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Abstract. We study novel variations of Voronoi games (and associated
random processes) that we call Voronoi choice games. These games pro-
vide a rich framework for studying questions regarding the power of small
numbers of choices in multi-player, competitive scenarios in a geomet-
ric setting. Our work can be seen as a natural variation of the classical
framework of Hotelling. While games based on Voronoi diagrams have
appeared recently in the literature, our variations appear to be the first
that take into account a notion of limited choices and the corresponding
asymmetries in player strategies.

As a problem example, suppose a group of n miners (or players) are
staking land claims through the following process: each miner has m
associated points in the unit square (or, for symmetry, the unit torus), so
the kth miner will have associated points pg1, pr2, - - ., Pkm. We generally
here think of m as being a small constant, such as 2. Each miner chooses
one of these points as the base point for their claim. Generally the points
will be distinct for each miner. Each miner obtains mining rights for
the area of the square that is closest to their chosen base; that is, they
obtain the Voronoi cell corresponding to their chosen point in the Voronoi
diagram of the n chosen points. Each player’s goal is simply to maximize
the amount of land under their control. What can we say about the
players’ strategy and the equilibria of such games?

We provide several results on games in this setting. For example, we
show that a correlated equilibrium can be found in polynomial time for
the natural 1, 2, and 3-dimensional variations of the problem. For the
one-dimensional version of the problem on the unit circle, we show that
a pure Nash equilibrium exists when each player owns the part of the
circle nearest to their point, but it is NP-hard to determine whether a
pure Nash equilibrium exists when each player owns the arc starting from
their point clockwise to the next point. We also consider a random version
of the game, where players have m points chosen uniformly at random.
We derive bounds on the expected number of pure Nash equilibria for
a variation of the 1-dimensional game in this setting using interesting
properties of random arc lengths on circles.
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1 Introduction

Consider the following prototypical problem: a group of miners are staking land
claims. The kth miner—or player—has m associated points pg1, P2, - - -, Dkm i
the unit torus (which is the unit square with wraparound at the boundaries,
providing symmetry). Each miner via some process will choose exactly one of
their m points as the base for their claim. The resulting n points yield a Voronoi
diagram, and each miner obtains their corresponding Voronoi cell. Each player’s
goal is simply to maximize the amount of land under their control. We wish to
study player behavior in this and similar games, focusing on equilibria.

As another application, political candidates can often be mapped according
to their political views into a small-dimensional space; e.g., American candidates
are often views as being points in a two-dimensional space, measuring how lib-
eral/conservative they are on economic issues in one dimension and social issues
on the other. Suppose parties must choose a candidate simultaneously, and their
probability of winning is increasing in the area of the political space closest to
their point. Again, the goal in this case is to maximize the corresponding area
in a Voronoi diagram.

There are numerous variations one can construct from this setting. Most
naturally, if the players are (lazy) security guards instead of miners, who have
to patrol the area closest to their chosen base, their goal might be to minimize
the area under their purview. Other alternatives stem from variations such as
whether player choices are simultaneous or sequential, how the points for players
are chosen, the underlying metric space, the type of equilibrium sought, and the
utility function used to evaluate the final outcome.

However, the variations share the following fundamental features. There are
n players, with the kth player having my associated points in some metric space.
(We will focus on my, = m for a fixed m for all players.) Each player will have
to choose to adopt one of their available points. A Voronoi diagram is then
constructed, and each player is then associated with the corresponding area
in the diagram. We refer to this general setting as Voronoi choice games. We
discuss below how Voronoi choice games differ from similar recent work, but the
key point is in the problems we study different players have different available
choices; this asymmetry creates new problems and requires distinct methods.

We provide several results for this setting (as well as leave many challenging
open questions). While details are given in the body of the paper, we briefly
summarize our main results:

— We show that a correlated equilibrium can be found in polynomial time for
several natural variations of the problem.

— For the one-dimensional version (on the unit circle), we prove that a pure
Nash equilibrium exists when each player owns the arc of the circle nearest to
their point, but it is NP-hard to determine whether a pure Nash equilibrium
exists when a player owns the arc starting from their point clockwise to the
next point for m > 4.



— For a version of the game where each player has m points chosen uniformly at
random, in the latter one-dimensional case we derive bounds on the expected
number of pure Nash equilibria.

The last result is the most technical, requiring a careful analysis based on inter-
esting properties of distributions of random arcs on a circle. While we acknowl-
edge that uniform random points are not motivated by practice, it leads to an
interesting and, from the standpoint of probabilistic analysis and geometry, very
natural class of games. Specifically, the uniform setting allows us to study the
question of whether the game has pure Nash equilibria with high probability,
a question for which we also offer conjectures for £ > 2 dimensions based on
simulations.

Our work focused on theoretical foundations for determining what kinds of
results are possible in this problem space. However, we believe that the introduc-
tion of asymmetric “choice” into these types of Voronoi game models provides a
rich framework with many interesting combinatorial, geometric, and game the-
oretic problems, as we describe throughout the paper. As such, we leave many
natural open questions.

1.1 Related Work

The classical foundations for problems of this type can be found in the work
by Hotelling [10], who studied the setting of two vendors who had to determine
where to place their businesses along a line, corresponding to the main street in
a town, with the assumption of uniformly distributed customers who would walk
to the nearer vendor. Hotelling games have been considered for example in work
on regret minimization and the price of anarchy, where the model studied players
choosing points on a general graph instead of on the line as in the original model
[4]. Recent work has also shown that for a Hotelling game on a given graph, once
there are sufficiently many players a pure Nash equilibrium always exists [7]. A
useful survey on economic location-based models is provided by Gabszewicz and
Thisse [§].

Other variations of Voronoi games have appeared in the literature. More re-
cent work refers to these generally as competitive location games; see for example
[6IT3IT9IT2], which discuss Voronoi games on graphs, for additional references.

Our setting appears different from previous work, in that it focuses on play-
ers with limited sets of choices that vary among the players. Our starting point
was aiming to build connections between Voronoi games and random processes
based on “the power of two choices” [BT4JT]. While in our games, each player has
a limited (typically constant) set of distinct points to choose from, in previous
work generally all players could choose from any point in the universe of possible
choices. In economic terms, in relation to the Hotelling model, our work models
that different businesses may have available a limited number of differing loca-
tions where they may establish their business. For example, businesses may have
optioned the right to set up a franchise at specific locations in advance, and must
then choose which location to actually build. While they could know the options



available to other competing franchises, they may have to decide where to build
without knowing the choices made by competitors. In other situations, it may
be possible for franchises to move (at some cost) to an alternative location.

1.2 Models

Before beginning, we explain our main problem variations. (We describe related
sequential games, that we feel are worthy of further study, in Appendix A.)
We refer to the following as the k-D Simultaneous Voronoi Game.

— Each of the n players has m associated points from the k-dimensional unit
torus [0, 1]¥. We assume that all players know about all of the possible points
that can be chosen by every player (it is a game of complete information).

— The n players must simultaneously choose one of their m associated points.

— A Voronoi diagram is constructed for the n chosen points, and each player
receives utility equal to the volume of its point’s Voronoi cell in the max-
imization variation of the game. (In the minimization version, the utility
could be the negation of the corresponding volume.)

