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Abstract. We consider a boundary value problem for the Dirac equation in a
smooth, asymptotically flat Lorentzian manifold admitting a Killing field which is
timelike near and tangential to the boundary. A self-adjoint extension of the Dirac
Hamiltonian is constructed. Our results also apply to the situation that the space-
time includes horizons, where the Hamiltonian fails to be elliptic.
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1. Introduction

Let (M, g) be a smooth, oriented and time-orientated Lorentzian spin manifold of
dimension d ≥ 3 with boundary ∂M. Moreover, we make the following assumptions:

(i) The manifold (M, g) is asymptotically flat with one asymptotic end.
(ii) There is a Killing field K which is tangential to and timelike on ∂M.
(iii) The integral curves of K, defined by the differential equation

γ̇(t) = K
(
γ(t)

)
,

exist for all t ∈ R.
(iv) There exists a spacelike hypersurface N with compact boundary ∂N with the

property that every integral curve γ in (iii) intersects N exactly once.

These assumptions imply that M and its boundary ∂M have the product structures

M = R×N and ∂M = R× ∂N . (1.1)

Note that our assumptions also imply that the metric g is smooth up to the bound-
ary ∂M, thus inducing on ∂N a (d− 2)-dimensional Riemannian metric.
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2 F. FINSTER AND C. RÖKEN

For clarity, we now mention two well-known special cases. If ∂N is empty and N is
complete, the product structure (1.1) implies that (M, g) is globally hyperbolic. More-
over, if K is timelike in the asymptotic end, the manifold is stationary. However, we
point out that we merely assume that the Killing field K is timelike on the bound-
ary ∂M, but it does not need to be timelike everywhere.

In order to get a better geometric understanding of the above setting, we now con-
struct a convenient coordinate system. Choosing the parametrization of each curve γ
such that γ(0) ∈ N , we obtain a global coordinate function T defined by

T : M → R with T
(
γ(t)

)
= t . (1.2)

The level sets of this time function give rise to a foliation Nt := T−1(t) by spacelike
hypersurfaces with N0 = N . Moreover, the integral curves give rise to isometries

Φt : N → Nt , Φt

(
γ(0)

)
= γ(t) .

Choosing coordinates x on N , the mapping x ◦ Φ−1t gives coordinates on Nt. Com-
plementing this coordinate system by the function t = T , we obtain coordinates (t, x)
with t ∈ R and x ∈ N such that K = ∂t. In these coordinates, the line element takes
the form

ds2 = gij dx
i dxj = a(x) dt2 + bα(x) dt dxα −

(
gN(x)

)
αβ
dxα dxβ ,

where a and bα are smooth functions, and gN is the induced Riemannian metric
on N . Here we denote the space-time indices by latin letters i, j ∈ {0, 1, 2, . . . , d− 1},
whereas spatial indices are denoted by greek letters α, β ∈ {1, 2, . . . , d − 1}. This
coordinate system can be understood as describing an observer who is co-moving along
the flow lines of the Killing field. We note that in the regions where K is timelike,
the function a(x) is positive, and the metric is stationary. This is the case if x is near
the boundary ∂N . However, away from ∂N , the function a(x) could be negative, in
which case the metric is not stationary, and t is not a time coordinate. This situation
is illustrated in the following example.

Example 1.1. (Kerr geometry in Eddington-Finkelstein-type coordinates)
In the recent paper [12], horizon-penetrating Eddington-Finkelstein-type coordinates

(τ, r, θ, φ) with τ ∈ R, r ∈ R+, θ ∈ (0, π), φ ∈ (0, 2π)

are introduced in the four-dimensional non-extreme Kerr geometry. In these coordi-
nates, the line element takes the form

ds2 =

(
1− 2Mr

Σ

)
dτ2 − 4Mr

Σ

(
dr − a sin2 θ dφ

)
dτ

−
(

1 +
2Mr

Σ

)(
dr − a sin2 θ dφ

)2 − Σ dθ2 − Σ sin2 θ dφ2 ,

where Σ = r2 + a2 cos2 θ. Moreover, M and aM denote the mass and the angular
momentum of the black hole, respectively. The surfaces r± = M ±

√
M2 − a2 are the

event horizon and the Cauchy horizon of the black hole. Note that these coordinates are
regular on and across the horizons. The two Killing fields describing the stationarity
and axisymmetry of the Kerr geometry are ∂τ and ∂φ.

