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Building blocks for generalized

heterotic/F-theory duality

Jonathan J. Heckman, Hai Lin and Shing-Tung Yau

In this note we propose a generalization of heterotic/F-theory dual-
ity. We introduce a set of non-compact building blocks which we
glue together to reach compact examples of generalized duality
pairs. The F-theory building blocks consist of non-compact ellipti-
cally fibered Calabi-Yau fourfolds which also admit a K3 fibration.
The compact elliptic model obtained by gluing need not have a
globally defined K3 fibration. By replacing the K3 fiber of each
F-theory building block with a T 2, we reach building blocks in a
heterotic dual vacuum which includes a position dependent dilaton
and three-form flux. These building blocks are glued together to
reach a heterotic flux background. We argue that in these vacua,
the gauge fields of the heterotic string become localized, and remain
dynamical even when gravity decouples. This enables a heterotic
dual for the hyperflux GUT breaking mechanism which has recently
figured prominently in F-theory GUT models. We illustrate our
general proposal with some explicit examples.

1. Introduction

One of the remarkable insights from the discovery of string dualities is
that non-perturbative physics in one duality frame can sometimes have a
very simple and exact geometric description in another duality frame. In
the context of string compactification, this is the statement that two seem-
ingly very different compactifications may nevertheless specify identical low
energy effective field theories.

A notable example of this type is the six-dimensional duality between
heterotic strings on T 4 and type II strings on a K3 surface [1–5], and its
eight-dimensional lift to heterotic strings on T 2 and F-theory on an elliptic
K3 surface [6–9]. This duality can also be extended to lower dimensional
theories by fibering each side over a common base manifold.
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Of course, there are a broad class of F-theory and heterotic vacua which
do not have such a dual. Indeed, recently there has been renewed interest
in F-theory as a starting point for building Grand Unified Theories (GUTs)
[10–13] (for recent reviews see for example [14–18]). An important aspect of
these F-theory GUT models is that there is no dual heterotic Calabi-Yau
compactification [11, 13].

The reason for the absence of such a dual can be traced to the mech-
anism of breaking the higher dimensional GUT group SU(5)GUT down to
the Standard Model gauge group. In F-theory, GUT breaking can be real-
ized through a local to global topological condition because gauge theory
degrees of freedom are trapped on a seven-brane. This makes it possible
for an abelian flux valued in U(1)Y to topologically decouple from all bulk
axions [11, 13].

By contrast, in heterotic Calabi-Yau compactification, bulk axions and
10D gauge fields propagate over the same geometry, so no topological decou-
pling is available. Indeed, any such flux breaking generates a string scale
mass for the gauge boson [19] (see also [20–22]). Rather, in heterotic com-
pactification on a Calabi-Yau, GUT breaking is accomplished by a choice of
discrete Wilson line valued in the U(1)Y hypercharge subgroup of SU(5)GUT .
This puts specific restrictions on the choice of the Calabi-Yau via its funda-
mental group. Recent model building efforts in heterotic theory with abelian
fluxes have been considered for example in [23].

In spite of these distinctions, there is a striking formal similarity between
the gauge theory sectors of heterotic strings and local F-theory models
defined by gauge theory on a seven-brane. So, while there are potential
discrepancies at the level of the closed string/gravitational sector, there is a
close correspondence at the level of individual gauge group factors.

Motivated by these considerations, in this note we propose a generalized
version of heterotic/F-theory duality which covers a broader class of vacua.
The basic idea will be to consider F-theory on a collection of non-compact
elliptic Calabi-Yau fourfolds XL, Xmid, and XR, and to glue these back
together along Calabi-Yau divisors to produce a compact elliptic model,

(1.1) XF-th = XL ∪YL
Xmid ∪YR

XR.

Here, YL is a Calabi-Yau divisor common to XL and Xmid, and YR is a
Calabi-Yau divisor common to XR and Xmid. Each factor X(i) is a K3
fibration over a four-manifold S(i), so each threefold base is a P1 fibration
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over S(i). However, we only demand a section for the elliptic fibration, and
do not require a global K3 fibration for XF-th.

1

In the heterotic dual, we have building blocksML,Mmid, andMR, which
are to be glued together both at the level of the geometry,

(1.2) Mhet =ML ∪DL
Mmid ∪DR

MR,

as well as through the profile of the dilaton and three-form flux. The divisor
DL is common to ML and Mmid, and the divisor DR is common to MR and
Mmid. The non-compact factors M(i) are obtained by starting with the base
of an F-theory building block,

(1.3) F-th: P
1 → B(i) → S(i),

and replacing the P1 fiber with a T 2,

(1.4) Het: T 2 →M(i) → S(i).

See Figure 1 for a depiction of the F-theory and heterotic sides of the duality.
It is helpful to view these non-compact building blocks as coming from

compact geometries which by themselves would define inconsistent Minkowski
vacua. For example, on the F-theory side of the correspondence, we work
with a K3 fibration over S, where the total space is not Calabi-Yau. We
reach a non-compact Calabi-Yau by deleting a divisor from this fourfold.
On the heterotic side, we start with a compact threefold of positive cur-
vature with a position dependent dilaton and three-form flux switched on.
In both cases, we arrive at a ten-dimensional spacetime consistent with the
supergravity equations of motion by deleting an appropriate subspace.

An important feature of our proposal is that the F-theory side remains
purely geometric. On the heterotic side, we instead have a non-trivial profile
for the background fields, including the dilaton and three-form flux. Indeed,
in the absence of the analogue of Yau’s theorem for Calabi-Yau compactifi-
cation, it has proven necessary to construct on a case by case basis heterotic
flux backgrounds of the type proposed in [24]. For recent work on heterotic
flux compactifications, see for example [25–29].

1One might ask why we do not consider the comparatively simpler case of six-
dimensional heterotic and F-theory vacua. The reason is that if we have an F-
theory model with a complex twofold base which also has a P

1 fibration over a
real dimension two manifold, then this fibration also has a section. For example, if
the fibration is over P1 then we are dealing with F-theory with base a Hirzebruch
surface, which is a case covered by the standard duality.
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Figure 1: Depiction of the non-compact building blocks used to generate F-
theory/heterotic pairs. On the F-theory side, we have non-compact building
blocks each given by a K3 fibration over a four-manifold. On the heterotic
side, these K3 fibers are replaced by T 2 fibers. In the middle region Mmid

of the heterotic geometry, the string coupling becomes big, localizing the
gauge field degrees of freedom to the gluing regions between ML and Mmid,
and between MR and Mmid.

Our proposal uncovers a number of novel physical mechanisms in het-
erotic theory. First of all, because the volume of the P1 fiber on the F-theory
side is not constant, the profile of the heterotic dilaton will be position depen-
dent. From this we see that there will be geometrically separated regions of
weak coupling and strong coupling. This leads to pockets where the ten-
dimensional gauge fields effectively localize, which in turn points the way to
a hyperflux GUT group breaking mechanism for heterotic strings. The key
difference from standard Calabi-Yau compactification of the heterotic string
is the presence of a position dependent dilaton and three-form flux.

To illustrate the general contours of our proposal, we also present some
examples, focussing mainly on the case of F-theory with a threefold base P3.
The key feature of this example is that P3 is the twistor space for S4, that is,
we have a P1 fibration over S4. In spite of this, there is no standard heterotic
dual because the elliptic fibration does not extend to a global K3 fibration.
By taking a stable degeneration limit, however, we will arrive at two eight-
manifolds, each of which is given by a K3 fibration over S4. For each of these
building blocks, we get a heterotic dual, which we piece together to form
a new heterotic/F-theory pair. This F-theory model is consistent with the
hyperflux mechanism [11]. Applying our duality, we translate this mechanism
over to the heterotic side of the correspondence.

We believe that the arguments presented here provide strong evidence
for the existence of a new class of heterotic/F-theory dualities. However, we
leave more detailed checks of our proposal for future work.
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The organization of the rest of this paper is as follows. First, in Section 2
we briefly review some aspects of the standard duality. In Section 3 we turn
to the F-theory building blocks, and in Section 4 we determine their heterotic
duals. In Section 5, we show how to glue together these non-compact building
blocks to reach compact models with dynamical gravity. This also leads us
to a heterotic dual of the hyperflux mechanism of F-theory GUTs. After
this, in Section 6 we turn to some examples, and in Section 7 we present our
conclusions and directions for future investigation. Some additional details
on elliptic fourfolds with a P3 base are collected in an Appendix.