The easiest version to think about is the 1-D version; each player chooses
from m points on the unit circle, and after their choice they own an arc of the
circle corresponding to all points closest to their chosen point. If each player tries
to maximize their arc length, then the utility of a player is the length of their arc.
(If each player tries to minimize their arc length, one can think of the negation
of the arc length as the utility.) On the unit circle, there is another variant that
we refer to as the One Way 1-D Simultaneous Voronoi Game, in which a player
owns the arc starting from their point and continuing in a clockwise direction
until the next chosen point. Our contributions include highlighting differences
between the 1-D problem and the One Way 1-D problem, showing that in this
case a small difference in the model subtlety leads to large differences in the
behavior with respect to equilibria. Indeed, as we explain, we believe the One
Way 1-D problem potentially offers more insight into the behavior of the k-D
Simultaneous Voronoi Game for k > 2.

We focus on analyzing the equilibria of these games. The most common equi-
librium to study is the Nash equilibrium [15], in which each player has a random
distribution on strategies such that no player can improve their expected utility
by changing their distribution. While Nash’s results imply the Voronoi games
above all have Nash equilibria, we do not determine the complexity of finding
Nash equilibria for these games; this is left as an open question. We here fo-
cus on two variants of the Nash equilibrium, the correlated equilibrium and the
pure Nash equilibrium. Whereas Nash equilibria have the players independently
choosing their strategies, a correlated equilibrium allows the players’ random
distributions to be correlated (for example, by an external party). The stabil-
ity requirement is then that given knowledge only of the overall distribution
of outcomes and their own randomly chosen strategy, a player cannot improve
their expected utility by deviating from their given strategy distribution [2].



Since a Nash equilibrium is a special case of a correlated equilibrium, a corre-
lated equilibrium for the above games must exist. We discuss the computational
complexity of finding a correlated equilibrium for the k-D Simultaneous Voronoi
Game in

A pure Nash equilibrium is a Nash equilibrium in which each player’s dis-
tribution has a support of size one. In other words, each player picks a single
strategy to play and, given the other players’ strategies, no player can improve
their utility by choosing a different strategy. Unlike the Nash and correlated
equilibria, a pure Nash equilibrium is not guaranteed to exist.

Pure Nash equilibria can be viewed in the setting where each player can
choose to switch to any of their adopted points at any time. In such a setting,
the primary natural question is what are the stable states, where no player
individually has the incentive to switch their adopted point. These stable states
correspond to pure Nash equilibria, and hence may not even exist. A natural
question is whether simple local dynamics—such as myopic best response, where
at each time step some subset of players decides whether or not to switch the
point it has adopted—reach a stable state quickly. In we examine the
computational complexity of determining the existence of stable states in the 1-
D Simultaneous Voronoi Game and One Way 1-D Simultaneous Voronoi Game.
For the former, we show (making use of known techniques) that a pure Nash
equilibrium always exists; for the latter, we show that determining whether a
pure Nash equilibrium exists is NP-complete.

We then consider the setting where players’ choices are made uniformly at
random. We refer to these variations as “Randomized”; for example, given our
NP-hardness result, it is natural to ask about the existence of a pure Nash
equilibrium for the Randomized One Way 1-D Simultaneous Voronoi Game.
Here we make significant progress on the issue by showing how to bound the
expected number of pure Nash equilibria, through a careful analysis based on
properties of distributions of random arcs on a circle.

We provide additional results in the appendices, including an empirical in-
vestigation of the probability that myopic best response will find a stable state
in the Randomized One Way 1-D Simultaneous Voronoi Game and Randomized
2-D Simultaneous Voronoi Game, and several related conjectures related to the
Randomized One Way 1-D Simultaneous Voronoi Game.

2 Correlated Equilibria

Our goal in this section is to show that, for the k-D Simultaneous Voronoi Game,
correlated equilibria can be found in polynomial time. We present the proof for
m = 2, but our results easily extend for m > 2. We present the results for
k = 1,2, and 3. The results appear to extend to higher dimensions but the
geometric details are technical. The results also apply to the One Way 1-D
Simultaneous Voronoi Game.



Theorem 1. For k= 1,2, and 3, and for a fixed m, there is a polynomial time
algorithm for finding a correlated equilibrium in the k-D Simultaneous Voronoi
Game.

We appeal to [17] and [II], who present polynomial time algorithms for find-
ing a correlated equilibrium of succinct games. (The running times for these
algorithms are not specifically presented in the papers and appear rather large,
but are still polynomial.) A succinct game is one that can be represented in
polynomial space such that given each player’s strategy, their utilities can be
computed in polynomial time. The k-D Simultaneous Voronoi Game is succinct
because it can be represented in O(nmk) space by a list of each players point
choices and, given the players’ strategies, the utilities can be found by computing
the Voronoi diagram of the chosen points.

Theorem 2 (Theorem 4.5, [11]). Given a succinct game and a polynomial
time algorithm for computing the expected utility of a player under any product
distribution on strategies, there exists a polynomial time algorithm for finding a
correlated equilibrium in that game.

Jiang et al. proved by constructing a linear program with a vari-
able for each of the 2™ possible strategy profiles. The LP’s constraints are non-

negativity, and the constraints requiring that the variables form a correlated
equilibrium. They do not, however, enforce that the variables sum to one, or
even at most one, and rather use the sum of these variables as the objective.
Thus, since a correlated equilibrium is guaranteed to exist by Nash’s Theorem,
this LP is unbounded and its dual is infeasible. They then run the ellipsoid al-
gorithm for a polynomial number of steps on the dual LP (this takes polynomial
time, since the dual LP has only polynomially many variables). They argue that
the intermediate steps of the ellipsoid algorithm can be used to construct prod-
uct distributions of which there is a convex combination that is a valid correlated
equilibrium, and which can be found with a second linear program.

The second linear program’s separation oracle requires as a subroutine a
polynomial time algorithm for computing the expected utility of a player given
a product distribution over the strategies. (This requirement is referred to in [11]
as the polynomial expectation property.) In our case, we represent this product
distribution by letting s(p;) be the probability the point p; is chosen, for i €
{1,...,2n}. For a given point p, which is one of two choices for a player i, we
use p to refer to player i’s other choice, so we must have s(p) = 1 — s(p). Each
player independently chooses a point according to the probabilities given by
s. Our work is to demonstrate polynomial time algorithms for this subroutine,
which we do in [Section 2.1| and [Section 2.2l We note that it is not immediate
that such an algorithm should exist, even when each player has only m = 2
choices, as the number of possible configurations is m". Hence, we cannot simply
sum over all configurations when calculating the expectation. In [I7] it is noted
that for certain congestion games, these expectations can be computed using
dynamic programming, essentially adding one player in at a time and updating
accordingly. Our approach is similar in spirit, but requires taking advantage of
the underlying geometry.




2.1 The Algorithm for the 1-D Game

The 1-D version of the problem, while simpler, provides the intuition that helps
us in higher dimensions.

Lemma 3: Computing a player’s expected utility under a product distribution
on strategies in the 1-D Simultaneous Voronoi Game takes O(nlogn) time.

Proof. Computing the expected utility of a product distribution in the 1-D
Simultaneous Voronoi Game is equivalent to finding the expected area of the
Voronoi cell owned by a given point (conditioned on it being chosen) given the
independent probabilities of each other player’s points being chosen. In the 1-
dimensional torus (a circle), for a given point p, let A, be the area of p’s Voronoi
cell (assuming it is chosen), D1 (p) be the distance to the first chosen point clock-
wise from p, and Dy (p) be the distance to the first point chosen counterclockwise
from p. We have E[A,] = 2(E[D1(p)] + E[D2(p)]) by linearity of expectations.

