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Abstract: We study certain six dimensional theories arising on (p, q) brane webs

living on R× S1. These brane webs are dual to toric elliptically fibered Calabi-Yau

threefolds. The compactification of the space on which the brane web lives leads to

a deformation of the partition functions equivalent to the elliptic deformation of the

Ding-Iohara algebra. We compute the elliptic version Dotsenko-Fateev integrals and

show that they reproduce the instanton counting of the six dimensional theory.
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1 Introduction

The supersymmetric theories exhibit rich strong coupling phenomena in an analyt-

ically tractable setting. Over the last two decades many different approaches have

been developed to construct them as well as to study their dynamics. In particular,

embedding supersymmetric theories in string theory reveals mysteries of them which

might be otherwise overlooked. String theory equally benefited from the progress

in gauge theories to uncover various types of dualities. It provides powerful tools

to compute partition functions or expectation values of observables. Independently,

many exact results are obtained by localizing the path integral of theories with
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enough supersymmetry to matrix integral [1–4]. These quantum field theory tech-

niques combined with the insight endowed by string theory furnish a significantly

deeper understanding in all of these different directions.

Recently, four dimensional with N = 2 supersymmetry are constructed by com-

pactification of the six dimensional (2, 0) theory of on a Riemann surface C with

punctures and are called class S theories [5]. This class is also the low energy limit

of M5 branes wrapping the same Riemann surface. A surprising connection is con-

jectured between the conformal blocks of Liouville theory on the Riemann surface C

and the instanton partition function of A1 theory on the remaining four dimension

subject to Ω-deformation [6]. This conjecture is extended to Ar in [7], henceforth

referred to as AGTW conjecture. The correspondence depends both on the data at

the punctures as well as the pants decomposition of the Riemann surface, and the

specific conformal block.

The AGTW correspondence can be physically understood in terms of large N

duality of topological string theory [8]. The class S theories can be realized as the

low energy limit of a M5 brane wrapping the Riemann surface Σ, which is branched

covering of C. This M-theory setup can be compactified by introducing a torus T 2

transverse to M5 branes. First, by shrinking along one of the circles of T 2, it becomes

type IIA with NS5 branes wrapping Σ. T-duality along the second circle gives rise

to type IIB string theory on a Calabi-Yau threefold whose “base” constitutes the

Seiberg-Witten curve Σ. The topological string partition function of this Calabi-Yau

threefold, in a certain limit, can be identified with the instanton partition function

of the four dimensional theory. Second, at special points of the Coulomb moduli

space of the gauge theory, Σ becomes degenerate, i.e., the associated Calabi-Yau

threefold becomes singular. The single M5 brane splits into multiple M5 branes

at these points. The singular threefold can be blown up to obtain a non-singular

threefold. The large N duality connects Calabi-Yau threefold engineering the gauge

theory in the B model with the blown up geometry with topological branes wrapping

the two cycles. The duality identifies the closed B model to the open version, in other

words, their partition functions are the same. The partition function in the presence

of branes can be computed by matrix models. The final ingredient to understand

the AGTW conjecture in this context is the Dotsenko-Fateev representation of the

conformal blocks [9–12] which is equal to the matrix model of the open amplitude.

Although this approach gives an excellent physical intuition, it is still at the level

of a conjecture since the large N duality is a conjecture. It is also restricted to the

self-dual Ω-background, and can not cover the generic background. The M-theory

offers a formulation for refined topological string theory on non-compact Calabi-Yau

threefolds with additional U(1) isometry. Further details can be found in the detailed

review [13].

The AGTW conjecture has been lifted to a conjecture of one dimension higher

theory on the gauge theory side and to the q-deformation on the conformal theory
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side. Instead of considering the instanton partition function of N = 2 in four di-

mensions, one can study the N = 1 five dimensional theory compactified on a circle.

Initially, the instanton partition function of pure SU(2) theory was checked up to

9 instantons to match the norm of the Gaiotto-like state [14] of the q-deformed Vi-

rasoro algebra [15]. Later, the q-deformed version of the β-ensemble was proposed

and shown to coincide with the instanton partition function of five dimensional of

SU(N) theory with Nf = 2N flavors [16].

The q-deformed AGTW correspondence is enhanced to a triality when considered

within the context of topological string theory [17–19]. As we will elaborate further

details of this construction, they showed that the 5d instanton partition function of

the N = 1 theory can be studied at a particular point of its moduli space and the

instanton partition function reduces to their 3d vortex partition function. This is

reminiscent of the duality analyzed as a 2d/4d correspondence in [20, 21], which is

related to the brane construction of the vortices [22, 23]. The 3d vortex partition

function can be computed using localization, similar to the 2d case in [24], and it is

identical to the matrix integrals appearing in Dotsenko-Fateev representation of the

conformal blocks. The very non-trivial fact introduced by lifting the AGTW duality

one dimension higher is based on the so-called fiber-base duality in topological string

theory. The N = 1 theories can be geometrically engineered by compactifying M-

theory on a Calabi-Yau threefold [25]. For the AN type theories, the threefold is

a non-compact toric Calabi-Yau which is an AN fibration over a collection of P1’s

whose intersection can be mapped to the Cartan matrix of, say AM . In [26], a duality

is observed that exchanges the base AM with the fiber AN . The topological string

theory partition function on this toric Calabi-Yau threefold is obviously invariant

under this exchange, but the gauge theory interpretation in the transverse 5d are

quite different. We will call such dual gauge theories fiber-base duals. The simplest

example of such a pair is the SU(2) × SU(2) theory with a bi-fundamental matter

multiplet and an SU(3) theory with two hypermultiplets in the fundamental and anti-

fundamental representation. The same topological string partition function gives rise

to the instanton partition function of two different gauge theories in 5d depending

whether it expanded in terms of the base or fiber Kähler classes. However, the

instanton partition functions of the fiber-base duals in 4d are very different from

each other. The origin of the difference is the dissimilar scaling, in the 4d field

theory limit, on the fiber and base Kähler classes. The unifying nature of the lift

from 4d to 5d is the crucial ingredient. In [17], the q-deformed Virasoro conformal

block is shown to be identical to the instanton partition function of the gauge theory

whose fiber-base dual is the 5d lift of the gauge theory appearing in the AGTW

duality. The invariance provides a physics proof of the duality 1. In that work, the

1The invariance of the instanton expansions for fiber-base duals can be shown order by order

but a general mathematical proof is still lacking. For more sophisticated approaches, we refer
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momenta carried by the vertex operators are quantized and are given by the vortex

charges (giving a physical explanation as to why the momenta in Dotsenko-Fateev

integrals are quantized). However, later in [13], the large N limit is suggested to

make the equivalence for arbitrary momenta.

In this paper, we are extending the relation between the instanton partition

function of the 5d theory and the q-deformed Liouville conformal blocks. In [29], a

partial compactification of (p, q) brane webs dual to certain toric Calabi-Yau three-

folds were introduced and this construction was argued to be related to the 6d lift

of the 5d theory. The Calabi-Yau threefolds dual to these partially or completely

compact brane webs, living in R × S1 or T 2, are elliptically fibered. We show that

this partial compactification of brane webs, related to elliptic Calabi-Yau threefolds,

corresponds algebraically to elliptic deformation proposed in [30]. The motivation

for the prescription is to formulate the elliptic version of Ding-Iohara algebra. This

algebra has already appeared in [31] to study q-deformation of AGTW conjecture.

The vertex operators and the screening charges appearing in q-deformed Dotsenko-

Fateev integrals posses a free boson representation. They can be subjected to the

elliptic deformation in [30]. We will call the matrix integral of these elliptically de-

formed operators elliptic Virasoro conformal blocks. In the same flavor as in [17], we

show the match between the 6d instanton partition functions and elliptic conformal

blocks. This type of connection was argued from M-theory perspective in [32].

This paper is organized as follows. In section 2, we will present the connection

between the q-deformed Liouville and 5d instanton partition functions. In this sec-

tion we also introduce the mathematical details of these theories which we will need

later. In section 3, we review the elliptic deformation and it geometric interpreta-

tion as partial compactification of brane webs dual to toric Calabi-Yau threefolds.

Section 4 is reserved to the elliptic deformation of vertex operators and screening

charges, the building blocks of the Dotsenko-Fateev integrals. In section 5, we work

out three examples and make our general proposal for the elliptic extension of 5d

instanton/q-deformed conformal block correspondence.

We understand that related results have been obtained independently by Fabrizio

Nieri. We thank him for coordinating submission of his work [33] with us.

2 Gauge/Liouville Triality

In this section we would like to review the Gauge/Liouville triality, introduced for

the first time in [17] for N = 2 A1 theories and extended later to other gauge groups

[18, 19]. The triality is motivated by the earlier observation of the duality between

a 4d N = 2 gauge theory and a 2d N = (2, 2) theory on its vortices [20, 21]. The

the reader to [27, 28].
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coincidence of the BPS spectra of these theories were first hints for such a duality

[34, 35].

