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The operators with large scaling dimensions can be labeled by Young diagrams. Among
other bases, the operators using restricted Schur polynomials have been known to have
a large N but nonplanar limit under which they map to states of a system of harmonic
oscillators. We analyze the oscillator algebra acting on pairs of long rows or long columns
in the Young diagrams of the operators. The oscillator algebra can be reached by a Inonu–
Wigner contraction of the u(2) algebra inside of the u(p) algebra of p giant gravitons.
We present evidences that integrability in this case can persist at higher loops due to the
presence of the oscillator algebra which is expected to be robust under loop corrections
in the nonplanar large N limit.
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1. Introduction

The AdS/CFT duality provides insights for both gauge theory and gravity theory
[1–3]. There are interesting maps between the gauge side and the gravity side. For
example, the BMN operators [4] and spin chain operators [5, 6] are dual to string
states on the gravity side.

The large dimension operators can describe giant gravitons which are branes
on the gravity side [7–12]. The Schur polynomial operators [10] labeled by Young
diagrams are dual to the giant graviton states on the gravity side [10]. For instance,
long rows of the Young diagrams correspond to giant gravitons that grow in external
spacetime directions. Similarly, long columns of the Young diagrams correspond to
giant gravitons that grow in internal directions.
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It is interesting that the operators with large scaling dimensions can take the
form in the bases labeled by Young diagrams [10, 12–18]. These large dimension
operators can be mapped to both giant gravitons and bubbling geometries on the
gravity side [13, 19]. For example, a family of BPS operators can be labeled by
the representations of Brauer algebras [15, 18] and are connected to the bubbling
geometries [19]. The restricted Schur polynomial operators and the operators with
global symmetry basis or flavor basis can conveniently describe the giant graviton
states [14, 16, 17]. The Brauer basis, the restricted Schur basis, and the global
symmetry basis or flavor basis, can be transformed between each other.

The spectra of the operators describing giant graviton excitations have been
recently computed, for example [20–30]. In a large N but nonplanar limit, integra-
bility in the nonplanar regime was observed. There have been many evidences of it
at one- and two-loop in various sectors.

The operators can be diagonalized by harmonic oscillator states, for example
[20, 22, 23], and by double coset ansatz [24]. The set of operators map to a system
of harmonic oscillators. The harmonic oscillator dynamics can be interpreted as
resulting from strings stretching between pairs of giant gravitons.

The picture of strings stretching between pairs of giant gravitons is reminiscent
of the approach in the eigenvalue picture of [31], where the dynamics of background
geometries and their string excitations can be treated in an eigenvalue basis.

In this paper we analyze an oscillator algebra and its role in integrability in
the large N but nonplanar regime. We study the relation between the oscillator
algebra and higher loop dilatation operators. We find that in the nonplanar large
N limit the higher loop dilatation operators will not correct the diagonalization of
the operators if they satisfy the oscillator algebra.

The organization of this paper is as follows. After introducing the relevant bases
of the operators and their mixing in Sec. 2, we analyze in Sec. 3 the oscillator algebra
associated to the spectra of the operators, and their relation by Inonu–Wigner
contraction to an u(2) algebra inside of an u(p) algebra of the Young diagram
operators with p long rows or long columns. In Sec. 4, we discuss the influence of
the oscillator algebra on the action of the higher loop dilatation operators. We find
that the h-loop dilatation operators preserve the integrability in the large N but
nonplanar limit, if they satisfy the oscillator algebra. We discuss general number
of pairs of giant gravitons or long rows in Sec. 5, and discuss the effective spring
constants between them and the influence of the higher loop corrections on the
spectra. Finally we briefly conclude in Sec. 6.

2. Bases of Operators and Mixing of Operators

We will analyze restricted Schur polynomials built from the fields in N = 4 gauge
theory. It contains various interesting sectors, such as the su(2) sector and the
su(2 | 3) sector. It can also be viewed as a N = 1 gauge theory. It has several Higgs-
like scalar fields, and the matrix scalars can be organized into complex fields, for
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example:

Z = φ1 + iφ2, Y = φ3 + iφ4, X = φ5 + iφ6.

We will focus on restricted Schur polynomials built using nZ and mY fields and
will often refer to the Y fields as “impurities”. The size n + m is of order O(N).

These operators that we study have a large scaling dimension. The restricted
Schur polynomial in this case is, see for example [16],

χR,(r,s)αβ(Z⊗n, Y ⊗m)

=
1

n!m!

∑
σ∈Sn+m

Tr(PR→(r,s)αβΓR(σ))Zi1
iσ(1)

· · ·Zin

iσ(n)
Y

in+1
iσ(n+1)

· · ·Y in+m

iσ(n+m)
.

