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Abstract

The present article surmmarizes our recent results [8, 9] about Calabi–Yau threefolds
with infinite fundamental group. This class of Calabi–Yau manifolds is relatively simple
yet rich enough to display the essential complexities of Calabi–Yau geometries, and thus
it provides good testing-grounds for general theories and conjectures.

1 Introduction

Throughout the article, a Calabi–Yau threefold is a smooth complex projective threefold X
with trivial canonical bundle Ω3

X
∼= OX and H1(X,OX) = 0. A fundamental gap in the

classification of algebraic threefolds is the lack of understanding of Calabi–Yau threefolds,
classification of which seems very challenging at this point. Therefore in this article we con-
centrate on a special class of Calabi–Yau threefolds, namely those with infinite fundamental
group. Most Calabi–Yau threefolds we know have finite fundamental groups: for example,
complete intersection Calabi–Yau threefolds in toric varieties or homogeneous spaces, and
(resolutions of singularities of) finite quotients thereof. Calabi–Yau threefolds with infinite
fundamental group were only partially explored before the pioneering work of Oguiso and
Sakurai [13]. A Calabi–Yau threefold with infinite fundamental group always admits an étale
Galois covering either by an abelian threefold (type A) or by the product of a K3 surface
and an elliptic curve (type K). In [13], Calabi–Yau threefolds of type A were essentially
classified1, while the full classification of type K was unsettled. The main purpose of the
present article is to give an overview of the full classification obtained in [8]. We also discuss
their interesting properties with special emphasis on mirror symmetry [9].

As we will see, Calabi–Yau threefolds with infinite fundamental group are relatively
simple yet rich enough to display the essential complexities of Calabi–Yau geometries, and
we expect that they will provide good testing-grounds for general theories and conjectures.
Indeed, the simplest example of type K, known as the Enriques Calabi–Yau threefold, has
been one of the most tractable compact Calabi–Yau threefolds both in string theory and
mathematics (for example [6, 1, 14, 10, 11]). We believe that many of what is known for
the Enriques Calabi–Yau threefold have natural generalizations to Calabi–Yau threefolds of
type K.

1We refine their result further in [8].
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2 Classification

In this section we will provide the full classification of Calabi–Yau threefolds with infinite
fundamental group. Let X be a Calabi–Yau threefold with infinite fundamental group. Then
the Bogomolov decomposition theorem implies that X admits an étale Galois covering either
by an abelian threefold or by the product of a K3 surface and an elliptic curve. We call X
of type A in the former case and of type K in the latter case. Among many candidates of
such coverings, we can always find a unique smallest one, up to isomorphism as a covering
[3]. We call the smallest covering the minimal splitting covering of X.

2.1 Calabi–Yau threefolds of type K

We begin with Calabi–Yau threefolds of type K. In this case the full classification is given
in terms of the Galois group of the minimal splitting covering as follows.

Theorem 2.1 ([8]). There exist exactly eight Calabi–Yau threefolds of type K, up to de-
formation equivalence. The equivalence class is uniquely determined by the Galois group G
of the minimal splitting covering. Moreover, the Galois group is isomorphic to one of the
following combinations of cyclic and dihedral groups

C2, C2 × C2, C2 × C2 × C2, D6, D8, D10, D12, or C2 ×D8.

Moreover, an explicit presentation of the deformation class of each Calabi–Yau threefold
of type K is obtained in [8]. In the following, we shall briefly summarize the construction
of the deformation classes. Let X be a Calabi–Yau threefold of type K and π : S × E → X
its minimal splitting covering with Galois group G. There exists a canonical isomorphism
Aut(S × E) ∼= Aut(S)×Aut(E), which induces a faithful G-action on each S and E:

Aut(S)∪ Aut(S × E)
p1oo

∪
p2 // Aut(E)∪

p1(G) G
p1|G

∼=oo
p2|G

∼= // p2(G),

where pi denotes i-th projection with respect to the isomorphism Aut(S × E) ∼= Aut(S) ×
Aut(E).
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Proposition 2.2 ([13, 8]). Let H := Ker(G → GL(H2,0(S))) and take any ι ∈ G \H. Then
the following hold:

1. ord(ι) = 2 and G = H ⋊ ⟨ι⟩, where the semi-direct product structure is given by
ιhι = h−1 for all h ∈ H;

2. g acts on S as an Enriques involution if g ∈ G \H;

3. ι acts on E as −1E and H as translations of the form ⟨ta⟩ × ⟨tb⟩ ∼= Cn ×Cm under an
appropriate origin of E. Here ta and tb are translations of order n and m respectively
for some (n,m) ∈ {(1, k)(1 ≤ k ≤ 6), (2, 2), (2, 4)}.