To compute E[D;(p)], we start by sorting all the points. (We need only sort
once for all points p.) We then loop over all points p’ moving clockwise from p —
excluding p, which we know will not be chosen if p is chosen — and compute the
probability that p’ is the closest chosen point clockwise from p. The main insight
is that, as we go through the points, the first time we have a point g such that
we have already seen @, then we can stop the computation, as one of these two
points must be chosen.

describes how to compute E[D;(p)], assuming the points are
given in sorted order (clockwise from p). We track D, the running value that
will equal E[D;(p)] on return, and P, the probability that the closest point
clockwise from P is further than those examined so far. As we visit a point p’,
D increases by s(p’) - P - dist(p,p’). The value of P decreases by a factor of
(1 — s(p’)), unless p’ has already been visited; then P becomes 0 and we may
terminate the calculation. Computing E[Da(p)] is entirely analogous. [ |

Compute E[D;(p)]
D <+ 0 // value of E[D;(p)] computed so far
P + 1 // probability of closest point clockwise from p further than seen so far
for each point ¢ except p and p, in ascending order of clockwise dist from p do
if ¢ has been previously visited then
return D + P - dist(p, q)
end if
D+ D+ s(q) - P-dist(p, q)
P P-(1-s5(q))
end for
return D

Algorithm 1: Computing a player’s expected utility in 1-D.



Observe that makes no special use of the fact that the points lie in
a torus, and in fact the Lemma also applies when they lie in a line segment. The
generalization to the case where m > 2 is straightforward. One proceeds with
the same computation to find E[D;(p)], except that one can stop and return
the value for D only when one has reached all m points associated with a some
player (in the case of a torus).

2.2 The Algorithm in Higher Dimensions

In this section we present a polynomial time algorithm for computing the ex-
pected utility of a product distribution over the chosen points in 2-D, and explain
how it generalizes to three dimensions, and may generalize further to higher di-
mensions. Intuitively, the challenge in going beyond one dimension is that the
interactions are more complicated; there are more than just two neighboring cells
to consider. For convenience, the algorithm we present is for the unit square; it
is readily modified for the unit torus.

Lemma 4: Computing a player’s expected utility under a product distribution
on strategies in the 2-D Simultaneous Voronoi Game takes O(n®logn) time.

Proof. We assume that the points are in general position (that is, no three
are collinear); this assumption is not mandatory, but simplifies the proof. As
in the one-dimensional case, we decompose the area of the cell into a sum and
then exploit linearity of expectations. Given our initial point set, there are O(n?)
possible vertices that can make up a vertex on p’s Voronoi cell, since each possible
vertex is the circumcenter of p and two of the 2n — 2 points that the other players
can choose from. Choose one arbitrarily to be vy, and let V(p) = {v1,...,v:} be
the set of all possible vertices, in sorted order according to the angle between
v1, p, and v; (measured in a counterclockwise direction from wvq). Let 6; be the
corresponding angle for v;.

Let the random variable A, be the area of p’s Voronoi cell. 4, = ZE:I T;
where T is the area of p’s Voronoi cell between angles 6; and 6,11. Thus, E[A4,] =
27;:1 E[T;]. |Figure 1| provides an example of this decomposition for one possible
realization of a point’s Voronoi cell. Note that as depicted in this figure, a vertex
may appear inside the Voronoi cell if neither of the points associated with that
vertex are chosen by their corresponding players. Observe that region T; is always
a triangle since, by definition, no other vertex of the cell creates an angle in the
range (6;,0;41). If we let D; be the distance from p to the boundary of its Voronoi
cell in the direction 6;, then

E[T)] = E DDy 81112(91+1 —0:)] _ E[DiDiyi] s;n(ﬁ,-H - 01-).

We refer to the perpendicular bisector of the line (p, ¢) as the boundary line
between p and ¢. If p and ¢ own neighboring Voronoi cells, this line separates
them. The point p has at most 2n possible boundary lines (one per possible



Fig.1: A point p together with the possible vertices V(p) and one possible
Voronoi cell, decomposed into triangles 7; by dotted lines.

other point); we say one of p’s boundary lines is chosen in the event that the
corresponding ¢ is chosen by its player. Observe that the values of D; and D; 4
are uniquely determined by the chosen boundary line closest to p within the
(0;,0;41) region. The notion of the closest boundary line is unambiguous within
(0;,0;41) since, by definition, none of the possible boundary lines intersect in
(0:,0i41).

provides an algorithm for computing E[D;D; 1] given a product
distribution on the points. This algorithm first sorts the possible boundary lines
in increasing order of distance from p within (6;,6;+1). This can be done by
sorting them by their position along the ray (p, (6; + 0;+1)/2). The algorithm
then iterates through the boundary lines computing the probability that each
one is the closest chosen boundary line to p. The value D(p, ¢, %) in the algorithm
is the distance from p to the boundary line between p and ¢ along angle 6;. The
running time is dominated by sorting the boundary lines which takes O(nlogn)
time. Thus, the total running time to compute E[A,] is O(n?logn). [

Corollary 1. Computing a player’s expected utility under a product distribution
on strategies in the 3-D Simultaneous Voronoi Game takes O(n®logn) time.

Proof. The approach of generalizes naturally to three dimensions. The
idea is to partition the space into pyramids radiating out from p, in which none
of the O(n) possible boundary planes intersect. Given this partitioning, we can
again use linearity of expectations by computing the expected volume of p’s
Voronoi cell in each pyramid separately. Within a given pyramid, we sort the
boundary planes by their distance to p, and then iterate through them computing
the probability that each one is the closest chosen boundary plane. We then
multiply these probabilities by the volumes of the polyhedra induced by the
corresponding boundary planes, and sum the results to get the expected volume
of the pyramid.



Compute E[D;D; 1]
D + 0 // value of E[D;D; 1] computed so far
P + 1 // probability of closest boundary line to p in this arc being further
than seen so far
for each point ¢ except p and p whose boundary line with p intersects
(6i,0i+1), in increasing order of the boundary line’s distance to p do
if ¢ has been previously visited then
return D+ P - D(p,q,%)- D(p,q,i+ 1)
end if
D+ D+s(q)- P-D(p,q,i)  D(p,g,i+1)
P P-(1-s(g))
end for
return D

Algorithm 2: Computing part of a player’s expected utility in 2-D.

Identifying the space partition in three dimensions is trickier than it is in
two. Here, the pyramids can be found by computing the lines of intersection
between all of the possible boundary planes, projecting them onto a sphere
centered at p, and then finding all of the faces induced by these lines on the
sphere. Each face forms the base of one pyramid. Identifying these faces can be
done by constructing the graph formed by the lines and their intersections and
then proceeding analogously to finding the faces of a planar graph as in [I6].
This takes time linear in the number of edges, faces and vertices.

With O(n?) lines of intersection, there will be at most O(n*) vertices and
faces. For each pyramid, we must sort the O(n) possible boundary planes,
thus the running time for finding the expected utility in three dimensions is
O(n®logn). [ |

This same strategy generalizes further to k& > 3 dimensions, where we are
now projecting (k — 2)-dimensional hyperplanes formed by the intersection of
the (k—1)-dimensional boundary hyperplanes onto a k-dimensional hypersphere.
However, determining methods for algorithmically identifying the “faces” on the
hypersphere is outside the scope of this work.

