbounded self-adjoint operator on the Hilbert space of solutions
of the massive Dirac equation. In two-dimensional Rindler space-time, we prove that
the resulting fermionic projector state coincides with the Fulling-Rindler vacuum.
Moreover, the fermionic signature operator gives a covariant construction of general
thermal states, in particular of the Unruh state. The fermionic signature operator is
shown to be well-defined in asymptotically Rindler space-times. In four-dimensional
Rindler space-time, our construction gives rise to new quantum states.
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1. Introduction

In quantum field theory in curved space-time, the interpretation of physical states
in terms of particles and anti-particles depends on the observer. This becomes most
apparent in the well-known Unruh effect, which shows that for the usual vacuum state
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in Minkowski space, a uniformly accelerated observer experiences particles and anti-
particles in a thermal state. The observer dependence of the particle interpretation is
reflected in the freedom to choose a ground state1. Constructing a Fock space from this
ground state by employing the creation operators of the particles and anti-particles,
the quantum state describing the physical system is represented by a vector of this
Fock space.

Within all possible quantum states, one can distinguish a specific class of states
which are generally regarded as being physically sensible, referred to as Hadamard
states (for the general context see [24, 28]). For Hadamard states, the Wick ordering
of field operators is well-defined, making it possible to build up a perturbative quantum
field theory (see for example [7, 4] or the recent text book [26]).

The fermionic signature operator introduced in [17, 18] (based on earlier pertur-
bative constructions in [8]) gives rise to a distinguished fermionic ground state in
space-time, referred to as the fermionic projector (FP) state (for somewhat related
constructions for bosonic fields see [21, 29]). The FP state cannot be associated to
a local observer. Instead, it depends on the global geometry of space-time. Never-
theless, it is a physically sensible state, provided that it is of Hadamard form. For
a more detailed account on the physical interpretation we refer to [11, Section 2.1.2]
or the discussion of a scattering process in [8, Section 5]. In mathematical terms,
the fermionic signature operator is a symmetric operator on the solution space of the
massive Dirac equation in globally hyperbolic space-times. It encodes geometric infor-
mation [14] and gives a new covariant method for obtaining Hadamard states [15]. The
abstract construction in space-times of finite and infinite lifetime as given in [17, 18]
opens up the research program to explore the fermionic signature operator in vari-
ous space-times and to verify if the resulting FP states are Hadamard. So far, the
fermionic signature operator has been studied in the examples of closed FRW space-
times [17], ultrastatic space-times and de Sitter space-time [18], an external potential
in Minkowski space [15, 16] and different two-dimensional space-times [14].

As the first example involving a horizon, we here consider two-dimensional Rindler
space-time (see [27] or [32, Section 6.4]). This is of physical interest in view of the
Unruh effect, which is closely related to the Hawking effect in black hole geometries
(see for example [3]). Also, from a mathematical point of view, the example of Rindler
space-time is interesting because, although lifetime is infinite, the methods in [18] do
not apply. The reason is that the strong mass oscillation property does not hold due to
boundary contributions on the horizon (for boundary contributions in a more general
setting see [5]). Instead, we adapt the construction for space-times of finite lifetime
in [17], making it possible to define the fermionic signature operator as a densely de-
fined unbounded operator. Our construction is covariant in the sense that it does not
depend on the choice of specific coordinates. We show that the fermionic signature op-
erator is indeed a multiple of the Dirac Hamiltonian in Rindler coordinates (for details
see Theorem 10.1 below). This means that the construction of the fermionic signature
operator “detects” the Killing symmetry of our space-time as described by translations
in Rindler time. We thus obtain a covariant construction of the Fulling-Rindler vac-
uum [19] and of general thermal states like the Unruh state [31] (see Corollaries 11.1
and 11.2; for a general introduction to quantum states in Rindler space-time see for
example [33, Chapter 5]).

1Here by “ground state” we mean any state taken as the starting point of the Fock space
construction.
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Extending the above analysis to four-dimensional Rindler space-time, we obtain
states which are indeed different from the Fulling-Rindler vacuum and general thermal
states (see Section 13). The physical properties of these new states are still under
investigation.

It is a main advantage of our construction that it also applies in situations without
Killing symmetries. This is made clear by considering asymptotically Rindler space-
times (see Theorem 12.1).

2. Preliminaries

In this section, we recall a few basic definitions, mainly using the notation and
conventions in [17]. We restrict attention to the two-dimensional situation (for the four-
dimensional setting see Section 13). The two-dimensional Rindler space-time (R, g) is
isometric to the subset of two-dimensional Minkowski space

R =
{
(t, x) ∈ R

1,1 with |t| < x
}

(2.1)

with the induced line element

ds2 = gij dx
idxj = dt2 − dx2 . (2.2)

We let SR = R × C
2 be the trivial spinor bundle. We work in the so-called chiral

representation of the Dirac matrices

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 1
−1 0

)
. (2.3)

The Dirac matrices are symmetric with respect to the spin scalar product defined by

≺ψ|φ≻ = 〈ψ,
(
0 1
1 0

)
φ〉C2 (2.4)

(where 〈., .〉C2 is the canonical scalar product on C
2). The spin scalar product is an

indefinite inner product of signature (2, 2). Introducing the Dirac operator

D := iγj∂j , (2.5)

the massive Dirac equation reads

(D −m)ψ = 0 , (2.6)

where m > 0 is the rest mass (we always work in natural units ~ = c = 1).
Rindler space-time is globally hyperbolic (for example, for any α ∈ (−1, 1), the

ray {(αx, x) with x > 0} is a Cauchy surface). Taking smooth and compactly sup-
ported initial data on a Cauchy surface N and solving the Cauchy problem, one obtains
a Dirac solution in the class C∞

sc (R, SR) of smooth wave functions with spatially com-
pact support. On solutions ψ, φ in this class, one defines the (positive definite) scalar
product

(ψ|φ) := 2π

∫

N

≺ψ|/νφ≻|q dµN(q) , (2.7)

where /ν = γjνj denotes Clifford multiplication by the future-directed unit normal ν,
and dµN is the volume measure of the induced Riemannian metric on N (thus for the

above ray N = {(αx, x) with x > 0}, the measure dµN =
√
1− α2 dx is a multiple of

the Lebesgue measure). Due to current conservation, this scalar product is independent
of the choice of N . Forming the completion, we obtain the Hilbert space (H, (.|.)),
referred to as the solution space of the Dirac equation. We denote the norm on this
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Hilbert space by ‖ψ‖ :=
√
(ψ|ψ). Another object which will be important later on is

the space-time inner product

<ψ|φ> :=

∫

R

≺ψ|φ≻|q dµR(q) . (2.8)

This inner product is not positive definite. Moreover, one should keep in mind that
the integral in (2.8) may diverge for solutions of the Dirac equation. However, this
integral is clearly well-defined for example for compactly supported wave functions.
Thus in applications, it is important to specify the class of wave functions for which
the inner product (2.8) is to be evaluated. Furthermore, one must verify carefully that
the integral in (2.8) exists (we will come back to this point in Section 4).

The method for constructing the fermionic signature operator S is as follows: LetD(S)
be a subspace of H such that for any φ ∈ D(S), the anti-linear mapping <.|φ> : H → C

given by (2.8) is well-defined and bounded, i.e.
∣∣<ψ|φ>

∣∣ ≤ C(φ) ‖ψ‖ for all ψ ∈ H

for a suitable constant C(φ) < ∞. Then the Fréchet-Riesz theorem makes it possible
to represent this anti-linear mapping by a vector Sφ, i.e.

<ψ|φ> = (ψ | Sφ) for all ψ ∈ H . (2.9)

Varying φ ∈ D(S), we obtain a linear mapping

S : D(S) → H ,

referred to as the fermionic signature operator. Obviously, this operator is symmet-
ric on the Hilbert space H. Our goal is to show that in Rindler space-time, the
domain D(S) of this operator can be chosen as a dense subset of H, and that the
fermionic signature operator has a self-adjoint extension.