We choose a radius r0 < r− inside the Cauchy horizon and let

M = {r > r0} , N = {τ = 0, r > r0} and ∂M = {r = r0} .
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Direct computation shows that the Killing field ∂τ is not everywhere timelike on ∂M
(due to an ergo-like region inside the Cauchy horizon; for details see [7]). But taking K
as a suitable linear combination of ∂τ and ∂φ,

K = ∂τ + b ∂φ

with a real constant b = b(r0) 6= 0, it turns out that K is a Killing field which satisfies
all the above assumptions. This Killing field is spacelike near spatial infinity. ♦

We next formulate the Dirac equation. To this end, we choose an arbitrary spin
structure and let SM be the corresponding spinor bundle. It is a vector bundle with
fibers SpM ' Cf , f ∈M, where the dimension f is given by f = 2[d/2] (where [.] is the
lower Gauss bracket; thus f = 4 in dimensions d = 4 or 5). Each fiber is endowed with
an indefinite inner product of signature (f/2, f/2), referred to as spin scalar product
and denoted by

≺.|.�p : SpM × SpM → C .

The geometric Dirac operator D takes the form

D = iγj∇j , (1.3)

where the Dirac matrices γj are related to the metric by the anti-commutation relations{
γj , γk

}
= 2 gjk 11SpM ,

and ∇ is the metric connection on the spinor bundle (for more details see [10]). In
order to allow for an external potential (like for example an electromagnetic potential),
instead of (1.3) we shall consider the more general Dirac operator

D = iγj∇j + B , (1.4)

where B is a smooth matrix-valued potential which we assume to be symmetric with
respect to the spin scalar product, i.e. ≺φ|Bψ� = ≺Bφ|ψ�.

We are interested in solutions ψ of the Dirac equation of mass m

(D −m)ψ = 0 , (1.5)

with the Dirac operator according to (1.4). In order to analyze the dynamics of Dirac
waves, it is useful to write the Dirac equation in the Hamiltonian form

i∂tψ = Hψ , (1.6)

where H is the Dirac Hamiltonian given by

H = −
(
γt
)−1(

iγα∇α + B−m
)
. (1.7)

Taking the domain of definition

D(H) = C∞0
( ◦
N , SM

)
,

where
◦
N = N \ ∂N denotes the interior of N , this Hamiltonian is indeed symmetric

(i.e. formally self-adjoint) with respect to the scalar product

(ψ|φ)N =

ˆ
N
≺ψ|/νφ�x dµN(x) ,
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where ν is the future-directed normal on N and dµN is the volume form on (N , gN).
This can be verified with the following computation. Using current conservation to-
gether with the fact that the metric coefficients do not depend on the coordinate t, we
obtain

0 = ∂t
(
ψ(t)

∣∣φ(t)
)
N

= (ψ̇|φ)N + (ψ|φ̇)N

=
(
(−iHψ)

∣∣φ)
N

+
(
ψ
∣∣(−iHφ)

)
N

= i
(
(Hψ|φ)N − (ψ|Hφ)N

)
.

In order to pose the Cauchy problem for the Dirac equation (1.5), one needs to
specify initial and boundary conditions. We choose initial data which is smooth and
compactly supported,

ψ|N = ψ0 ∈ C∞0 (N , SM) . (1.8)

Moreover, we impose the boundary conditions

(/n− i) ψ|∂M = 0 , (1.9)

where the slash denotes Clifford multiplication, and n is the inner normal on ∂M
(meaning that for every p ∈ ∂M there is a curve c : [0, δ)→M with c(0) = p and ċ(0) =
n(p)). Clearly, the initial data must be compatible with the boundary conditions,
meaning that (/n− i)ψ0|∂M = 0. These boundary conditions, which are very similar to
those introduced in [5, Section 2], have the effect that Dirac waves are reflected on ∂M.
They can also be understood in analogy to the chiral boundary conditions in [3, 8]. The
difference is that, instead of the intrinsic Dirac operator on the hypersurface, we here
consider the Hamiltonian obtained from the Dirac operator in space-time by separating
the t-dependence. This gives rise to the additional factor (γt)−1 in (1.7). Our boundary
conditions (1.9) can be understood as an adaptation of the chiral boundary conditions
in [3, 8] to the Hamiltonian (1.7).