The 4d N = 2 theory has the gauge group SU(L) with L hypermultiplets in the

fundamental representation and L in the anti-fundamental representation subject to

reduced Ω-background, i.e. one of the deformation parameters ε1 is set to zero. Along

the non-zero deformation parameter ε2, N = (2, 2) supersymmetry is preserved. The

resulting 2d effective theory has a twisted superpotential. The supersymmetric vacua

of this effective theory constitute an L dimensional lattice and are determined by the

F-term equation

~a = ~mF − ~nε2, for ~n = (n1, . . . , nL) ∈ ZL, (2.1)

where the vector ~a label the Coloumb branch parameters and ~mF the masses of

the hypermultiplets in the fundamental representation. The 2d part with the Ω-

deformation of the 4d spacetime has the topology of a cigar. The 2d effective theory

corresponds to the theory on its vortices with vortex charges given by ni. In the

absence of the Ω-deformation, the vortex charge can not be turned on without in-

troducing a surface operator insertion [36]. However, in the presence of non-zero ε2
one can turn them on and they effectively shift the Coulomb branch moduli. At the

level of F-terms, once the Ω-background is switched on, turning on the vortex flux

is the same as shifting the Coulomb branch parameters by an amount proportional

to flux.

The 2d theory of the duality has N = (2, 2) supersymmetry and U(N) gauge

group. This is the theory of the vortices themselves at the root of the Higgs branch

of the 4d theory, even if the Ω-deformation is off. It has L chiral multiplets in the

fundamental and anti-fundamental representation, as well as a single chiral multiplet

in the adjoint representation with the mass ε2. The FI parameters form the complex

marginal coupling with the vacuum angle. The claim of the duality is that the su-

persymmetric vacua of these two theories described are in one-to-one correspondence

once the parameters of both theories are appropriate tuned. Moreover, their twisted

superpotentials are the same on-shell.

The above duality can be lifted to one dimension higher. The 4d theory can be

replaced by a circle fibration of the reduced Ω-background, with N = 1 supersym-

metry. Similarly, the dual 2d theory can be lifted to a theory on a 3d space time

of the same type circular fibration, with the same radius. One needs to take into

account an infinite tower of Kaluza-Klein modes. The duality is expected to survive

the lift. One part of the triality in [17] explicitly shows that the instanton partition

function of the full 5d Ω-background is the same as the one of the 3d theory.

The last part of the triality depends on the observation that the partition function

of the 3d theory is identical to the q-deformed Liouville conformal blocks, hence

is identical to the 5d instanton partition function. The path integral of the 3d

gauge theory can be reduced to a matrix integral by employing the supersymmetric
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localization. As we will discuss shortly, the conformal blocks of the usual and q-

deformed Liouville theory can be written as matrix integrals, and the resulting matrix

integrals of the 3d theory and the q-deformed conformal blocks are identical under a

suitable dictionary of variables of two theories. Few remarks are in order to clarify

some subtle points. First, the equivalence between the partition functions of the 3d

theory and the 5d theory is valid at the special points in the moduli space where the

Higgs branch of the theory meets its Coulomb branch, and turning on vortex fluxes.

Any other point in the Coulomb branch can be probed by taking the large vortex

flux limit such that ni’s go to infinity while ε2 is sent to zero, keeping their product to

any finite value. Second, the duality is expected to reduce to aforementioned 4d-2d

duality when the radius of the circle is taken to zero, decoupling all the Kaluza-

Klein tower. The q-deformed Liouville theory becomes the usual one. Finally, as one

might expect, the 4d instanton partition function identical to the Liouville conformal

blocks, but up to the so-called fiber-base duality or spectral duality. The reason

behind this duality is simply the fact that the taking the radius to zero is not a

unique limit. There is a variety of ways to take this limit, and different choices

lead to different 4d theories. For instance, the AGT conjecture states that the

instanton partition function of the SU(2) × SU(2) theory with two flavors under

each gauge group and one bi-fundamental hypermultiplet is the same as the Liouville

conformal block of the five point function on the sphere. However, according to the

Gauge/Liouville triality the five point q-deformed Liouville conformal is identical to

the instanton partition function of SU(3) theory with six flavors. Indeed, it is known

fact in geometric engineering that these two theories share the same topological string

theory partition function. In other words, expanding the topological string partition

function in different Kähler parameters give rise to the instanton partition function

of these dual theories in 5d. It is worth to mention that, up to the fiber-base duality,

the Gauge/Liouville triality is a direct physics proof of the AGT conjecture.

2.1 Liouville Theory Conformal Blocks

In this paper, our focus is the connection between the instanton partition function

of the 6d theory and the elliptic conformal blocks. Therefore, we prefer to review

the free field representation of the Liouville conformal blocks due to Dotsenko and

Fateev. The action of the Liouville conformal field theory can be written in terms of

a boson as

S =

∫
dzdz̄

√
g
[
gzz̄∂zφ∂z̄φ+QφR + e2bφ

]
, (2.2)

where b is the coupling constant, Q = b + b−1 denotes the background charge. The

central charge of the theory can be expressed in terms of the background charge

c = 1 + 6Q2. We can insert primary fields with momenta α at points z whose vertex
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operator take the following form,

Vα(z) =: exp
(
−α
b
φ(z)

)
:, (2.3)

where : . . . : stands for the normal ordering. The conformal block with primary

operator insertions has a Coulomb gas representation

Bα0,...,αM+1
(z1, . . . , zM) =

∮
dy1 . . .

∮
dyn 〈Vα0(0) . . . VαM (zM)VαM+1

(∞)S(y1) . . . S(yn)〉,

(2.4)

where we have fixed two insertions to be at 0 and ∞ although we could have fixed

yet another insertion point by the conformal symmetry. In addition to the primary

fields, we inserted screening charges

S(y) =: e2bφ(y) :, (2.5)

and their insertions come from treating the Liouville potential as perturbation and

bringing powers of them down. Representation of the conformal block in the form of

Eq.(2.4) requires the balancing condition for the U(1) charges of the vertex operators,

α∞
b

+
M∑
i=0

αi
b

= 2bn+RQ. (2.6)

Using the free mode expansion of the chiral field φ(z), it is easy to write an inte-

Figure 1: The 4-point conformal block

gral expression for the conformal blocks. Let us write the chiral field in terms of

annihilation and creation operators

bφ(z) = φ0 + h0 log z +
∑
n6=0

hn
z−n

n
, (2.7)

where φ0 is a constant and the modes hk obey the usual Heisenberg algebra,

[hn, hm] =
−b2

2
n δn+m,0, for n,m ∈ Z. (2.8)
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The two point functions of between vertex operators and screening charges can be

easily computed in terms of the mode expansions,

〈Vα(z)Vα′(z
′)〉 = (z − z′)

−αα′
2b2 , (2.9)

〈Vα(z)S(y)〉 = (z − y)α,

〈S(y)S(y′)〉 = (y − y′)−2b2 ,

and the Coulomb gas representation of the conformal blocks takes the following form

Bα0,...,αM+1
(z1, . . . , zM) =

C∏M
a=1 na!

∮
~γ

dny∆2
β(y)

M∏
a=0

Va(y), (2.10)

where ∆2
β(x) is the β-deformed Vandermonde with β = −b2, and is given by

∆2
β(y) =

∏
1≤i<j≤N

(yi − yj)2β, (2.11)

and the potential Vα(y) reads

Va(y; z) =
N∏
i=1

(yi − za)αa . (2.12)

Note that
∑M

a=1 na = n. The above integral is ambiguous as it stands unless the

Figure 2: Each integration contours have been shown to encircle the origin and the

insertion point of one of the vertex operators Vz(za) for a = 1, . . . ,M .

contours ~γ are defined. Motivated by the AGT conjecture, the contours are chosen

and checked in [11]. As already mimicked by the pre-factor in front of the integral,
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the n integrals over the screening charges are split into M groups of na variables.