We conclude this section with an outline of construction of the FP state (for details
see [15, Section 6]). Assume that the fermionic signature operator S has been con-
structed as a self-adjoint operator on H. Then the spectral calculus allows us to form
the operator f(S) for any bounded Borel function f : R → C. In particular, the opera-
tor χ(−∞,0)(S) (where χ denotes the characteristic function) is the projection operator
onto the negative spectral subspace. The FP state can be understood as the state of
the corresponding quasi-free Dirac field where all one-particle states in the image of
the operator χ(−∞,0)(S) are occupied. Mathematically, this state can be obtained by
applying an abstract construction due to Araki [1]. With this in mind, the main task
of the subsequent analysis is to construct S and to analyze its properties. This is why
in our analysis we will mainly restrict attention to the one-particle Hilbert space H.

3. Embedding in Minkowski Space

For the subsequent analysis, it is often useful to regard Rindler space-time as a sub-
set of Minkowski space, and to embed the solution space in Rindler space-time into the
solution space in Minkowski space. We now explain this construction. Let (M, g) be
the two-dimensional Minkowski space (thus M = R

1,1 with the metric (2.2)). More-
over, we let SM = M × C

2 be the trivial spinor bundle, again with the spin scalar
product (2.4). Then the inclusions

R ⊂ M and SR = R ×C
2 ⊂ M × C

2 = SM
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are clearly isometries. The Dirac operator and the Dirac equation are again given
by (2.5) and (2.6). For clarity, we denote the scalar product (2.7) in Minkowski space
with an additional subscript M. For convenience, we always choose N as the Cauchy
surface {t = 0}, so that

(Ψ|Φ)M = 2π

∫ ∞

−∞
≺Ψ|γ0Φ≻|(0,x) dx (3.1)

(to avoid confusion, we consistently denote wave functions in Minkowski space by
capital Greek letters, whereas wave functions in Rindler space-time are denoted by
small Greek letters). The corresponding Hilbert space is denoted by (HM, (.|.)M). In
order to extend Dirac solutions from Rindler space-time to Minkowski space, let ψ ∈
C∞
sc (R, SR) be a solution with spatially compact support. Thus restricting it to the

ray {(0, x) with x > 0} gives a smooth function with compact support. We extend
this function by zero to the Cauchy surface {t = 0}, i.e.

Ψ0(x) :=

{
ψ(0, x) if x > 0

0 if x ≤ 0
∈ C∞

0 (R,C2) .

Solving the Cauchy problem in M with initial data Ψ0 yields a solution Ψ(t, x) in
Minkowski space. We thus obtain an isometric embedding

ιM : H → HM .

It is also useful to introduce the operator πR as the restriction to Rindler space-time,

πR : HM → H , πRΨ = Ψ|R .

Obviously, the identity

πR ◦ ιM = 11H

holds. Moreover, for every Ψ ∈ HM and φ ∈ H,

(
Ψ
∣∣ ιMφ

)
M

= 2π

∫ ∞

0
≺Ψ|γ0φ≻|(0,x) dx =

(
πRΨ

∣∣φ
)
,

which can be written as

ι∗M = πR .

This relation also shows that the orthogonal complement of the image of ιM coincides
with the kernel of πR, consisting of all Dirac solutions in Minkowski space which vanish
on the ray {(0, x) with x > 0}.

In analogy to (2.8), the space-time inner product in Minkowski space is defined by

<Ψ|Φ>M :=

∫

M

≺Ψ|Φ≻|q dµM(q) .

It is not directly related to (2.8) because one integrates over a different space-time
region. However, a direct connection can be obtained by inserting the characteristic
function of Rindler space-time into the integrand,

<Ψ|Φ>R :=

∫

M

χR(q)≺Ψ|Φ≻|q dµM(q) . (3.2)

Then for any Ψ,Φ ∈ C∞
0 (M, SM),

<Ψ|Φ>R = <πRΨ |πRΦ> .
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Introducing the relative fermionic signature operator SR : D(SR) ⊂ HM → HM in
analogy to (2.9) by

<Ψ|Φ>R = (Ψ | SRΦ)M for all Ψ ∈ HM , (3.3)

this fermionic signature operator in Rindler space-time is recovered by

S = πR SR ιM with D(S) = πR

(
D(SR)

)
. (3.4)

With this in mind, in the remainder of the paper we work exclusively in Minkowski
space. For notational simplicity, the subscript M will be omitted in what follows.

4. The Relative Fermionic Signature Operator as an Unbounded

Operator

From now on, all the objects without subscript R refer to Minkowski space M.

Lemma 4.1. For every Φ ∈ C∞
sc
(M, SM) ∩H, there is a constant c = c(Φ) such that

∣∣<Ψ|Φ>R

∣∣ ≤ c(Φ) ‖Ψ‖ for all Ψ ∈ H .

Proof. Let Φ ∈ C∞
sc (M, SM) ∩H. Then its restriction to the Cauchy surface {t = 0}

is compact, i.e.

suppΦ(0, .) ⊂ (−R,R) .
Due to finite propagation speed, we know that

suppΦ(t, .) ⊂ (−R− |t|, R+ |t|) for all t ∈ R . (4.1)

We now make use of the fact that solutions of the massive Dirac equation for compactly
supported initial data decay rapidly in null directions. More precisely, for any p ∈ N

there is a constant C = C(Φ, p) such that

∣∣Φ(t, x)
∣∣ ≤ C

1 + |t|p for all t ∈ R and x ≥ |t| . (4.2)

This inequality can be verified in two ways. One method is to specialize the more
general results in asymptotically flat space-times as derived in [30]. Another method
is to use that each component of Φ is a solution of the Klein-Gordon equation

(
∂2t − ∂2x +m2

)
Φ(t, x) = 0

and to apply the estimates in [20, Theorem 7.2.1], choosing the parameter N in this
theorem to be negative and large.

Combining (4.1) and (4.2) with the Schwarz inequality, we obtain the estimate
∫

R

∣∣≺Ψ|Φ≻
∣∣ dt dx ≤

∫ ∞

0
dt

∫ |t|+R

|t|
dx ‖Ψ(t, x)‖ ‖Φ(t, x)‖

≤
∫ ∞

0
‖Ψ(t, .)‖L2(dx)

C
√
R

1 + |t|p dt = C
√
R ‖Ψ‖

∫ ∞

0

dt

1 + |t|p .

Choosing p = 2 gives the desired estimate. �

Using this lemma, for any Ψ ∈ C∞
sc (M, SM) ∩H, the Fréchet-Riesz theorem gives

a unique vector SRΦ ∈ H such that (3.3) holds. This makes it possible to introduce
the relative fermionic signature operator as the densely defined operator

SR : C∞
sc (M, SM) ∩H → H . (4.3)



THE FERMIONIC SIGNATURE OPERATOR IN RINDLER SPACE-TIME 7

From (3.3) it is obvious that SR is symmetric, i.e.

(Ψ | SRΦ) = (SRΨ |Φ) for all Ψ,Φ ∈ C∞
sc (M, SM) ∩H .

We point out that the operator SR is unbounded. This can be understood from the
fact that the inequality (4.2) and the subsequent estimate depend essentially on the
support of Φ. In particular, if we consider a sequence of wave functions Ψn whose
support is shifted more and more to the right,

Φn(t, x) = Φ(t, x− n) ,

then the constant c(Φn) in the statement of Lemma 4.1 must be chosen larger and
larger if n is increased. This shows that the inequality

|<Ψ|Φ>R| ≤ c ‖Φ‖ ‖Ψ‖ for all Ψ,Φ ∈ H is violated ,

no matter how large the constant c is chosen. Using the terminology introduced
in [17, Section 3.2], Rindler space-time is not m-finite. Nevertheless, the estimate
of Lemma 4.1 enables us to introduce the fermionic signature operator as a densely
defined, unbounded symmetric operator. This makes it unnecessary to use the mass
oscillation methods introduced in [18] for the construction of the fermionic signature
operator in space-times of infinite lifetime.