The boundary conditions (1.9) must be incorporated in the functional analytic set-
ting. To this end, one extends the domain of definition to

D(H) =
{
ψ ∈ C∞0 (N , SM) with (/n− i) ψ|∂N = 0

}
. (1.10)

Then the operator H is again symmetric, as the following consideration shows. First,
we rewrite the scalar product (ψ|Hφ)N in a more convenient form. Applying the

relations (γt)2 = gtt11SxM and /ν = γt/
√
gtt, we obtain

/ν(γt)−1 =
1

gtt
/ν γt =

11SxM√
gtt

.

Making use of the form of the Hamiltonian (1.7), this leads to

(ψ|Hφ)N = −i
ˆ

N
≺ψ|γα∇αφ�x

1√
gtt

dµN(x) + (lower order terms) .

Now a direct computation of the boundary terms yields

(ψ|Hφ)N − (Hψ|φ)N = i

ˆ
∂N
≺ψ|/nφ�x

1√
gtt

dµ∂N(x)

(we note that the angular derivatives do not give rise to boundary terms because ∂N is
compact without boundary). Using the boundary conditions in (1.10), for all x ∈ ∂N
we obtain

i≺ψ|φ�x = ≺ψ|/nφ�x = ≺/nψ|φ�x = −i≺ψ|φ�x ,
proving that the boundary values indeed vanish. This shows that H is symmetric.
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In order to solve the Cauchy problem and to analyze the long-time behavior of its
solutions, it is of central importance to construct a self-adjoint extension of H. Namely,
with such a self-adjoint extension at hand, the solution of the Cauchy problem for the
Dirac equation (1.5) with initial values (1.8) and boundary conditions (1.9) can be
expressed using the spectral theorem for self-adjoint operators as

ψ(t) = e−itH ψ0 =

ˆ
σ(H)

e−iωt dEω ψ0 .

This formula is also the starting point for a detailed analysis of the long-time behavior
of ψ using spectral methods, similar as carried out in the exterior region of Kerr
geometry in [5, 4]. In the present paper, we succeed in constructing a self-adjoint
extension:

Theorem 1.2. The Dirac Hamiltonian (1.7) with domain of definition

D(H) =
{
ψ ∈ C∞0 (N , SM) with (/n− i)

(
Hpψ

)∣∣
∂N

= 0 for all p ∈ N0

}
(1.11)

is essentially self-adjoint.

Note that the domain (1.11) is smaller than (1.10). This is preferable because we want
that the Cauchy problem has a global solution in C∞0 (N , SM) (see the strategy of our
proof as described at the end of this section).

We conclude this section by putting our result into the context of previous work,
and explaining the strategy of our proof. The Cauchy problem and the problem of
constructing a self-adjoint extension of the Dirac Hamiltonian have been studied in
several simpler situations:

(i) If N is a complete manifold without boundary, the Cauchy problem can be solved
using the theory of symmetric hyperbolic systems (see for example [9, 14]). In
this construction, one works with local charts with local time functions. Since
the resulting local solutions coincide in the regions where the charts overlap, this
procedure gives rise to a unique, global smooth solution in M. Then, restricting
this solution to the spacelike hypersurfaces of constant t, one obtains a family of
time evolution operators

Ut′,t : C∞
(
{t} ×N , SM

)
→ C∞

(
{t′} ×N , SM

)
,

which form a group. This makes it possible to apply [2] to conclude that the
Hamiltonian is essentially self-adjoint on C∞(N , SM).

(ii) In the ultrastatic situation

ds2 = dt2 −
(
gN
)
αβ
dxα dxβ ,

the Hamiltonian can be written as

H =

(
0 DN

DN 0

)
,

where DN is the intrinsic Dirac operator on N . This makes it possible to apply
the results in the Riemannian setting as worked out in detail in [1].

(iii) In the static situation

ds2 = a(x) dt2 −
(
gN
)
αβ
dxα dxβ ,
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the Hamiltonian can be written as

H =
√
a(x)

(
0 DN

DN 0

)
+ (zero-order terms) .