Conversely, such a G-action on the product S × E yields a Calabi–Yau threefold X :=
(S × E)/G of type K. Proposition 2.2 provides us with a complete understanding of the
G-action on E (see [8, Section 3] for details), and therefore a classification of Calabi–Yau
threefolds of type K essentially reduces to that of K3 surfaces equipped with actions described
above, which we shall call Calabi–Yau. In what follows, G is always one of the finite groups
described in Proposition 2.2. A basic example of a K3 surface which the reader could bear
in mind is the following.

Proposition 2.3 (Horikawa model [2, Section V, 23]). Consider the double covering π :
S → P1 × P1 branching along a bidegree (4, 4)-divisor B. Then S is a K3 surface if it is
smooth. We denote by θ the covering involution on S. Assume that B is invariant under
the involution λ of P1×P1 given by (x, y) 7→ (−x,−y), where xand y are the inhomogeneous
coordinates of P1 × P1. The involution λ lifts to a symplectic involution of S. Then θ ◦ λ is
an involution of S without fixed points unless B passed through one of four fixed points of λ
on P1 × P1. The quotient surface T = S/⟨θ ◦ λ⟩ is therefore an Enriques surface.

S

/⟨θ⟩
��

id // S

/⟨θ◦λ⟩
��

P1 × P1 T

The classical theory of Enriques surfaces says that any generic K3 surface with an En-
riques involution is realized as a Horikawa model ([2, Propositions 18.1, 18.2]).

Example 2.4 (Enriques Calabi–Yau threefold). Let S be a K3 surface with an Enriques
involution ι and E an elliptic curve with negation −1E. The free quotient X := (S ×
E)/⟨(ι,−1E)⟩ is the simplest Calabi–Yau threefold of type K, known as the Enriques Calabi–
Yau threefold.

In order to obtain other Calabi–Yau threefolds of type K, we consider special classes
of the Horikawa model as follows. Let ρ1, ρ2 : G → PGL(2,C) be 2-dimensional complex
projective representations of G := H ⋊ C2, which we do not specify at this point. Let λ be
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the generator of the second factor C2. We then get a G-action ρ1 × ρ2 on P1 × P1. Suppose
that there exists a G-stable smooth curve B of bidegree (4, 4). We then obtain a Horikawa
K3 surface S as the double covering π : S → P1×P1 branching along B and the G-action on
P1×P1 lifts to S as a symplectic G-action. We further assume that the curve B does not pass
through any of fixed points of g ∈ G, g ̸= 1. With the same notation as in Proposition 2.3,
it can be checked that the symplectic G-action and the covering transformation θ commute.

S

/⟨θ⟩
��

id // S

/⟨θ◦λ⟩
��

G

ρ1×ρ2

!!

∃symplectic ++

P1 × P1 T

By twisting λ by θ, we obtain a new G-action on S, i.e.

Aut(S) ⊃ G× ⟨θ⟩ ⊃ H ⋊ ⟨θ ◦ λ⟩ ∼= G

The new G-action on S turns out to be a Calabi–Yau action. A fundamental result of
[8, Section 3.3] confirms that a generic K3 surface equipped with a Calabi–Yau action is
realized (not necessarily uniquely) in this way. To put it another way, there always exist
2-dimensional complex projective representations ρ1, ρ2 : G → PGL(2,C) which satisfy all
the assumptions mentioned above. Here are two examples.