2. The standard duality

In preparation for our later analysis, in this section we briefly review the
standard heterotic/F-theory duality (see for example [6–8]). In particular, we
emphasize those aspects of the duality which we will later aim to generalize.
Recall that the standard duality involves heterotic strings compactified on
T 2, which is dual to F-theory compactified on an elliptically fibered K3
surface. We can extend this duality fiberwise to reach lower-dimensional
dualities for the geometries,

F-th: K3→ X → S,(2.1)

Het: T 2 →M → S,(2.2)

where S is taken to be a Kähler surface, and X and M respectively define
an elliptically fibered Calabi-Yau fourfold and threefold, each with a section.
The F-theory model is also given by an elliptic fibration,

F-th: T 2 → X → B,(2.3)

Base: P
1
f → B → S,(2.4)

where the base B is itself a P1
f fibration over S. The P

1
f fiber is also the base

for the elliptic K3 of line (2.1). In the standard duality, this P1
f fibration has

a section.
Now, an important feature of this duality is the repackaging of the vector

bundle degrees of freedom of the heterotic theory in purely geometric terms
in F-theory. This is simplest to arrange in the stable degeneration limit,
where we take the K3 fiber, and let it degenerate to a pair of del Pezzo nine
(dP9) surfaces. Each one of these dP9’s can carry an E8 singularity.

Since we will be generalizing the stable degeneration limit, let us now
explain in more detail how this works. To begin, we consider a del Pezzo nine
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surface. It is described by an elliptic fibration T 2 → dP9 → P1. The minimal
Weierstrass model for this is

(2.5) y2 = x3 + f4x+ g6,

where f4 and g6 are degree four and six homogeneous polynomials in the
homogeneous coordinates of the base P1. This geometry should be viewed
as “half of a K3”, since for a K3 surface we would take degrees 8 and 12 for
f and g, respectively.

Now, although dP9 is not Calabi-Yau, we can manufacture a non-compact
Calabi-Yau by deleting an appropriate subspace from this geometry. To see
how this works, recall that dP9 can also be viewed as a P2 blown up at nine
points. The anti-canonical class for dP9 is,

(2.6) −KdP9
= 3H − (E1 + · · ·+ E9),

where H is the hyperplane class of the P2, and Ei are the exceptional divi-
sors. This divisor class also defines an elliptic curve in the dP9 geometry.
The holomorphic two-form of dP9 has a pole along this elliptic curve. By
deleting it, we reach a non-compact Calabi-Yau.

We can now glue this non-compact Calabi-Yau with another copy to
produce a K3 surface. To do this, we take a limit for the Calabi-Yau metric
where the base P1 stretches out to a long cylinder. At one end of the cylinder,
we have our original dP9 with the elliptic curve subtracted. At the other end,
we take another copy of dP9 with an elliptic curve deleted. Gluing the two
pieces together, we get a new geometry. This is the stable degeneration limit
for the K3. In the dual heterotic string picture, this degeneration limit maps
to the strongly coupled regime of the heterotic string, that is, heterotic M-
theory with two E8 nine-branes.

This limit allows a number of precision checks of the duality. For exam-
ple, the geometric moduli of a dP9 factor maps to the vector bundle moduli
of a given E8 factor. Additionally, the leading order profile for the heterotic
dilaton is simply a constant, being set by the ratio of volumes for the fiber
P1
f to the base S in string units.
It is also interesting to consider perturbations away from this limit. For

example, a mild position dependence in the heterotic dilaton corresponds
to a position dependent profile for Vol(P1

f )/Vol(S), where S here denotes
the base in the standard duality. Additionally, we can see that at least at a
qualitative level, the three-form flux of the heterotic theory converts, by the
chain of dualities HetE8×E8

↔ HetSO(32) ↔ Type I ↔ F-th to a non-trivial
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profile in F-theory for the RR one-, three- and five-form fluxes, depending
on how many legs of the three-form flux are on the T 2 fiber.

In the cases of interest to us in this paper, we focus on Calabi-Yau
compactification of F-theory. This means we shall exclude the possibility
of a five-form flux on the F-theory side, and so on the heterotic side, the
B-field must have at least one leg along a T 2 fiber. Though we will give a
more concrete proposal for the presence of such fluxes later, it is instructive
to study how activating such modes shows up in the standard duality.

In eight dimensions, a B-field with two legs on the T 2 of the heterotic
theory corresponds to activating a specific complex modulus in the T 2 used
to glue the two dP9 factors together on the heterotic side,

(2.7) y2 = x3 + αx+ β,

for α and β constant. One combination corresponds to the complex struc-
ture of the T 2, and since we have two marked points on the base P1, the
other combination fixes the complexified Kähler modulus. Fibering this over
another geometry, we see that in general, α and β will pick up a position
dependent profile. On the heterotic side, we get a position dependent B-field,
which we interpret as a possibly non-trivial three-form flux.

3. F-theory building blocks

In this section we describe our procedure for building up more general
heterotic/F-theory pairs. To this end, here we show how to manufacture
non-compact elliptic Calabi-Yau fourfolds which also admit a K3 fibration.
Our plan will be to glue these non-compact building blocks together to get
compact elliptic Calabi-Yau fourfolds. Tracking each component through to
a heterotic dual, we shall then get a generalization of the standard duality.

3.1. Geometric gluing

In preparation for our later discussion, let us now review some aspects of
how to glue together manifolds along a subspace. To frame our discussion,
suppose we are given two complex varieties X(1) and X(2) of dimension n
which both contain some divisor Y . Then, we can form a new topological
space,

(3.1) X(1) ∪Y X(2),
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by first deleting Y from each region, and then identifying points in the
two deleted regions. Deleting such a divisor will also alter the metric near
the deleted locus. To illustrate, suppose X(1) is not Calabi-Yau, i.e. the
holomorphic n-form has some pole along a divisor Y . Then, we reach a
non-compact Calabi-Yau by deleting this region from X(1), that is, we get
a non-compact Calabi-Yau X(1)\Y . Moreover, the divisor Y is itself Calabi-
Yau, and the divisor class of Y is the anti-canonical class of X. By the
adjunction formula, the canonical class of Y is,

(3.2) KY = (KX + [Y ])|Y ,

so since KX = −[Y ], we see that Y is in fact Calabi-Yau.
More generally, deleting a divisor Y from a variety X alters the profile

of the metric on the non-compact space. This makes it possible to gen-
erate non-compact Calabi-Yau geometries from compact positive curvature
geometries [30–32]. Consider a compact manifold X with positive first Chern
class c1(X) > 0, and a divisor Y of the manifold X with its divisor class [Y ].
There is an exact sequence,

(3.3) Z · [Y ]→ Pic(X)→ Pic(X\Y )→ 0,

which means that for the inclusion map i : X\Y → X, the kernel of the
Picard group of X under the pull-back i∗, is the integer multiple of the
divisor class of Y .

In the cases of interest to us in this paper, the anti-canonical bundle
will be a multiple of some divisor Y , which is −KX = r[Y ] for r ≥ 1. In
the case r = 1, we have already argued that the non-compact space X\Y is
Calabi-Yau, and the divisor Y is also Ricci flat.

For r > 1, the adjunction formula implies c1(Y ) = (−KX − [Y ])|Y =
(r − 1)[Y ]|Y > 0, so the divisor Y has positive curvature for r > 1. Let
ξ = −KX − r[Y ] represent the first Chern class. If Y has a Kähler metric
with Kähler-form ωY , and Ricci-form Ric(ωY ), and

(3.4) Ric(ωY ) = (r − 1)ωY + ξ,

then there is a complete Kähler metric gξ on X\Y with Ricci curvature
form ξ. If, in addition, Y is Kähler-Einstein, then Ric(ωY ) = (r − 1)ωY > 0,
so it implies that ξ = 0, and the complement X\Y has a complete Ricci-flat
Kähler metric.
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3.2. Building blocks with K3 fibers

In this section we introduce the F-theory building blocks defined by a non-
compact elliptic Calabi-Yau which also admits a K3 fibration. Our plan will
be to glue these pieces together to reach a compact model.

Our starting point is X, a positive curvature Kähler fourfold with an
elliptic fibration with section which also admits a K3 fibration,

T 2 → X → B,(3.5)

K3→ X → S,(3.6)

where B is a complex threefold and S is a four-manifold. We assume that
the elliptic fibration has a section. However, we do not assume a section
for the K3 fibration. By construction, the base of the elliptic fibration is a
complex threefold with a P1 fibration,

(3.7) P
1
fiber → B → S.

An example of this type we return to later will be B = P3 and S = S4.
Since we have assumed X has positive curvature, the holomorphic four-

form will have a pole along some divisor Y ⊂ X. We reach a non-compact
Calabi-Yau geometry by deleting Y from the geometry. Following up on our
general discussion in Subsection 3.1, Y is a Calabi-Yau threefold.

Because we have assumed the existence of an elliptic fibration with sec-
tion, the divisor Y is an elliptically fibered Calabi-Yau threefold with section.
The base of the fibration is a divisor D contained in B,

(3.8) T 2 → Y → D.

We delete Y from X, and D from B to get non-compact geometries,

(3.9) XL = X\Y and BL = B\D.

Upon performing this excision, we reach a non-compact elliptically fibered
Calabi-Yau fourfold XL with base BL. So in other words, we get an F-theory
model on the non-compact background R3,1 ×XL.