Introducing a suitable scalar product on the Dirac wave functions, this Hamilton-
ian is again symmetric, making it possible to again apply the results of [1].

In the situation under consideration here, there is the major complication that the
Hamiltonian is in general not uniformly elliptic, so that the methods in [1] no longer
apply. In order to explain the problem, we now consider the principal symbol of the
Dirac Hamiltonian. According to (1.7), the principal symbol takes the form

P (x, ξ) = −i
(
γt
)−1

γα ξα .

The ellipticity condition states that the principal symbol should be bounded from
below by ∥∥P (x, ξ)

∥∥ ≥ δ ‖ξ‖2
for a suitable constant δ > 0 (for basics on the principal symbol and the connection to
ellipticity see for example [13, Section 5.11]). In order to verify whether this condition
holds, it is most convenient to compute the determinant of the principal symbol.
Namely,

detP (x, ξ) = det
(
(γt)−1

)
det
(
γα ξα

)
,

and using that

(γt)−1(γt)−1 =
11SxM

gtt
, γα ξα γ

β ξβ = gαβ ξα ξβ 11SxM ,

we obtain

detP (x, ξ) =

(
gαβ ξα ξβ

gtt

)f/2
.

This computation shows that the Hamiltonian fails to be elliptic if gαβ ξα ξβ = 0
for a non-zero ξ. In the example of the Kerr metric in Eddington-Finkelstein-type
coordinates [12], this is the case precisely on the event and Cauchy horizons. More
generally, the points where the Hamiltonian fails to be elliptic can be used as the
definition of the horizons of our space-time. Thus we face the major problem that the
Hamiltonian is not elliptic on the horizons.

Our strategy to solve this problem is to split up the solution of the Cauchy problem
into two separate problems: Near the boundary, we rewrite the problem in a form
where the results in [1] apply. Away from the boundary, however, we use the theory
of symmetric hyperbolic systems. Making essential use of finite propagation speed,
adding the two solutions gives rise to a unique solution of our boundary value problem
for small times. By iterating the procedure, we get unique global, smooth solutions,
making it possible to proceed as in (i) above by applying [2].

2. A Double Boundary Value Problem

As a technical tool for the proof of Theorem 1.2, we need to show that the Cauchy
problem (1.5), (1.8) with boundary conditions (1.9) has global smooth solutions. Our
method is to split up the Cauchy problem into two separate problems near and away
from the boundary. In preparation, we now introduce additional boundary conditions
on a suitable surface Y near ∂M. We work in Gaussian normal coordinates in a tubular
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neighborhood in N of ∂N . Thus for any p ∈ ∂N , we let cp(r) for 0 ≤ r < rmax(p) be
the geodesic in N with the initial conditions

cp(0) = p and c′p(0) = u ,

where u ∈ TpN is the inner normal to ∂N . Since ∂N is compact, we can choose rmax >
0 independent of p to obtain a mapping

c : [0, rmax)× ∂N → N , c(r, p) = cp(r) .

Applying the implicit function theorem, possibly by decreasing rmax, we can arrange
that c is a diffeomorphism. We introduce the sets obtained from ∂N by the geodesic
flow by

∂N(r) = c(r, ∂N) .

Choosing coordinates Ω = (ϑ1, . . . , ϑd−2) on ∂N gives a corresponding coordinate
system (r,Ω) on N . In these coordinates, the metric on N takes the form

(gN)αβ =

(
1 0
0 g∂N(r)

)
and thus (gN)αβ =

(
1 0

0
(
g∂N(r)

)−1) . (2.1)

Taking again t as the time coordinate, we obtain a coordinate system (t, r,Ω) with t ∈
R, r ∈ [0, rmax) of M which describes a neighborhood of ∂M.

We now introduce the following new boundary value problem. Let X be the space-
time region

X =
{

(t, r,Ω)
∣∣ 0 ≤ r ≤ rmax/2

}
.

This is a Lorentzian manifold whose boundary ∂X consists of ∂M as well as the
(d− 1)-dimensional surface

Y :=
{

(t, rmax/2,Ω)
}
.