(1)

The label R is an irreducible representation of the symmetric group Sn+m in the
form of a Young diagram with n+m boxes. The labels r and s are Young diagrams
with n and m boxes respectively. The r is an irreducible representation of the
group Sn and the s is an irreducible representation of Sm. The group Sn+m has
a subgroup Sn × Sm whose irreducible representations are labeled by (r, s). An
irreducible representation R of Sn+m can subduce many different representations
(r, s) of Sn × Sm. The αβ are multiplicity labels of the irreducible representations
(r, s), which label different ways that (r, s) are subduced from R. The trace is
realized by including a projector PR→(r,s) = PR→(r,s)αβ and tracing over all of R,
that is, Tr(PR→(r,s)αβΓR(σ)). This projector is from the carrier space of R to the

carrier space of (r, s). We can also use a shorthand notation that

Zi1
iσ(1)

· · ·Zin

iσ(n)
Y

in+1
iσ(n+1)

· · ·Y in+m

iσ(n+m)
= Tr[σZ⊗nY ⊗m],

where σ is an element of Sn+m.

The normalization of the restricted Schur polynomial operator is, see for
example [16],

〈χR,(r,s)(Z, Y )χR,(r,s)(Z, Y )†〉 = fR
hooksR

hooksr hookss
,

where fR is the product of the factors in Young diagram R and hooksR is the
product of the hook lengths of Young diagram R. The normalized operators
OR,(r,s)(Z, Y ) can be obtained by:

OR,(r,s)αβ(Z, Y ) =

√
hooksr hookss

fR hooksR
χR,(r,s)αβ(Z, Y ). (2)

In terms of the normalized operators, the action of the dilatation operator is,
see for example [20, 21],

DOR,(r,s)αβ(Z, Y ) =
∑

T,(t,u)

NR,(r,s)αβ;T,(t,u)γδOT,(t,u)γδ(Z, Y ).
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For example at one loop,

NR,(r,s)αβ;T,(t,u)γδ = −g2
YM

∑
R′

cRR′dT nm

dR′dtdu(n + m)

√
fT hooksT hooksr hookss

fR hooksR hookst hooksu

×Tr
([

Γ(R)(m + 1, 1), PR→(r,s)αβ

]
IR′T ′

× [
Γ(T )(m + 1, 1), PT→(t,u)δγ

]
IT ′R′

)
. (3)

Here the cRR′ is the weight of the corner box removed from Young diagram R to
obtain Young diagram R′, and similarly T ′ is a Young diagram obtained from T

by removing a box. The du denotes the dimension of symmetric group irrep u. The
intertwiner operator IR1T1 is a map from the carrier space of irreducible represen-
tation R1 to the carrier space of irreducible representation T1. The IR1T1 is nonzero
if R1 and T1 are Young diagrams of the same shape. For the operators with p long
rows in the Young diagram R, we remove mi impurities from each ith-row to obtain
the Young diagram r, and we may denote {mi|i=1,...,p} as �m. The p = 2 case is
relatively the most elementary situation in the discussions here.

After performing the trace we have

DOR,(r,s)αβ = −g2
YM

∑
u,γδ

∑
1≤i<j≤p

M
(ij)
sαβ;uγδ∆ijOR,(r,u)γδ, (4)

where ∆ij acts only on the Young diagrams R, r. The M
(ij)
sαβ;uγδ is a mixing matrix

in the space of the Young diagrams of impurities. The action of the operator ∆ij

can be written as

∆ij = ∆+
ij + ∆0

ij + ∆−
ij . (5)

We denote the length of the ith-row of r by ri. The Young diagram r+
ij is obtained

by removing a box from row j and then adding it to row i. The Young diagram r−ij
is obtained by removing a box from row i and then adding it to row j. In terms of
these Young diagrams we have that:

∆0
ijOR,(r,s)αβ = −(2N + ri + rj)OR,(r,s)αβ ,

∆+
ijOR,(r,s)αβ =

√
(N + ri)(N + rj)O

R+
ij ,

(
r+

ij ,s
)
αβ

,

∆−
ijOR,(r,s)αβ =

√
(N + ri)(N + rj)O

R−
ij ,

(
r−

ij ,s
)
αβ

.

(6)

The ∆ij acts on R, r and on the Z’s. Note that the R and r change in the same way.
The ci = N + ri is the factor of the corner box in the ith-row, while cj = N + rj is
the factor of the corner box in the jth-row, and they are of order N . The number
of rows in the Young diagrams R, r is p, and the length of the p rows is long and of
order N . The Young diagram s of impurities has no more than p rows. The ∆ij acts
on each pair of rows (i, j). For these operators with a very large dimension of order
O(N), the nonplanar diagrams already contribute in the leading order, and the
spectra are obtained by summing over planar and nonplanar Feynman diagrams.
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These expressions are evaluated in a large N but nonplanar limit. The expres-
sions (6) are written in the case for the AdS giants. The expressions for the sphere
giants are similar. The weights are now ci = N − ri, cj = N − rj , corresponding
to the factors of the corner boxes on the ith- and jth-columns. In other words, we
replace N + ri by N − ri, and N + rj by N − rj in the above equations for the
actions of ∆0

ij , ∆
+
ij and ∆−

ij .
The construction of the restricted Schur polynomial operators in various sectors,

such as su(2), su(2 | 3), sl(2) and su(3) sectors, and their anomalous dimensions have
been considered in the recent work for example [20–30]. There are many other very
interesting works on giant graviton excitations from various different perspectives,
for example [33–35].