In order to get into the position to employ spectral methods, we must construct a
self-adjoint extension of the relative fermionic signature operator. Our method is to
compute SR in more detail in momentum space. As we shall see, working with plane
waves in a suitable parametrization in momentum space, the operator SR becomes a
multiplication operator, making it possible to construct a self-adjoint extension with
standard functional analytic methods.

5. Transformation to Momentum Space

For the following computations, it is most convenient to work in momentum space.
We denote the position and momentum variables by q = (t, x) and p = (ω, k), respec-
tively. Clearly, any smooth and spatially compact Dirac solution Ψ ∈ C∞

sc (M, SM)
can be represented as

Ψ(q) =

∫

R2

d2p

(2π)2
Ψ̂(p) δ(p2 −m2) e−ipq , (5.1)

where Ψ̂ is a smooth function on the mass shell (and pq = ωt − kx is the Minkowski
inner product). In this momentum representation, the Dirac equation (2.6) reduces to
the algebraic equation (

/p−m
)
Ψ̂(p) = 0 .

The matrix /p − m has eigenvalues 0 and −2m. Its kernel is positive definite with
respect to the spin scalar product if p is on the upper mass shell, and it is negative
definite if p is on the lower mass shell. Thus we can choose a spinor f(p) with the
properties

(/p−m) f(p) = 0 and ≺f(p)|f(p)≻ = ǫ(ω) , (5.2)

where ǫ is the sign function ǫ(ω) = 1 for ω ≥ 0 and ǫ(ω) = −1 otherwise. More
specifically, we choose

f(p) =
1√
2m

1√
ǫ(ω) (ω − k)

(
m

ω − k

)
. (5.3)



8 F. FINSTER, S. MURRO AND C. RÖKEN

Lemma 5.1. The spinor f(p) satisfies the relations

≺f(ω, k) | γ0 f(−ω, k)≻ = 0

≺f(ω, k) | γ0 f(ω, k)≻ =
|ω|
m

.

Proof. These relations can be verified by in a straightforward manner using the explicit
formulas (5.2) and (2.3). Alternatively, they can also be derived abstractly by applying
the anti-commutation relations of the Dirac matrices:

≺f(ω, k) | γ0 f(−ω, k)≻ =
1

m
≺/p f(ω, k) | γ0 f(−ω, k)≻

=
1

m
≺f(ω, k) |

(
ωγ0 − kγ1

)
γ0 f(−ω, k)≻

=
1

m
≺f(ω, k) | γ0

(
ωγ0 + kγ1

)
f(−ω, k)≻ = −≺f(ω, k) | γ0 f(−ω, k)≻

≺f(ω, k) | γ0 f(ω, k)≻ =
1

m
≺/p f(ω, k) | γ0 f(ω, k)≻

=
1

m
≺f(ω, k) | γ0

(
ωγ0 + kγ1

)
f(ω, k)≻

=
2ω

m
≺f(ω, k) | f(ω, k)≻ − 1

m
≺f(ω, k) | γ0 /pf(ω, k)≻

=
2ω

m
≺f(ω, k) | f(ω, k)≻ −≺f(ω, k) | γ0 f(ω, k)≻ .

Using the right relation in (5.2), the result follows. �

It is convenient to represent the spinor Ψ̂(p) in (5.1) as a complex multiple of the
spinor f(p). Thus we write the Fourier integral (5.1) as

Ψ(q) =

∫

R2

d2p

2π
ǫ(ω) δ(p2 −m2) g(p) f(p) e−ipq (5.4)

with a complex-valued function g(p). In the next two lemmas we specify the regularity
of the function g(p) and rewrite the scalar product (3.1) in momentum space.

Lemma 5.2. For every smooth and spatially compact Dirac solution Ψ ∈ C∞
sc
(M, SM),

the function g in the representation (5.4) is a Schwartz function on the mass shells,
i.e.

g±(k) := g
(
±
√
k2 +m2, k

)
∈ S(R,C) .

Proof. Evaluating (5.4) at q0 = 0 gives

Ψ(0, x) =

∫

R2

d2p

2π
ǫ(ω) δ(p2 −m2) g(p) f(p) eikx

=
1

2

∫ ∞

−∞

dk

2π

∑

±

ǫ(ω)√
k2 +m2

g(p) f(p) eikx
∣∣∣
p=
(
±
√
k2+m2,k

)

i∂tΨ(0, x) =

∫

R2

d2p

2π
ǫ(ω) p0 δ(p

2 −m2) g(p) f(p) eikx

=
1

2

∫ ∞

−∞

dk

2π

∑

±
g(p) f(p) eikx

∣∣∣
p=
(
±
√
k2+m2,k

) .
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On the other hand, taking the one-dimensional Fourier transformation, we know that

Ψ(0, x) =

∫ ∞

−∞

dk

2π
Φ̂0(k) e

ikx and ∂tΨ(0, x) =

∫ ∞

−∞

dk

2π
Φ̂1(k) e

ikx

for Schwartz functions Φ̂0, Φ̂1 ∈ S(R,C2). Comparing the integrands, we obtain

±
√
k2 +m2 Φ̂0(k) + Φ̂1(k) = g±(k) f

(
±
√
k2 +m2, k

)
.

Taking the spin scalar product with f and using the right equation in (5.2), we get

g±(k) = ≺
(√

k2 +m2 Φ̂0(k) ± Φ̂1(k)
) ∣∣ f

(
±
√
k2 +m2, k

)
≻ .

According to (5.3), the spinor f is smooth and grows at most linearly for large k
(meaning that ‖f‖C2 ≤ c(1 + |k|) for a suitable constant c). This gives the result. �

Lemma 5.3. In the Fourier representation (5.4), the scalar product (3.1) can be writ-
ten as

(Ψ|Ψ̃) =
1

2m

∫

R2

g(p) g̃(p) δ
(
p2 −m2

)
d2p . (5.5)

Proof. We substitute (5.4) into (2.7). In view of the rapid decay of g (see Lemma 5.2),
we may commute the integrals using Plancherel’s theorem to obtain

(Ψ|Ψ̃) = 2π

∫ ∞

−∞
dx

∫

R2

d2p

2π
ǫ(ω) δ

(
p2 −m2

)
g(p)

×
∫

R2

d2p̃

2π
ǫ(ω̃) δ

(
p̃ 2 −m2

)
g̃(p̃)≺f(p) | γ0 f(p̃)≻ e−i(k−k̃)x

= 2π

∫

R2

d2p

2π
ǫ(ω) δ

(
p2 −m2

)
g(p)

∫

R2

d2p̃

2π
ǫ(ω̃) δ

(
p̃ 2 −m2

)

× 2πδ
(
k − k̃

)
g̃(p̃)≺f(p) | γ0 f(p̃)≻

=

∫

R2

d2p ǫ(ω) δ
(
p2 −m2

)
g(p)

∫

R2

dω̃ ǫ(ω̃) δ
(
ω̃2 − k2 −m2

)

× g̃
(
ω̃, k

)
≺f(p) | γ0 f

(
ω̃, k

)
≻

=

∫

R2

d2p ǫ(ω) δ
(
p2 −m2

)
g(p)

1

2|ω|
×
∑

±
ǫ(±ω) g̃

(
± ω, k

)
≺f(p) | γ0 f

(
± ω, k

)
≻ .

Applying Lemma 5.1 gives (5.5). �

We finally choose a convenient parametrization of the mass shells:

Proposition 5.4. In the parametrization
(
ω
k

)
= ms

(
coshα
sinhα

)
with s ∈ {±1} and α ∈ R , (5.6)

the scalar product (3.1) takes the form

(Ψ|Ψ̃) =
1

4m

∑

s=±1

∫ ∞

−∞
g(s, α) g̃(s, α) dα . (5.7)
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We remark that the variable α has the interpretation as the rapidity of the wave in
the rest frame of the observer.