The contour for the integration variables from the a-th group encircles a segment

γa = [0, za]. The factor C includes factors which are irrelevant for our purposes,

C =
∏

1≤a<b≤M

(za − zb)
αaαb
2β . (2.13)

2.2 q-deformed Liouville Theory Conformal Blocks

The q-deformation of the Liouville theory was first constructed using the quantum

group techniques [37, 38]. The vertex operators and screening charges are modified

two complex variables, q and t = qβ for a generic complex parameter β. The opera-

tors and the algebra are adjusted in a way that the limit q → 1 reduces the theory to

the usual Liouville theory. For completeness, we briefly review here the original con-

struction, although we use a slightly different construction. The q-deformed vertex

operators take the following form,

Vα(z) = : exp

(
α

β
q +

α

β
p log z +

∑
n 6=0

1

n

1− qαn

1− tn
hnz

n

)
: , (2.14)

where the modes satisfy a q-deformed Heisenberg algebra,

[hn, hm] =
1

1 + (q/t)n
1− tn

1− qn
nδn+m,0. (2.15)

The screening charges are equally modified and are given by

S(y) =: exp

(
2q + 2p log z +

∑
n 6=0

1 + (q/t)n

n
hnz

n

)
: . (2.16)

The Dotsenko-Fateev integral can be easily written after computing similar two point

functions as in the undeformed case. It has the same form except the Vandermonde

becomes the q-deformed one

∆2
q,t(y) =

∏
1≤i 6=j≤N

ϕ(yi/yj)

ϕ(t yi/yj)
, (2.17)

where ϕ(z) is the quantum dilogarithm

ϕ(z) =
∞∏
n=0

(1− z qn). (2.18)

Similarly, the potentials become functions of the quantum dilogarithm function

Va(y; za) =
N∏
i=1

ϕ(qαaza/yi)

ϕ(za/yi)
. (2.19)

The factor in front of the integral still remains but also q-deformed and we will ignore

them since we want to focus on the instanton partition function on the gauge theory

side. It turns out the contour remain the same; encircling again the given segments.
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2.3 5d Instanton Partition Function

In this section, we review the instanton partition function of the 5d N = 1 SU(N)

gauge theory with Nf = 2N on R4 × S1 subject to Ω-background,

Mq,t = C2
q,t−1 × S1, (2.20)

where the product denotes a fibration; as we go around the S1 there is a U(1)×U(1)

action on C2 given by

(z1, z2) 7→ (eiε1z1, e
iε2z2) , (2.21)

with (eiε1 , eiε2) = (q, t−1). There is an accompanying 5d U(1)R twist to preserve

supersymmetry. The instanton partition function of the 5d theory on this background

can be computed using the supersymmetric localization techniques which reduces it

to an equivariant integral over the instanton moduli spaces. If we denote byM(N, k)

the SU(N) instanton moduli space of charge k then the instanton partition function

Z is given by,

Z =
∑
k≥0

Λk

∫
M(N,k)

∏
i

xi
1− e−xi

Nf∏
a=1

(1− yae−x̃i) . (2.22)

where xi are the roots of the Chern polynomial of the tangent bundle to M(N, k)

and x̃i are the roots of the Chern polynomial of the bundle corresponding the matter

content. In the case we are interested, the case of fundamental hypermultiplets, the

matter fields are sections of a tautological bundle V on the instanton moduli space.

Recall thatM(N, k) is a hyper-Kähler quotient with dimR
(
M(N, k)

)
= 4Nk and is

defined through the following quotient:

MN,k/U(k) (2.23)

where

MN,k = {(B1, B2, i, j) | [B1, B2] + ij = 0 , [B1, B
†
1] + [B2, B

†
2]− ii† − jj† = ζId } .

and B1,2 ∈ End(V ), i ∈ Hom(V,W ), j ∈ Hom(W,V ) such that V is a k dimensional

vector space and W is an N dimensional vector space. The U(k) action is defined as

g(B1, B2, i, j) = (gB1g
−1, gB2g

−1, gi, jg−1). (2.24)

M(N, k) has a U(1)N×U(1)ε1×U(1)ε2 action defined on it (e = diag(e1, e2, . . . , eN)):

(B1, B2, i, j) 7→ (eiε1B1, e
iε2B2, i e

−1, e j). (2.25)

This TN+2 action on M(N, k) has fixed points which are in one-to-one correspon-

dence with N -tuples of partitions (ν1, . . . , νN) such that |ν1| + . . . + |νN | = k. The
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weights of this action on T[~Y ]M(N, k) at the fixed point labelled by (ν1, . . . , νN),

denoted by wr, are given by [39, 40],

∑
r

ewr =
N∑

α,β=1

eβe
−1
α

( ∑
(i,j)∈να

q−(νtβ,j−i)t−(να,i−j+1) +
∑

(i,j)∈νβ

qν
t
α,j−i+1tνβ,i−j

)
.

We denote by V the vector bundle overM(N, k) whose fiber over a point (B1, B2, i, j)

is given by the vector space V . This equivariant bundle has weight decomposition

[41, 42],

V = ⊕α Vαeα , (2.26)

such that on Vα the weights of the equivariant action, denoted by uαp , are given by,∑
p

eu
α
p =

∑
(i,j)∈να

qj−1 t−i+1 . (2.27)

With Nf fundamental hypermultiplets therefore the equivariant bundle will be,

V ⊗ CNf . (2.28)

There is global symmetry U(Nf ) acting on CNf . The parameters giving the Cartan

U(1)Nf ⊂ U(Nf ) are related to the masses of the fundamental hypermultiplets.

Including this U(1) action on the a − th copy of V the weights of the equivariant

action are given by ∑
p

eu
α
p = ya

∑
(i,j)∈να

qj−1 t−i+1 . (2.29)

The integration in Eq.(2.22) is carried out equivariantly and receives contribu-

tions only from fixed points of the instanton moduli spaces which are labelled by

Young diagrams. The partition function becomes an explicit sum over all possible

Young diagrams. The summand consists of factors coming from vector multiplet and

different types of matter multiplets

Z =
∑
~ν

Λ|~ν| T~ν

(
zvector~ν × zmatter~ν

)
(2.30)

where ~ν = (ν1, ν2, . . . , νN) is theN -tuple of Yound diagrams and T~ν =
∏N

a=1(−1)|νa|q‖νa‖
2/2t−‖ν

t
a‖2/2.

The vector multiplet contributions can be expressed in terms of Nekrasov function

as

zvector~ν =
∏
r

(1− ewr)−1 =
∏

1≤a,b≤N

1

Nνaνb(ea/eb)
, (2.31)
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where the Nekrasov function has different equivalent forms, one of which is

Nνµ(Q) =
∞∏

i,j=1

ϕ(Qqνi−µj tj−i+1)

ϕ(Qqνi−µj tj−i)

ϕ(Qtj−i)

ϕ(Qtj−i+1)
. (2.32)

Similarly, the contributions of Nf hypermultiplets in the fundamental and anti-

fundamental representations are given by

zfund~ν =

Nf∏
a=1

∏
α

∏
p

(1− euαp ) =
∏

1≤a≤Nf

∏
1≤b≤N

N∅νb(vf
+
a /eb), (2.33)

respectively such that f+
a = ya.

2.3.1 Partition Function from Geometry

The five dimensional N = 1 SU(N) gauge theory with Nf fundamental hypermul-

tiplets can be geometrically engineered using M-theory on a Calabi-Yau threefold.

The Calabi-Yau threefold in this case is resolved AN−1 singularity blown up at Nf

points fibered over a P1 which we will denote by XN,Nf . The partition function of the

five dimensional gauge theory is given by the topological string partition function of

XN,Nf . For Nf ≤ 2N XN,Nf is a toric Calabi-Yau threefold. The case Nf = 2N that

will be of importance for us later has a dual web diagram shown in Fig. 3(a).

ν1

ν2

ν3

νt1

νt2

νt3

(a) (b)

Figure 3: (a) The web dual to toric Calabi-Yau threefold X3,6. (b) The topological

string partition function can be computed using the refined topological vertex, first,

dividing the geometry into two halves and computing the open amplitudes on both

sides. Then we glue them along the instanton direction.

The refined topological string partition function of this geometry can be deter-

mined using the refined topological vertex formalism [43] and is given by

Z =
∑
~ν

Λ|~ν|W vector
~ν W fund

~ν (2.34)
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where

W vec
~ν =

∏N
a=1

(
q
‖νa‖2

2 t
‖νta‖

2

2 Zνa(t, q)Zνta(q, t)
)

∏
i,j

∏
1≤a<b≤N

(
1−Qab t

−νta,i+j q−νb,j+i−1
)(

1−Qab t
−νta,i+j−1 q−νb,j+i

)
=

T~ν∏N
a,b=1 Nνaνb(Qab)

,

and

W fund
~ν =

∏
i,j

∏
1≤a≤b≤N

(
1−QabQmb t

−νta,i+j−
1
2 qi−

1
2

)(
1−QabQma t

j− 1
2 q−νb,j+i−

1
2

)
×
∏
a<b

(
1−QabQ

−1
ma t

j− 1
2 q−νb,j+i−

1
2

)(
1−QabQ

−1
mb
t−ν

t
a,i+j−

1
2 qi−

1
2

)
.

In the above equations,

Qma = f+
a = e2πima , Qab = eb e

−1
a . (2.35)

W vec
~ν contains the contribution of all torus invariants holomorphic curves with local

geometryO(−2)⊕O(0) 7→ P1 and W fund
~ν contains the contribution of all holomorphic

curves with local geometry O(−1)⊕O(−1) 7→ P1.

2.4 Truncation of the Instanton Partition Function

As we have explained before, we will probe the 5d/6d gauge theory at a very special

point in their moduli space; where the Coulomb branch meets the Higgs branch.

This point is reached if we tune the masses of the hypermultiplets in the fundamen-

tal representation to be equal to the Coulomb branch parameters up to an integer

multiple of the ε2:

ea =
tna

v
f+
a (2.36)

Remember that the contribution from the hypermultiplets in the fundamental rep-

resentation includes factors N∅νa(vf
+
a /ea) for each multiplet, a = 1, . . . ,M . This

identification imposes a restriction on the length of each Young diagram νa that we

are summing over. It is very easy to see if one considers the following representation

of the Nekrasov function,

N∅ν(Q) =
∏

(i,j)∈ν

(
1−Qq−νi+j−1ti

)
. (2.37)

Upon substituting Q = v2t−n after the identification between the Coulomb branch

parameters and masses, the factors in the product will be of the form (1−q−νi+jti−(n+1)).