3 Pure Nash Equilibria

In this section, we show a fundamental difference between the One Way 1-D
Simultaneous Voronoi Game and the 1-D Simultaneous Voronoi Game. Recall
that for these problems each of the n players has a choice of m points on the
unit circle; all players simultaneously choose one of their m points. The utility
for the One Way variation of given player is equal to the distance to the nearest
chosen point clockwise from its chosen point, while for the standard variation
the utility is the size of the Voronoi cell (in this case, an arc).

We show the standard Voronoi variation always has at least one pure Nash
equilibrium (for any number of choices per player), while it is NP-hard to de-



termine if the maximization version of the One Way variation has a pure Nash
equilibrium. We also suggest the implications of these results for the higher di-
mensional setting.

3.1 Existence of Pure Nash Equilibria in the 1-D Simultaneous
Voronoi Game

In the argument that follows we assume the choices of points are distinct. The
analysis can be easily modified for the case where multiple players can choose
the same point if ownership of that point is determined by a fixed preference
order (and other players have zero utility). However, if players choosing the same
point share utility, then the theorem does not hold, as shown in [13].

Theorem 5. A pure Nash equilibrium for the mazimization and minimization
versions of the 1-D Simultaneous Voronoi Game exists for any set of points.

Proof. We follow an approach utilized in [6 Lemma 4]. We define a natural
total ordering on multi-sets of numbers A and B. For any two such multi-sets
A and B, if |A| < |B| we have A = B. When |A| = |B|, we have A > B if
max A > max B. If max A = max B, then let A’ be A with one copy of the value
max A removed, and similarly for B’; then A = B also when max A = max B
and A’ = B'.

Now consider a collection of choices in the 1-D Simultaneous Voronoi Game,
and let A = {ag,ai,...,a,—1} be the corresponding arc lengths, starting from
some chosen point and then in clockwise order around the circle, induced by the
choice of points. Each player’s payoff is given by a value of the form (a; +a;41)/2
for a suitable value of i. (One player’s payoff is (a,—1 + ag)/2.) Consider the
maximization version of the game. If some player has a move that improves
their utility, let them make that move. Without loss of generality, suppose this
player’s payoff was given by (a; + a;+1)/2, and it moves somewhere on the arc
with length a;. Note this means a; > a; + a;4+1. We see that the arc lengths A
are those of A but with a;,a;41, and a; replaced by a; + a;y1,z, and y where
r+y = aj. Hence A > A’, so after a finite number of moves, this version of
myopic best response converges to a pure Nash equilibrium.

The argument for the minimization variation is analogous. [ ]

We note that we leave as an open question to determine a bound on the
number of steps a myopic best response approach would take to reach a pure
Nash equilibrium; in particular, we do not yet know if the approach of
yields a pure Nash equilibrium in a polynomial number of steps.

We might have hoped that the above technique could allow us to show that
for the 2-D Simultaneous Voronoi Game (and higher dimensions) that a pure
Nash equilibrium exists. Unfortunately, that is not the case. One can readily find
choices of 2 points for each of 3 players where no pure Nash equilibrium exists
for both the maximization and minimization version of the problem. We have
generated many such examples randomly, computing the Voronoi diagrams for



P3a [ P3p

Fig. 2: This is an example of a 2-D Simultaneous Voronoi Game in which no pure
Nash equilibria exists. Player 1 has points (pi1a,p1s) = ((1/4+€2,1/2+¢), (1/4+
e2,1/2—¢)), player 2 has points (paq, p2p) = ((1/4—2,1/2+¢), (1/4—€2,1/2—¢)),
and player 3 has points (psq, p3s) = ((0,0), (¢,0)). The Voronoi diagram shown
is constructed from the points (1/4,1/2) and (0, 0).

the eight resulting configurations. One example in two dimensions is depicted in
In this example, player 1 has choices ((1/4+¢2,1/2+¢), (1/4+¢€2,1/2—
€)), player 2 has choices ((1/4 —%,1/2 +¢€),(1/4 — €2,1/2 — €)), and player 3
has choices ((0,0), (¢,0)) for sufficiently small € > 0. The idea here is that player
3’s choice is irrelevant, and players 1 and 2 are dividing up the Voronoi cell
owned by point (1/4,1/2) in the Voronoi diagram of the points (1/4,1/2) and
(0,0). If both player 1 and 2 choose their first point, or both choose their second
point, then they divide the cell with a vertical line, which due to the geometry
of the cell favors player 1. However, if one of them chooses their first point and
the other chooses their second point then they divide the cell with a roughly
horizontal line, which gives each of them roughly half. Thus, there is no choice
of points for which neither wants to deviate. This example applies equally in
higher dimensions (by making higher dimensional coordinates all zero).

This example can be extended to show that for any number of players n, there
are settings of points for the players so no pure Nash equilibrium exists, showing
that this setting differs from previous work on symmetric Hotelling games on
graphs, where it has been shown that when there are sufficiently many players a
pure Nash equilibrium always exists [7]. Specifically, use the same example but
for players 4, ..., n both of their choices will be in an epsilon-small neighborhood
of (0,0). We note that such examples do not disprove the possibility that a



pure Nash equilibrium exists with probability 1 — o(1) if the points are chosen
randomly.

Given that the 1-D Simultaneous Voronoi Game appears to have a very
special structure (in terms of the existence of pure Nash equilibrium) that differs
from k-D Simultaneous Voronoi Game for k > 2, it is natural to seek a 1-D
variant that might shed more insight into the behavior in higher dimensions.
This motivates us to look at the One Way 1-D Simultaneous Voronoi Game.

3.2 NP-Hardness of the One Way 1-D Simultaneous Voronoi Game

In contrast to the result of the previous subsection, we prove the NP-hardness
of the maximization version of the One Way 1-D Simultaneous Voronoi Game
whenever each player has m > 4 choices. We leave as an open question to find a
reduction for m = 2 or 3, as well as for the minimization version.

In what follows we denote a player r’s ith point by Z(r, ), as we have multiple
different players we describe.

Theorem 6. The problem of determining if a pure Nash equilibrium (PNE)
exists in the mazximization version of a One Way 1-D Simultaneous Voronoi
Game is NP-hard for m > 4.

Our proof will ultimately only use at most 4 choices per player, however
observe that we can essentially reduce the number of choices available to a player
by placing leftover choices arbitrarily close in front of one of the desired choices,
thus making the desired choices dominate the leftover choices.

Before we prove we first introduce a gadget that will be useful in
our proof. This is the Utility Enforcement Gadget (UEG), depicted in
For now, in what follows d and ¢ are suitable constants (we specify their values
further in the proof of the theorem). The purpose of the UEG is to prevent a
PNE in which a given player r has utility less than a given value d. The UEG
consists of a region of length d + 6¢, where ¢ is a value small enough that d — ¢
is greater than any other utility r can achieve less than d. We also introduce 5
new players — by, be, z,y and z — and one new choice for r: Z(r, k + 1). Players
by and by each only have one choice; these form the boundaries of the UEG’s
region. Z(r,k + 1) is d — € before Z(by,1) with nothing in between them, so r
will always prefer Z(r, k 4+ 1) to any of its other choices with utility less than d.
Players x and y each have two choices and z has one choice. z,y and 2’s choices
are arranged in the UEG’s region such that they have a stable configuration if
and only if  does not choose Z(r, k + 1).