Let us now study the low energy effective field theory defined by this
non-compact F-theory geometry. We have an elliptic fibration over a non-
compact base, with minimal Weierstrass model,

(3.10) y2 = x3 + fx+ g,
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where f and g are sections of K−4
BL

and K−6
BL
, respectively. The discriminant

locus is the zero set of:

(3.11) Δ = 4f3 + 27g2,

which is a section of K−12
BL

. We shall also refer to the discriminant locus as
Δ, and specific components of it by Δi.

Now in F-theory, we associate the components of the discriminant locus
with subspaces of B wrapped by seven-branes. For appropriate singularity
types on a component Δi, we get a seven-brane with a gauge group Gi.
In the low energy effective field theory in the uncompactified directions, the
value of the gauge coupling is (in Einstein frame) proportional to the volume
of Δi, that is,

(3.12)
1

g2(i)
∝ Vol(Δi).

These seven-branes are non-dynamical because in the non-compact geometry
the divisors Δi have infinite volume. Indeed, inside of the base B, the divisor
D and Δi intersect along a curve, and so upon deleting D, Δi becomes non-
compact.

To make the seven-branes dynamical, but remain in a non-compact
geometry, we can glue back in the deleted components of the discriminant
locus. In more detail, we now construct an asymptotic Calabi-Yau geome-
try which glues into Y . In the vicinity of the deleting locus, it is given by
the product Y × C∗. However, since we will need to glue this geometry to
another compact component, we shall allow a fibration of Y over C∗ away
from the gluing region. We view the cylinder C∗ as a P1

cyl with two marked
points deleted, so we can introduce the “middle geometry”,

(3.13) Y → Xmid → P
1
cyl.

At the south pole of the P1
cyl we will be gluing into the geometry XL. At the

north pole of the P1
cyl we will instead glue into a new geometryXR. TheXR is

a manifold similar to XL, and can also be constructed by XR = X\Y . Since
Y is itself an elliptic fibration over D, we see that Xmid also defines a consis-
tent F-theory model with threefold base Bmid given by fibering the divisor
D over this P1

cyl,

(3.14) D → Bmid → P
1
cyl.
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Up to this point, we have kept the choice of the above fibration arbitrary.
However, to set up a building block with a heterotic dual, we need to also
have a K3 fibration over a complex twofold base. One simple way to arrange
this is to further restrict Bmid to be a product manifold D × P1

cyl, in which
case Xmid is

(3.15) T 2 → Xmid → D × P
1
cyl.

We shall mainly focus on this case, since it holds more generally. Another
possibility is to assume that D is a Hirzebruch surface. In Section 6 we shall
also consider the case of the non-trivial fibration D → Bmid → P1, where we
relate the degree(s) of the fibration to background instanton numbers for
the E8 factors of the heterotic dual.

Having introduced two elliptic Calabi-Yau fourfolds which share a com-
mon region Y , we can glue these back together along Y to produce another
non-compact Calabi-Yau

(3.16) XL,mid ≡ XL ∪Y Xmid.

In the base of each elliptic fibration, we are gluing along a common divisor
D,

(3.17) BL,mid ≡ BL ∪D Bmid.

Introducing the dualizing sheaf KL,mid for BL,mid, we see that the minimal
Weierstrass model extends as well, with f , g and the discriminant, sections
of K−4

L,mid and K−6
L,mid, and K−12

L,mid, respectively.
Now, the whole point of introducing the extra gluing by Xmid was to

ensure that our seven-branes from the XL model would now be compact.
To see that this has happened, observe that each component Δi of the
discriminant locus for X intersects D along a curve Σi ⊂ D. So, we see that
in Bmid, these pieces have been added back in: Inside of Bmid, these seven-
branes sit at a point of P1

cyl, and wrap the curve Σi ⊂ D. Note that gravity
is still decoupled because BL,mid is non-compact and has infinite volume.

So far, we have focussed on the geometry of the elliptic fibration. We
can also see how this gluing works when we view X as a K3 fibration over
S. There is a subtlety here, because we are not assuming the existence of a
section for the K3 fibration. This means S need not exist as a submanifold
in either B or X. However, we can still consider the image of D under the
pushforward π : B → S. This image defines a real two-dimensional subspace
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P ⊂ S. Deleting D from B then means we must delete P from S, so the
geometry XL = X\Y is also a K3 fibration over the four-manifold,

(3.18) SL = S\P.

After deleting P from S, the P1
fiber fibration over SL has a section. With

respect to the Calabi-Yau metric on XL,mid we also see that the volume of
SL is finite.

Finally, although the elliptic fibration naturally extends out to Xmid,
there is no extension as a K3 fibration. Indeed, inside the left region, the
curve P1

fiber only intersects D at a finite number of points. This means that in
the glued together geometry, the base P1

fiber of the K3 fiber in the left region
has collapsed to zero size precisely along P , where we instead glue into a new
geometry. Introducing the smoothed out Calabi-Yau fourfold after gluing,
the volume of the fiber P1

fiber of the left region degenerates exponentially as
we move into the interior of the middle region. Indeed, the whole point of
our construction is that the seven-branes on XL remain localized, even after
gluing in Xmid.

4. Heterotic building blocks

In this section we convert our F-theory building blocks to heterotic duals.
In the heterotic description, the gluing will be both geometric, and will also
involve a position dependent profile for the dilaton and three-form flux.

4.1. Geometric components

First, we determine the geometries for each of the heterotic regions dual
to Xmid and XL, which we refer to as Mmid and ML. Deep in the middle
region, we have a standard Calabi-Yau compactification of the heterotic
string. However, in the regionML, we find that the heterotic string is defined
over a torsional flux background.

Consider first the heterotic dual to the F-theory geometry Xmid. Recall
that a simple way to arrange a K3 fibration in the middle geometry is by
restricting Bmid to be a product manifold D × P1

cyl. In this case the middle
geometry is given by a holomorphic K3 fibration over a base D

(4.1) K3→ Xmid → D.
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So, applying the standard rules of heterotic/F-theory duality, we conclude
that there is a dual heterotic compactification on a Calabi-Yau threefold

(4.2) T 2 →Mmid → D,

where the moduli of the F-theory K3 fiber translate to moduli of an E8 × E8

vector bundle. In fact, we know that this geometry Mmid is nothing other
than the Calabi-Yau divisor Y , which is also an elliptic fibration over D,

(4.3) Mmid 	 Y .

We can also see that in the simplest case where Bmid = D × P1
cyl, we can,

much as in [7, 8], extract the value of the heterotic dilaton in the middle
region,

(4.4) exp(−2φmid) =
Vol(D)

Vol(P1
cyl)

.

Consider next the region ML dual to F-theory on XL. Again, since we
have a K3-fibration, we can replace the K3 by a T 2 fiber. In this case,
however, there is no guarantee that the fibration admits a section. The
appropriate heterotic dual geometry is a T 2 fibration over the base SL,

(4.5) T 2 →ML → SL,

that is, we exchange the K3 fibration over SL for a T 2 fibration.
In fact, there is a canonical way to define this fibration, starting from

the characterization of B as a P1
fiber fibration over S. We seek a divisor

Γ ⊂ B which intersects this P1
fiber precisely four times. Assuming this has

been arranged, we can consider the branched cover over these four points,
producing the corresponding T 2. This defines a double cover B̂ → B. Since
Mmid andML are glued along a common divisor D, we see that the manifold
ML is also obtained by deleting D from B̂.

Having given a characterization of the geometry ML, we can now see
that a number of modes in the heterotic dual description are automatically
switched on. To begin, consider the profile of the dilaton. As we remarked
near Equation (3.18), the volume of P1

fiber degenerates along the subspace
P of S. We also know that in the standard duality, the ratio of the fiber to
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base volumes controls the value of the heterotic dilaton,

(4.6) exp(−2φL) =
Vol(SL)

Vol(P1
fiber)

,

where here, Vol(SL) refers to the volume of SL, viewed as a submanifold of
BL, where P

1
fiber appears as the base in theK3. Since we have already argued

that Vol(SL) remains finite, while Vol(P
1
fiber) collapses to zero at the gluing

along P , we see that the dilaton exp(2φhet) approaches zero near the gluing
regions. As we move away from the locus P , the volume of Vol(P1

fiber) will
also change. This means that the heterotic dual has a position dependent
dilaton.

Since the dilaton is not constant, we are not dealing with a standard
Calabi-Yau compactification of the heterotic string. Rather, we have a more
general solution to the heterotic equations of motion where backgrounds
fluxes are switched on. For example, variation of the dilatino shows that a
gradient in the dilaton correlates with the presence of a non-zero three-form
flux.