Proof of Proposition 5.4. We carry out the ω-integration in (5.5),
∫

R2

g(p) g̃(p) δ
(
p2 −m2

)
d2p =

∑

±

∫ ∞

−∞

dk

2
√
k2 +m2

(
g g̃
)∣∣(

±
√
k2+m2,k

)

=
∑

s=±

∫ ∞

−∞
m coshα

1

2m coshα

(
g g̃
)∣∣(

ms coshα,ms sinhα
) dα

=
1

2

∑

s=±

∫ ∞

−∞
g(s, α) g̃(s, α) dα .

This gives the result. �

6. The Relative Fermionic Signature Operator in Momentum Space

In this section, we compute the fermionic signature operator more explicitly in
momentum space. The first step is to transform the space-time inner product to
momentum space.

Proposition 6.1. For any Ψ, Ψ̃ ∈ C∞
sc
(M, SM) ∩ H, the space-time inner prod-

uct (3.2) takes the form

<Ψ|Ψ̃>R =
1

4m

∑

s,s̃=±1

∫ ∞

−∞
dα lim

εց0

∫ ∞

−∞
dα̃ Iε

(
s, α; s̃, α̃

)
g(s, α) g̃(s̃, α̃) , (6.1)

where Iε is the kernel

Iε
(
s, α; s̃, α̃

)
=

1

4π2m
×





s cosh β

1− cosh(2β + iεs)
if s = s̃

− s sinhβ

1 + cosh(2β)
if s 6= s̃

(6.2)

and

β :=
1

2

(
α− α̃

)
. (6.3)

Proof. Using the Fourier representation (5.4) in (3.2), we obtain

<Ψ|Ψ̃>R =

∫

M

dt dx χR(t, x)

∫

R2

d2p

2π
ǫ(ω) δ(p2 −m2) g(p)

×
∫

R2

d2p̃

2π
ǫ(ω̃) δ(p̃ 2 −m2) g̃(p̃)≺f(p) | f(p̃)≻ ei(p−p̃)q

=

∫

R2

d2p

(2π)2
ǫ(ω) δ(p2 −m2) g(p)

×
∫

R2

d2p̃ ǫ(ω̃) δ(p̃ 2 −m2) g̃(p̃)≺f(p) | f(p̃)≻K(p, p̃) , (6.4)

where the kernel K(p, p̃) is defined by

K(p, p̃) =

∫

M

χR(t, x) ei(p−p̃)q dt dx . (6.5)
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Rewriting the integrals in (6.4) in the parametrization (5.6) (exactly as in the proof
of Proposition 5.4), we get

<Ψ|Ψ̃>R =
1

16π2

∑

s,s̃=±1

∫ ∞

−∞
dα

∫ ∞

−∞
dα̃ s s̃ g(s, α) g̃(s̃, α̃)≺f(p) | f(p̃)≻K(p, p̃) . (6.6)

Applying Lemma 6.3 and Lemma 6.4 below, the result follows. �

Comparing (5.7) and (6.1), one can immediately read off the relative fermionic
signature operator as defined by (3.3) and (4.3):

Corollary 6.2. For any Ψ̃ ∈ C∞
sc
(M, SM) ∩H,

(
SRΨ̃

)
(s, α) =

∑

s̃=±1

lim
εց0

∫ ∞

−∞
Iε
(
s, α; s̃, α̃

)
g̃(s̃, α̃) dα̃ .

In the following two lemmas we compute the spin scalar product and the kernel
in (6.6).

Lemma 6.3. In the parametrization (5.6), the spin scalar product of the spinors (5.3)
is computed by

≺f(s, α) | f(s̃, α̃)≻ =

{
s cosh β if s = s̃
s sinhβ if s 6= s̃ .

Proof. Using (5.3) and (2.4), we have

≺f(p)|f(p̃)≻ =
1

2

(ω − k) + (ω̃ − k̃)√
ǫ(ω) (ω − k) ǫ(ω̃) (ω̃ − k̃)

.

In the parametrization (5.6), we obtain

≺f(s, α)|f(s̃, α̃)≻ =
1

2

se−α + s̃e−α̃

e−
α
2
− α̃

2

=
1

2

(
seβ + s̃e−β

)
.

This gives the result. �

Lemma 6.4. In the parametrization (5.6), the distribution K(p, p̃) defined by (6.5)
has the form

K(s, α; s̃, α̃) =
1

m2
×





lim
εց0

1

1− cosh(α− α̃− iεs)
if s = s̃

1

1 + cosh(α− α̃)
if s 6= s̃ .

Proof. We first write (6.5) as

K(p, p̃) =

∫

R2

dt dx χ(x− t) χ(x+ t) ei(p−p̃)q . (6.7)

Introducing null coordinates

u =
1

2
(t− x) and v =

1

2
(t+ x)

as well as corresponding momenta

pu = ω − ω̃ + k − k̃ and pv = ω − ω̃ − k + k̃ ,
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we can compute the integrals in (6.7) to obtain

K(pu, pv) = 2

∫

R2

du dv χ(−2u) χ(2v) ei(puu+pvv) = 2

∫ 0

−∞
du eipuu

∫ ∞

0
dv eipvv

= 2 lim
εց0

∫ 0

−∞
du eipuu+εu lim

ε′ց0

∫ ∞

0
dv eipvv−ε′v = 2 lim

ε,ε′ց0

1

pu − iε

1

pv + iε′
.

We next express pu in the parametrization (5.6),

pu = (ω + k)− (ω̃ + k̃) = ms
(
cosh(α) + sinh(α)) −ms̃(cosh(α̃) + sinh(α̃)

)

= m
(
seα − s̃eα̃

)
.

This gives

lim
εց0

1

pu − iε
= lim

εց0

1

m(seα − s̃eα̃)− iε
. (6.8)

We distinguish the two cases s 6= s̃ and s = s̃. In the case s 6= s̃, the denominator
in (6.8) is always non-zero. Therefore, we can take the limit εց 0 pointwise to obtain

lim
εց0

1

pu − iε
=

1

ms

1

eα + eα̃
=
e−α

ms

1

1 + e−2β
(s 6= s̃) ,

where β is again given by (6.3). In the remaining case s = s̃, we rewrite (6.8) as

lim
εց0

1

pu − iε
=

1

ms
lim
εց0

1

(eα − eα̃)− iεs/m
=
e−α

ms
lim
εց0

1

1− e−2β − iεse−α/m

=
e−α

ms
lim
δց0

1

1− e−2β − iδs e−2β
=
e−α

ms
lim
δց0

1

1− e−2β+iδs
,

where δ = εe−α+2β/m > 0. We conclude that

lim
εց0

1

pu − iε
=
e−α

ms
lim
δց0

1

1− e−2β+iδs
(s = s̃) .

Treating pv in the same way, we obtain

lim
εց0

1

pu − iε
=





e−α

ms

1

1 + e−2β
if s 6= s̃

e−α

ms
lim
εց0

1

1− e−2β+iεs
if s = s̃

(6.9)

lim
ε′ց0

1

pv + iε′
=





eα

ms

1

1 + e2β
if s 6= s̃

eα

ms
lim
ε′ց0

1

1− e2β−iε′s
if s = s̃ .

(6.10)

When multiplying (6.9) and (6.10), the fact that both limits ε, ε′ ց 0 exist in the dis-
tributional sense justifies that we can simply set ε = ε′ and take the limit. Using (6.3),
the result follows. �
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7. Diagonalizing the Relative Fermionic Signature Operator

In Corollary 6.2, the relative fermionic signature operator SR was represented by
an integral operator. Since the kernel I(s, α; s̃, α̃) only depends on the difference α− α̃
(see (6.2) and (6.3)), we can diagonalize the fermionic operator with the plane wave
ansatz

g
(
s̃, α̃
)
= e−iℓα̃ ĝ(s̃, ℓ) (7.1)

for a real parameter ℓ (thus ℓ is the variable conjugate to the rapidity; to our knowledge
it does not have an immediate physical interpretation). Clearly, the plane wave is not a
vector in our Hilbert space H. But the corresponding spectral parameter corresponds
to a point in the continuous spectrum of SR. For clarity, we first give the computations.
The functional analytic framework will be developed in Section 8 below.