For each row i in the Young diagram, the very last box in that row is labelled by
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(i, νi) rendering the exponent of q to vanish. On the other hand, if the Young di-

agram has (n + 1)st rows, for that last box the exponent of t vanishes too, hence,

the product vanishes. Therefore, the length of that Young diagram is limited to n;

`(ν) ≤ n. However, there does not exist any bound on the number of boxes along

each of the rows.

Notice that the contributions from the hypermultiplets are either of the form

Nν∅(ve/f) or N∅ν(vf/e) and they are in the numerator. On the other hand, the

vector multiplet contributions consist of factors Nνaνb in the denominator. It was a

crucial point in the derivation of the triality to notice that this type of factors in the

denominator can be rewritten as [17],

Nνaνb(Q) =
na∏
i=1

nb∏
j=1

ϕ(Qqνa,i−νb,j tj−i+1)

ϕ(Qqνa,i−νb,j tj−i)

ϕ(Qtj−i)

ϕ(Qtj−i+1)

×
[
Nνa∅(t

nbQ)N∅νb(t
−naQ)

]
. (2.38)

The instanton partition function dramatically simplifies and the remaining factors

will be of the following form;

Nν∅(Q) =
n∏
i=1

ϕ(Qt1−i)

ϕ(Qqνit1−i)
, (2.39)

N∅ν(Q) =
n∏
i=1

ϕ(Qq−νiti)

ϕ(Qti)
. (2.40)

These factors written in terms of the quantum dilogarithm nicely combine into the

potential of the Dotsenko-Fateev integrals. The remaining factors on the first line in

Eq.(2.38), form the Vandermonde determinants. The sum over the Young diagrams

can be easily understood as the summation over the residue of the poles encircled by

the contours chosen in the integrals,

1∏M
a=1 na!

∮
~γ

dny →
∑
~ν

, (2.41)

establishing the direct connection between the conformal blocks and the instanton

partition function. We identify the insertion point of the vertex operators za = f+
a

and define their momenta by f−a = qαaf+
a v
−2.

In the remainder of the paper, we will argue that this correspondence can be

extended to an equivalence between an elliptic deformation of the Dotsenko-Fateev

integrals and the 6d instanton partition functions. The elliptic deformation of the

conformal blocks is in a similar spirit of the q-deformation of the Liouville theory.

We subject the vertex operator and the screening charges to an elliptic deformation

introduced in [30].
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3 Elliptic Deformation and Its Geometric Interpretation

In this section, we review the motivation behind the elliptic deformation of [30] and

spell out some details relevant for our approach. Along the way, we recognize a ge-

ometric interpretation of this deformation; it corresponds to partially compactifying

the web diagram of the toric Calabi-Yau threefold. This compactification of the web

lifts the theory from five dimensions (M-theory) to six dimensions (F-theory) and

therefore the corresponding Calabi-Yau threefold develops an elliptic fibration. Such

compactification of web diagrams was introduced in [29] and further studied in [44] to

study five dimensional and six dimensional lifts of certain four dimensional theories.

In that context, the compactification of the web was associated with the introduc-

tion of an new Kähler class dual to an elliptic curve. Our observation suggests that

this appearance of elliptic curve class in the Calabi-Yau threefold is captured by this

algebraic deformation at the level of the topological string partition function.

3.1 Motivation for the Elliptic Deformation

The connection between Virasoro/WN algebras and symmetric functions has been

known for a while; the Jack symmetric functions are the singular vectors of these

algebras. Both sides of this correspondence allows a q-deformation; Virasoro/WN

algebras are replaced by their q-analog as reviewed in the previous section. The q-

deformation of the Jack symmetric functions are the Macdonald symmetric functions.

The Macdonald symmetric functions are defined as eigenfunctions of a difference

operator, HN(q, t), henceforth referred to as the Macdonald operator, and defined by

HN(q, t) ≡
N∑
i=1

∏
j 6=i

txi − xj
xi − xj

Tq,xi , with (Tq,xif(x1, . . . , xN) ≡ f(x1, . . . , qxi, . . . , xN)) .

(3.1)

Macdonald has defined a (q, t)-deformed version of the inner product between the

power sum symmetric functions (see below) such that it reduced to the usual one

when q = t, and there is the associate kernel function

Π(x, y; q, t) ≡
∏
i,j

ϕ(txiyj)

ϕ(xiyj)
. (3.2)

Based on the kernel function there is a free field representation for the Macdonald

operator. This realization is closely related to the Ding-Iohara algebra which whose

representations are related to the AGTW conjecture.
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The elliptic version2 of the Macdonald operator is constructed in [45]:

HN(q, t, p) ≡
N∑
i=1

∏
j 6=i

Θp(txi/xj)

Θp(xi/xj)
Tq,xi . (3.3)

Later the kernel function for the elliptic Macdonald operator is constructed in

[46] using the natural generalization of the quantum dilogarithm

Π(x, y; q, t, p) ≡
∏
i,j

Γ(xiyj)

Γ(txiyj)
, (3.4)

which reduce to the qt-deformed kernel in the limit of p → 0. In [30], an elliptic

deformation for the free field representation is presented. Let us review some of

the important points of this construction. The vertex operators has generically the

following bosonic mode expansion,

X(z) = exp

(∑
n>0

X−−n a−n z
n

)
exp

(∑
n>0

X+
n an z

−n

)
. (3.5)

where a±n’s are the bosonic generators satisfying the qt-deformed version of the usual

Heisenberg algebra,

[an, am] = n
1− q|n|

1− t|n|
δm+n,0. (3.6)

The deformation follows in two steps: first, we deform the Heisenberg algebra for

a±n’s by introducing the elliptic parameter p. The deformation alone is not sufficient

and need to “double” the algebra by launching a new set of generators, denoted by

b±n’s. They satisfy a slightly different Heisenberg algebra. These two sets of bosonic

generators are assumed to commute with each other:

[an, am] = n(1− p|n|)1− q|n|

1− t|n|
δm+n,0, [bn, bm] = n

1− p|n|

(qt−1p)|n|
1− q|n|

1− t|n|
δm+n,0,

[an, bm] = 0. (3.7)

The second step is constructing the elliptic deformation using the above bosonic

generators; X(z) ≡ Xb(p; z)Xa(p; z) with

Xb(p; z) ≡ exp

(
−
∑
n>0

pn

1− pn
X−n b−n z

−n

)
exp

(
−
∑
n>0

pn

1− pn
X+
−n bn z

n

)
, (3.8)

Xa(p; z) ≡ exp

(∑
n>0

1

1− pn
X−−n a−n z

n

)
exp

(∑
n>0

1

1− pn
X+
n an z

−n

)
. (3.9)

2In the literature regarding the free field representation of the Macdonald operator p is commonly

used as the elliptic parameter. However, in the language of topological string theory Qτ is more

frequently used; we will use both notations interchangeably depending on the context, and hope

that it will not create a confusion.
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3.2 Geometric Interpretation of the Elliptic Deformation

The elliptic deformation that we just discussed is an algebraic construction and we

would like to introduce a new geometric interpretation in terms of toric Calabi-Yau

threefolds.

The toric Calabi-Yau threefolds that we are interested in are dual to web dia-

grams involving (p, q) 5-branes [47]. These web diagrams in some cases have sym-

metries and in such cases it is possible to compactify the R2 in which these webs live

to R × S1 or T 2. Since this R2 in which the webs live is part of the string theory

spacetime therefore such a compactification of the web corresponds to compactifica-

tion of spacetime in string theory. In case the toric Calabi-Yau threefold gives rise

to a certain gauge theory in 4d the compactification of the R2 to R×S1 corresponds

to considering M-theory compactified on a toric Calabi-Yau threefold, dual to the

compactified web, and hence the corresponding theory is 5d on R4 × S1. Similarly

compactification of the R2 to T 2 corresponds to considering F-theory on the toric

Calabi-Yau threefold and gives rise to 6d theory on R4 × T 2. The toric Calabi-Yau

threefold, dual to the compactified web on T 2, in this case must have an elliptic fibra-

tion structure. Due to this restriction very few webs exist which can be compactified

such that they live on T 2. The dual Calabi-Yau threefolds in each of these cases have

new elliptic curves whose area is given by the size of the compactification circle.

The web diagrams are dual to the Newton polygon of the Calabi-Yau threefold

which encodes the open charts which can be used to build the toric Calabi-Yau

threefold. The compactification of the web puts the Newton polygon on a T 2 as well.

λ

μ

Q

Figure 4: The resolved conifold with two infinite stack of branes providing bound-

ary conditions, labelled by Young diagrams λ and µ, for open topological string

amplitudes.