Let us now discuss such heterotic flux vacua. For now, we work to leading
order in α′ and neglect non-perturbative corrections. Since we still have
four-dimensional N = 1 supersymmetry in flat space, we can already assert
that ML must be a six-dimensional complex manifold with SU(3) holonomy
with respect to some torsional connection. This means we can introduce a
hermitian (1, 1) form J , and a holomorphic (3, 0) form Ω. Solutions to the
ten-dimensional supergravity equations of motion satisfy (see for example
[24–26]):

d(‖Ω‖J J ∧ J) = 0 where Ω ∧ Ω = −i4
3
‖Ω‖2J J ∧ J ∧ J.(4.7)

F (2,0) = F (0,2) = 0 and FmnJ
mn = 0.(4.8)

2i∂∂J =
α′

4
[tr(R ∧R)− tr (F ∧ F )] .(4.9)

The last equation is the heterotic anomaly cancelation condition, which can
be deferred for a non-compact model by introducing a background source
“at infinity”. Here, the curvature R is defined with respect to the hermitian
form J , so that tr(R ∧R) is a (2, 2) form. In terms of the physical fields, we
have the relations

(4.10) gmn = JmrI
r
n, H = i(∂ − ∂)J , e−2φhet = ‖Ω‖J ,
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where Irn is the complex structure specified by Ω, and g and H are respec-
tively the metric and three-form flux.

One interesting feature of such flux vacua is that in compact models,
some moduli are automatically frozen out. For example, if we find a solution
for some choice of heterotic dilaton φ∗, in general we cannot simply shift the
value of the dilaton by a constant. The reason is that the dilaton is fixed by
the value of ‖Ω‖J , and this is in turn fixed by the constraint H = i(∂ − ∂)J .

This is all to the good because on the F-theory side, this modulus is also
frozen out: It is given by the ratio of the volume for the P1

fiber to the volume
of the four-dimensional base SL. In the non-compact setting, this ratio is
tunable, but once we glue into the full geometry, the absence of a section for
the P1

fiber fibration in the full geometry means this ratio is no longer tunable.

4.2. Heterotic gluing

We now explain how to glue our heterotic building blocks together to pro-
duce a new heterotic dual. In a certain sense this must be possible because
we have already identified a geometric prescription in F-theory.

At the level of the heterotic geometry, we are gluing along the divisor D
deleted from ML and Mmid. So, we form a new geometry via,

(4.11) ML,mid ≡ML ∪D Mmid.

The central point is that we can again smooth out the metric over the gluing
locus. In addition, we also need to match the profile of the heterotic fields
across the two regions.

Let us now turn to the profile of the supergravity fields. We work in the
step function approximation, i.e. prior to smoothing out the profile of the
fields across the two regions. The main observation is that because the dual
F-theory geometry can be consistently smoothed out, similar considerations
apply on the heterotic side. Though a full analysis is beyond the scope of
the present work, it is useful to identify some qualitative aspects of how this
match must work.

First of all, in the vicinity of the divisor D, we expect the leading order
description of the heterotic flux vacuum to be captured by the Strominger
system. The reason is that in the non-compact geometry, we can indeed
tune exp(2φhet) to be arbitrarily small. However, this approximation may
in principle receive higher order α′ and non-perturbative corrections as we
move deep into the interior of ML.
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To illustrate how the fields look near the vicinity of D, consider the local
geometries for D inside of Mmid, as well as inside of ML. This is given by
the normal bundles,

Nmid →M loc
mid → D,(4.12)

NL →M loc
L → D.(4.13)

We denote by zmid the normal coordinate for Nmid and zL the normal coordi-
nate for NL so that D is located at zL = zmid = 0. A solution to the heterotic
equations of motion requires matching the profiles of the fields across the
two regions. For example, in the middle regionMmid, there is now a localized
source at zmid = 0, so that the profile of the string coupling and three-form
flux is,

1

g2het
=

1

g2mid

+ fL,(4.14)

Hhet = Hmid + hL,(4.15)

where g2het = exp(2φhet) sets the strength of the string coupling, and fL and
hL vanish as |zmid| moves away from the origin. These contributions are
associated with the correction terms from the ML region. Here, the entries
φmid and Hmid denote the values of the fields in the middle region prior
to gluing. Since the middle region is Calabi-Yau, we have that g2mid is a
constant and Hmid is zero. So in other words, the contribution from the ML

region is localized in Mmid near the locus zmid = 0. As we move to larger
values of zmid, the profile of the dilaton will approach a constant value. In
the compact geometry, this normal direction corresponds to moving further
away from the marked point of the elliptic fiber where we performed the
gluing.

Turning next to the region ML, we can again study the profile of the
dilaton and three-form flux. From our previous analysis, we know thatML is
not Calabi-Yau, so there must be fluxes switched on. To track their behavior
near D, we introduce a normal coordinate zL, and decompose the Hermitian
(1, 1)-form J as,

(4.16) J = a⊥J⊥ + a‖J‖,

where J‖ are the components of the (1, 1) form along D, and J⊥ ∼ i
2dzL ∧

dzL is the contribution normal to D. The a’s are position dependent contri-
butions. We also know from the F-theory description that the profile of the
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dilaton is, to leading order, dependent on only zL, the normal coordinates.
So to leading order these coefficients only depend on zL.

Via the equations of the Strominger system, we see that the dilaton is
related to these coefficients as

(4.17) exp(2φL) ∼ a2‖,

where there will be subleading contributions in the local geometry. The a‖
has dependence on the normal coordinates zL. Turning next to the profile
of the three-form flux, we can now see that the three-form flux equation of
motion, H = i(∂ − ∂)J reduces to,

(4.18) H ∼ i(∂ − ∂)a‖ ∧ J‖.

This has the general form of a flux which is concentrated near the divisor D,
and which spreads out in the direction normal to D. As we move to larger
values of zL, this approximation breaks down, and we can see that most of
the ML region becomes a flux background with order one string coupling.

4.3. Heterotic localization

As we have already seen in the F-theory geometry, the seven-branes ofXL,mid

are localized, and can remain dynamical even when gravity is decoupled.
For the proposed duality to hold, a similar localization must happen in the
heterotic configuration. Now, in contrast to F-theory, in heterotic theory the
perturbative gauge degrees of freedom come from a ten-dimensional gauge
field, so no localization would at first appear to be possible.2 However, this
implicitly assumes that the background value of the dilaton is constant, an
assumption we are violating in our proposed duality. This behavior of the
dilaton points to a localization mechanism for the heterotic string.

To illustrate the main point, let us consider a simplified situation where
we take an abelian D-dimensional gauge theory, but with a position depen-
dent gauge coupling,

(4.19) Skin = −
∫

1

4g2(x)
F ∧ ∗F.

2Localization of gauge theory degrees of freedom can also occur for heterotic
strings compactified on a geometry with an orbifold singularity. We emphasize that
the mechanism we discuss in this section is not of this type.
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In physical terms, we see that if we hold fixed the background gauge coupling
g(x), the fluctuations of the gauge field can become trapped on a subspace
via the dielectric effect proposed in [33–36]. Indeed, the equations of motion
reduce to

(4.20) d

(
1

g2(x)
∗ F

)
= 0.

One can further decompose the legs of the gauge field into directions along
which the gradient of the gauge coupling vanishes, and transverse directions
along which the gradient of the gauge coupling does not vanish. The trans-
verse fluctuations of the gauge field are subject to a second order differential
equation, which in appropriate circumstances has an isolated massless mode
[35]. One crude way to see this effect is to introduce a small infrared mass
term for the gauge field. Canonically normalizing the kinetic energy, we see
that the position dependent mass becomes big when the gauge coupling g(x)
is big. So in other words, the gauge field is trapped in the regions of smaller
gauge coupling.

We now see that a position dependent string coupling in heterotic theory
should also lead to localization of the gauge fields, as predicted by the F-
theory geometry. The regions of smaller coupling are those places where a
gauge field becomes trapped. From this perspective, there could in principle
be many ways that the ten-dimensional gauge fields could become localized
on various subspaces.

Returning to the specific example encountered in our gluing construc-
tion, recall that in the region Mmid, the heterotic string coupling is position
dependent, and given by,

(4.21)
1

g2het
=

1

g2mid

+ fL.

In the regime where we take gmid very large, we see that the heterotic gauge
field has become localized near the gluing region, with falloff in the region
Mmid set by the profile of fL. In the more general situation where gmid is
not arbitrarily large, we can see that the heterotic gauge fields will still be
localized, but that the characteristic size will be set by a combination of
gmid and fL.