Example 2.5. Suppose that G ∼= D12 := ⟨a, b|a6 = b2 = baba = 1⟩. For i = 1, 2, we define
ρi : D12 → PGL(2,C) by

a 7→
[
ζi12 0

0 ζ12−i
12

]
, b 7→

[
0 1
1 0

]
,

where ζk denotes a primitive k-th root of unity. A basis of D12-invariant polynomials of bide-
gree (4, 4) are given by x4z4+ y4w4, x4zw3+ y4z3w, x2y2z2w2. A generic linear combination
of these cuts out a desired smooth curve of bidegree (4, 4).

Example 2.6. Suppose that G ∼= D8 × C2 = ⟨a, b, c|a4 = b2 = baba = 1, ac = ca, bc = cb⟩
For i = 1, 2, we define ρi : D8 × C2 → PGL(2,C) by

a 7→
[
ζ8 0
0 ζ78

]
, b 7→

[
0 1
1 0

]
, c 7→

[√
−1

i−1
0

0
√
−1

1−i

]
.

A basis of D8 ×C2-invariant polynomials of bidegree (4, 4) are given by x4z4 + y4w4, x4w4 +
y4z4, x2y2z2w2. A generic linear combination of these cuts out a desired smooth curve of
bidegree (4, 4).
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2.2 Calabi–Yau threefolds of type A

We now turn to Calabi–Yau threefolds of type A. Let A := Cd/Λ be a d-dimensional complex
torus. There is a natural semi-direct decomposition Aut(A) = A⋊AutLie(A), where the first
factor is the translation group of A and AutLie(A) consists of elements that fix the origin of
A. We call the second factor of g ∈ Aut(A) the Lie part of g and denote it by g0.

Theorem 2.7 ([8]). Let X be a Calabi–Yau threefold of type A. Then X is isomorphic to
the étale quotient A/G of an abelian threefold A by an action of a finite group G, where A
and G are given by the following.

1. A = A′/T , where A′ is the direct product of three elliptic curves E1, E2 and E3:

A′ := E1 × E2 × E3, Ei := C/(Z⊕ Zτi), τi ∈ H

and T is one of the subgroups of A′ in the following table, which consists of 2-torsion
points of A′.

T1 T2 T3 T4

0 ⟨(0, 1/2, 1/2)A′⟩ ⟨(1/2, 1/2, 0)A′ , (1/2, 0, 1/2)A′⟩ ⟨(1/2, 1/2, 1/2)A′⟩

Here (z1, z2, z3)A′ denotes the image of (z1, z2, z3) ∈ C3 in A′.

2. G ∼= C2 × C2 or D8.

(a) If G = ⟨a⟩ × ⟨b⟩ ∼= C2 × C2, then G is generated by

a : (z1, z2, z3)A 7→ (z1 + τ1/2,−z2,−z3)A,

b : (z1, z2, z3)A 7→ (−z1, z2 + τ2/2,−z3 + τ3/2)A.

(b) If G = ⟨a, b | a4 = b2 = abab = 1⟩ ∼= D8, then τ2 = τ3 =: τ , T = T2 or T3, and G
is generated by

a : (z1, z2, z3)A 7→ (z1 + τ1/4,−z3, z2)A,

b : (z1, z2, z3)A 7→ (−z1, z2 + τ/2,−z3 + (1 + τ)/2)A.

Moreover, each case really occurs.

In contrast to Calabi–Yau threefolds of type K, Calabi–Yau threefolds of type A are not
classified by the Galois groups of the minimal splitting coverings. They are classified by the
minimal totally splitting coverings, where abelian threefolds A which cover X split into the
product of three elliptic curves.
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2.3 Summary

Theorem 2.1 and Theorem 2.7 finally complete the full classification of Calabi–Yau threefolds
with infinite fundamental group with a very explicit description of each deformation class.

Theorem 2.8 ([8]). There exist precisely fourteen Calabi–Yau threefolds with infinite fun-
damental group, up to deformation equivalence. To be more precise, six of them are of type
A and eight of them are of type K.