Let G be an instance of the One Way 1-D Simultaneous Voronoi Game, and
let G’ be that instance modified to add a UEG (scaling as necessary) for a given
player r and utility d.

Lemma 7: G’ has a PNE if and only if G has a PNE in which r has utility at
least d.
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Fig. 3: A Utility Enforcement Gadget for player r and utility d. The arrows point
to the stable configuration for by, be, x, y and z when r does not choose Z(r, k+1).

Proof. If G has a PNE in which r has utility at least d, then G’ has a PNE in
which all of the players from G make the same choices and x chooses Z(z,1)
and y chooses Z(y, 2). Thus r is the only player in G whose preference is affected
by the UEG, and if his utility is at least d, then he will not wish to deviate to
Z(r,k + 1) which only yields a utility of d — e.

If G has only PNEs in which r has utility less than d, then G’ will not have a
PNE, since the preference of every player from in G is unaffected by the addition
of the UEG except for r. In G’, r will wish to deviate from any configuration
in which r has utility less than d by choosing Z(r, k + 1). However, there can
be no PNE in which r chooses Z(r,k + 1), because that will cause y to prefer
Z(y,1) to Z(y,2) when x chooses Z(x,1) and prefer Z(y,2) to Z(y,1) when x
chooses Z(z,2), while z prefers Z(x,2) to Z(x,1) when y chooses Z(y,1) and
prefers Z(x,1) to Z(x,2) when y chooses Z(y, 2). [ ]

Now that we have defined the UEG, we can move on to the main proof.

Proof (of Theareni 3).

We reduce from the NP-complete Monotone 1-in-3 SAT problem [18]. In this
problem, we are given a set of k variables vy, vs, ..., v, and [ clauses c1,ca, ..., ;.
Each clause is a set of three variables, and the problem is to determine whether
there is an assignment of boolean values to the variables such that in each clause,
exactly one of its values is true.

Our reduction has n = 2k + 61 players. The circle is partitioned into k + [
equal sized regions using k + [ boundary players (denoted ry,,...,7,,,) who
each have only one choice as shown in Within one of these regions,
we will sometimes use “left” to refer to counterclockwise and “right” to refer
to clockwise. We think of [ of the players as corresponding to clauses (denoted
Teys---5T¢, ), and refer to them as clause players. We think of k of the regions as
corresponding to variables. Each clause player will have one choice in each region
that corresponds to one of that clause’s variables. Which variable region the
clause player chooses will correspond to which of the clause’s variables is set to
true. A variable is true if every clause player corresponding to a clause containing
the variable chooses its point falling in the variable’s region. A variable is false
if none of the clause players corresponding to clauses containing the variable
choose points in the variable’s region. Therefore, any intermediate configuration
— some but not all of the relevant clause players choose points in a variable’s
region — is invalid. To prevent such an invalid configuration from yielding a PNE,
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Fig. 4: The partitioning of the circle using k + 1 boundary players that each have
only one point choice.
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Z(rwi,1)  Z(rej11) Z(rej2,1) Z(reijt.1)
Fig.5: A variable region where for a variable contained in clauses ¢j,,...,¢;,. €

is much smaller than d.

we introduce an additional two players per clause, that we will refer to as the
shadow clause players, denoted by r. and 7. Each variable region will also
contain a wrap player (denoted ry,,...,ry,) who has one point choice on the
left of the region and one choice on the right side. We place a wrap player so
that it prefers its left point unless one of the left most shadow clause players’
points are chosen, in which case it prefers its right point.

In what follows, d = 1 and ¢ is a suitably small constant much smaller than
d. To enforce a unit length for the circle, we simply scale d and e appropriately.
A variable region will be arranged as in The clause players within a
variable region appear in the order of the clauses. The clause players are spaced
d apart, and each of the two shadow clause players appear 2¢ and 4¢ before their
corresponding clause player. The wrap player has one point € before the first
shadow clause player, and one 4¢ before the terminating boundary point. This
ensures that if neither of the left most shadow clause players is chosen, then the
wrap player will choose its left point, and not affect any clause players. However
if one of the left most shadow clause players is chosen, then the wrap player will
choose its right point thereby reducing the utility of the rightmost clause player
by 4e.

Finally, we will have one UEG per clause player to enforce that its utility is
at least d. These contribute the final 3l players (the boundaries for the UEGs
were included in the boundary players).



To complete the proof, we argue that any PNE in the game corresponds to
a valid assignment of the variables and any valid assignment to the variables of
corresponds to a PNE in the game.

Suppose that there exists a PNE such that there is a variable region with
at least one clause player and at least one shadow clause player. Then we must
have that either there is a clause point followed immediately by a shadow clause
point, or the first point is a shadow clause point and the last point is a clause
point. In the former case, we immediately have that the utility of the clause
player is less than d, so such a PNE cannot exist by In the latter
case, by the construction of the variable region, the wrap player in the region
will prefer the point on the right of the region, where it will cause the utility of
the clause player to once again be less than d.

Thus, any PNE has the property that each clause player is assigned to a
variable region, and each variable region either has all clause players, or all
shadow clause players. This immediately gives us an assignment of variables
that satisfies the 1-in-3 SAT formula, by setting each variable to be true if and
only if there are clause players in the variable’s region.

Suppose we have a variable assignment which satisfies the formula. This
corresponds to a PNE in the game. Each clause player will choose the point in
the region corresponding to the true variable in its clause. So as long as all of the
shadow clause players are assigned to other variable regions, none of the clause
players will want to deviate since they will all achieve the maximum possible
utility of d. It remains to show that there is assignment of shadow clause players
to remaining regions such that none of the shadow clause players want to deviate.
This can be achieved algorithmically. First, pick an arbitrary assignment of the
shadow clause players to the variable regions that are false. Next, go through the
shadow clause players in descending order of their corresponding clauses, and
choose the best response for each one. Because we ordered the clause players
(and shadow clause players) in the regions by the order of the clauses, and the
utility of a player is solely determined by the player to the right, no choice made
by a player later in this procedure affects the utility of a player who chose earlier
in this procedure. Thus, at the end of the procedure all of the shadow clause
players will still be in their best response. [ ]

We conjecture that determining if a pure Nash equilibrium exists in the k-D
Simultaneous Voronoi Game is NP-hard for & > 2; however, we suspect that
building that corresponding gadgets may prove technically challenging.

4 Random Voronoi Games

We now consider random variations of the Voronoi games we have considered,
where each player’s choices are chosen uniformly at random. While it is not clear
such a model corresponds to any specific real-world scenario, such random prob-
lems are intrinsically interesting combinatorially and in relation to other similar
studied problems. For example, in the context of load-balancing in distributed



peer-to-peer systems, the authors of [5] study a model where one begins with a
Voronoi diagram on N points (chosen uniformly at random from the universe,
say the unit torus) corresponding to IV servers. Then M agents sequentially en-
ter; each is assigned k random points from the universe; and each agent chooses
the one of its k£ points that lies in the Voronoi cell with the smallest number of
agents, or load for that server. Other “power-of-choice” problems, such as the
Achlioptas process [I], have spurred new understanding of phenomena such as
explosive percolation.