Let us now turn to some preliminary aspects of how to go about finding
vector bundle solutions in these flux backgrounds. Our aim here is to simply
sketch the main aspects, we leave explicit examples to future work. To set
up the correspondence, we recall that when the elliptic fibration of the het-
erotic geometry has a section, one can utilize the Fourier-Mukai transform
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to convert a vector bundle on the T 2 fiber to a vector bundle on ML. Of
course, the whole point of our construction is that in the compact geometry,
before deleting the divisor to reach ML, the elliptic fibration need not have
a holomorphic section. Nevertheless, once we have deleted the subspace P
from the base S to reach SL, as is necessary for the gluing construction any-
way, we do have a section, but at the expense of dealing with a non-compact
geometry. At a formal level, we can then relate this to the known results on
the construction of intersecting seven-branes with flux and their heterotic
duals. This follows the same procedure spelled out in eight dimensions in
[37, 38], and its extension to four-dimensional vacua (see for example [39–
43]). The main subtlety is that in contrast to the standard duality, SL is
non-compact, so the topology of the bundle is not really fixed until we glue
back in ML to the geometry Mmid. Indeed, we know that to get a dynamical
gauge group, we need to glue into the ambient geometries Xmid and Mmid,
respectively.

5. Recoupling to gravity

Our discussion so far has focussed on the building blocks necessary to realize
a non-compact version of heterotic/F-theory duality. Ultimately, we need
to recouple to gravity. This is accomplished by compactifying the middle
region, both in the F-theory geometry, as well as in the heterotic dual. In
the F-theory geometry this requires the appearance of at least three building
blocks,XL,Xmid andXR which we glue together to form a compact F-theory
geometry,

(5.1) XF-th = XL ∪YL
Xmid ∪YR

XR.

In a compact model, there will be some induced D3-brane charge. In the
dual F-theory description, this is satisfied by the tadpole constraint [44]

(5.2)
χ(XF-th)

24
= ND3 +

1

2

∫
XF-th

G4 ∧G4,

where G4 is the four-form flux in the dual M-theory description and ND3 is
the number of D3-branes.

In the dual heterotic description, the compact geometry is given by glu-
ing together our non-compact dual building blocks

(5.3) Mhet =ML ∪DL
Mmid ∪DR

MR.
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Additionally, we need to piece together the profiles of the dilaton and three-
form flux. These modes have a non-trivial position dependence in ML and
MR, and asymptote to constant values deep in the region Mmid. See Fig-
ure 2 for a depiction of the dilaton position dependence. In the heterotic
theory, the analogue of the tadpole constraint of line (5.2) involves activat-
ing background gauge field fluxes as well as NS5-branes wrapped on effective
divisors.

ML Mmid MR

mid, Lz Rz 

φ het( exp  2 ) 

mid, Rz Lz 

Figure 2: Illustration of the heterotic dilaton profile in the different regions.
In the middle region Mmid of the heterotic geometry, the string coupling
becomes large, localizing the gauge field degrees of freedom in the gluing
regions between ML and Mmid, and between MR and Mmid.

Note that there is still just a single ten-dimensional vector bundle V =
E8 × E8 but that fluctuations become trapped in different regions. As a
consequence, the effective number of independent ten-dimensional vector
bundles increases. For example, if we assume that Mmid is a region of strong
coupling, whereas ML and MR are perturbatively realized, we see that the
number of independent vector bundles will effectively double. This is in
accord with the behavior in the dual F-theory geometry, where there are
roughly speaking two independent K3 fibrations which get glued together
via Xmid.

Localization of the gauge theory degrees of freedom points to a number
of potential applications for model building. In the context of local F-theory
model building, breaking the GUT group involves activating a hypercharge
flux. This is possible in F-theory because the gauge fields of a seven-brane
are localized, and so can remain decoupled from the bulk axions which would
otherwise give a mass to the gauge fields [11, 13]. This mechanism has no
analogue in heterotic Calabi-Yau compactification [11, 13, 19].

But since we have now seen how to localize heterotic gauge fields, we
should expect a similar GUT breaking mechanism to hold in the heterotic
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string. Indeed, for the generalized duality to hold true, this must be pos-
sible. Thus, in addition to identifying a new physical mechanism for GUT
breaking, this will provide a useful check on our proposal.

Our plan in the following part of this section will be to elucidate how het-
erotic hyperflux works in the presence of localized gauge fields. To this end,
we shall first review some features of bulk axion couplings to gauge theory
degrees of freedom. Then, we review the hyperflux mechanism for F-theory
compactification, and then translate this to our heterotic construction.

5.1. Heterotic hyperflux

In this subsection we exhibit a heterotic dual to the hyperflux mechanism.
The main idea is to show that an abelian flux U(1)Y ⊂ SU(5)GUT can be
activated, but which also decouples from all bulk axions.

To frame our discussion, let us briefly review some aspects of the hyper-
flux mechanism in F-theory [11, 13] (see also [45]). We begin with F-theory
compactified on a threefold base B, and study the worldvolume theory of a
seven-brane with gauge group G wrapping R3,1 × S for some Kähler surface
S. In the eight-dimensional gauge theory, we have the terms,

(5.4)

S10D ⊃−M4
∗

∫
R3,1×S

Tr(F8D ∧ ∗8F8D)

+

∫
R3,1×S

i∗(C4) ∧ Tr(F8D ∧ F8D) +M6
∗

∫
R3,1×B

dC4 ∧ ∗10dC4,

where i∗(C4) is the pullback of the bulk four-form potential C4 onto R
3,1 × S,

F8D is the 8D field strength, and M∗ is a characteristic UV scale where the
large volume approximation breaks down.

Suppose now we expand this theory around a non-trivial internal gauge
field flux valued in some abelian subgroup U(1) ⊂ G. For ease of exposition,
we treat all gauge fields as abelian. We decompose the form content of the
eight-dimensional field strength as,

(5.5) F8D = F4D + FS ,

for some non-zero background value of FS . We also decompose the four-form
C4 into a basis of internal harmonic two-forms on B,

(5.6) C4 = rα ∧ bα,
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where bα is a two-form on B, and rα is a two-form on R3,1 dual to an axion.
Expanding around this background, we get the four-dimensional terms,

(5.7)

S4D ⊃− 1

4g2U(1)

∫
R3,1

F4D ∧ ∗4F4D

+

∫
R3,1

rα ∧ F4D

∫
S

i∗(bα) ∧ FS +M2
∗

∫
R3,1

drα ∧ ∗4drα.

The middle term is a coupling between an axion and a gauge field. When it
is non-zero, the abelian gauge field picks up a large mass of order M∗.

In F-theory GUTs, such couplings can be eliminated provided,

(5.8)

∫
S

i∗(bα) ∧ FS = 0,

for all harmonic two-forms bα on B. This can be arranged by a trivialization
condition of the divisor dual to FS inside of B. The embedding i : S → B
induces the pullback map for cohomology,

(5.9) i∗ : H2(B)→ H2(S).

So, a nontrivial relative cohomology allows us to generate a hyperflux which
decouples from all bulk axions.

Now, in heterotic strings, this GUT breaking mechanism would at first
appear to be absent. As explained in [19], for heterotic strings compactified
on a Calabi-Yau threefold, the hyperflux mechanism is unavailable. This is
because of the interaction terms in the ten-dimensional action,

(5.10) S10D ⊃ −M6
∗

∫
R3,1×M

1

g2
Tr(F10D ∧ ∗10F10D) +

∫
R3,1×M

|dΛ +A ∧ F |2 ,

where Λ is the two-form potential of the heterotic theory. Let us now expand
around a background value of the internal field strength FM . Decompose Λ
into a basis of harmonic two-forms λα on M ,

(5.11) Λ = cα ∧ λα,

with cα an axion of the four-dimensional theory. Then, upon expanding with
respect to an internal flux,

(5.12) F10D = F4D + FM ,
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the four-dimensional effective action contains the terms,

(5.13)

S4D ⊃− 1

4g2U(1)

∫
R3,1

F4D ∧ ∗4F4D

+

∫
R3,1

rα ∧ F4D

∫
M

∗6 λα ∧ FM +M2
∗

∫
R3,1

dcα ∧ ∗4dcα,

where rα is the two-form dual to the axion cα in four-dimensions. Again,
the middle term is responsible for the Stückelberg mechanism of the four-
dimensional effective theory. In the standard heterotic compactification on
a Calabi-Yau threefold, the harmonic two-forms λα and FM are both repre-
sentatives of elements in H2(M), so the hyperflux mechanism is unavailable.

With a position dependent dilaton, however, we can localize the profile
of the heterotic gauge fields. It is therefore worth revisiting whether the
hyperflux mechanism holds in heterotic models. In fact, localization is by
itself not enough to ensure that a given heterotic gauge bundle configuration
will decouple from the axions. The main idea will be to formally construct a
non-trivial vector bundle on the “standard” middle region Mmid, and then
show that in the full geometryMhet, it trivializes. In other words, we consider
the embedding

(5.14) i :Mmid →Mhet,

and seek a non-trivial kernel to the pushforward

(5.15) i∗ : H4(Mmid,Z)→ H4(Mhet,Z).

The localization of the ten-dimensional gauge fields near the gluing regions
DL and DR means that effectively, the GUT breaking flux is localized on
this lower-dimensional component of the geometry.