Lemma 7.1. The integral kernel Iε, (6.2), satisfies the relation

lim
εց0

∫ ∞

−∞
Iε
(
s, α; s̃, α̃

)
e−iℓα̃ dα̃ = e−iℓα ℓ

2πm
×





2

1 + e−2πsℓ
if s = s̃

− is

cosh(πℓ)
if s 6= s̃ .

Using the result of this lemma, one sees that for the plane wave ansatz (7.1), the
equation SRg = λg reduces to the eigenvalue equation for a Hermitian matrix,

ŜR(ℓ) ĝ(ℓ) = λĝ(ℓ) with ŜR(ℓ) =
ℓ

πm




1

1 + e−2πℓ
− i

2 cosh(πℓ)
i

2 cosh(πℓ)

1

1 + e2πℓ


 , (7.2)

where ĝ(ℓ) ∈ C
2 is the vector with components ĝ(1, ℓ) and ĝ(−1, ℓ). The matrix ŜR(ℓ)

has the eigenvalues

λ = 0 and λ =
ℓ

πm
(7.3)

with respective eigenfunctions

ĝ(ℓ) =

(
ie−πℓ

1

)
and ĝ(ℓ) =

(
−ieπℓ
1

)
. (7.4)

Proof of Lemma 7.1. In the case s 6= s̃, we have

lim
εց0

∫ ∞

−∞
Iε
(
s, α; s̃, α̃

)
e−iℓ(α̃−α) dα̃

= 2 lim
εց0

∫ ∞

−∞
Iε
(
s, α; s̃, α̃

)
e2iℓβ dβ = − s

2π2m

∫ ∞

−∞

sinh β

1 + cosh(2β)
e2iℓβ dβ .

The integral can be computed as follows. First, using the transformation

sinh β

1 + cosh(2β)
=

eβ − e−β

(eβ + e−β)2
= − d

dβ

(
1

eβ + e−β

)
,

we can integrate by parts to obtain
∫ ∞

−∞

sinhβ

1 + cosh(2β)
e2iℓβ dβ = 2iℓ

∫ ∞

−∞

e2iℓβ

eβ + e−β
dβ = iℓ

∫ ∞

−∞

e2iℓβ

cosh β
dβ .

Now the integral can be calculated with residues. The variable transformation β 7→ −β
shows that the last integral is even in ℓ. Therefore, it suffices to consider the case ℓ > 0.
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Then we can close the contour in the upper half plane. There the integrand has poles
at βn = iπ(n + 1

2) with n ∈ N0. This gives

∫ ∞

−∞

sinhβ

1 + cosh(2β)
e2iℓβ dβ = −2πℓ

∞∑

n=0

Res
( e2iℓβ

cosh β
, βn

)

= −2πℓ
∞∑

n=0

(−i) (−1)n e−2πℓ (n+ 1
2
) = 2πiℓ e−πℓ

∞∑

n=0

(
− e−2πℓ

)n

= 2πiℓ e−πℓ 1

1 + e−2πℓ
=

iπℓ

cosh(πℓ)
. (7.5)

In the case s = s̃, we find similarly

lim
εց0

∫ ∞

−∞
Iε
(
s, α; s̃, α̃

)
e−iℓ(α̃−α) dα̃ =

s

2π2m
lim
εց0

∫ ∞

−∞

cosh(β − iεs
2 )

1− cosh(2β − iεs)
e2iℓβ dβ .

Rewriting the integrand as

cosh(β − iεs
2 )

1− cosh(2β − iεs)
= − eβ−

iεs
2 + e−β+ iεs

2

(eβ−
iεs
2 − e−β+ iεs

2 )2
=

d

dβ

(
1

eβ−
iεs
2 − e−β+ iεs

2

)
,

we can again integrate by parts to obtain

∫ ∞

−∞

cosh(β − iεs
2 )

1− cosh(2β − iεs)
e2iℓβ dβ = −iℓ

∫ ∞

−∞

e2iℓβ

sinh(β − iεs
2 )

dβ . (7.6)

Now the last integral is odd under the joint transformations

ℓ 7→ −ℓ and s 7→ −s .

Therefore, it again suffices to consider the case ℓ > 0, where the contour can be closed
in the upper half plane. In the case s = 1, the contour encloses the poles at the
points βn = iπn with n ∈ N0. This gives

lim
εց0

∫ ∞

−∞

cosh β

1− cosh(2β − iε)
e2iℓβ dβ = 2πℓ

∞∑

n=0

Res
( e2iℓβ

sinhβ
, βn

)

= 2πℓ

∞∑

n=0

(
− e−2πℓ

)n
=

2πℓ

1 + e−2πℓ
.

In the case s = −1, the contour does not enclose the pole at β0 = 0. We thus obtain

lim
εց0

∫ ∞

−∞

cosh β

1− cosh(2β − iε)
e2iℓβ dβ = 2πℓ

∞∑

n=1

Res
( e2iℓβ

sinhβ
, βn

)

= 2πℓ

∞∑

n=1

(
− e−2πℓ

)n
= −2πℓ

e−2πℓ

1 + e−2πℓ
= − 2πℓ

1 + e2πℓ
.

This concludes the proof. �
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8. A Self-Adjoint Extension of the Relative Fermionic Signature

Operator

We let U be the mapping

U : H → L2(R,C2) , g(s, α) 7→ ĝ(s, ℓ) =
1√
8πm

∫ ∞

−∞
g(s, α) eiℓα dα .

From (5.4) and Plancherel’s theorem, one sees immediately that this mapping is uni-
tary. Moreover, its inverse is given by

U−1 : L2(R,C2) → H , ĝ(s, ℓ) 7→ g(s, α) =

√
2m

π

∫ ∞

−∞
ĝ(s, ℓ) e−iℓα dℓ .

Theorem 8.1. Choosing the domain of definition

D(SR) = U−1
({
ĝ ∈ L2(R,C2) with ŜR ĝ ∈ L2(R,C2)

})
(8.1)

(where (ŜRĝ)(ℓ) = ŜR(ℓ) ĝ(ℓ) is the pointwise multiplication by the matrix in (7.2)),
the relative fermionic signature operator is a self-adjoint operator on H ≡ HM. Its
spectrum consists of a pure point spectrum at zero and an absolutely continuous spec-
trum,

σpp
(
SR

)
= {0} , σac

(
SR

)
= R .

It has the spectral decomposition

SR =

∫ ∞

−∞
λ dEλ ,

where the spectral measure dEλ is given by

EU = U−1
(
χU (0) K̂ + χU L̂

)
U .

Here χU is the characteristic function, and K̂ and L̂ are the multiplication operators

L̂(ℓ) =
πm

ℓ
ŜR(ℓ) =




1

1 + e−2πℓ
− i

2 cosh(πℓ)

i

2 cosh(πℓ)

1

1 + e2πℓ


 (8.2)

K̂(ℓ) = 11C2 − L̂(ℓ) =




e−2πℓ

1 + e−2πℓ

i

2 cosh(πℓ)

− i

2 cosh(πℓ)

e2πℓ

1 + e2πℓ


 . (8.3)

In order to avoid confusion, we note that the kernel of the operator SR as described by

the operator K̂ consists of all Dirac solutions supported in the region M \ R outside
the Rindler wedge. This will be explained in detail in the proof of Theorem 9.1 below.