Possibly by decreasing rmax, we can arrange that K is timelike in X, implying that Y
is a timelike surface. The inner normal on Y is again denoted by n. We consider the
initial value problem

(D −m)ψ = 0 in X , ψ|N = ψ0 ∈ C∞(N ∩X,SM) , (2.2)

with the boundary conditions

(/n− i)ψ|∂X = 0 , (2.3)

where ∂X = ∂M ∪ Y now has two components. It is again useful to rewrite the Dirac
equation in the Hamiltonian form (1.6) with the Hamiltonian (1.7). In order to take
into account the boundary conditions, we now choose the domain of definition as the
Sobolev space

D(H) =
{
ψ ∈W 1,2(X ∩N , SM)

∣∣ (/n− i) ψ|∂X∩N = 0
}
. (2.4)

The next proposition gives a spectral decomposition of H.

Proposition 2.1. There is a countable orthonormal basis (ψn)n∈N, ψn ∈ D(H), of
eigenfunctions of H.

Proof. Our method is to apply the abstract spectral theorem given in [1, Theorem 4.1].
The task is to verify the spectral conditions (C0)–(C4), which in our setting are stated
as follows:

(C0) H : D(H)→ L2(X) is linear and bounded in the W 1,2-topology on D(H).
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(C1) The G̊arding inequality holds: There exists a constant C such that for all ψ ∈
D(H),

‖ψ‖2W 1,2(X∩N) ≤ C
ˆ
X∩N

(≺Hψ|/νHψ�x +≺ψ|/νψ�x) dµN(x) . (2.5)

(C2) Weak solutions are strong solutions (“elliptic regularity”): If φ ∈ L2(X ∩ N)
satisfies ˆ

X∩N
≺Hψ|/νφ�x dµN(x) = 0 for all ψ ∈ D(H) ,

then φ ∈ D(H).
(C3) H is symmetric, i.e. for all ψ, φ ∈ D(H),ˆ

X∩N
≺ψ|/νHφ�x dµN(x) =

ˆ
X∩N

≺Hψ|/νφ�x dµN(x) .

(C4) D(H) is dense in L2(X ∩N).

The validity of condition (C0) follows immediately from the fact that H is a differential
operator of first order. The symmetry property (C3) was verified after (1.10). The
denseness property (C4) is obvious. In order to verify the G̊arding inequality (C1), we
exploit the specific form of the Hamiltonian (1.7). The contribution to ≺Hψ|/νHψ�x
involving first derivatives squared is estimated by

≺(γt)−1γα∇αψ | /ν (γt)−1γβ∇βψ�x ≥ c gαβN ‖∇αψ‖ ‖∇βψ‖
(for a suitable constant c > 0), where we used that the inner product ≺.|/ν.� is positive
definite and that the matrices (γt)−1 and γα are uniformly bounded on X. Introducing

the notation ‖∇ψ‖2 = gαβN ‖∇αψ‖ ‖∇βψ‖ and estimating the coefficients of the lower
order terms by suitable constants d1, d2 > 0, we obtain the estimate

≺Hψ|/νHψ�x ≥ c ‖∇ψ‖2 − d1 ‖∇ψ‖ ‖ψ‖ − d2 ‖ψ‖2

≥ c

2
‖∇ψ‖2 −

(
d21
2c

+ d2

)
‖ψ‖2 .

Hence

‖ψ‖2W 1,2(X∩N) =

ˆ
X∩N

(
‖∇ψ‖2 + ‖ψ‖2

)
dµN(x)

≤
ˆ
X∩N

(
2

c
≺Hψ|/νHψ�x +

2

c

(
d21
2c

+ d2

)
‖ψ‖2 + ‖ψ‖2

)
dµN(x) .

This shows that condition (C1) holds.
It remains to derive the regularity condition (C2). This consists of two parts: the

interior regularity and the regularity at the boundary. For the interior regularity, we
need to show that the operator H is uniformly elliptic (see [1, Theorem 3.7]). To this
end, we make use of the fact that the Killing field K is timelike in X. As a consequence,
we can use it to define a norm on the spinors by

‖ψ(x)‖2x := ≺ψ|γt /Kγtψ�x .
Using this norm, we have∥∥ξα ((γt)−1γα)ψ)(x)

∥∥2
x

= ξα ξβ ≺(γt)−1γαψ | γt /Kγt (γt)−1γβψ�x
= ξαξβ ≺γαψ | /Kγβψ�x .
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Since /K = γt, this matrix anti-commutes with the matrices γβ. Therefore,∥∥ξα ((γt)−1γα)ψ)(x)
∥∥2
x