To construct examples of gauge field configurations which trivialize in
the full geometry, we can first construct a line bundle over Mmid which,
upon gluing, trivializes in the full geometry Mhet. Along these lines, recall
that Mmid is given by an elliptic fibration with section over a base D. We
shall assume that there are at least two effective divisors σ1, σ2 with homol-
ogy classes [σi] ∈ H2(D,Z) such that σ1 − σ2 is trivial inside of ML, but
is non-trivial inside of Mmid. This can happen because in Mmid there is a
section to the fibration, so σ1 and σ2 lift to two non-trivial divisors S1, S2

with homology classes [Si] ∈ H4(Mmid,Z). So, let us consider the line bun-
dle Lmid = OMmid

(S1 − S2). Under the embedding map, we can pushforward
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Lmid to a rank one sheaf on Mhet. Observe, however, that since [S1] = [S2]
in H4(Mhet,Z), that the topology of the line bundle is globally trivial, even
though there is a non-trivial flux localized along DL and DR. Indeed, upon
restriction of Lmid to D, we get the line bundle OD(σ1 − σ2).

As consequence of this topological mechanism, all couplings to bulk
axions automatically vanish. This includes model-dependent axions com-
ing from harmonic two-forms of Mhet, as well as the contribution from the
universal axion of a heterotic compactification. In our analysis, we have used
the gluing to the middle region as a means to track this possibility. Follow-
ing up on the discussion in Subsection 4.3, it would be quite interesting to
understand this purely from the perspective of vector bundles on ML.

Finally, note that any holomorphic vector bundle on Mmid which triv-
ializes in the full geometry will automatically define a consistent solution
to the Hermitian Yang-Mills equations. The reason is that the Hermitian
(1, 1) form Jmn is a bulk mode defined over the entire geometry Mhet. So,
there is automatically a representative flux which satisfies the condition
FmnJ

mn = 0.

6. Examples

In this section we give some examples of how our proposal works. First, we
treat the specific case of F-theory with base B = P3. Then, we present some
generalizations.

6.1. F-theory with P3 base

Let us consider the special case of F-theory on the base B = P3. We recall
that P3 is also the twistor space for S4 via the fibration,

(6.1) P
1
f → P

3 → S4.

At a given point of S4, we can parameterize the sphere of complex structures
for the tangent space as the coset space P1

f 	 SO(4)/U(2). An important
feature of this fibration is that it does not admit a global section and there-
fore is an excellent test case for our general considerations. The homology
ring for P3 is generated by the hyperplane class H, and the canonical class
for B is KB = −4H. The twistor fiber P1

f is a degree one curve in P3, with

class H2. The absence of a section for the fibration means that the S4 does
not exist as a four-manifold inside of P3. Our plan will be to establish a
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Figure 3: Depiction of a generalized stable degeneration limit for F-theory
with a P3 base. The discriminant locus of the model is specified by a degree
48 hypersurface in P3. In the stable degeneration limit, we split this into
two components XL and XR which are glued together across an asymptotic
cyclindrical region Xmid which is also Calabi-Yau. Each XL and XR carries
a component of the discriminant locus of degree 24.

stable degeneration for this geometry, as depicted in Figure 3, and then to
use these building blocks to establish a corresponding heterotic vacuum.

6.1.1. F-theory building blocks. Now, although the P1-fibration for P3

has no section, the elliptically fibered Calabi-Yau fourfold with P3 base does
have a section. The minimal Weierstrass model in this case is,

(6.2) XF-th =
{
y2 = x3 + f16x+ g24

}
,

where f16 and g24 are respectively sections of O(−4KB) and O (−6KB).
Since KP3 = −4H, we have that f and g are degree 16 and 24 homogeneous
polynomials in variables u1, . . . , u4 for P3. This example is rather special,
since it can be unfolded to just I1 fibers [46]. The Hodge diamond for this
fourfold is computed in Appendix A, and is (see also [46])

(6.3)

1 0 0 0 1
0 3, 878 0 2 0
0 0 15, 564 0 0
0 2 0 3, 878 0
1 0 0 0 1

,

where the lower lefthand corner is h0,0(XF-th), and the upper righthand
corner is h4,4(XF-th). The topological invariants of the Calabi-Yau and base
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include:

(6.4)

χ(XF-th)

24
= 972, c2(XF-th)c2(XF-th) = 8, 256,

χ(B) = 4, c1(B)
3 = 64, c1(B)c2(B) = 24.

The high degree of the coefficients f and g reflects the fact that there
is no globally defined K3 fibration for this F-theory model. So it cannot
have a standard heterotic dual Calabi-Yau compactification. Indeed, since
the discriminant locus is a degree 48 homogeneous polynomial, there are
roughly speaking two K3’s worth of gauge theory degrees of freedom.

However, since the base admits a P1 fibration (though one without a
holomorphic section), we expect some form of the duality to persist. To
construct the appropriate heterotic dual manifold, we now turn to the F-
theory building blocks. This will allow us to construct the corresponding
dual heterotic geometry.

As our first step, we need to take a stable degeneration limit of X so that
it splits into two pieces XL and XR which are glued together along a Calabi-
Yau threefold Y . In general, this variety is singular along Y . Our smoothing
consists of three building blocks, each of which admits a K3 fibration,

(6.5) X = XL ∪YL
Xmid ∪YR

XR.

So, let us begin by producing these building blocks by constructing an
elliptic fibration over B which does admit a K3 fibration. To do this, we
modify the degrees of f and g to get a geometry Xcpct

L , where the left

building block is XL = Xcpct
L \Y . The geometry Xcpct

L is defined by

(6.6) Xcpct
L =

{
y2 = x3 + f8x+ g12

}
,

for f8 and g12 sections of OB(−2KB) and OB(−3KB). To verify that this
defines aK3 fibration, we consider the restriction of this model to the twistor
P1
f . Since the class of P

1
f is H ∩H, there is no change in the degree upon

restriction, and we get a K3 surface. In other words, Xcpct
L defines a K3

fibration over S4. In Appendix A we calculate some topological invariants
of this geometry. The Hodge diamond for Xcpct

L is

(6.7)

0 0 0 0 1
0 370 0 2 0
0 0 1, 702 0 0
0 2 0 370 0
1 0 0 0 0

,
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where the lower lefthand corner is h0,0(Xcpct
L ) as the upper righthand corner

is h4,4(Xcpct
L ). The Euler character of Xcpct

L is χ(Xcpct
L ) = 2, 448.

Following our general procedure, we need to delete a Calabi-Yau three-
fold Y from Xcpct

L to produce a non-compact Calabi-Yau fourfold XL =

Xcpct
L \Y . In the base B, we need to pick an appropriate effective divisor

D so that the restriction of the elliptic fibration to D defines an elliptic
Calabi-Yau threefold. To begin, let us recall that an elliptic fibration over D
will require f and g to restrict to sections of OD(−4KD) and OD(−6KD),
respectively. So in other words, we require

(6.8) OB(−2KB)|D = OD(−4KD).

On the other hand, we have, via the adjunction theorem,

(6.9) KD = (KB + [D])|D = (n− 4)H|D,

where we have set KB = −4H, and D = nH for some n > 0. So, we see that
the condition of Equation (6.8) can be satisfied provided we take n = 2. We
therefore conclude that the appropriate divisor is cut out by a degree two
homogeneous polynomial in P3, which generically defines a P1 × P1.

The corresponding elliptic threefold Y is then given in minimal Weier-
strass model by the presentation,

(6.10) Y =
{
y2 = x3 + f8,8x+ g12,12

}
,

where f8,8 denotes a polynomial of bidegree eight which is homogeneous in
the variables of each P1 factor of D = P1 × P1. The degree is fixed by the
condition that f8,8 be a section of −4KD = 8[σ1] + 8[σ2], where the [σi] are
the divisor classes of the two P1 factors. Similarly, g12,12 denotes a section
of −6KD = 12[σ1] + 12[σ2]. Note that each P1 factor defines the base of a
K3 fibration for Y .

Having introduced the left region XL, we can now construct the middle
region Xmid. Prior to gluing, this is given by a Calabi-Yau fourfold with base
D × P1, that is, we have F-theory on the threefold base P1 × P1 × P1. Each
pair of P1 factors of the base defines the base of a K3 fibration for Xmid.
The elliptic model in this case is

(6.11) Xmid =
{
y2 = x3 + f8,8,8x+ g12,12,12

}
,

in the obvious notation. The Euler character of Xmid is χ(Xmid) = 17, 568.
For additional details on this fourfold, see for example [46].
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In a similar way, we can construct XR and glue it to Xmid. The full
compact geometry is then

(6.12) XF-th = XL ∪YL
Xmid ∪YR

XR.

The discriminant loci of XL and XR are each of degree 24, that is, they each
give a K3’s worth of seven-branes. The discriminant locus of the middle
region Xmid is really the completion of the left and right regions, and so does
not contribute additional independent seven-brane gauge theory degrees of
freedom.