The topological vertex formalism [29, 43] provides an natural way of calculating

the topological string amplitudes of the Calabi-Yau threefold dual to the compactified

web. In the topological vertex formalism the trivial partitions are associated with

the external legs, however, there is a sense of compactification of the geometry by

labeling the vertical external legs with the same non-trivial Young diagrams and

summing over them. Pictorially, we can think of each external leg as a disc and
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the Young diagrams will label the boundary conditions for the open maps from the

worldsheet. Summing over all possible boundary conditions is in fact gluing two

discs along their boundaries, giving rise to a P1. Taking the base P1 of the resolved

conifold into account, we end up with two P1’s connected each other at their poles;

i.e., a pinched torus. The new web diagram will be non-planar and is depicted in

Fig. 5.

λ

μ

Figure 5: The partially compactified web giving rise to 5d gauge theory.

We will establish this conclusion by constructing coherent states labeled by

Young diagrams. They will be in the form of vertex operators which we subject to

the elliptic deformation in [30]. The scalar product of two such vectors can be easily

computed using the associated q, t-deformed Heisenberg algebra. Using the power-

ful identities in [48], we show that the scalar products are precisely the Nekrasov

functions, Nλµ(Q).

We define our coherent states as

|λ;w〉 ≡ exp

(
∞∑
n=1

1

n

tn/2 − t−n/2

qn/2 − q−n/2
wnε−λ (pn)a−n

)
|∅〉, (3.10)

〈w;λ| ≡ 〈∅| exp

(
∞∑
n=1

1

n

tn/2 − t−n/2

qn/2 − q−n/2
w−nε+

λ (pn)an

)
. (3.11)

A number of remarks are in order. The parameters q and t are taken to be pure phase

as well as the variable w. a±n with n ∈ Z\{0} are creation and annihilation operators

and satisfy the qt-deformed Heisenberg algebra Eq.(3.6). The vector |∅〉 and its dual

〈∅| represent the vacua and are annihilated by the positive and negative Fourier

modes, respectively. We will label the states created by the negative modes as |aλ〉 =

a−λ1a−λ2 . . . |∅〉, and similarly the dual vectors. We will exploit the isomorphism

between the Fock space and the space of symmetric function by identifying |aλ〉 ∼ pλ.

Macdonald has defined (q, t)-deformation of the inner product on the power sum

symmetric functions as

〈pλ, pµ〉q,t = δλ,µzλ

`(λ)∏
i=1

1− qλi
1− tλi

, (3.12)
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where zλ =
∏

i≥1 i
mimi! with mi being the number of parts of λ equal to i. It is easy

to see that the hermitian conjugate (a−n)† = an with respect to the inner product.

ε±λ is an algebra homomorphism defined on the ring of symmetric functions and its

action on the power sums is given by

ε±λ (pn) = pn(q±λt±ρ)

=
∞∑
i=1

q±λint∓(i−1/2)n. (3.13)

Before we ellipticize the vectors let us show that the transition between two states

is proportional to the Nekrasov function. We can commute the two exponentials

picking up a factor:

〈z;λ|µ;w〉 =

= 〈∅| exp

(
∞∑
n=1

1

n

tn/2 − t−n/2

qn/2 − q−n/2
z−nε+

λ (pn)an

)
exp

(
∞∑
n=1

1

n

tn/2 − t−n/2

qn/2 − q−n/2
wnε−µ (pn)a−n

)
|∅〉

= exp

(
−
∞∑
n=1

1

n

(w
z

)n
vn
t−n/2 − tn/2

qn/2 − q−n/2
pn(qλtρ)pn(q−µt−ρ)

)
(3.14)

with v = (q/t)1/2 and ρi = −i+ 1/2 is the Weyl vector. Using the proposition and

its corollary in Appendix A.2 of [48] we can write

〈z;λ|µ;w〉 = Nλµ(v2w/z)
∞∏

i,j=1

(1− v2w/z q−jt−i+1) (3.15)

= Nλµ(v2w/z)〈z; ∅|∅;w〉.

where the following representation of the Nekrasov function is the more familiar one,

Nλµ(Q) =
∏

(i,j)∈λ

(
1−Qqλi−jtµtj−i+1

) ∏
(i,j)∈µ

(
1−Qq−µi+j−1t−λ

t
j+i
)
. (3.16)

As we mentioned before, the Nekrasov function is not the same as the normalized

open topological string amplitude on the resolved conifold. We can compute it using

the refined topological vertex to be

Zλµ =
∑
ν

(−Q)|ν|C∅νλt(q
−1, t−1)C∅νtµ(t−1, q−1)

= Z∅∅ q−‖µ‖
2/2Z̃µ(t−1, q−1)t−‖λ

t‖2/2Z̃λt(q
−1, t−1)Nλµ(Q)

= Z∅∅ (−1)|λ|+|µ|v|λ|−|µ|Pµ(t−ρ; q, t)Pλt(q
−ρ; t, q)Nλµ(Q) (3.17)

where Z∅∅ is the closed amplitude by setting the representations along the external

legs to trivial representations ∅ and the factors Z̃µ(t, q) are related to Macdonald
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functions with special arguments Pµ(t−ρ; q, t),

Z̃µ(t, q) =
∏

(i,j)∈µ

1

1− qµi−jtµtj−i+1

= t−‖µ
t‖2/2Pµ(t−ρ; q, t). (3.18)

How about the remaining factors? Do they have any connection to the coherent states

we constructed? To answer these question, let us compute the partition function of

the resolved conifold blown up at two points, whose toric diagram is sketched in

Fig. 6.

Q
1

Q
2

Q

μ

Figure 6: The web dual to the resolved conifold blown up at two points which gives

U(1) theory with two hyper multiplets.

The (normalized) topological string partition function takes the following form

in terms of the Nekrasov functions:

Z =
∑
µ

(Qv)|µ|
N∅µ(Q1v)Nµ∅(Q2v)

Nµµ(v2)

=
∑
µ

(Qv)|µ|
〈∅; z1|µ;w〉〈µ;w|∅; z2〉

〈w;µ|µ;w〉
, (3.19)

where Q1 = vw/z1 and Q2 = vz2/w are exponentials of the masses of hypermulti-

plets3. We also have ignored the closed string partition function used in the normal-

ization of the inner product Eq.(3.20). The pre-factors from two pieces combine into

to the norm of our coherent states:

〈w;µ|µ;w〉
〈w; ∅|∅;w〉

= Nµµ(v2). (3.20)

3The Kähler parameters seem to be identified slightly different; it is related to the particular

geometry chosen, but related by a flop transition.

– 20 –



3.3 A Closer Look to the Coherent States

Before we move on to computing the elliptic deformation of our coherent states, let

us point out few interesting features of them. According to the Proposition 2.14 in

[31], this inner product is proportional to the matrix elements of the following vertex

operator in the integral Macdonald basis,

〈Jλ|Φ(w)|Jµ〉 = Nλµ(qv/tu)w|λ|−|µ|(tu/q)|λ|(−v/q)−|µ|tn(λ)qn(µt). (3.21)

where the vertex operator is defined as

Φ(w) = exp

(
−
∞∑
n=1

1

n

vn − (t/q)nun

1− qn
a−nw

n

)
exp

(
∞∑
n=1

1

n

v−n − u−n

1− q−n
anw

−n

)
. (3.22)

The elliptic deformation is suitable for operator given in terms of Fourier modes,

although the vertex operator Φ(w) is given in this form, computing the deformation

of the integral Macdonald functions is a very interesting but a challenging task. We

will postpone this discussion for another place, but assume the elliptic deformation

of our vectors and their inner product capture the relevant deformation for these

matrix elements as well.

We can generalize our vectors to capture not only the normalized partition func-

tion of the resolved conifold but the so-called strip geometry. Instead of labeling

each state with one Young diagram, corresponding to the external leg on the toric

diagram, we have r diagrams. We can use a collective notation ~λ to label the r-tuple

of Young diagrams, and ~z to label the associated parameters:

|~λ; ~w〉 ≡ exp

(
∞∑
n=1

1

n

tn/2 − t−n/2

qn/2 − q−n/2
r∑
i=1

wni ε
−
λi

(pn)a−n

)
|∅〉. (3.23)

It is not hard to show that the inner product between two such states reproduce the

correct topological string partition function

〈~z;~λ|~µ; ~w〉 =
r∏

i,j=1

Nλiµj(vwj/zi). (3.24)

One can easily see that the partition function is getting contributions from the

holomorphic maps in the geometry.