= −ξα ξβ ≺γβγαψ | /Kψ�x
= −gαβ ξα ξβ ≺ψ | /Kψ�x = −gαβ ξα ξβ

∥∥(γt)−1ψ
∥∥2
x
,

showing explicitly that H is uniformly elliptic. To see that the matrix (γt)−1 is uni-
formly bounded, we note that, using Cramer’s rule,(

(γt)−1
)2

=
11SxM

gtt
= −

det gαβ
gtt

= −
det gαβ
〈K,K〉

,

which is indeed bounded because K is timelike in X.
The remaining proof of the boundary regularity is a subtle point, which we now

treat in detail. We first note that, by localizing with a test function and using the
interior regularity, it suffices to consider weak solutions whose support is in a small
neighborhood of ∂N or Y ∩N . Since both cases can be treated in the same way, we
may assume that the solution vanishes identically outside a small neighborhood of ∂N .
Our goal is to apply [1, Theorem 5.11]. Simplifying the statement of this theorem and
adapting it to our setting, this theorem gives boundary regularity for boundary value
problems of the form

Lu = f (2.6)

Pu|∂N = 0 . (2.7)

Here P is a projection operator on L2(∂N). Moreover, L is the differential operator

L = ∂r +A+B ,

where the operators A and B are of the following form. The operator A : W 1,2(∂N)→
L2(∂N) is an angular differential operator which is independent of r and satisfies again
the above spectral conditions (C0)–(C4). The operator B : W 1,2(X∩N)→ L2(X∩N),
on the other hand, should be such that its first-order terms vanish on ∂N .

The first step is to rewrite the Dirac equation and the boundary conditions in the re-
quired form. Suppose that ψ is a weak solution of the inhomogeneous equation Hψ = f
satisfying the boundary conditions (2.3). Moreover, assume that ψ and f are supported
in a small neighborhood of ∂N . In order to implement the boundary conditions on ∂N ,
we choose the projection operator P as

P =
1

2

(
i/n+ 1

)
.

Next, using (1.7), one can write the differential equation (2.6) as(
∂r + (γr)−1

(
γϑ1∂ϑ1 + · · ·+ γϑd−2∂ϑd−2

)
+ E

)
ψ = i(γr)−1γtf ,

where (ϑa)a=1,...,d−2 are again coordinates on ∂N , and E is a zero-order operator. We
choose

A = (γr)−1
(
γϑa∂ϑa

)∣∣
∂N

+ Z (2.8)

B = (γr)−1
(
γϑa∂ϑa

)
+ E −A , (2.9)

where Z is a zero-order operator on ∂N to be determined below.
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The crucial point is to show that by a suitable choice of the scalar product and the
zero-order operator Z, we can arrange that the operator A is symmetric. We choose
the scalar product as

〈.|.〉∂N =

ˆ
N
≺ . | /K .�x dµ∂N (2.10)

(since K is timelike near ∂N , this inner product is indeed positive definite). Using
the form of the metric (2.1) in our Gaussian normal coordinate system, the following
anti-commutation relations hold,

{ /K, γr} = 2 g rt = 2 δrt = 0 , { /K, γϑa} = 0 , {γr, γϑa} = 0 .

As a consequence, the matrices (γr)−1γϑa are anti-symmetric with respect to the scalar
product (2.10). Thus, setting

Z = −1

2

(
A0 −A∗0

)
with A0 := (γr)−1

(
γϑa∂ϑa

)∣∣
∂N

,

where the star denotes the formal adjoint with respect to the scalar product (2.10), the
operator Z is indeed a multiplication operator. Moreover, using the above formulas
for Z and A0 in (2.8), one sees that A = (A0 + A∗0)/2, which is obviously symmetric.
Finally, it is clear by construction that the restriction of B to ∂N is a multiplication
operator.

From this construction, it is obvious that the operator A has the above proper-
ties (C0), (C3) and (C4). In order to prove the G̊arding inequality (C1) and the elliptic
regularity (C2), we make use of the anti-commutation relations{

(γr)−1 γϑa , (γr)−1 γϑb
}

= − 1

grr
{
γϑa , γϑb

}
= −2

gϑaϑb

grr
.