3. su(2) Algebra and Oscillator Algebra

The p number of giant graviton D3-branes is expected to have an u(p) symmetry.
The u(p) symmetry algebra, with p ≥ 2, contains the u(2) algebra as a subalgebra,
which in turn, contains the su(2) algebra as a subalgebra. The u(2) algebra is
the symmetry algebra acting on a pair of giant gravitons. The su(2) algebra is
embedded as

su(2) ⊂ u(2) ⊆ u(p). (7)

We first review the construction of the u(2) algebra from the u(p) algebra that
was performed in [23]. The fundamental representation of the u(p) algebra repre-
sents the elements of the Lie algebra as p × p matrices. The generators Eik ∈ u(p)
can be written as

(Eik)ab = δiaδkb, 1 ≤ i, k, a, b ≤ p.

The p operators Eii commute with each other so we can choose a basis in which
they are diagonal at the same time. The restricted Schur polynomial labeled by
the Young diagrams is identified with the state with {Eii}. The Young diagrams
r with p rows are the irreducible representations of the symmetric group and also
the irreducible representations of the u(p) group. There is a map 1

2Eii �→ ci, for
i = 1, . . . , p, where ci are the factors of the corner boxes of each row i. The { 1

2Eii | i =
1, . . . , p} corresponds to the {ci | i = 1, . . . , p}. The description for the case of p long
columns is similar, where the ci are the factors of the corner boxes of each column
i, for i = 1, . . . , p. The p = 2 case is relatively the simplest case in this construction.

We consider the generators:

Qij =
1
2
(Eii − Ejj), Q+

ij = Eij , Q−
ij = Eji,

which obey the su(2) algebra of angular momentum, raising and lowering opera-
tors [23], [

Qij , Q
+
ij

]
= Q+

ij ,
[
Qij , Q

−
ij

]
= −Q−

ij ,
[
Q+

ij , Q
−
ij

]
= 2Qij . (8)
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We can also define

Q+
ij = Q1

ij + iQ2
ij, Q−

ij = Q1
ij − iQ2

ij, Qij = Q3
ij

and span{Q1
ij , Q

2
ij , Q

3
ij} is the su(2) algebra.

The representations of these su(2) subalgebras can be labeled with the eigen-
value of �Q2

ij = 1
2 (Q+

ijQ
−
ij +Q−

ijQ
+
ij)+ (Qij)2 and the eigenvalue of Qij = Q3

ij . The η

and Λ(Λ+1) are defined as the eigenvalues of the operators Qij and �Q2
ij respectively.

The states are labeled by |η, Λ〉 and:

Q+
ij |η, Λ〉 =

√
(Λ + η + 1)(Λ − η)|η + 1, Λ〉,

Q−
ij |η, Λ〉 =

√
(Λ + η)(Λ − η + 1)|η − 1, Λ〉,

where −Λ ≤ η ≤ Λ. We have so far reviewed the construction of the su(2) algebra
{Q1

ij , Q
2
ij , Q

3
ij} from the u(p) algebra performed in [23].

Let us now turn to the action of the dilatation operator ∆ij on these Young
diagram operators. We focus on a pair of giant gravitons labeled by i and j, which
also correspond to a pair of long rows labeled by i and j. In particular, the operators
∆ij are, as according to Eqs. (5) and (6), for example [20, 22, 24],

∆ij = −1
2
(Eii + Ejj) + Q−

ij + Q+
ij , (9)

so we can write it in the form

∆ij = 2A3
ij − (ci + cj)Iij , (10)

where we also define an abelian generator Iij = 1
2(ci+cj)

(Eii + Ejj). The eigenvalue
of the Qij is 1

2 (ci − cj) and the Λ = 1
2 max |ci − cj |.

We can define a different set of su(2) generators which will be convenient for
the evaluation of the ∆ij . These can be defined as:

A+ =
1
2
(Eii − Ejj) +

1
2
(Eij − Eji) = Q3

ij + iQ2
ij ,

A− =
1
2
(Eii − Ejj) − 1

2
(Eij − Eji) = Q3

ij − iQ2
ij ,

A3 =
1
2
(Eij + Eji) =

1
2
(
Q+

ij + Q−
ij

)
= Q1

ij .

(11)

The algebra

span{A+, A−, A3}
is the su(2) algebra with commutation relations:

[A−, A+] = 2A3, [A3, A+] = −A+, [A3, A−] = A−. (12)

It is transformed from span{Q1
ij, Q

2
ij , Q

3
ij} by an automorphism of su(2). In this

paper, we mainly work with the new basis {A+, A−, A3}.
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The linear span of

span{A+, A−, A3, I}, (13)

forms the su(2) × u(1) algebra, where I is the generator of the u(1) algebra that
we also include. The su(2) × u(1) algebra is also the u(2) algebra. We now denote
∆ij as ∆(1)ij . We can conveniently express

∆(1)ij = 2A3 − (ci + cj)I,

where we have suppressed the ij indices. In particular ∆(1)ij is a linear combination
of A3 and I. This expression is according to the findings in, for example, [20, 22, 24].