Proof of Theorem 8.1. For a Dirac solution Ψ ∈ C∞
sc (M, SM), we know from Lem-

ma 5.2 and Proposition 5.4 that the corresponding function g(s, α) is smooth and that
all its derivatives are square integrable. As a consequence, its Fourier transform is
pointwise bounded and has rapid decay, i.e.

sup
ℓ

∣∣(1 + ℓ2)p ĝ(ℓ)
∣∣ <∞ for all p .
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Using furthermore that the kernel Iε(s, α, s̃, .) given in (6.2) decays exponentially, we
may use Fubini to exchange the orders of integration in the following computation,

(
SRΨ

)
(s, α) =

∑

s̃=±1

lim
εց0

∫ ∞

−∞
Iε
(
s, α; s̃, α̃

)
√

2m

π

(∫ ∞

−∞
ĝ(s, ℓ) e−iℓα̃ dℓ

)
dα̃

=

√
2m

π

∑

s̃=±1

∫ ∞

−∞
ĝ(s, ℓ)

(
lim
εց0

∫ ∞

−∞
Iε
(
s, α; s̃, α̃

)
e−iℓα̃ dα

)
dℓ

=

√
2m

π

∑

s̃=±1

∫ ∞

−∞

(
ŜR(ℓ) ĝ(ℓ)

)
s
e−iℓα dℓ =

(
U−1

ŜR UΨ
)
(s, α) ,

where in the last line we applied Lemma 7.1. Therefore, the unitary transformation
of SR yields a multiplication operator, i.e.

(
U SR U−1ĝ

)
(ℓ) = ŜR(ℓ) ĝ(ℓ) for all ĝ ∈ U

(
C∞
sc (M, SM) ∩H

)
.

Obviously, this multiplication operator can be extended to the domain

D
(
ŜR

)
:=
{
ĝ ∈ L2(R,C2) with ŜR ĝ ∈ L2(R,C2)

}
(8.4)

(where again (ŜRĝ)(l) := ŜR(ℓ) ĝ(ℓ)). Our task is to prove that with this domain, the

multiplication operator ŜR is self-adjoint. Once this has been shown, we obtain the
self-adjointness of SR with domain (8.1) by unitary transformation. Moreover, the
properties of the spectrum and the spectral measure follow immediately by computing

the spectral measure of the multiplication operator ŜR and unitarily transforming back
to the Hilbert space H.

In order to establish that the multiplication operator ŜR with domain (8.4) is self-

adjoint, we need to show that the domain of its adjoint Ŝ∗
R

coincides with (8.4). This
follows using standard functional methods (see for example [25, 22]), which we here

recall for completeness: Let Ψ ∈ D(Ŝ∗
R
). Then there is a vector Ŝ∗

R
Ψ ∈ H such that

〈Ψ, ŜRu〉L2(R,C2) = 〈Ŝ∗RΨ, u〉L2(R,C2) for all u ∈ D
(
ŜR

)
.

Since the function Ŝ
∗
R
Ψ is in L2(R,C2), we may apply Lebesgue’s monotone conver-

gence theorem to obtain
∥∥Ŝ∗RΨ

∥∥
L2(R,C2)

= lim
L→∞

∥∥χ[−L,L] Ŝ
∗
RΨ
∥∥
L2(R,C2)

= lim
L→∞

sup
Φ∈H, ‖Φ‖=1

〈
Φ, χ[−L,L] Ŝ

∗
RΨ
〉
L2(R,C2)

(∗)
= lim

L→∞
sup

Φ∈H, ‖Φ‖=1

〈
ŜR χ[−L,L]Φ, Ψ

〉
L2(R,C2)

= lim
L→∞

sup
Φ∈H, ‖Φ‖=1

∫ L

−L

〈
Φ(ℓ), ŜR(ℓ)Ψ(ℓ)

〉
C2 dℓ

= lim
L→∞

(∫ L

−L

∥∥ŜR(ℓ)Ψ(ℓ)
∥∥2
C2 dℓ

) 1
2

,

where in (∗) we used that the function χ[−L,L]Φ is in the domain of ŜR (see (8.4) and

exploited the fact that the matrix ŜR(ℓ) in (7.2) is uniformly bounded for ℓ ∈ [−L,L]).
Again applying Lebesgue’s monotone convergence theorem, we infer that the pointwise
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product ŜR(ℓ)Ψ(ℓ) is in L2(R,C2). Using (8.4), it follows that the vector Ψ lies in the

domain of ŜR. This concludes the proof. �

9. The Fermionic Signature Operator of Rindler Space-Time

Having defined the relative fermionic signature operator SR as a self-adjoint operator
with dense domain D(SR), the fermionic signature operator S in Rindler space-time
is obtained from (3.4). We then have the following result.

Theorem 9.1. Choosing the domain of definition

D(S) = πRD(SR) (9.1)

(with D(SR) according to (8.1)), the fermionic signature operator S in Rindler space-
time is a self-adjoint operator on HR. It has an absolutely continuous spectrum with
spectral measure dEλ given by

EU = πR U−1
(
χU L̂

)
U ιM ,

where L̂ is again the multiplication operator (8.3).

Proof. On the solution space HM in Minkowski space, we consider the transformation

TCPT : HM → HM , Ψ(t, x) 7→ γ0γ1 Ψ(−t,−x)

(in physics referred to as the CPT transformation [2, Section 5.4]; one verifies directly
that this transformation maps again to solutions of the Dirac equation). A direct
computation shows that TCPT is unitary and that T 2

CPT
= −11.

The transformation TCPT can be used to describe the Hilbert space HM completely
in terms of HR. To see how this comes about, we first note that a solution Ψ ∈ HM

is determined uniquely by its Cauchy data at time zero. The restriction to the right
half line Ψ|{t=0,x>0} gives rise to a unique solution in HR, and applying ιM yields a
solution in Minkowski space which vanishes identically on the left half line Ψ|{t=0,x<0}.
Applying TCPT to this solution gives a new solution which vanishes identically on the
right half line Ψ|{t=0,x>0}. In view of (3.1), the solutions which vanish on the right
half line are orthogonal to those which vanish on the left half line. We thus obtain the
orthogonal direct sum decomposition

HM =
(
TCPT ιM HR

)
⊕
(
ιM HR

)
.

Since the Dirac solutions in TCPT ιM HR vanish identically in the Rindler wedge, it
is obvious that

SR

∣∣
TCPT ιM HR

= 0 and SR

(
HM

)
⊂ ιMHR .

Moreover, working out TCPT in momentum space, one sees that TCPT leaves the pa-
rameter ℓ in (7.1) unchanged and simply maps the trivial and non-trivial eigenspaces
of the matrix (7.2) to each other (see (7.3) and (7.4)). This shows that the operator ιM
in (3.4) maps precisely to the orthogonal complement of the kernel of SR, and that the
image of SR is mapped by πM unitarily to HR. Therefore, the spectral representation
of S is obtained by that of SR simply by removing the kernel. This gives the result. �
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10. Connection to the Hamiltonian in Rindler Coordinates

The fermionic signature operator is closely related to the Dirac Hamiltonian in
Rindler coordinates, as we now explain. Recall that the Rindler coordinates τ ∈ R

and ρ ∈ (0,∞) are defined by
(
t
x

)
= ρ

(
sinh τ
cosh τ

)
.

In these coordinates, the Rindler line element takes the form

ds2 = ρ2 dτ2 − dρ2 .

We work intrinsically in Rindler space-time. Translations in the time coordinate τ ,

τ 7→ τ +∆ , ρ 7→ ρ , (10.1)

describe a Killing symmetry. Therefore, writing the Dirac equation in this time coor-
dinate in the Hamiltonian form

i∂τψ = Hψ , (10.2)

the Dirac Hamiltonian is time independent (for details see the proof of Theorem 10.1
below).

Theorem 10.1. The fermionic signature operator S and the Hamiltonian H in Rindler
coordinates satisfy the relation

S = − H

πm
.