We have defined the vectors and computed their inner products. We can write

them in the so-called Macdonald basis and compute the inner product using this

basis as well. The kernel function for the Macdonald polynomials is given as

exp

(
1

n

1− tn

1− qn
pn(x)pn(y)

)
=
∑
λ

Pλ(x; q, t)Qλ(y; q, t), (3.25)
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Figure 7: The strip geometry for r = 3.

where Pλ(x; q, t) is the Macdonald function and Qλ(y; q, t) is its dual with respect to

the qt-deformation of the inner product

〈Pλ, Qµ〉q,t = δλ,µ. (3.26)

For later convenience let us also mention another important relation between them,

Qλ =
1

〈Pλ, Pλ〉q,t
Pλ ≡ bλPλ, (3.27)

where bλ = bλ(q, t) is given as a product over the boxes of the Young diagram λ

bλ(q, t) =
∏
s∈λ

1− qa(s)tl(s)+1

1− qa(s)+1tl(s)
. (3.28)

We can act on both sides with the operator ε−λ to the y-variables and obtain after

using the isomorphism between the symmetric functions and the Fock space

|λ;w〉 = exp

(
∞∑
n=1

1

n

tn/2 − t−n/2

qn/2 − q−n/2
wnε−λ (pn)a−n

)
|∅〉

=
∑
σ

(vw)|σ|Qσ(q−λt−ρ; q, t)|Pσ〉, (3.29)

where |Pσ〉 denote the vectors in the Macdonald basis. We can take the Hermitian

conjugate of both sides to get

〈w;λ| =
∑
σ

w−|σ|v|σ|Qσ(qλtρ; q, t) 〈Pσ|, (3.30)

where we have used Qσ(x; q−1, t−1) = (qt−1)|σ|Qσ(x; q, t). Let us compute the inner

product between two states in the Macdonald basis

〈z;λ|µ;w〉 =
∑
σ

1

bσ(q, t)
(w/z)|σ|v2|σ|Qσ(qλtρ; q, t)Qσ(q−µt−ρ; q, t)

= Π(v2w/z qλtρ, q−µt−ρ; q, t)

= Π(v2w/z tρ, t−ρ; q, t)Nλµ(v2w/z), (3.31)

which precisely agrees with Eq.(3.15) using Eq.(A.24) of [48].
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3.4 Elliptic Deformation

Using the prescription in [30], we can compute the elliptic deformation of our vectors,

denoted with boldfaces to distinguish them from non-elliptic ones, and their inner

products

〈λ; z|µ;w〉〈λ; z|µ;w〉〈λ; z|µ;w〉 =
∞∏

i,j=1

Γ
(
v2w/z qλi−µj tj−i

)
Γ (v2w/z qλi−µj tj−i+1)

, (3.32)

where Γ(x) is the elliptic gamma function defined as

Γ(x) =
∞∏

m,n=0

1− x−1qm+1pn+1

1− xqmpn
. (3.33)

We use bold face for the elliptic deformation of the coherent states to distinguish

them from the regular ones. At first sight, the elliptic deformation might not look

anything like the partition function of the building blocks Dλµ for M-strings, and

likewise the Nekrasov function Nλµ(Q). For completeness, let us remind the building

blocks Dλµ

Dλµ = t−
‖µt‖2

2 q−
‖λ‖2

2 Q
− |λ|+|µ|

2
m

×
∞∏
k=1

∏
(i,j)∈λ

(1−Qk
τQ
−1
m q−λi+j−

1
2 t−µ

t
j+i−

1
2 )(1−Qk−1

τ Qm q
λi−j+ 1

2 tµ
t
j−i+

1
2 )

(1−Qk
τ q

λi−j tλ
t
j−i+1)(1−Qk−1

τ q−λi+j−1 t−λ
t
j+i)

×
∏

(i,j)∈µ

(1−Qk
τQ
−1
m qµi−j+

1
2 tλ

t
j−i+

1
2 )(1−Qk−1

τ Qm q
−µi+j− 1

2 t−λ
t
j+i−

1
2 )

(1−Qk
τ q

µi−j+1tµ
t
j−i)(1−Qk−1

τ q−µi+jt−µ
t
j+i−1)

. (3.34)

However, the following identity from [48] allows us to prove that the numerator

of Dλµ is given by the elliptic deformation of the transition between our coherent

states:∑
(i,j)∈λ

qλi−j+1/2 tµ
t
j−i+1/2 +

∑
(i,j)∈µ

q−µi+j−1/2t−λ
t
j+i−1/2

=
t−1/2 − t1/2

q1/2 − q−1/2

(
∞∑
i=1

qλit−i+1/2

∞∑
j=1

q−µj tj−1/2 −
∞∑
i=1

t−i+1/2

∞∑
j=1

tj−1/2

)
.

(3.35)

We take q → qk, t → tk, place the above expressions into {. . .} and perform the

sums:

−
∞∑
k=1

Qk

k

pk

1− pk
{. . .} . (3.36)
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The denominator is again related to the norm of the states. For example, the M-

string partition function in the presence of two M5-branes is precisely the partial

compactification of the resolved conifold blown up at two points. Its partition func-

tion turns out to be expressed in terms of the elliptic version of our coherent states

in the same form:

Z =
∑
λ

〈∅; z|λ;w〉〈∅; z|λ;w〉〈∅; z|λ;w〉〈λ;w|∅; z〉〈λ;w|∅; z〉〈λ;w|∅; z〉
〈λ;w|λ;w〉〈λ;w|λ;w〉〈λ;w|λ;w〉

Q
|λ|
f (3.37)

where Qm ≡ vw/z. We conclude that the elliptic deformation corresponds to a partial

compactification of the web diagram. Note that the elliptic deformation implicitly

leave the instanton direction untouched, and affects the “perpendicular” direction to

it. We also ignore some irrelevant factors that do not depend on the representations.

4 Elliptic Deformation of Conformal Blocks

In this section we want to apply the elliptic deformation to the correspondence be-

tween the q-deformed conformal blocks and the instanton partition function, intro-

duced in [17] for A1 and subsequently generalized to Ar and DE-groups in [18, 19].

The deformation of the Wq,t algebras associated to simple Lie algebras are intro-

duced by [49], generalizing earlier works of [37, 38]. The Heisenberg algebra genera-

tors are coupled to each other using the associated Cartan matrix of the Lie algebra.

We will change the Heisenberg algebra in [18] to apply the elliptic deformation that

we are using. The screening charges S(i)(z) were defined in [18] as

S(i)(z) = : exp

(∑
k 6=0

α̃
(i)
n z−n

qn/2 − q−n/2

)
: (4.1)

where the Fourier modes are defined in terms of generators of r+1 commuting copies

of Heisenberg algebras:

α̃(i)
n =

1

n
(t−n/2 − tn/2)(v−nh(i)

n − h(i+1)
n ), (k > 0),

α̃
(i)
−n =

1

n
(q−n/2 − qn/2)(h

(i)
−n − vnh

(i+1)
−n ), (k > 0). (4.2)

The Heisenberg algebra generators h
(i)
n satisfy the following relations

[h(i)
n , h

(j)
m ] = nδn+m,0δ

i,j, for i, j = 1, . . . , r + 1 and n,m ∈ Z. (4.3)

Instead of the above Heisenberg generators h
(i)
n , we generalize the Eq.(3.6) to

[a(i)
n , a

(j)
m ] = n

1− q|n|

1− t|n|
δn+m,0δ

i,j. (4.4)
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The transformation between these sets of generators can be explicitly realized also

as

a(i)
n = h(i)

n , and a
(i)
−n =

1− qn

1− tn
h

(i)
−n, n > 0. (4.5)

This change is not only consistent with our notation but allows us to write the Fourier

modes of the screening charges more compact. The modes are given by

α(i)
n =

1− t|n|

|n|
(
q−|n|/2a(i)

n − t−|n|/2a(i+1)
n

)
, for k 6= 0. (4.6)

It is easy to see that they satisfy the same commutation relations as α̃
(i)
n

[α(i)
n , α

(j)
m ] = [α̃(i)

n , α̃
(j)
m ]

=
1

n
δn,m(t−n/2 − tn/2)(q−n/2 − qn/2)

{
(vn + v−n)δi,j − (δi+1,j + δi,j+1)

}
,

(4.7)

where the factor depending on the roots is easily seen to be the qt-deformation of

the Cartan matrix of Ar [49]. The screen charges with respect to our modes is,

S(i)(z) = : exp

(∑
k 6=0

α
(i)
n z−n

qn/2 − q−n/2

)
: . (4.8)

In addition to the screening charges, we need the primary vertex operator. The

vertex operator in [18] can be rewritten in terms of new modes as

Vα(z) = : exp

(∑
n 6=0

r+1∑
i=1

1

n

1

1− qn
qnαia(i)

n z
−k

)
: . (4.9)

This q-deformed vertex operator does not have a well defined conformal limit, q → 1.

However, this pathology can be cured by adding appropriate additional terms in the

exponent. It turns out these additional terms commute with the screening charges.

As long as we are concerned with the Dotsenko-Fateev integral and the two point

functions the above form should be sufficient4. Having defined the screening charges

and the primary vertex operators we can elliptically deform. The two point functions

which are relevant to compute the Dotsenko and Fateev integrals become

〈S(i)(y)S(i)(y
′)S(i)(y)S(i)(y
′)S(i)(y)S(i)(y
′)〉 =

Γ(ty′/y)Γ(qy′/y)

Γ(y′/y)Γ(qt−1y′/y)

〈S(i)(x)S(i+1)(y)S(i)(x)S(i+1)(y)S(i)(x)S(i+1)(y)〉 =
Γ(uy/x)

Γ(vy/x)
,

〈Vα(z)S(i)(x)Vα(z)S(i)(x)Vα(z)S(i)(x)〉 =
Γ(pv−1q1−αi+1z/x)

Γ(pq1−αiz/x)
, (4.10)

where we followed our notation indicating the elliptic deformation by boldfaces. Al-

though we have computed the two point function for the Ar, we will specialize only

to the rank one algebra.