We can perform a Inonu–Wigner contraction of this su(2) × u(1) algebra, by a
linear transformation:



a†

a

1
2
∆(1)ij

1


 =




ξ 0 0 0

0 ξ 0 0

0 0 1 −1
2
ξ−2

0 0 0 1







A+

A−

A3

I


, (14)

where ξ = 1√
ci+cj

and is of order O( 1√
N

). The inverse transformation is:



A+

A−

A3

I


 =




ξ−1 0 0 0

0 ξ−1 0 0

0 0 1
1
2
ξ−2

0 0 0 1







a†

a

1
2
∆(1)ij

1


. (15)

This Inonu–Wigner contraction corresponds to the limit ξ2∆(1)ij � 1, in other
words the eigenvalue of 1

2∆(1)ij , which is the oscillator level, is much smaller than
N . The above su(2) × u(1) algebra, which is also an u(2) algebra, via the Inonu–
Wigner contraction, becomes the harmonic oscillator algebra,

span
{
a†, a, ∆(1)ij , 1

}
, (16)

with commutation relations

[a, a†] = 1,
[
∆(1)ij , a

†] = −2a†,
[
∆(1)ij , a

]
= 2a. (17)

This is a harmonic oscillator algebra obeyed by the creation and annihilation oper-
ators of this oscillator.

The u(p) symmetry algebra always includes u(2) symmetry algebra as a subal-
gebra. From the point of view of the operators given by Young diagrams, the u(2)
symmetry algebra is the symmetry algebra acting on two long rows, the ith-row
and the jth-row. From the point of view of the gravity side, the u(2) symmetry
algebra is the symmetry algebra of two giant graviton branes labeled by i and j.

The existence of u(p) symmetry is also from the Young diagrams with p long
rows, which also label the irreducible representations of the symmetric algebras
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[20, 22]. This involves the duality between representations of symmetric groups and
unitary groups that we have discussed.

The u(p) symmetry can also be observed from the symmetry of p giant gravitons.
The u(p) symmetry can also be seen from the bubbling geometries in [13] with a
white disk of area p inside the black disk of area N . The white disk with area p

is the geometric dual of p giant gravitons. If we zoom in near the white disk it
approaches another AdS space and is dual to p number of three-branes with u(p)
symmetry.

4. Higher Loop Anomalous Dimensions and Oscillator Algebra

We now discuss relation between the oscillator algebra and higher loop dilatation
operators. The anomalous dimension γ(g) expanded at one- and two-loops is the
eigenvalue of

D̂ = D̂2 + D̂4,

with the one-loop dilatation operator

D̂2 = −2g : Tr([Z, Y ][∂Z , ∂Y ]) : (18)

and the two-loop dilatation operator [6]:

D̂4 = −2g2 : Tr([[Z, Y ], ∂Z ][[∂Z , ∂Y ], Z]) : −2g2 : Tr([[Z, Y ], ∂Y ][[∂Z , ∂Y ], Y ]) :

− 2g2 : Tr
(
[[Z, Y ], T a]

[
[∂Z , ∂Y ], T a

])
: (19)

where in the convention of [6] g = g̃2
YM

16π2 . The normalization for the D̂2 and D̂4 is
in the convention of [6]. The normalization in this convention for D̂2 and D̂4 is a
factor of two larger than the normalization used in the convention of [20–24, 26,
29], for example. Here we denote D2 and D4 for the convention in [20–24, 26, 29].

The action of the two-loop dilatation operator on the restricted Schur polyno-
mials has been evaluated by [25], and it is given by,

D̂4OR,(r,s)αβ = −2g2
∑
u, γδ

∑
i<j

M
(ij)
sαβ;uγδ∆(2)ijOR,(r,u)γδ, (20)

where

M
(ij)
sαβ;uγδ =

m√
dsdu

(〈
�m, s, β; a

∣∣E(1)
ii

∣∣�m, u, δ; b
〉〈

�m, u, γ; b
∣∣E(1)

jj

∣∣�m, s, α; a
〉

+
〈
�m, s, β; a

∣∣E(1)
jj

∣∣�m, u, δ; b
〉〈

�m, u, γ; b
∣∣E(1)

ii

∣∣�m, s, α; a
〉)

,

in which a and b are summed. The a labels states in irreducible representation s

and the b labels states in irreducible representation u.
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We denote ∆(1)ij = ∆ij for the one-loop dilatation operator and ∆(2)ij for the
two-loop dilatation operator. The ∆(2)ij has been computed by [25], and it can be
written as a sum of two terms. We have defined that:

∆0
ijOR,(r,s)αβ = −(2N + ri + rj)OR,(r,s)αβ ,

∆+
ijOR,(r,s)αβ =

√
(N + ri)(N + rj)OR+

ij ,(r+
ij,s)αβ ,

∆−
ijOR,(r,s)αβ =

√
(N + ri)(N + rj)O

R−
ij ,

(
r−

ij ,s
)

αβ
.

(21)

The ∆(2)ij = ∆(1)
ij + ∆(2)

ij and can be written as:

∆(1)
ij = n

(
∆+

ij + ∆0
ij + ∆−

ij

)
, (22)

∆(2)
ij =

(
∆+

ij

)2 + ∆0
ij∆

+
ij + 2∆+

ij∆
−
ij + ∆0

ij∆
−
ij +

(
∆−

ij

)2
. (23)

As the same as ∆(1)ij , the ∆(2)ij acts on each pair of rows (i, j). The ci, cj and n

are of order N.