A special feature of this example is that we can also consider a more
general base threefold in the middle region given by fibering D over P1, that
is, by specifying a non-trivial P1

(1) × P1
(2) bundle over the base P

1. There are
then two integers we can specify, corresponding to the choice of Hirzebruch
surfaces P1

(1) → P1 and P1
(2) → P1, of respective degrees k1 and k2. To be

consistent with the existence of a crepant resolution of the elliptic model,
we need to take −12 ≤ ki ≤ 12. In the dual heterotic configuration, this
choice of ki will correspond to a choice of instanton number in an E8 factor:
In the left region ML we have instanton numbers (12− k1, 12− k2), while
in the right region MR we have instanton numbers (12 + k1, 12 + k2).

6.1.2. Heterotic building blocks. Now that we have stated the F-
theory building blocks, we turn to the heterotic dual geometry. Following
our proposal, we replace the P1

f twistor fiber by an elliptic curve. To begin,
let us consider ML, the dual for the building block XL. The non-compact
component ML is reached by deleting a divisor from a compact manifold
M cpct

L . To replace the P1
f fiber by an elliptic fiber Ef , we mark four points

on P1
f to define a double cover Ef � P1

f . We extend this to a double cover
of the threefold base B as follows. The four points for the branched cover
are fixed by intersecting the twistor fiber with a K3 divisor C with divisor
class [C] = 4H in the P3. We can therefore define a double cover,

(6.13) ω : B̂ → B

which is branched over this K3 surface. We propose to take M cpct
L = B̂.

Let us now describe the double cover B̂ in more detail. We construct
this by introducing a line bundle L = O(2H) on P3 so that our K3 surface
C is a zero section of L⊗2. Then, the canonical class of B̂ is given by,

(6.14) K
̂B = ω∗(KB ⊗ L),



Building blocks for generalized heterotic/F-theory duality 1491

so that the canonical classK
̂B = −2Ĥ, where the homology ring is generated

by Ĥ, the pullback of the hyperplane class, which satisfies the relation Ĥ3 =
2. For example, in the upstairs geometry, the divisor class for a K3 surface
is 2Ĥ, and the divisor class for a P1 × P1 is Ĥ. The pushforward map,

(6.15) ω∗ : H•(B̂,Z)→ H•(B,Z)

sends Ĥ �→ H.
Let us next describe some topological properties of B̂. The Euler char-

acter of the new threefold B̂ is fixed by the standard formula for a double
cover branched along C to be,

(6.16) χ(B̂) = 2χ(B)− χ(C) = −16,

that is, we have two-fold cover of B, and we have deleted C, and glued
it back in once. Additionally, the new threefold has non-vanishing Hodge
numbers,

hi,i(B̂) = 1 for i = 0, . . . , 3,(6.17)

h2,1(B̂) = h1,2(B̂) = 10.(6.18)

Finally, we can compute the Chern classes of B̂. The double cover for this
example can be described by a degree four hypersurface in the weighted pro-
jective space P4

[14,2]. Letting HW denote the hyperplane class of the ambient

weighted projective space, the divisor class of B̂ is [B̂] = 4HW . The Chern
class for B̂ follows from expanding to third order in the divisor class,

(6.19) c(B̂) =
(1 +HW )4(1 + 2HW )

(1 + 4HW )
= 1 + 2HW + 6H2

W − 8H3
W .

In the ambient space, we have H4
W = 1/2, so we can extract the numerical

invariants,

(6.20) c1(B̂)
3 = 16, c1(B̂)c2(B̂) = 24, c3(B̂) = −16.

Now, as it stands, ML only defines a part of the full heterotic geometry.
Taking our cue from the F-theory geometry, we need to glue this into a
geometry Mmid dual to Xmid. On the F-theory side of the correspondence,
the middle Calabi-Yau fourfold is given by a K3 fibration over D = P1 × P1.
So, the appropriate heterotic dual geometry in the middle is the elliptically
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fibered Calabi-Yau threefold,

(6.21) Mmid = Y =
{
y2 = x3 + f8,8x+ g12,12

}
.

The Hodge numbers and Euler character for this threefold are

(6.22) h1,1(Mmid) = 3, h2,1(Mmid) = 243, χ(Mmid) = −480.

Finally, the heterotic dual for XR is MR, that is constructed in the same
way asML. In the heterotic theory, these geometric building blocks are then
glued together to construct the full compact six-manifold,

(6.23) Mhet =ML ∪DL
Mmid ∪DR

MR.

To complete the analysis, we also need to specify the profile of the het-
erotic fields on the other side of the duality. Here, we must again take our
guidance from the F-theory geometry. First of all, deep in the middle region
Mmid, we have a standard compactification of heterotic strings on a Calabi-
Yau threefold. This means the heterotic dilaton can be taken to be a con-
stant, and there is no three-form flux switched on. A particularly interesting
feature of this specific heterotic dual is that the presence of more than one
K3 fibration in the F-theory geometry means we have various string/string
dualities in the heterotic theory.

Now, as we move closer to the gluing regions, the curvature of the metric
becomes more pronounced. Additionally, we can see that the profile of the
dilaton as well as the three-form flux also changes. Near the gluing locus DL,
we see in particular that the profile of the string coupling becomes weakly
coupled, while it can be bigger deep in the ML and Mmid regions. This
enforces the localization of the heterotic gauge fields near the gluing region,
which is simply the heterotic dual of the familiar localization of gauge theory
degrees of freedom in the F-theory geometry.

Finally, deep in the regions ML and MR, we can see that fluxes must
be switched on. The simplest way to see this is to observe that even after
deleting DL to reachML, we still have a non-compact positive curvature six-
manifold. Indeed, to reach a non-compact Calabi-Yau threefold, we would
have needed to delete a K3 surface. It is beyond the scope of the present
work to find an explicit solution to the metric and background fluxes in this
region, though we can see that the duality with F-theory clearly predicts
the existence of such a solution.

6.1.3. Hyperflux. One check of the duality we can already perform in-
volves the construction of a heterotic hyperflux. In the F-theory model,
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suppose we have a seven-brane wrapping a divisor P1 × P1 in P3. There is
a single generator H for the homology ring of P3 whereas there are two
generators σ1 and σ2 for P

1 × P1. Indeed, the two-cycle σ1 − σ2 trivializes
in P3. The seven-brane two-form flux Poincaré dual to this class gives a
configuration which decouples from the bulk axions.

We can now see how a similar mechanism operates in the heterotic dual
configuration. Let us return to our discussion in Subsection 5.1. There, we
showed how to build up a heterotic gauge field configuration which breaks
SU(5)GUT to the Standard Model gauge group by activating a flux in the
U(1)Y ⊂ SU(5)GUT subgroup. First, we construct a line bundle on Mmid

given by

(6.24) Lmid = OMmid
(S1 − S2),

where Si are the divisor classes coming from the two K3 fibers of the elliptic
fibration T 2 →Mmid→ P

1
(1) × P1

(2). Upon restriction to the base D = P1
(1) ×

P1
(2), the line bundle becomes

(6.25) Lmid|D = OD(σ1 − σ2),

where σi is the divisor class for one of the P
1
(i) factors. The important feature

is that this class σ1 − σ2 trivializes in Mhet.

6.2. Generalizations

In this subsection we briefly discuss some possible generalizations to other
geometries. As we have repeatedly emphasized, the main feature of our pro-
posed duality is that the F-theory threefold base needs to have a P1 fibration
over a four-manifold S. This fibration need not have a section, and indeed, to
realize the hyperflux mechanism, it seems necessary to require the absence
of a section.

One way to arrange examples of such six-manifolds is to take the twistor
space of a four-manifold. For example, the twistor space for S4 is P3, and
the twistor space for P2 is the flag manifold,

(6.26) Tw(P2) = F1,2,3 =
U(3)

U(1)× U(1)× U(1)
,
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which can also be presented as a bidegree one hypersurface in P2
(1) × P2

(2).

This shares many of the properties of the P3 base example, and after per-
forming a stable degeneration limit, provides another class of heterotic/F-
theory building blocks.

The compact four-manifolds which produce a Kähler twistor space are
conformal to either S4 or P2 [47]. For other compact four-manifolds, the
twistor space is not Kähler. For example, the twistor space for P1 × P1 is
complex, but not Kähler. Even so, we expect that our building block con-
struction would still apply. The reason is that to perform the gluing, we
need to delete a subspace from the twistor space. This deleting then allows
us to setup a globally defined non-compact Kähler threefold. So, the indi-
vidual building blocks for the F-theory geometry still involve non-compact
threefold bases glued along appropriate subspaces. On the heterotic side of
the construction, the duality will involve a branched double cover of the
non-compact twistor space. Here, some of the gluing data is also packaged
in terms of the profile of the heterotic fields. It would be quite interesting
to give explicit examples along these lines.