Hence the operator A2 is of the form

A2 =
1

grr
∆Sd−2 + (lower order terms) .

This is an elliptic operator on a bounded domain. Standard elliptic theory implies (C1)
and (C2). �

The spectral decomposition of Proposition 2.1 implies that the mixed initial/boun-
dary value problem (2.2), (2.3) has a unique weak solution in W 1,2(X ∩N , SM) given
by

ψ(t, x) =
∞∑
n=1

cn e
−iωnt ψn(x) with cn =

ˆ
X∩N

≺ψn|/νψ0�y dµN(y) , (2.11)

where ωn is the eigenvalue of ψn. In order to apply [2], we want a solution which
is smooth for all times. We now state the corresponding necessary and sufficient
conditions.

Lemma 2.2. Suppose that ψ0 satisfies the conditions

(/n− i)
(
Hpψ0

)∣∣
∂N

= 0 for all p ∈ N0 . (2.12)

Then the solution ψ of the mixed initial/boundary value problem (2.2), (2.3) is in
the class C∞sc (M, SM), where the index “sc” denotes solutions of space-like compact
support (i.e. suppψ(t, .) is a compact subset of N for all t ∈ R). Conversely, if a
solution of the mixed initial/boundary value problem is smooth, then ψ0 satisfies the
conditions (2.12).
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Proof. Let ψ be the solution of the mixed initial/boundary value problem (2.2), (2.3)
for ψ0 satisfying (2.12). In order to show that ψ is smooth, it clearly suffices that all
time derivatives of ψ exist and are smooth in x. To this end, we consider the partial
sums of (2.11)

ψN (t, x) =

N∑
n=1

cn e
−iωnt ψn(x)

for given N ∈ N. Differentiating p times with respect to t gives

(i∂t)
pψN (t, x) =

N∑
n=1

ωpncn e
−iωnt ψn(x) .

Furthermore,

ωpncn =

ˆ
X∩N

≺Hpψn|/νψ0�y dµN(y) =

ˆ
X∩N

≺ψn|/ν
(
Hpψ0

)
�y dµN(y) ,

where we iteratively integrated by parts and used the boundary conditions (2.12).

Since the function ψ̃0 := Hpψ0 is again in D(H) given by (2.4), we can take the
limit N →∞ to conclude that

(i∂t)
pψ(t, x) =

∞∑
n=1

c̃n e
−iωnt ψn(x) with c̃n =

ˆ
X∩N

≺ψn|/νψ̃0�y dµN(y) .

This shows that ψ is indeed a smooth solution.
Assume conversely that ψ is a smooth solution to the mixed initial/boundary value

problem (2.2), (2.3). Then (/n − i)ψ(t)|∂N = 0 for all t. Differentiating p times with
respect to t gives

0 = (i∂t)
p
(

(/n− i)ψ(t)|∂N
)∣∣∣
t=0

= (/n− i)
(
Hpψ0

)∣∣
∂N

,

proving (2.12). �

3. Solution of the Cauchy Problem

We now return to the Cauchy problem (1.5), (1.8) with boundary conditions (1.9).
Thus we seek for solutions of the Dirac equation in the Hamiltonian form

i∂tψ = Hψ in M , (3.1)

with initial and boundary values

ψ|N = ψ0 and (/n− i) ψ|∂M = 0 , (3.2)

where the initial data is in D(H) as given in (1.11), i.e.

ψ0 ∈
{
ψ ∈ C∞0 (N , SM) with (/n− i)

(
Hpψ

)∣∣
∂N

= 0 for all p ∈ N0

}
. (3.3)

Lemma 3.1. There is ε > 0 such that the mixed initial/boundary value problem (3.2),
(3.3) has a unique solution ψ in the class{

ψ ∈ C∞0 ([0, ε)×N , SM) with (/n− i) (Hpψ)|[0,ε)×∂N = 0 for all p ∈ N0

}
.
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Figure 1. Decomposition of the solution of the Cauchy problem.