We can simplify the two-loop dilatation operator ∆(2)ij as

∆(2)ij = (∆(1)ij + (ci + cj + n)I)∆(1)ij , (24)

when acting on these Young diagram operators. These expressions are evaluated in
the large N but nonplanar limit. From this expression, we see that the operators
that are eigenstates of ∆(1)ij , are also eigenstates of ∆(2)ij . Since ∆(1)ij mixes the
operators that differ by moving at most one box in the (R, r) irreducible represen-
tations, ∆(2)ij mixes the operators that differ by moving at most two boxes in the
(R, r) irreducible representations. The action of (∆+

ij)
h, (∆−

ij)
h mix the operators

that differ by moving at most h boxes in the (R, r) irreducible representations, and
therefore (∆(1)ij)h mixes the operators that differ by moving at most h boxes in
the (R, r) irreducible representations.

The eigenstates in the oscillator basis are states of finite harmonic oscillators,
see for example [22, 20, 24]. These operators can be written as

Oqij (σ) =
∑
R,r

f̃R,r
qij

OR,r(σ) =
∑
R,r

∑
s,αβ

f̃R,r
qij

Cs
αβ(σ)OR,(r,s)αβ , (25)

where f̃R,r
qij

are the wave functions of the discrete harmonic oscillator. The Young
diagrams (R, r) both have p long rows, and R � n + m, r � n. Those functions also
appear in the study of models of finite harmonic oscillators, for example [32]. The
Cs

αβ(σ) are group theoretic coefficients and OR,r(σ) are the operators labeled by
a permutation graph σ that maps [24] to the data {nij} via the function nij(σ),
where nij are the number of strings stretching between the two branes labeled by
i and j.

The eigenvalues of ∆ij acting on Oqij (σ) is 4qij , where qij is an integer [20, 22]
denoting the level of the harmonic oscillator for the pair of giant gravitons i and j,

1550047-9
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that is,

∆(1)ijOqij (σ) = 4qijOqij (σ) (26)

and

D̂2Oqij (σ) = −2g
∑
R,r

f̃R,r
qij

nij∆ijOR,r(σ) = −8gqijnijOqij (σ). (27)

The qij is bounded above due to the discrete finite harmonic oscillator. Therefore
we consider the simple case in which qij � N . We see that

∆(2)ijOqij (σ) = 4qij(ci + cj + n)Oqij (σ) = (ci + cj + n)∆(1)ijOqij (σ), (28)

in the large N limit, and

D̂4Oqij (σ) = −2g2
∑
R,r

f̃R,r
qij

nij∆(2)ijOR,r(σ) = −8g2qijnij(ci + cj + n)Oqij (σ).

(29)

In this case, the anomalous dimension γ(λ) expanded at one- and two-loop
orders is

γ(1) =
8qijnij

N
λ, γ(2) =

8qijnij

N

(
ci + cj + n

N

)
λ2, (30)

where ci+cj+n
N = ri+rj+2N+n

N is of order 1, qij = 0, 1, 2, . . . , qmax, and the λ denotes

gN . This is the simple case that there are equal number of strings emanating from
brane i to brane j, and from brane j to brane i, and these numbers are n+

ij and n−
ij

respectively. In this case nij = n+
ij +n−

ij = 2n+
ij , where n+

ij is a non-negative integer.

If |ci − cj | � ci + cj , then ri + rj is approximately 2rj [25]. Note that in this paper
we also assumed the special case that we are looking at the operators whose qmax

is much smaller than N .
From Eq. (28), the commutation relations of ∆(2)ij are

[a, a†] = 1,
[
∆(2)ij , a

†] = −2(ci + cj + n)a†,
[
∆(2)ij , a

]
= 2(ci + cj + n)a.

(31)

So the two-loop dilatation operator ∆(2)ij also satisfies the oscillator algebra. This
relation was observed in [25].

We can write them in terms of polynomials of A3. Using the relation

∆(1)ij = 2A3 − (ci + cj)I, (32)

the ∆(2)ij can be rewritten as:

∆(2)ij =
(
2A3 − (ci + cj)I

)
(2A3 + nI)

= 4(A3)2 + 2(n − ci − cj)A3 − n(ci + cj)I. (33)

So ∆(2)ij is a polynomial of A3 of degree 2, that is, P2(A3). The ∆(1)ij is a polyno-

mial of A3 of degree 1, that is, P1(A3). By the structure of the dilatation operators

1550047-10
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at higher loops, the higher loop dilatation operators ∆(h)ij , with h the loop order,
is a polynomial of A3 of degree h, that is, Ph(A3),

∆(h)ij = Ph(A3),

where

A3 =
1
2
[∆(1)ij + (ci + cj)I] (34)

and they can mix operators that differ by moving at most h boxes in the (R, r)
irreducible representations in the large N limit that we consider. The Ph(A3) is
also a polynomial of ∆+ and ∆−. These dilatation operators form a polynomial
ring R[A3] over A3.