Given our hardness results, a natural question is whether the One Way 1-D
Simultaneous Voronoi Game has (or does not have) a pure Nash equilibrium
with high probability in the random variation. While we have not proven this
result, we have proven bounds on the expected number of pure Nash equilibria in
the random setting that are interesting in their own right and nearly answer this
question. In particular, our careful analysis builds on the interesting relationship
between random arcs on a circle and weighted sums of exponentially distributed
random variables.

The following is our main result.

Theorem 8. The expected number of PNE for the maximization version of the
One Way 1-D Simultaneous Voronoi Game is at most m, and at least 0.19™ 1m.

Interestingly, our bounds depend on the number of choices m, not the number of
players. Unfortunately, this means that we cannot use these expectation bounds
directly to show that, for example, the probability of a PNE existing is expo-
nentially small in n. But the bounds provide insight by showing that pure Nash
equilibria are typically few in number in the random case.

In proving [Theorem 8 we need the following well-known property of expo-
nential random variables. Let X1, ..., X,, be i.i.d. exponential random variables.
Let S, = Z?:I X;. Recall that S, is said to have a gamma distribution, and we
use facts about the gamma distribution later in our analysis. Similarly, S,,_1/S,
is said to have a beta distribution, and we use facts about beta distributions as
well. For example,

Sy
Lemma 9: Sn,%,%,..., gnl

are all mutually independent.

See e.g. [9] for its discussion of exponential random variables. In particular, the
X, can be viewed as the gaps in the arrivals of a Poisson process; the n — 1
arrivals before the last are uniformly distributed on the interval [0, S,], from
which one can derive the lemma above.

Another important fact we use is the following:

Fact 10: We have E [(Sj/SjH)t} = Hf;(l] Jf{il = j%rt, since
Sj/Sj+1 ~ Beta (j,1).

We note that in some of our arguments, the ordering of the variables becomes
reversed, and we consider sums of the form Z?:n—i 41 Xj. Of course this has the

same distribution as 22:1 X, and the corresponding version of holds.



Where convenient, we therefore refer to Z;L:nfi 41
ambiguity as to the desired meaning.

Proof (of [Theorem ).

We begin by using linearity of expectations to write the expected number of
PNE in terms of the probability that each player choosing their first choice will
yield a stable configuration.

X; = S; where there is no

E[# PNE]

m" - Pr[first choices are stable]

=m" - E[Pr[first choices are stable | position of first choices]].

Partition the circle into arcs according to the players’ first choice points. Let
A; be the length of the ith smallest arc. As shown in [9], the A; are distributed

jointly as

1 & X

amg 3

Sn j=n—it1 J
where again the X; are i.i.d. exponential random variables of mean 1 and S,, =
2?21 X;. We say that an arc is stable if the player whose point starts the arc
(going clockwise) does not wish to deviate to any of their other points. Given
the position of the first choices, the probability each arc is stable depends only
on the other choices available to the player that owns the arc, and hence the
stability of the arcs are independent. Therefore

Pr[first choices are stable | position of first choices]

n
= H Pr[ith smallest arc is stable | position of first choices].

i=1
If the arc is the ith smallest, then it will be stable if the other choices fall in
the same arc, one of the 4 — 1 smaller arcs, or the front A;-length portion of the
(n — i) larger arcs — except in the latter two cases, we must take into account
that if a choice falls immediately backward into the arc directly counterclockwise
of the current arc, then the arc is not stable. We therefore have the following

calculation:

Pr[ith smallest arc is stable | position of first choices]

m—1

(n—19)A; + Z A; — min(A;, length of arc before i)
j=1

m—1

IN

(n—0)A;+ ) _ A
j=1

m—1
n

=S, (n—i) *’;'uz En: %

j=n—i+1 j=1k=n—j+1
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n
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Note we have used E;L:nfi 41 Xj = S for convenience. Our resulting bound has

a surprisingly clean form in terms of the S;.
Thus, by [Lemma 9| and |[Fact 10

n Sl m—1
Pr [first choices are stable] < E <S> ]
=1 n

—
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It then follows that

E [#PNE] < m" -
m

We can similarly find a lower bound, although some additional technical work
is required.

Pr[ith smallest arc is stable | position of first choices]
X m—1
7
=|(n—9)A; + Z A; — min(A;, length of arc before i)
j=1

m—1

Y

Jj=1



m—1

Jj=1

=S, N n—i—14j-n+i)=2L
j=n—i+1 J
m—1

_ g (m-1) zn: (J— .1)Xj

j=n—i+l J

Hence

m—1
n

- —1)X;
Prlfirst choices are stable] > E | S (m=1n I | E u
el O j
=1 \j=n—i+1

A simple stochastic domination argument (provided in Appendix B) shows that
the expectation on the right side decreases if, in each term in the product,
we equalize the coefficient, so that instead of terms of the form (J_J%, the
coefficient for all terms of the sum in the ith term of the product is the average
¢ = %Z?:n_iﬂ 3];1 This gives

m—1
n n

Pr[first choices are stable] > E | S (M= H Z X

n
=1 \j=n—i+1

- F S;(m—l)n H (Cisi)m—ll

i=1

- (fe e[ ()]

Observe that this expectation is the same as the one we computed in the
upper bound. Therefore

n
E[# PNE] > <H c;"—1> m
=1
> 0.19™ " 'm.

The proof of the final inequality is presented in Appendix B. [ ]

We note that similar calculations can be done for the minimization version,
although we have not yet found a clean form for the upper bound. We can,
however, state the following lower bound, showing the expected number of pure
Nash equilibria is at least inverse polynomial in n for a fixed number of choices
m.



Theorem 11. The expected number of PNE for the minimization version of the
One Way 1-D Simultaneous Voronoi Game is at least %

Proof. This proof will proceed similarly to that of We use the same
notation, except that here S; = Z;Zl X;.

An arc is stable if the player whose point starts the arc does not wish to
deviate to any of their other points. If the arc is the ith smallest, then it will
be stable if the other choices fall in the preceding arc, or in a portion of length
Aj; — A; at the start of the jth smallest arc for j > ¢. Therefore

Pr[ith smallest arc is stable | position of first choices]

m—1
= Z (A; — A;) + min(A;, length of arc before i)
j=i+1
m—1
> (374 - 4) + 4
j=i
m—1
=Y Aj—(n—i+ DA+ A
j=i
m—1
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Using the fact that probabilities of each arc being stable are independent
when conditioning on their positions, we have

n Xn m—1
Pr[first choices are stable] > E [Sn(ml)” H (Sn—i + > ]
n

i=1
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Observe here the occurrence of
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which we found to equal m~(=1) in the proof of Evaluating the
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other expectation using [Lemma 9| and [Fact 10| we have
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Putting it all together we have

E[# PNE] = m" Pr[first choices are stable]
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4.1 Empirical Results

We have done several experiments regarding Random Voronoi games, which
prove consistent with our theoretical results and suggest some interesting con-
jectures, particularly for the 2-D Simultaneous Voronoi Game. Our discussion of
these results can be found in Appendix C.

5 Conclusion

We have introduced a new but we believe important set of variants on Voronoi
games, where each player has a limited number of points to choose from. We
believe these variations are motivated both by natural economic settings, and
because of the possible connections to other “power-of-choice” processes in which
participants choose from a limited set of random options.