3 Mirror Symmetry

Calabi–Yau threefolds of type K are, by construction, topologically self-mirror threefolds.
However, mirror symmetry should involve more than the mere exchange of Hodge numbers.
In this section, we focus on Calabi–Yau threefolds of type K, whose mirror symmetry bears
a resemblance to mirror symmetry of Borcea–Voisin threefolds [15, 4]. Mirror symmetry of
Borcea–Voisin threefolds relies on the strange duality of K3 surfaces with anti-symplectic
involution discovered by Nikulin [12].

Let MG := (H2(S,Z)H)ι and NG := (H2(S,Z)H)ι. We begin with the case G ∼= C2. A
generic K3 surface S with an Enriques involution is a self-mirror K3 surface in the sense of
Dolgachev [5], i.e.

U ⊕NS(S) ∼= T (S) (3.1)

as lattices, where U stands for the hyperbolic lattice (NS(S) and T (S) are given by MG and
NG respectively in this case). Thus it is no wonder that the corresponding Enriques Calabi–
Yau threefold (Example 2.4) is an example of a self-mirror threefold. For G ̸∼= C2, it turns
out that the corresponding K3 surface cannot be self-mirror symmetric as rank(T (S)) < 12.
In general MG and NG do not manifest symmetry over integers Z, but the duality

U ⊕MG
∼= NG. (3.2)

still holds over rational numbers Q (or some extension of Z) [9].

G MG NG

C2 U(2)⊕ E8(−2) U ⊕ U(2)⊕ E8(−2)

C2 × C2 U(2)⊕D4(−2) U(2)⊕2 ⊕D4(−2)

C2 × C2 × C2 U(2)⊕ ⟨−4⟩⊕2 U(2)⊕2 ⊕ ⟨−4⟩⊕2

D6 U(2)⊕A2(−2) U(3)⊕ U(6)⊕A2(−2)

D8 U(2)⊕ ⟨−4⟩ U(4)⊕2 ⊕ ⟨−4⟩
D10 U(2) U(5)⊕ U(10)

D12 U(2) U(6)⊕2

C2 ×D8 U(2) U(4)⊕ ⟨4⟩ ⊕ ⟨−4⟩
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It is worth noting that MG is not equal to NS(S) but to the G-invariant part NS(S)G, while
T (S) = NG always holds. The duality (3.2) can be thought of as an H-equivariant version
of the duality (3.1) since we have MG = (H2(S,Z)H)ι and NG = (H2(S,Z)H)ι. Based
on this new duality, we showed in [9] that Calabi–Yau threefolds of type K are self-mirror
symmetric while the corresponding K3 surfaces are not in general. We also obtained several
results parallel to what is known for Borcea–Voisin threefolds: Voisin’s work on Yukawa
couplings [15], and Gross and Wilson’s work on special Lagrangian fibrations [7].

Theorem 3.1 ([9]). Let X be a Calabi–Yau threefold of type K. The asymptotic behavior of
the A-Yukawa coupling Y X

A around the large volume limit coincides with that of the B-Yukawa
coupling Y X

B around a large complex structure limit.

Theorem 3.2 ([9]). Any Calabi–Yau threefold X of type K admits a special Lagrangian
T 3-fibration π : X → B, where B is topologically either S3 or an S1-bundle over RP2.

Another important result obtained in [9] is the computation of the Brauer groups Br(X) :=
Tor(H2(X,O×

X)), which are topological invariants for the Calabi–Yau threefolds.

Theorem 3.3 ([9]). Let X be a Calabi–Yau threefold of type K with Galois group G. Then
we have Br(X) ∼= Z⊕m

2 , where m is given by the following.

G C2 C2 × C2 C2 × C2 × C2 D6 D8 D10 D12 C2 ×D8

m 1 2 3 1 2 1 2 3

The Brauer groups are believed to play an important role in mirror symmetry but very
little is known at this point. We hope that our work provides new examples of interesting
mirror symmetry with non-trivial Brauer groups.

There are a number of natural questions that arise from [8, 9]. Higher genus mirror
symmetry of Calabi–Yau threefolds of type K would be very interesting to investigate. The
simplest example (Enriques Calabi–Yau threefold) has previously been worked out both in
physics and mathematics [10, 11]. In fact, the rich fibration structure makes the study of
the special Kähler geometry of the complex moduli space particularly promising.
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