Proof. One method of deriving the Dirac operator would be to compute the spin con-
nection in this coordinate system. For our purposes, it is more convenient to again
take the Dirac operator in the reference frame (t, x) and to express it in the Rindler
coordinates (τ, ρ), but without transforming the spinor basis (this Dirac operator co-
incides with the intrinsic Dirac operator up to a local U(1, 1)-gauge transformation;
for details in the more general four-dimensional setting see [9]). Using the identities

∂

∂ρ
=
∂t

∂ρ

∂

∂t
+
∂x

∂ρ

∂

∂x
= sinh τ

∂

∂t
+ cosh τ

∂

∂x

∂

∂τ
=
∂t

∂τ

∂

∂t
+
∂x

∂τ

∂

∂x
= ρ cosh τ

∂

∂t
+ ρ sinh τ

∂

∂x
,

the Dirac operator becomes

D =
i

ρ

(
γ0 cosh τ − γ1 sinh τ

)
∂τ + i

(
− γ0 sinh τ + γ1 cosh τ

)
∂ρ

=
i

ρ

(
0 e−τ

eτ 0

)
∂τ + i

(
0 e−τ

−eτ 0

)
∂ρ .

Consequently, the Dirac Hamiltonian in (10.2) can be written as

H = iρ

(
1 0
0 −1

)
∂ρ +mρ

(
0 e−τ

eτ 0

)
.

The time translation in (10.1) must be complemented by the corresponding trans-
formation of the spinors

ψ 7→ exp
(
γ0γ1

∆

2

)
ψ =

(
e−

∆
2 0

0 e
∆
2

)
ψ . (10.3)
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Indeed, by direct computation one verifies that the Dirac operator as well as the Dirac
Hamiltonian are invariant under the joint transformations (10.1) and (10.3). If we also
change the momentum variables according to

α 7→ α+∆ , (10.4)

we know by Lorentz symmetry that the Dirac solutions in our Fourier representation
remain unchanged. Therefore, the time evolution in the time coordinate τ is described
by the inverse of the transformation (10.4), α 7→ α −∆. We conclude that, infinites-
imally, the Hamiltonian H is given by i∂τ = i∂∆ = −i∂α. Using this formula in our
plane wave ansatz (7.1), we conclude that

Hĝ(s, ℓ) = −ℓ ĝ(s, ℓ) .

Comparing with (7.3), one sees that the eigenvalues of H agree up to a factor −πm
with that of those of the relative fermionic signature operator. Taking into account
that the image of the operator ιM in (3.4) coincides with the orthogonal complement
of the kernel of SR (see Theorem 9.1), we obtain the result. �

11. Applications

11.1. The FP State and Thermal States. As explained in [6, 15], the fermionic
signature operator can also be used to single out a distinguished fermionic quantum
state, sometimes referred to as the fermionic projector state (or FP state). We now
recall the construction and show that, in two-dimensional Rindler space-time, this
construction gives precisely the Fulling-Rindler vacuum. We again work intrinsically in
Rindler space-time. Since the Hamiltonian in the Dirac equation (10.2) is independent
of τ , we can separate the τ -dependence with a plane wave ansatz

ψ(τ, ρ) = e−iΩτ χ(ρ) . (11.1)

The sign of the separation constant Ω gives a splitting of the solution space of the
Dirac equation into two subspaces. The Fulling-Rindler vacuum is the unique quantum
state corresponding to this “frequency splitting” in the time coordinate τ . Next, the
fermionic signature operator as defined by (2.9) is a self-adjoint operator with dense
domain D(S) given by (9.1). Therefore, the functional calculus gives rise to projection
operators χ(−∞,0)(S) and χ(0,∞)(S). Applying Araki’s construction in [1] gives the FP
state ω, being a pure quasi-free state on the algebra generated by the smeared fields
operators (for details see [15, Section 6]). In view of Theorem 10.1, the projection
operators χ(−∞,0)(S) and χ(0,∞)(S) coincide with the above frequency splitting. We
thus obtain the following result:

Corollary 11.1. The pure quasi-free FP state ω obtained from the fermionic signature
operator coincides with the Fulling-Rindler vacuum.

The advantage of working with the fermionic signature operator is that the construc-
tion is robust under perturbations of the metric. This connection will be discussed
further in Section 12 below.

Applying Theorem 10.1, one can also construct thermal states by realizing the Dirac-
Fermi distribution (see [31] or [33, Chapter 5]; note that in our units the Boltzmann
constant kB = 1):
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Corollary 11.2. Applying Araki’s construction to the positive operator

W (β) =
1

1 + eβmπS
, (11.2)

one obtains a thermal state of temperature 1/β. Choosing β = 2π, we get the Unruh
state.

11.2. The Fermionic Projector and Causal Fermion Systems. Exactly as ex-
plained in [17, Section 3], the fermionic projector P is introduced as the operator

P = −χ(−∞,0)(S) km : C∞
0 (R, SR) → H ,

where S is the fermionic signature operator, and km is the causal fundamental solution
defined as the difference of the advanced and retarded Green’s operators,

km :=
1

2πi

(
s∨m − s∧m

)
: C∞

0 (R, SR) → C∞
sc (R, SR) ∩HR .

The fermionic projector P can be represented by a distribution, referred to as the
kernel of the fermionic projector. Namely, just as in [17, Section 3.5], one shows that
there is a unique distribution P ∈ D

′(R × R) such that

<φ|Pψ> = P
(
φ⊗ ψ

)
for all φ,ψ ∈ C∞

0 (R, SR) .

Indeed, the bi-distribution P agrees with the two-point function of the FP state in
Corollary 11.1.

After inserting an ultraviolet regularization, the kernel of the fermionic projector
gives rise to a causal fermion system (see [17, Section 4] or [11, Section 1.2]). The theory
of causal fermion systems is an approach to describe fundamental physics (see [10, 11]
or the survey papers [12] or [13]). In this context, the kernel of the fermionic projector
is used extensively in the analysis of the causal action principle.

12. Asymptotically Rindler Space-Times

The main purpose of this paper was to show that the construction of quantum states
with the fermionic signature operator gives agreement with the frequency splitting in
Rindler coordinates and the construction of thermal states. We now give an outlook
which also explains the advantages of working with the fermionic signature operator.

For the frequency splitting in Rindler coordinates, it is essential that the coordinate τ
corresponds to a symmetry of space-time. Therefore, the construction of the Fulling-
Rindler vacuum breaks down as soon as space-time no longer has this symmetry. The
frequency splitting no longer works even if the Rindler metric is modified by a small
τ -dependent perturbation, simply because the separation ansatz (11.1) can no longer
be used. However, using the fermionic signature operator has the major benefit that
the constructions in [17, 18] apply to arbitrary space-times, without any symmetry
assumptions.

In particular, the above construction applies to curved space-times involving a hori-
zon for which the metric tends to Rindler space-time at null infinity with a suitable
decay rate. The crucial point for the construction is to establish rapid decay estimates
for the Dirac solutions in null directions (4.2). These estimates have been worked out
in a more general static setting in the thesis [30], where also sufficient decay properties
of the metric perturbations are specified. In particular, Corollary 4.7.5 in this thesis
immediately gives the following result:
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Theorem 12.1. Let R be the Rindler wedge (2.1) with the static Lorentzian metric

ds2 =
(
1 +A(x)

)2(
dt2 − dx2

)
,

where the metric function A has the following properties:

(i) ‖A‖Ck(R+) <∞ for all k ∈ N.

(ii) There are constants C,α > 0 such that

∣∣A(x)
∣∣,
∣∣A′(x)

∣∣ ≤ C

(1 + x)α
for all x ∈ R

+ .

Then the relation (2.9) uniquely defines the fermionic signature operator S as an op-
erator with dense domain D(S) = C∞

sc
(R, SR).

We remark that the methods in [30] could be adapted to the non-static situation.
In order to analyze the spectral properties of S, one could adapt the perturbative

methods as developed in [15] for an external potential in Minkowski space. We ex-
pect that for sufficiently small perturbations, the resulting FP state should again be
Hadamard. However, proving this conjecture is more difficult than the construction
in [15, Section 5], mainly because the fermionic signature operator in Rindler space-
time does not have a spectral gap separating the positive and negative spectrum.
Therefore, we leave this problem as a project for future research.