Proof. Near ∂N , we again choose the Gaussian normal coordinate system where the
metric takes the form (2.1). Moreover, we choose ε so small that the future develop-
ment J∨ of initial data sets has the properties

J∨
({

(0, r,Ω)
∣∣ r < rmax/4

})
∩
(
{ε} ×N

)
⊂
{

(ε, r,Ω)
∣∣ r < rmax/2

}
(3.4)

J∨
({

(0, r,Ω)
∣∣ r > rmax/8

})
∩
(
{ε} ×N

)
⊂
{

(ε, r,Ω)
∣∣ r > 0

}
. (3.5)

We next decompose the initial data into a contribution ψB
0 near the boundary ∂N

and a contribution ψI
0 supported in the interior of N ,

ψ0 = ψB
0 + ψI

0 .

To this end, we let η ∈ C∞0
(
(−rmax/4, rmax/4)

)
be a test function with η|[0,rmax/8] ≡ 1

and set (see Figure 1)

ψB
0 := η(r)ψ0 and ψI

0 := ψ0 − ψB
0 .

We take ψI
0 as initial value problem for the Dirac equation without boundary con-

ditions,

i∂tψ
I = HψI in

◦
M , ψI|N = ψI

0 .

Using the theory of symmetric hyperbolic equations (see [9, Section 5.3], [14, Sec-
tion 16], [11, Section 7] or [6, Chapter 5]), this initial value problem has a unique
solution ψI in the class C∞sc

(
[0, ε)×N) (just as explained in (i) on page 5). Note that,

due to finite propagation speed and (3.5), the solution vanishes identically near ∂M
(see the top picture in Figure 1).

Next we take ψB
0 as initial values for the double boundary value problem, i.e.

i∂tψ
B = HψB in X , ψB|N = ψB

0 , (/n− i) ψB|∂M∪Y = 0 . (3.6)
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According to Lemma 2.2, this mixed initial/boundary value problem has a smooth
solution which satisfies the initial and boundary conditions in (3.6) pointwise (this
solution even satisfies the stronger boundary conditions in (2.12)). Moreover, due to
finite propagation speed and (3.4), we know that the solution ψB vanishes near the
boundary {r = rmax/2}, i.e.

suppψB(t, .) ⊂ [0, rmax/2)× ∂N for all t ∈ [0, ε)

(see the bottom picture in Figure 1). Therefore, extending ψB by zero, we obtain a
global solution in all M.

The function ψ = ψB + ψI is the desired solution of our mixed initial/boundary
value problem. Uniqueness follows immediately from standard energy estimates for
symmetric hyperbolic systems (see for example [9, Section 5.3]). �

Corollary 3.2. The mixed initial/boundary value problem (3.2), (3.3) has a unique
global solution ψ in the class of smooth wave functions with spatially compact support
satisfying the boundary conditions,{

ψ ∈ C∞sc (M, SM) with (/n− i)
(
Hpψ

)∣∣
∂M

= 0 for all p ∈ N0

}
.

The resulting time evolution operator is unitary with respect to the scalar product

(ψ|φ)N =

ˆ
N
≺ψ(t, x) | /ν(t, x) φ(t, x)�x dµN(x) . (3.7)

Proof. Since the existence time ε in Lemma 3.1 does not depend on the initial data,
we can iterate the procedure to obtain smooth solutions for arbitrarily large times.
Moreover, solving backwards in time, one can also obtain smooth solutions for arbi-
trarily large negative times. We thus obtain global smooth solutions ψ ∈ C∞sc (M, SM).
The symmetry of H (as shown after (1.10)) implies that the scalar product (3.7) is
preserved under time evolution. Therefore, the time evolution operator is unitary. �

4. Self-Adjointness of the Dirac Hamiltonian

We now give the proof of Theorem 1.2. Let H be the Dirac Hamiltonian with do-
main D(H) given by (1.11). Corollary 3.2 shows that the time evolution operator for
the mixed initial/boundary value problem (3.2), (3.3) defines a one-parameter group
acting on D(H). Moreover, it is obvious that the domain is invariant under the action
of H. Therefore, we can apply the result by Chernoff [2, Lemma 2.1] to conclude
that H is essentially self-adjoint on D(H). This completes the proof of Theorem 1.2.

Acknowledgments: We would like to thank the referee for helpful comments. F.F. is
grateful to the Center of Mathematical Sciences and Applications at Harvard Univer-
sity for hospitality and support.
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