The operators with qij = 0 should correspond to the BPS states, and they are
the states of the giant gravitons without the non-BPS excitations. These states
are thus the eigenstates of the anomalous piece of the dilatation operator with the
eigenvalues being zero. Since both ∆(1)ij and ∆(2)ij contain an overall factor of
(2A3 − (ci + cj)I), this factor acting on the BPS states is zero. As analyzed above,
if ∆(h)ij , with h the loop order, is a polynomial of A3 of degree h, then it is expected
to contain an overall factor of (2A3 − (ci + cj)I). It may be written as:

∆(h)ij =
(
2A3 − (ci + cj)I

) [ ∑
l=1,...,h

al(A3)h−l

]

= ∆(1)ij

[
Nh−1Fh + uh−2

]
, (35)

when acting on the operators, where Fh is order O(1) coefficient, and uh−2 ≤
O(Nh−2). The Fh is of order O(1) because the eigenvalue of (A3)h−1 is of order
O(Nh−1). In the derivation from the first line to the second line of Eq. (35), we used
that A3Oqij (σ) = 1

2 (ci +cj +∆(1)ij)Oqij (σ) = [O(N)]Oqij (σ), which means that the
eigenvalue of A3 on the diagonalized operators is of order O(N). The subleading
terms in Eq. (35) are subleading in the large N limit.

So we have the relation

∆(h)ijOqij (σ) = FhNh−1∆(1)ijOqij (σ), (36)

in the large N limit. In this relation, we have also assumed that we are considering
the oscillator level to be much smaller than N , that is, we are giving an additional
condition qij

N � 1 to make simplifications. The examples of the h = 1 and h = 2
are F1 = 1 and F2 = ci+cj+n

N , and are both of order O(1). So we have:

∆(1)ijOqij (σ) = 4qijOqij (σ) = F1∆(1)ijOqij (σ),

∆(2)ijOqij (σ) = 4qij(ci + cj + n)Oqij (σ) = F2N∆(1)ijOqij (σ).

In the large N limit, from the structure of the dilatation operator,

∆(h)ijOqij (σ) = 4qijFhNh−1Oqij (σ) = FhNh−1∆(1)ijOqij (σ), (37)

where Fh is order O(1).
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In the large N limit, as long as the higher loop dilatation operator ∆(h)ij is a
polynomial of A3, it will satisfy the following oscillator algebra,

[a, a†] = 1,
[
∆(h)ij , a

†] = −2FhNh−1a†, [∆(h)ij , a] = 2FhNh−1a. (38)

We refer to Eq. (38) as the oscillator algebra satisfied by ∆(h)ij . If the oscillator
algebra is satisfied by ∆(l)ij , with l = 1, . . . , h, then the integrability is preserved at
the h-loop order. The oscillator algebra at h-loop means that, among other aspects,
∆(h)ij will not change the qij in Eq. (26).

Assuming that the oscillator algebra is satisfied in the large N limit at all loops,
if we sum over

∑∞
h=1 gh∆(h)ij = ∆, we have that:[ ∞∑

h=1

gh∆(h)ij , a
†
]

=
∞∑

h=1

gh
[
∆(h)ij , a

†] = −2
∞∑

h=1

ghFhNh−1a† = −2f(λ)a†,

where we define an interpolating function f(λ),
∞∑

h=1

ghFhNh−1 =
∞∑

h=1

λhFh/N =
1
N

f(λ). (39)

The f(λ) is a function of λ, and its coefficients in λ expansions are also functions of
ci

N ,
cj

N . Since F1 = 1, the expansion of f(λ) is f(λ) = λ+
∑∞

h=2 Fhλh. The oscillator
algebra satisfied by the ∆ is hence,

[a, a†] = 1, [∆, a†] = −2
f(λ)
N

a†, [∆, a] = 2
f(λ)
N

a. (40)

The dilatation operator at all loops can be expanded as D̂(g) =∑∞
h=0 D̂2h, where D̂2h is at order gh, with h the loop order. In the large N limit,

gh∆(h)ijOqij (σ) = FhghNh−1∆(1)ijOqij (σ)

and hence the anomalous dimension is

γ =
∞∑

h=1

γ(h) = 8qijnij

∞∑
h=1

ghFhNh−1 =
8qijnij

N
f(λ). (41)

The one-loop anomalous dimension is γ(1) = 8 λ
N qijnij . As compared to the one-loop

expression, the effect at higher loops is the renormalization of the coupling to an
interpolating function, that is, λ → f(λ), while keeping the same qijnij dependence
which is protected by the oscillator algebra. The f(λ) is also a function of ci

N ,
cj

N ,

and may be written also as f(λ; ci

N ,
cj

N ).

We have focused on the su(2) sector of the operators and on a pair of long
rows labeled by i and j in the Young diagram with total p rows. This sector has
a harmonic oscillator algebra, for which we have presented evidence that they will
persist at higher loops.

The diagonalized operators acted on by the one- and two-loop dilatation opera-
tors will not be changed by the h-loop dilatation operators if the oscillator algebra,
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Eq. (38), is preserved at loop order h. So, if the oscillator algebra is preserved at
all loop orders, they would not be changed at all loops.