13. Extension to Four-Dimensional Rindler Space-Time

We now explain how our results extend to the case of four-dimensional Rindler
space-time. Thus let M = R

1,3 be four-dimensional Minkowski space and R the
subset

R =
{
(t, x, y, z) ∈ R

1,3 with |t| < x
}
.

The Dirac equation in Rindler space-time is formulated as the restriction of the Dirac
equation in Minkowski space to R (we use the same notation and conventions as in [2,
23]). Its solutions are most easily constructed by separating the y-and z-dependence
with a plane wave ansatz,

ψ(t, x, y, z) = eikyy+ikzz ψ̃(t, x) , (13.1)

giving the Dirac equation in t and x
(
iγ0∂t + iγ1∂x

)
ψ̃(t, x) =

(
m+ γ2ky + γ3kz

)
ψ̃(t, x) .

Transforming to momentum space, the solutions lie on a mass shell of mass

m̃ :=
√
m2 + k2y + k2z . (13.2)

Thus, similar to (5.1), we can make the ansatz

ψ̃(q) =

∫

R2

d2p

(2π)2
ψ̂(p) δ(p2 − m̃2) e−ipq ,

giving rise to the algebraic equation
(
ωγ0 − kγ1

)
ψ̂ =

(
m+ γ2ky + γ3kz

)
ψ̂ (13.3)

(where again p = (ω, k)). This equation has a two-dimensional solution space. In
analogy to (5.2), we choose a basis of solutions f1, f2. In the next lemma it is shown
that these spinors can be chosen to have similar properties to those stated in Lemma 5.1
and Lemma 6.3.
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Lemma 13.1. Given ky and kz, there are spinors fa(p) with a = ±1 which solve the
Dirac equation (13.3) and satisfy the relations

≺fa(ω, k) | fb(ω, k)≻ = ǫ(ω) δab

≺fa(ω, k) | γ0 fb(−ω, k)≻ = 0

≺fa(ω, k) | γ0 fb(ω, k)≻ =
|ω|
m

δab .

Moreover, in the parametrization (5.6),

≺fa(s, α) | fb(s̃, α̃)≻ = s δab
m̃

m

{
cosh(β + iνa) if s = s̃
sinh(β + iνa) if s 6= s̃ ,

where β is again given by (6.3), and the angle νa ∈ (−π
2 ,

π
2 ) is defined by

νa = arctan

(
a

m

√
k2y + k2z

)
. (13.4)

Proof. After rotating our reference frame, we can assume that kz = 0 and ky > 0.
Then in the Dirac representation (see for example [2]), the Dirac equation (13.3) takes
the form 



ω −m 0 0 −k + iky
0 ω −m −k − iky 0
0 k − iky −ω −m 0

k + iky 0 0 −ω −m


 ψ̂ = 0 . (13.5)

Obviously, this matrix has two invariant subspaces: one spanned by the first and
fourth spinor components, and the other spanned by the second and third spinor
components. Choosing f1 in the first and f−1 in the second of these subspaces, the
above inner products all vanish if a 6= b. In the remaining case a = b, one can restrict
attention to two-spinors. In order to get back to the setting in two-dimensional Rindler
space-time, we use the identity

U

(
ω −m −k ± iky
k ± iky −ω −m

)
U =

(
ω − m̃ −k
k −ω − m̃

)
,

where U is the matrix

U =

(
cos(νa/2) i sin(νa/2)
i sin(νa/2) cos(νa/2)

)
.

Now the results follow by direct computation. �

Using the result of this lemma, we can represent the solution in analogy to (5.4) by

ψ(q) =
∑

a=±1

∫

R2

d2p

2π
ǫ(ω) δ(p2 −m2) ga(p) fa(p) e

−ipq

with two complex-valued functions g±1. The subsequent analysis can be extended in
a straightforward way. In particular, the kernel Iε in Corollary 6.2 is to be replaced
by the kernels

Iaε
(
s, α; s̃, α̃

)
=

1

4π2m
×





s cosh(β + iνa)

1− cosh(2β + iεs)
if s = s̃

−s sinh(β + iνa)

1 + cosh(2β)
if s 6= s̃ .



THE FERMIONIC SIGNATURE OPERATOR IN RINDLER SPACE-TIME 23

The residues can be computed as in Lemma 7.1 if one transforms the integrals in the
following way,

∫ ∞

−∞

sinh(β + iνa)

1 + cosh(2β)
e−2iℓβ dβ

= cos νa

∫ ∞

−∞

sinh(β)

1 + cosh(2β)
e−2iℓβ dβ + i sin νa

∫ ∞

−∞

cosh(β)

1 + cosh(2β)
e−2iℓβ dβ

= − cos νa

∫ ∞

−∞

d

dβ

(
1

eβ + e−β

)
e−2iℓβ dβ + i sin νa

∫ ∞

−∞

1

eβ + e−β
e−2iℓβ dβ

=

∫ ∞

−∞

1

eβ + e−β

(
cos νa

d

dβ
+ i sin νa

)
e−2iℓβ dβ

=

∫ ∞

−∞

1

eβ + e−β

(
− 2iℓ cos νa + i sin νa

)
e−2iℓβ dβ ,

showing that the integral is obtained from the earlier integral (7.5) if one only replaces

the prefactor ℓ by ℓ̃ given by

ℓ̃a := ℓ cos νa −
sin νa
2

. (13.6)

The same method also applies to the integral (7.6) and again amounts to the re-
placement (13.6). We conclude that the matrix in (7.2) is to be replaced by the two
matrices

Ŝ
a
R(ℓ) =

ℓ̃a
πm




1

1 + e−2πℓ
− i

2 cosh(πℓ)
i

2 cosh(πℓ)

1

1 + e2πℓ


 .

These matrices have the eigenvalues

λ = 0 and λ =
ℓ̃a
πm

.

As a consequence, the analog of Theorem 10.1 is the following statement:

Theorem 13.2. After separating the y- and z-dependence by the plane wave an-
satz (13.1), the fermionic signature operator S and the Hamiltonian H in Rindler
coordinates satisfy the relations

S = − H

πm̃
− 1

2πmm̃
γ0γ1

(
γ2∂y + γ3∂z

)
(13.7)

with m̃ according to (13.2).

Proof. Considering again a Lorentz boost, just as in the proof of Theorem 10.1 we find
that H = −ℓ. Therefore, considering as in (13.5) the situation that kz = 0 and ky > 0,
we obtain on the first and fourth spinor components that

S
a = − H

πm
cos νa −

sin νa
2πm

with a = 1. Similarly, on the second and third spinor components, the same formula
holds with a = −1. Using (13.4), we can simplify these equations to

S
a = − H

πm̃
− aky

2πmm̃
.
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By direct computation, one verifies that the operator

γ0γ1
(
γ2∂y + γ3∂z

)

has an eigenvalue ky, and the corresponding eigenspace is the subspace spanned by the
first and fourth spinor components. Likewise, the subspace spanned by the second and
third spinor components is an eigenspace to the eigenvalue −ky. This proves (13.7)
for the case kz = 0 and ky > 0. The general case follows immediately because the
operator (13.7) is invariant under rotations in the yz-plane. �

We remark that the separation of the y- and z-dependence could be described more

mathematically by a Fourier transformation ψ(t, x, y, z) 7→ ψ̃(t, x, ky , kz), being a uni-
tary transformation between corresponding Hilbert spaces. Since this procedure is
very similar to that at the beginning of Section 8, we leave the details to the reader.
Carrying out this procedure, the factors 1/m̃ become multiplication operators in mo-
mentum space (see (13.2)). Clearly, in position space, these operators are nonlocal in
the variables y and z.

Applying the constructions outlined in Section 11.1, we again get quasi-free quantum
states. However, these states are different from the Fulling-Rindler vacuum and the
thermal states as obtained in Corollaries 11.1 and 11.2. The physical significance of
these new states is presently under investigation.
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