4We would like to thank N. Haouzi for useful discussions.
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5 6d Instanton Partition Function and Elliptic Conformal

Blocks

In this section we will compute the instanton partition function of 6d gauge theories

with 8 supercharges. We will focus on a very particular class of theories that can be

engineered upon compactification of the non-compact toric Calabi-Yau threefolds.

The refined topological vertex can be used to compute their instanton partition

functions. Some details are outlined in the Appendix B of [50]. In general, F-

theory on an elliptically fibered Calabi-Yau threefold with a section gives rise to 6d

theories. For the 6d theory to be anomaly free a specific matter content is needed.

In this paper, the compactified 6d U(N) theory with Nf = 2N hypermultiplets are

considered which arise from a toric elliptically fibered Calabi-Yau threefold.

5.1 6d U(1) Theory with Nf = 2

The web diagram which gives this gauge theory is depicted in Fig. 8. The refined

topological vertex can be implemented to compute the instanton partition function.

In [50] this was calculated and the topological string partition function was expressed

in terms of Jacobi θ-functions. However, we write down the partition function in

terms of Nekrasov function to facilitate the truncation almost identically to the un-

elliptic case,

Figure 8: The web which gives six dimensional U(1) theory with Nf = 2.

Z =
∑
ν

(vQb)
|ν|
∞∏
k=1

Nν∅(Q
k−1
τ e/f−)N∅ν(vQ

k
τ f
−/e)N∅ν(vQ

k−1
τ f+/e)Nν∅(vQ

k
τ e/f

+)

×N−1
νν (v2Qk−1

τ )N−1
νν (Qk

τ ). (5.1)

Although this is the simplest example we will consider, it features the essential

ingredients for the more general case; hence, we want to be more explicit. At the point

when the Coulomb branch meets the Higgs branch, we impose again the following

condition relating the “Coulomb branch parameter” to the mass of the fundamental

hypermultiplet

e =
tn

v
f+. (5.2)
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First of all, note that this identification again puts a restriction to the length of the

Young diagrams we are summing over. The restriction is enforced by the Nekrasov

function N∅ν(vQ
k−1
τ f+/e) when k = 1. Using Eq.(2.38), we see that all the con-

tributions coming from the hypermultiplet in the fundamental representation cancel

against factors coming from splitting the Nekrasov functions of the vector multiplet,

and the partition function reduces to

Z =
∑
ν

(vQb)
|ν|
∞∏
k=1

n∏
i,j=1

ϕ(v2Qk−1
τ qνi−νj tj−i)

ϕ(v2Qk−1
τ qνi−νj tj−i+1)

ϕ(Qk
τ q

νi−νj tt
j−i

)

ϕ(Qk
τ q

νi−νj tj−i+1)

ϕ(v2Qk−1
τ tj−i+1)

ϕ(v2Qk−1
τ tj−i)

× ϕ(Qk
τ t

j−i+1)

ϕ(Qk
τ t

tj−i)

Nν∅(Q
k−1
τ tnf+/f−)N∅ν(v

2Qk
τ t
−nf−/f+)

Nν∅(v2Qk−1
τ tn)N∅ν(Qk

τ t
−n)

. (5.3)

After the analytical continuation performed in [18], it is easy to show that the quan-

tum dilogarithm functions combine into elliptic Γ-functions, matching the elliptic

Vandermonde determinant defined by the elliptically deformed screening charges.

Similarly, the potential can be shown to match the two point function between the

vertex operator and screening charge:

[V (y)]y=yν

[V (y)]y=y∅

=
n∏
i=1

Γ(q−νit−n+i)Γ(v2(f−/f+)t−n+i)

Γ(v2(f−/f+) q−νit−n+i)Γ(t−n+i)
,

with the same identifications as before about the insertions points and momenta.

We have also gotten rid of Qτ in the argument of gamma function by factoring out

an irrelevant factor for the instanton computation. Our result obviously reproduces

the q-deformed Liouville/5d connection in the limit Qτ → 0; since Γ(x) 7→ ϕ−1(x) in

this limit.

We want to emphasize an important point about the contours; one may ask

the question if the contours need to be deformed since we have replaced all quantum

dilogarithms with elliptic gamma functions. The integrand definitely has more poles!

We claim that the contours are unchanged, the same way that the contours remained

untouched when the q-deformation was introduced to the Liouville theory. Our

answer is motivated by the exact match of the elliptic conformal blocks to the 6d

instanton partition function. In addition, the meaning of q and p are very different

from the point of view of topological string theory and localization computations,

although the elliptic gamma functions are symmetric under their exchange. We just

lifted the theory one dimension up, but we are still performing the same localization

computation on the same Ω-background. There does not seem to be any reason why

these additional poles should be incorporated.

5.2 6d U(2) Theory with Nf = 4

In this section, we would like to demonstrate that the correspondence holds for 6d

U(2) theory with Nf = 4. The web diagrams of the 5d and its compactification

which gives the 6d theory are shown in Fig. 9.
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Figure 9: The web giving the six dimensional U(2) theory with Nf = 4.

The topological string partition function can again be expressed in terms of

Jacobi theta functions or infinite product of Nekrasov factors and is given by:

Z =
∑
ν1,ν2

(vQb1)
|ν1|(vQb2)

|ν2|
∞∏
k=1

N∅ν1(vQ
k
τ f
−
1 /e1)Nν1∅(vQ

k−1
τ e1/f

−
1 )N∅ν1(vQ

k−1
τ f−2 /e1)

×Nν1∅(vQ
k
τ e1/f

−
2 )N∅ν2(vQ

k
τ f
−
1 /e2)Nν2∅(vQ

k−1
τ e2/f

−
1 )Nν2∅(vQ

k−1
τ e2/f

−
2 )N∅ν2(vQ

k
τ f
−
2 /e2)

×Nν1∅(vQ
k
τ e1/f

+
2 )N∅ν1(vQ

k−1
τ f+

2 /e1)N∅ν1(vQ
k−1
τ f+

1 /e1)Nν1∅(vQ
k
τ e1/f

+
1 )N∅ν2(vQ

k−1
τ f+

2 /e2)

×Nν2∅(vQ
k
τ e2/f

+
2 )Nν2∅(vQ

k−1
τ e2/f

+
1 )N∅ν2(vQ

k
τ f

+
1 /e2)N−1

ν1ν1
(v2Qk−1

τ )N−1
ν1ν1

(Qk
τ )N

−1
ν2ν2

(v2Qk−1
τ )

×N−1
ν2ν2

(Qk
τ )N

−1
ν1ν2

(v2Qk
τ e1/e2)N−1

ν2ν1
(v2Qk−1

τ e2/e1)N−1
ν1ν2

(Qk
τ e1/e2)N−1

ν2ν1
(Qk−1

τ e2/e1)

(5.4)

The Coulomb branch parameters are tuned to be the same as the masses of half of

the multiplets up to integer multiple of ε1,

ei =
tni

v
f+
i , for i = 1, 2. (5.5)

It is almost identical to the previous case to show that the elliptic Vandermonde is

produced after truncation. The remaining factors can be grouped to give rise to the

potentials,

[V1(y)]y=yν1

[V1(y)]y=y∅

=

n1∏
i=1

Γ(q−νi,1t−n1+i)Γ((f+
2 /f

+
1 ) q−νi,1t−n1+i)

Γ(v2(f−1 /f
+
1 ) q−νi,1t−n1+i)Γ(v2(f−2 /f

+
1 ) q−νi,1t−n1+i)

×Γ(v2(f−1 /f
+
1 ) t−n1+i)Γ(v2(f−2 /f

+
1 ) t−n1+i)

Γ(t−n1+i)Γ((f+
2 /f

+
1 ) t−n1+i)

, (5.6)

and,

[V2(y)]y=yν2

[V2(y)]y=y∅

=

n2∏
i=1

Γ(q−ν2,it−n2+i)Γ((f+
1 /f

+
2 ) q−ν2,it−n2+i)

Γ(v2(f−1 /f
+
2 ) q−ν2,it−n2+i)Γ(v2(f−2 /f

+
2 ) q−ν2,it−n2+i)

×Γ(v2(f−1 /f
+
2 ) t−n2+i)Γ(v2(f−2 /f

+
2 ) t−n2+i)

Γ(t−n2+i)Γ((f+
1 /f

+
2 ) t−n2+i)

. (5.7)
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5.3 6d U(3) Theory with Nf = 6