Our analysis indicates that the nonplanar integrability is protected in the large
N limit by the oscillator algebra. This is an integrability in a large N but nonplanar
limit. We give further evidence that this integrability in the nonplanar regime is
preserved at higher loops and possibly at all loops. This is the case if higher loop and
all loop dilatation operators in the large N but nonplanar limit satisfy the oscillator
algebra. The oscillator algebra descends from the u(2) symmetry algebra inside of
u(p) symmetry algebra of the system of p giant gravitons and such symmetry is
expected to be robust under loop corrections. We have presented evidences that
the higher loop dilatation operators in the large N limit can satisfy the oscillator
algebra.

5. General Number of Pairs and Effective Spring Constants

We now consider pairs of giant gravitons. Each pair of long rows labeled by i and j

corresponds to a pair of giant gravitons labeled by i and j. The numbers of strings
between each pair of giant gravitons is nij . The total number of strings is m, which
is divided into p integers {mi | i = 1, . . . , p}. The mi denotes the number of strings
emanating from the ith-brane. Because of charge conservation on each brane, the
number of strings terminating on the ith-brane is also mi. The string configurations
are modding out by the permutation symmetry H = Sm1 × Sm2 × · · · × Smp on
both their left open-ends and their right open-ends. The open string configurations
are in one-to-one correspondence with elements of the double coset [24]:

HL\Sm/HR, (42)

with m =
∑

i mi, and HL = HR = H which is the subgroup Sm1 ×Sm2 ×· · ·×Smp .

The HL permutes the m left open-ends and the HR permutes the m right open-ends.
The relation HL = HR is due to the charge conservation on each brane.

There is a map

σ �→ {nij | 1 ≤ i < j ≤ p}, (43)

where σ is an element of the double coset [24]. The numbers nij(σ) can be given
from the element of the double coset σ. For a generic configuration of open strings on
p giant gravitons, by distinguishing orientation, the number of strings emanating
from brane i and terminating on brane j is n+

ij , whereas the number of strings
emanating from brane j and terminating on brane i is n−

ij . The total number of
strings between brane i and j, without distinguishing orientation, is thus nij =
n+

ij +n−
ij. The permutation graph σ corresponds to nij(σ) = n+

ij(σ)+n−
ij(σ) strings

between the pairs of two branes labeled by i and j, and mi−
∑

j �=i n+
ij = nii strings

emanating from and terminating on the same brane i. We also have that n+
ij ≤

mi ≤ m.
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The operators correspond to the data {nij} and its associated permutation
graph is

OR,r(σ) =
∑
s	m

∑
αβ

Cs
αβ(σ)OR,(r,s)αβ , (44)

where the group theoretic coefficients are [24]:

Cs
αβ(σ) =

√
ds|H |√
m!

∑
l,j

Γ(s)(σ)ljB
s→1H

lα Bs→1H

jβ .

The Bs→1H

lα are the branching coefficients for the trivial irrep 1H of H inside the
representation s of Sm. The Bs→1H

lα gives the expansion of the αth-occurrence of the
identity irrep of H when irrep s of Sm is decomposed into irreps of the subgroup H ,
in terms of the states labeled l in s. The l, j here are labels of states in the irreducible
representation s. Similar methods of representation theory used in this context were
also used in defining the multi-matrix operators in the global symmetry basis or
the flavor basis [14, 17].

Since the interaction between the p giant gravitons are pairwise, the most ele-
mentary situation is the interaction between two giant gravitons labeled by i and
j, where 1 ≤ i < j ≤ p. A simple situation is provided by a pair of giant gravitons
with equal number of strings from each other, that is nij = n+

ij + n−
ij = 2n+

ij. This
also corresponds to a pair of long rows labeled by i and j.

For p = 2, which is the simplest and the most elementary case, H is Sm1 ×Sm2 .

The m1 + m2 left open-ends of the strings are divided into m1 and m2 of them,
respectively, on the two giant gravitons. Because of charge conservation, the number
of right open-ends is also m1 and m2, respectively, on the two giant gravitons. The
left open-ends and the right open-ends are related by a permutation in Sm1+m2 .
The open string configurations are thus in one-to-one correspondence with elements
of the double coset

H\Sm1+m2/H, (45)

since the left coset corresponds to modding out by the Sm1 × Sm2 on the left
open-ends of the strings, and the right coset corresponds to modding out by the
Sm1 × Sm2 on the right open-ends of the strings. For the simplest case that p = 2,
the permutation graph corresponds to n12 = n+

12 + n−
12 strings between the two

branes labeled by 1 and 2, n11 = m1 − n+
12 strings emanating and terminating on

the same brane 1, and n22 = m2 − n−
12 strings emanating and terminating on the

same brane 2.
The action of the dilatation operator on the operator OR,r(σ) is

DOR,r(σ) = −g2
YM

∑
1≤i<j≤p

nij(σ)∆ijOR,r(σ). (46)

The p long rows correspond to the p giant gravitons. The nij(σ) is a map σ �→ {nij}.
The excitation energy of the system of giant gravitons δE is given by the eigenvalue
of the operator

∑
g2
YMnij∆ij .
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Since the operator Oqij ({nij}) in the oscillator basis [20, 22] is

Oqij ({nij}) = Oqij (σ) =
∑
R,r

f̃R,r
qij

OR,r(σ) (47)

and

∆ijOqij (σ) = 4qijOqij (σ),

where qij is a non-negative integer, we have that

D2Oqij (σ) = −g2
YM

∑
R,r

f̃R,r
qij

nij(σ)∆ijOR,r(σ) = −4g2
YMqijnijOqij (σ). (48)

The action of the dilatation operator D̂4 on these operators is

D̂4OR,r(σ) = −2g2
∑
i<j

nij(σ)∆(2)ijOR,r(σ), (49)

which was obtained in [25], and:

D̂4Oqij (σ) = −2g2
∑
R,r

f̃R,r
qij

nij(σ)∆(2)ijOR,r(σ) = −8g2qijnij(ci + cj + n)Oqij (σ).