In particular, we note that the Voronoi choice games we propose offer the
chance to consider randomized versions of the problem, where the set of possible
choices for each player is chosen uniformly over of the space. We have conjectured
that the Random k-D Simultaneous Voronoi Game has a pure Nash equilibrium
with probability 1 —o(1), based on a simulation study. While this is perhaps the
most natural open question in this setting, there remain several other questions
for both the simultaneous and sequential versions of Voronoi choice problems,
in the worst case and with random point sets.
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A Some Words on Models

In this paper we focus on games where players choose their strategy simulta-
neously. While possibly less interesting game theoretically, sequential variations
where players arrive one at a time and decide their choice with knowledge of
the preceding choices of previous players are interesting. For example, we might
consider the Random 2-D Sequential Voronoi Problem:

— The n players arrive sequentially. Each player has m associated points that
are chosen independently and uniformly at random from the unit torus [0, 1]2.

— On arrival, each player chooses a point. The player’s final payoff will be the
area of their cell in the Voronoi diagram. The player’s goal is to choose the
point that maximizes (or, alternatively, minimizes) their final area.

In this variation, the primary natural question would be to determine how each
successive player calculates its optimal strategy, and in particular under what
conditions a player should not greedily choose the point that yields the maximum
area at the point of time of their arrival. Other natural questions would involve
the distribution of the sizes of the resulting cells (under the greedy strategy or
some other strategy), and how they differ from that of a Voronoi diagram of n
uniform random points. The “unfairness” in this setting might be measured by
the difference in the minimum and maximum cell areas, or the “second moment”
> X2 where X; is the area obtained by the ith player; one could consider the
unfairness compared to the number of choices.

B Random Voronoi Games Proofs

We here show a statement made in proving the second part of that

m—1 m—1
n n

E H Z M >E ﬁ c; i X; )
i=1 \ j=n—it1 J i=1 \ j=n—it+l

where ¢; = %Z;’;n—i 41 % We actually prove a more general statement. De-

note the product of the components of a vector & € R™ by IT (z) =[]~

j=1 Zj.

Lemma 12: Let A be an n X m matrix with non-negative entries, let s,t € [m)
such that s # t, and let ¢ > 0. Let X; ~ FEap(1) iid. for j € [m] and let
X =(X1,...,Xm). If a;s < ay; for all i € [n] then

E[II (AX)] = E[II (BX)],
where the perturbation B is defined by
ajj +¢e, i=1landj=s

bij=<qa;;—e, i=landj=t

Qij, otherwise.



Repeatedly applying this allows us to average all non-zero entries in each row.
The intuition of the proof is rather simple; if we expand the products out and
use linearity of expectation, we can match up the terms in a way that coordinates
the powers of X, and Xy, controlling their moments. Because of this, on a term
by term basis, shifting weight from a1; to a1s can only reduce the value.
The following mechanics are somewhat unwieldy but formalize this idea.

Proof. We can write IT (AX) as a sum of m™ terms as follows:
T(AX)= > [laeroXre
filn]={m] i=1

Denote the number of preimages of j € [m] in a function f : [n] — [m] by
o (j) = |f’1 (j)| By linearity of expectation and independence we get that

E[II(AX)]= Y E lH aif(i)Xf(i)]

fin]—[m] i=1

n m .
Z H ai i) H E [X;f(J)}
j=1

filn)=[m] i=1

= Z Haz‘f(i)HJf(j)!
j=1

f:n]—=[m] \=1

For notational convenience write
n m
Py = [Taire [T or )
i=2 j=1

and then we can express the expectation of IT (BX) as:

n

Blrsx)= 3 ([TwollorG))= > buyabs

filn]=Im] \i= filn]—=[m]

whereas their difference is:

E[IT(AX) -1 (BX)|= Y (aisq) —bis)) Pr
fi:n]—=[m]

=€ Z‘Pf_zpf’

F)=t F(1)=s

so it suffices to show that > q)_, Pr = > ), P
We now partition the sum to groups {f, f/, g, ¢’} of size four as follows. Take
f i [n] = [m] such that f(1) =t and o7 (t) < of(s)+ 1. Let S = f~'(s) and



T = f~1(¢)\ {1}. Use the bijection from tomap T'C SUT to some
T'=¢(T) C SUT of size oy (s) such that T C T". Define f’,g,¢" : [n] — [m]

by
i) = {t’ Lo

f (@), otherwise
. s, 1 =1;
900) = {f (i), otherwise

g'(z‘){s’. .

g (i), otherwise.

Observe that o, (s) =0 (t) =0p(s)+ 1,04 (t) =0p (s) =04 (t) — 1, 04 (5) =
op (8)+1=o0s(t) and oy (s) =0 (s) +1 =0y (t).
We claim that Py + Py > P, + P,. To see that, set aside the common

non-negative factor

C= H aif(i)Haf (j)'
j=1

i€[n]\(SUTU{1})

and observe that
Py=C- HaisHait
i€S Q€T

Pg’:O' H aisHait

i€eS\T’ €T’

(
of (s 1
Pf/:C-f()(t—)"_' H aisHait~

1€S\T" 1€T’

Therefore

(Pf/*Pg)*(Pg/*Pf)
1
=C (Uf (S)t+ - 1) H Qs H Qi — H Qs H At
Gf( ) i€S\T’ €T’ €S €T
>0

since o¢ (t) < o (s)+1 and the sth column of A is dominated by the ¢th column.

Note that when oy (t) = o (s) +1 we get T/ =T and thus f' = f,¢’ = ¢g; in
this case Py = P, so no harm is done by counting it twice. [ ]



Lemma 13: Let n and k be integers such that 0 < 2k < n. Then there is

a monotone bijection ¢ : ([Z]) — (n[T_L]k,); that is, ¢ maps k-subsets of [n] to

(n — k)-subsets of [n] and satisfies A C ¢ (A).
Proof. Build a bipartite graph whose sides are L = ([Z]) and R = (n[f]k) Connect

AeLtoBeRiff AC B. Thisis a (";k)-regular bipartite graph, and as such
it has a perfect matching (e.g., by Hall’s theorem). [ ]

We now turn to the actual calculation of the product of the terms ¢; =
%Z?:nfiﬂ ]J;l Denote the ith Harmonic and the i¢th 2-Harmonic numbers,
respectively, by H; = 1+%+%+~~+% and H,L-(Z) = 1+2%+3%+~~+%.
Recall that the Harmonic series diverges but the 2-Harmonic series converges to
72 /6.

Nowwritecizl—%(%—kﬁ—k-“—kn%“)=1+(ani—Hn)/i-

Lemma 14: cl+02+~~~+cn:anT(L2) for all n € N.