In six-dimensional F-theory vacua, another generalization is to consider
the Hirzebruch surfaces, that is, by taking a more general choice of P1 fibra-
tion over a base P1. In a similar spirit, one can consider the case of other
P1 fibrations over a base S. Just as in the Hirzebruch examples (see for
example [7–9]), we expect there to be non-trivial restrictions on the degree
to be compatible with the existence of a smooth resolution for the elliptic
fibration.

Much of our discussion has focussed on the simplest case of three building
blocks, for example XL, Xmid and XR in the F-theory geometry. It would
also be interesting to contemplate the case of more building blocks perhaps in
the spirit of [48]. There is a subtlety here, however, because the construction
of a complete metric allows us to cut out at most one disjoint divisor from
a positive curvature space such as Xcpct

L .
It would also be interesting to see whether there is a characterization of

the heterotic compactification as an information geometry. Indeed, following
up on the approach to string compactification proposed in [49], the existence
of our proposed duality means that a low energy four-dimensional observer
should not be able to distinguish the two spaces.
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7. Conclusions

In this note we have proposed a generalization of heterotic/F-theory duality.
On the F-theory side, the building blocks of the duality are non-compact
elliptically fibered Calabi-Yau fourfolds which also admit a K3 fibration.
These are glued together to form a compact elliptic Calabi-Yau fourfold
which need not have a global K3 fibration. On the heterotic side, the K3
fiber of each F-theory building block is replaced by a T 2 fiber. In the heterotic
description, the gluing also involves a non-trivial three-form flux and position
dependent dilaton. Using our proposal, we reach new compact examples of
heterotic/F-theory duality pairs. This leads to a localization of heterotic
gauge field degrees of freedom in various regions of the geometry, and also
provides a heterotic version of the hyperflux mechanism for breaking GUT
groups. In other words, we have used F-theory to argue for the existence
of a new class of heterotic flux vacua. In the remainder of this section we
discuss some additional avenues of investigation.

In this work we have mainly focussed on the general contours of our pro-
posal, emphasizing in particular the simple form of the geometric F-theory
building blocks. It would clearly be useful to confirm in purely heterotic
terms the exact form of the background fields necessary to solve the equa-
tions of motion. Along these lines, it would be important to verify that the
resulting low energy effective action defined by the heterotic compactifica-
tion indeed matches to the one defined by the F-theory model. In the case
of heterotic compactification on a model with a large radius limit, there is a
simple topological check which can be performed [50]. It would be interesting
to extend this analysis to the class of flux vacua considered here.

On the other hand, one might instead take the F-theory geometry as a
definition of what a generalized heterotic vacuum ought to be. From this
perspective, the relevant issue is to demonstrate existence of a solution and
its topology rather than a direct construction of all background fields.

Along these lines, one ingredient which would be very interesting to work
out in more detail concerns the construction of heterotic vector bundles on
branched covers of twistor space. Roughly speaking, our proposal points to
a generalization of the standard spectral cover construction which should
hold even when the elliptic fibration of the heterotic model does not possess
a holomorphic section. Another generalization concerns giving a heterotic
dual description of T-branes (see for example [51–54]) for such flux vacua.
Expanding on these details further would be most interesting.

Finally, though we used the F-theory dual to motivate the existence of a
heterotic hyperflux mechanism, it should be possible to realize examples of
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heterotic hyperflux even if there is no F-theory dual. Compared with stan-
dard Calabi-Yau compactification, the main ingredient we have identified is
a position dependent dilaton profile to trap the 10D gauge fields on regions
of the geometry, and the existence of vector bundles which are non-trivial
on components of a gluing construction, but which are globally trivial. This
points to a potentially vast generalization of heterotic model building.
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Appendix A. Elliptic fourfolds with a P
3 base

In this Appendix we collect some properties of elliptically fibered fourfolds
over a P3 base. We assume the fourfold embeds in a P2

[1,2,3] bundle over

P3. Let [z : y : x] denote the coordinates of the weighted projective space
P2
[1,2,3] and [u1 : u2 : u3 : u4] for P

3. The minimal Weierstrass model is of the
familiar form

(A.1) X =
{
y2 = x3 + f4N (u)xz

4 + g6N (u)z
6
}
,

where f4N and g6N are homogeneous polynomials of degrees 4N and 6N ,
respectively. To extract the intersection theory of the fourfold, we follow the
same methodology reviewed for example in [46, 55].

We view our fourfold as a hypersurface in the toric variety defined by the
gauged linear sigma model with variables ui, x, y, z and U(1)× U(1) charge
assignments

(A.2)

u1 u2 u3 u4 x y z

U(1)1 1 1 1 1 0 0 −N
U(1)2 0 0 0 0 2 3 1

.
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We ignore the orbifold singularities of the fiber since the hypersurface avoids
these points anyway. Let Di and Dz denote the divisor classes for ui = 0,
and z = 0, respectively. Introduce the divisor classes,

(A.3) Σ ≡ [D1] and F = [Dz] +N [D1].

The intersection numbers for the divisors satisfy

(A.4)
Σ5 = 0, Σ4F = 0, Σ3F 2 = 1/6,

Σ2F 3 = N/6, ΣF 4 = N2/6, F 5 = N3/6.

The fractional numbers are due to the orbifold singularity of the weighted
projective bundle.

Let us now turn to the intersection theory of the fourfold X, which
is a hypersurface in this ambient toric variety. The divisor class for the
hypersurface of line (A.1) is [X] = 6F , and the Chern classes for X are
obtained by applying the splitting theorem

(A.5) c(X) =
(1 + Σ)4(1 + 2F )(1 + 3F )(1 + F −NΣ)

(1 + 6F )
,

which we expand to fourth order in the divisor classes. Computing all inter-
section theoretic formulae in the ambient toric variety, we extract the inte-
grated Chern classes

c41 = 0, c21c2 = 12N(N − 4)2, c1c3 = 24N(3N − 2)(N − 4),(A.6)

c4 = 72N(6N2 − 4N + 1), c22 = 48N(3N2 − 2N + 3).(A.7)

Using these invariants, we can extract the values of the indices

(A.8) χq(X) =
∑
p

(−1)ph0,p(X,Ωq,0
X ), and χ(X) =

∑
i

(−1)ihi(X),

which in terms of the integrated Chern classes are

χ0 =
1

720

(−c4 + c1c3 + 3c22 + 4c21c2 − c41
)
,(A.9)

χ1 =
1

180

(−31c4 − 14c1c3 + 3c22 + 4c21c2 − c41
)
,(A.10)

χ2 =
1

120

(
79c4 − 19c1c3 + 3c22 + 4c21c2 − c41

)
.(A.11)
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The specific values for our example are,

(A.12) χq(X) =
∑
p

(−1)ph0,p(X,Ωq,0
X ), and χ(X) =

∑
i

(−1)ihi(X),

which in terms of the integrated Chern classes are

χ0 =
1

6
(N − 1)N(N + 1)−N(N − 2),(A.13)

χ1 = −232
3
(N − 1)N(N + 1) + 2N(36N − 49),(A.14)

χ2 = (277N2 − 142N + 27)N,(A.15)

χ = 72N(6N2 − 4N + 1).(A.16)

where we have also included the Euler character of the fourfold.
The cases of interest to us in this paper are N = 4 and N = 2. The

former case is a Calabi-Yau fourfold which we have referred to as XF-th.
The latter case is the building block Xcpct

L , which has positive curvature.
From our index formulae, we can extract the specific values of the numerical
invariants as well as the Hodge numbers for both cases.

For N = 4, we have

c1(XF-th)
4 = 0, c1(XF-th)

2c2(XF-th) = 0,

c1(XF-th)c3(XF-th) = 0,
(A.17)

c4(XF-th) = 23, 328, c2(XF-th)
2 = 8, 256,(A.18)

χ0(XF-th) = 2, χ1(XF-th) = −3, 880, χ2(XF-th) = 15, 564,(A.19)

and the Hodge numbers are

(A.20)

1 0 0 0 1
0 3, 878 0 2 0
0 0 15, 564 0 0
0 2 0 3, 878 0
1 0 0 0 1

,

where the lower lefthand corner is h0,0(XF-th), and the upper righthand
corner is h4,4(XF-th).
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For N = 2, we have

c1(X
cpct
L )4 = 0, c1(X

cpct
L )2c2(X

cpct
L ) = 96,

c1(X
cpct
L )c3(X

cpct
L ) = −384,(A.21)

c4(X
cpct
L ) = 2, 448, c2(X

cpct
L )2 = 1, 056,(A.22)

χ0(X
cpct
L ) = 1, χ1(X

cpct
L ) = −372, χ2(X

cpct
L ) = 1, 702,(A.23)

and the Hodge numbers are

(A.24)

0 0 0 0 1
0 370 0 2 0
0 0 1, 702 0 0
0 2 0 370 0
1 0 0 0 0

,

where the lower lefthand corner is h0,0(Xcpct
L ), and the upper righthand

corner is h4,4(Xcpct
L ).
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