(50)

We focus on a pair of branes labeled by i and j. We consider the simple case that
there are equal numbers of strings emanating from brane i to brane j, and from
brane j to brane i. By charge conservation on each brane, in this case, n+

ij = n−
ij

and nij = 2n+
ij = 2n−

ij . The action of the dilatation operator is

DOR,r(σ) = −g2
YMnij(σ)∆ijOR,r(σ). (51)

The spectrum with general number of pairs of giant gravitons has been studied in
[23]. Note that the notation 2nij used in [23] is the 2n+

ij = nij in the discussion

here. The frequency 2g2
YMnij = 4g2

YMn+
ij is analogous [23] to the spring constant

kij of the pair of giant gravitons (i, j),

kij = 4n+
ij

λ

N
. (52)

We see that kij is a function of the coupling constant, that is kij = kij(λ). The
excitation energy δE of the system of the giant gravitons is

δE = 2qijkij = 8g2
YMqijn

+
ij = 8

λ

N
qijn

+
ij . (53)

Here we also recover the p = 2 case [20, 22]. Our convention here is δE = γ̂ = 1
2γ,

where normalization convention for γ̂ was used in [20–24, 26, 29] and normalization
convention for γ was used in [6].

Our analysis suggests that the higher loop dilatation operator in the large N

limit will satisfy the oscillator algebra. So they will not change the qijnij dependence
of the spectra. We have provided evidence for this from the oscillator algebra. They
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will renormalize the effective coupling and the coefficient λ
N to f(λ)

N . The f(λ) is
an effective coupling and also an interpolating function. So the effective spring
constants become kij = 4n+

ij
f(λ)
N . In the derivation of this, we have also assumed

that we are considering the oscillator level to be much smaller than N , in other
words qij

N � 1. According to the renormalization of the effective coupling constant
at higher loops, we have

δE = 2qijkij = 8
f(λ)
N

qijn
+
ij . (54)

The effective Hamiltonian of this quantum mechanic system is a system of masses
with kinetic energies and with pairwise potentials proportional to kij |xi − xj |2
which are quadratic functions of the relative displacements between pairs of such
masses. In other words, according to our analysis, the spring constants will also be
renormalized.

6. Discussion

We have analyzed in detail the oscillator algebra of Young diagrams and its relation
to the u(2) algebra by Inonu–Wigner contraction for the large dimension operators
with p long rows or p long columns in the Young diagrams. The existence of the
harmonic oscillator algebra at higher loops is an important evidence for integrability
in this nonplanar regime at higher loops.

The dependence of the spectra on the qijnij , where qij and nij label the oscil-
lator level and the string number respectively, in the large N limit is protected by
the oscillator algebra and is robust under loop corrections if the oscillator algebra
persists at higher loops.

We have provided evidences that the oscillator algebra is preserved in the large
N but nonplanar limit at higher loops. One evidence is that higher loop dilatation
operators are polynomials of the Lie algebra generator which we call A3, in the large
N but nonplanar limit, and these operators will satisfy the oscillator algebra. If in
the large N limit, the h-loop dilatation generator preserves the oscillator algebra,
then the integrability in this nonplanar regime is preserved at h-loop.

The oscillator algebra itself is a Inonu–Wigner contraction of the u(2) algebra
inside of the u(p) algebra of p giant gravitons. Since the u(p) algebra of p number
of branes is robust, such symmetry is expected to be robust under loop corrections.

The existence of BPS states as the lowest energy eigenstates is also one evidence.
Those are the states that can be viewed as the eigenvectors with zero eigenvalues
under the anomalous piece of the dilatation operator. They are also related to the
root of the aforementioned polynomials.

The evidences of the integrability at higher loops in the nonplanar large N limit
presented in this paper are in addition to other evidences of different reasons, which
are related to double coset ansatz [24] or to global symmetry [30].

Under higher loop corrections, the spectra are expected to be given by an inter-
polating function, that is a function of the ’t Hooft coupling as well as weights
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of the corner boxes of the Young diagrams. The spring constant of the oscilla-
tor between a pair of giant gravitons will also be an interpolating function of the
coupling constant.

The operators in the oscillator basis can be diagonalized by the harmonic oscil-
lator wavefunctions and labeled by oscillator levels. Two-loop diagonalizations have
been also computed in [25]. We presented evidences that the diagonalization of these
operators at higher loops are not corrected, in the large N limit that we consider,
due to the robustness of both the double coset symmetry and the harmonic oscil-
lator algebra. We have argued that the higher loop corrections do not change the
basis of the diagonalization of the operators in the large N but nonplanar limit.
They modify the spectra of these operators by corrections at higher orders of the
coupling.
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