Proof. First we claim that H2 + HY) = 23""_| Hy/k. Indeed,

H2—(1+1+...+1)2—§1—2 y Loy L
no 2 n) ik ik ik

=17 1<j<k<n IV 1<jzk<n

| =

£
Il
-
~
Il
-

Now for any ¢ € [n] we have

Hni—<Hn—Hi)1“(1 1 )1"i(¢+k)_k“i 1
i z; ko i+k z’; k(i+k) k:lk(i+k),
SO
zn:Hn—i_(Hn_Hz):nnz_:i 1 :nnz_f 1
=1 t i=1 k=1 k (7’ + k) k=1 i=1 k (Z + k)
:Z Z E:Z L
k=1 j=k+1 k=1
n
Hy,
=H?_ -k
oy e
k=1
and thus




_ P
=n+H2-2Y —t=n-HP.
7
i=1

|
Corollary 2. [[\; ¢; > exp (— (72/6 4+ 0(1))); in particular, [T, ¢; > 0.19.
Proof. Use In(z) > (x —1)/x for 0 < x < 1 along with the fact that
1 H,
l—-—=c12c22>2c,=1——
n n
to establish that
In (H Ci) = Zln (CZ) Z : p 2 . o = a <—n + ZCi)
i=1 i=1 i=1 i=1 i=1
—Hff) 2 1
— > — [0 =
a6 00)
|

C Empirical Results

We describe our empirical results for finding PNE in random instances of Voronoi
choice games. Specifically, we investigated the likelihood that a myopic best
response process would converge to a PNE on random instances of the One Way
1-D Simultaneous Voronoi Game, the 1-D Simultaneous Voronoi Game and the
2-D Simultaneous Voronoi Game. We investigated both the maximization and
minimization variants of each of these games with n € {10, 100, 1000, 10000} and
m € {2,3,4}. (For the 2-D case we present results only for n up to 1000.) We
note that we present limited results for the 1-D Simultaneous Voronoi Game,
as we were always able to find a PNE. This is not surprising, given
However, it offers some weight suggesting that the worst-case time for myopic
best response to converge to an equilibrium for this problem is polynomial in n;
this remains an interesting open question.

Our experimental procedure is as follows. For each type of game, for each
value of n and m, we generated 1000 random instances of the game by choosing
each player’s points uniformly at random from the unit torus. For each instance,
we first randomly assign each player to one of its points. We then repeatedly
iterate through all of the players, moving them to their best response to the
current set of points. If in a pass through the players, none of them change
strategies, we have found a PNE. Otherwise, we give up after 1000 such passes.
(The number 1000 appears suitable; in our experiments, no instances successfully
converged after more than 764 passes). If no PNE was found, using the same set
of random points, we try a new random starting assignment of points to players,
and then try another 1000 passes through the players. If after 100 such random



initial configurations no PNE has been found, we declare that we have failed to
find a PNE for that problem instance. (For the 2-D Simultaneous Voronoi Game,
our results are only up to 10 initial configurations; as we shall see this appears
sufficient for our exploration.)

The program for the 2-D Simultaneous Voronoi problem was built on top of
the Delaunay triangulation program in the Computational Geometry Algorithms
Libraryﬂ which supports fast dynamic updates of a Delaunay triangulation. By
maintaining this underlying structure, our program was able to efficiently update
the Voronoi cell areas during the myopic best response process.

Our results are presented in through [Table 1] through[Table 4]
show in how many instances out of 1000 random instances our algorithm found
a PNE, for various values of n, m and numbers of random initial configurations
attempted. [Table 5| and [Table 6] give the maximum number of passes of myopic
best response that our algorithm took before successfully finding a PNE for the
variants of the 1-D Simultaneous Voronoi Game and 2-D Simultaneous Voronoi
Game respectively.

Based on this data, we propose a few conjectures. Looking at it
seems possible that the probability that a PNE exists for a random instance
of the maximization variant of the One Way 1-D Simultaneous Voronoi Game
converges as n grows to a constant in (0,1) for m = 2. For m > 3 for the
maximization variant, and for m > 2 for the minimization variant, and
suggest that the probability of a PNE exists may converge to 0, or may
be difficult to find through myopic best response. Both of these possibilities are
consistent with our results on the expected number of solutions.

For the 2-D Simultaneous Voronoi Game, for both the maximization and
the minimization version, [Table 3| and [Table 4] suggest that a PNE exists for a
random instance with high probability, and further can be found by myopic best
response.

Interestingly, the expected number of passes before finding a PNE in our
experiments seems to grow like ©(logn) for the maximization variant of both
the 1-D Simultaneous Voronoi Game and the 2-D Simultaneous Voronoi Game,
but seems to possibly grow like @(n) (or possible some other superlogarithmic
function) for the minimization variants. Again, we are left with many interesting
open questions.

! nttp://www.cgal.org/
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lm[ n [1 attempt|2 attempts|b attempts|10 attempts|100 attempts

2| 10 216 222 231 239 242
2| 100 17 17 18 21 24
2| 1000 1 1 1 1 1
2110000 0 0 0 0 0
3| 10 38 40 45 46 46
3| 100 0 0 0 0 0
3| 1000 0 0 0 0 0
3 {10000 0 0 0 0 0
41 10 6 6 6 6 6
4] 100 0 0 0 0 0
411000 0 0 0 0 0
4110000 0 0 0 0 0

Table 1: The number of successes over 1000 iterations of finding a PNE for a
random instance of the minimization variant of the One Way 1-D Simultaneous
Voronoi Game using a given number of attempts at myopic best response with
random initial strategy profiles.

lm[ n [1 attempt|2 attempts|b attempts|10 attempts|100 attempts

2| 10 616 633 652 663 668
2| 100 531 556 578 588 609
2| 1000 497 525 547 556 589
2(10000{ 497 518 548 563 592
3] 10 175 197 223 240 285
3| 100 9 13 19 26 51
3| 1000 0 0 0 0 0
3{10000 0 0 0 0 0
4| 10 35 44 56 65 112
41 100 0 0 0 0 0
411000 0 0 0 0 0
4110000 0 0 0 0 0

Table 2: The number of successes over 1000 iterations of finding a PNE for a
random instance of the maximization variant of the One Way 1-D Simultaneous
Voronoi Game using a given number of attempts at myopic best response with
random initial strategy profiles.



lm[ n [1 attempt|2 attempts|5 attempts|10 attempts

2| 10 987 995 998 999
21100 982 994 997 999
2(1000f 978 999 1000 1000
3| 10 986 988 995 996
31100 983 995 1000 1000
311000{ 967 1000 1000 1000
4110 970 993 998 1000
41100 969 1000 1000 1000
411000] 948 998 1000 1000

Table 3: The number of successes over 1000 iterations of finding a PNE for a
random instance of the minimization variant of the 2-D Simultaneous Voronoi
Game using a given number of attempts at myopic best response with random
initial strategy profiles.

lm[ n [1 attempt[Q attempts[5 attempts|10 attempts

2| 10 992 997 999 999
21100 994 999 1000 1000
2{1000f 991 1000 1000 1000
3| 10 987 992 997 998
31100 990 999 1000 1000
311000f 993 999 1000 1000
4110 992 1000 1000 1000
41100 990 1000 1000 1000
411000f 993 1000 1000 1000

Table 4: The number of successes over 1000 iterations of finding a PNE for a
random instance of the maximization variant of the 2-D Simultaneous Voronoi
Game using a given number of attempts at myopic best response with random
initial strategy profiles.

[ n [min/m = 2lmin/m = 3]min/m = 4]max/m = 2|max/m = 3Jmax/m = 4]

10 6 8 11 5 6 8
100 12 22 37 8 9 12
1000 42 87 173 11 12 16

10000 117 361 764 12 15 19

Table 5: The maximum number of passes of myopic best response before an
instance converged to a PNE for various 1-D Simultaneous Voronoi Games.




[ n [min/m = 2[min/m = 3[min/m = 4Jmax/m = 2Jmax/m = 3[max/m = 4]

10 7 8 13 7 8 10
100 15 14 19 13 13 16
1000 29 30 57 13 14 19

Table 6: The maximum number of passes of myopic best response before an
instance successfully converged to a PNE for various 2-D Simultaneous Voronoi
Games.
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