In the same spirit as in [17], the Dotsenko-Fateev representation of the conformal

blocks for the 5 point function does not reproduce the instanton partition function

of the gauge theory according to the AGT conjecture, but instead its spectral/fiber-

base dual. Therefore, we need to compute the instanton partition function of the

U(3) theory with Nf = 6. The refined vertex computation can be generalized for

this case using curve counting arguments. The partition function becomes is given

by

Z =
∑

ν1,ν2,ν3

(vQb1)
|ν1|(vQb2)

|ν2|(vQb3)
|ν3|

∞∏
k=1

Nν1∅(vQ
k−1
τ e1/f

−
1 )N∅ν1(vQ

k
τ f
−
1 /e1)

×Nν2∅(vQ
k−1
τ e2/f

−
1 )N∅ν2(vQ

k
τ f
−
1 /e2)Nν3∅(vQ

k−1
τ e3/f

−
1 )N∅ν3(vQ

k
τ f
−
1 /e3)

×N∅ν1(vQk−1
τ f−2 /e1)Nν1∅(vQ

k
τ e1/f

−
2 )Nν2∅(vQ

k−1
τ e2/f

−
2 )N∅ν2(vQ

k
τ f
−
2 /e2)

×Nν3∅(vQ
k−1
τ e3/f

−
2 )N∅ν3(vQ

k
τ f
−
2 /e3)N∅ν1(vQ

k−1
τ f−3 /e1)Nν1∅(vQ

k
τ e1/f

−
3 )

×N∅ν2(vQk−1
τ f−3 /e2)Nν2∅(vQ

k
τ e2/f

−
3 )Nν3∅(vQ

k−1
τ e3/f

−
3 )N∅ν3(vQ

k
τ f
−
3 /e3)

×N∅ν1(vQk−1
τ f+

1 /e1)Nν1∅(vQ
k
τ e1/f

+
1 )N∅ν1(vQ

k−1
τ f+

2 /e1)Nν1∅(vQ
k
τ e1/f

+
2 )

×N∅ν1(vQk−1
τ f+

3 /e1)Nν1∅(vQ
k
τ e1/f

+
3 )Nν2∅(vQ

k−1
τ e2/f

+
1 )N∅ν2(vQ

k
τ f

+
1 /e2)

×N∅ν2(vQk−1
τ f+

2 /e2)Nν2∅(vQ
k
τ e2/f

+
2 )N∅ν2(vQ

k−1
τ f+

3 /e2)Nν2∅(vQ
k
τ e2/f

+
3 )

×Nν3∅(vQ
k−1
τ e3/f

+
1 )N∅ν3(vQ

k
τ f

+
1 /e3)Nν3∅(vQ

k−1
τ e3/f

+
2 )N∅ν3(vQ

k
τ f

+
2 /e3)

×N∅ν3(vQk−1
τ f+

3 /e3)Nν3∅(vQ
k
τ e3/f

+
3 )N−1

ν2ν1
(v2Qk−1

τ e2/e1)N−1
ν1ν2

(v2Qk
τ e1/e2)

×N−1
ν3ν1

(v2Qk−1
τ e3/e1)N−1

ν1ν3
(v2Qk

τ e1/e3)N−1
ν3ν2

(v2Qk−1
τ e3/e2)N−1

ν2ν3
(v2Qk

τ e2/e3)

×N−1
ν1ν1

(v2Qk−1
τ )N−1

ν2ν2
(v2Qk−1

τ )N−1
ν3ν3

(v2Qk−1
τ )N−1

ν2ν1
(Qk−1

τ e2/e1)N−1
ν1ν2

(Qk
τ e1/e2)

×N−1
ν3ν1

(Qk−1
τ e3/e1)N−1

ν1ν3
(Qk

τ e1/e3)N−1
ν3ν2

(Qk−1
τ e3/e2)N−1

ν2ν3
(Qk

τ e2/e3)N−1
ν1ν1

(Qk
τ )

×N−1
ν2ν2

(Qk
τ )N

−1
ν3ν3

(Qk
τ ) (5.8)

After relatively tedious algebra we recognize that the elliptic Vandermonde is pro-

duced and the potentials take the generic form for M fundamental hypermultiplets[∏M
a=1 Va(y)

]
y=yνa[∏M

a=1 Va(y)
]
y=y∅

=
∏

1≤a,b≤M

na∏
i=1

Γ((f+
b /f

+
a )q−νa,it−na+i)Γ(v2(f−b /f

+
a )t−na+i)

Γ(v2(f−b /f
+
a ) q−νa,it−na+i)Γ((f+

b /f
+
a )t−na+i)

,

those generalizing to an arbitrary linear conformal block.

6 Discussion

In this paper we have established a connection between elliptic deformation of vertex

operators that appear in the calculation of topological string partition functions via
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the topological vertex and compactification of web diagrams corresponding to Calabi-

Yau threefolds. Using this connection we saw that the elliptic deformation of the

conformal blocks is related to the 6d gauge theories that arise from Calabi-Yau

threefolds dual to the compactified brane webs.

It will be interesting to study the worldsheet description of this elliptic deforma-

tion as we have only studied the ellipticization of the corresponding vertex operators.

Similarly it would be useful to study the toric geometry associated with compactified

Newton polygons. Some progress in this direction has been made [? ] and it would

useful to spell out the details for all webs which can be compactified.
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7 Appendix

In this appendix, we would like to collect some definitions, identities to fix our

conventions and some details of the computations. The instanton partition function

is computed by the refined topological vertex [43]; it can be expressed in terms of

Macdonald function and skew Schur fucntions:

Cλµ ν(t, q) = t−
‖µt‖2

2 q
‖µ‖2+‖ν‖2

2 Z̃ν(t, q)
∑
η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρ q−ν) sµ/η(t

−νt q−ρ) ,

(7.1)

where ρ = {−1
2
,−3

2
,−5

2
, . . .} is the Weyl vector for SU(∞), and sν(x1, x2, . . .) is the

Schur function labelled by a partition ν, and

Z̃ν(t, q) =
∏

(i,j)∈ν

(
1− qνi−j tνtj−i+1

)−1

, (7.2)

and is proportional to Macdonald functions at the special point xi = ti−1/2,

Pν(t
−ρ; q, t) = t

‖νt‖2
2 Z̃ν(t, q). (7.3)
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We have heavily relied on the following identities

n(λ) ≡
`(λ)∑
i=1

(i− 1)λi =
1

2

`(λ)∑
i=1

λti(λ
t
i − 1) =

∑
(i,j)∈λ

(λtj − i) =
‖λt‖2

2
− |λ|

2
, (7.4)

n(λt) ≡
`(λt)∑
i=1

(i− 1)λti =
1

2

`(λt)∑
i=1

λi(λi − 1) =
∑

(i,j)∈λ

(λi − j) =
‖λ‖2

2
− |λ|

2
, (7.5)

where ‖µ‖2 =
∑`(µ)

i=1 µ
2
i , `(µ) is denoting the length of Young diagram µ, in other

words the number of non-zero µi’s. Furthermore, we can define the hook length

h(i, j) and the content c(i, j) of a given box in a particular Young diagram

h(i, j) = µi − j + µtj − i+ 1, c(i, j) = j − i , (7.6)

which satisfy ∑
(i,j)∈µ

h(i, j) = n(µ) + n(µ) + |µ|, (7.7)

∑
(i,j)∈µ

c(i, j) = n(µt)− n(µ) =
1

2
‖µ‖2 − 1

2
‖µt‖2 ≡ 1

2
κ(µ). (7.8)

The following sum rules are essential for vertex computations [51]

∑
η

sη/λ(x)sη/µ(y) =
∞∏

i,j=1

(1− xiyj)−1
∑
τ

sµ/τ (x)sλ/τ (y) . (7.9)

∑
η

sηt/λ(x)sη/µ(y) =
∞∏

i,j=1

(1 + xiyj)
∑
τ

sµt/τ (x)sλt/τ t(y) . (7.10)

The instanton partition function is given by the normalized topological string par-

tition function. After cutting the toric geometry into the two so-called strip geome-

tries, we compute the open topological string amplitude with the boundary condition

labelled by Young diagrams. The instanton partition function is this open ampli-

tude divided by the closed amplitude. The following identity is essential to get the

instanton partition function:

∞∏
i,j=1

1−Qqνi−jtµtj−i+1

1−Qq−jt−i+1
=
∏

(i,j)∈ν

(
1−Qqνi−jtµtj−i+1

) ∏
(i,j)∈µ

(
1−Qq−µi+j−1t−ν

t
j+i
)
,

(7.11)
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The (first) θ-function and the Dedekind η-function are defined by

θ1(τ ; z) = −i e
iπ τ
4 eiπz

∞∏
k=1

[
(1− e2π i kτ )(1− e2π i kτ e2πi z)(1− e2π i (k−1)τ e−2πi z)

]
= −i e

iπ τ
4 (eiπz − e−iπz)

∞∏
k=1

[
(1− e2π i kτ )(1− e2π i kτ e2πi z)(1− e2π i kτ e−2πi z)

]
η(τ) = e

iπτ
12

∏
k≥1

(
1− e2πi kτ

)
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