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Abstract

We compare the probabilities of “arm events” in two-dimensional invasion perco-
lation to those in critical percolation. Arm events are defined by the existence of a
prescribed “color sequence” of invaded and non-invaded connections from the origin
to distance n. We find that, for sequences of a particular form, arm probabilities in
invasion percolation and critical percolation are comparable, uniformly in n, while they
differ by a power of n for all others. A corollary of our results is the existence, on the
triangular lattice, of arm exponents for invasion percolation, for any color sequence
with at least two open (invaded) entries.

1 Introduction

In this paper, we consider two-dimensional invasion percolation, a stochastic growth
model, and compare probabilities of “arm events” to analogous ones in critical per-
colation. These events, defined by the occurrence of a sequence of disjoint invaded
and non-invaded connections from the origin to a large distance, play a central role in
percolation theory.

The probabilities of arm events in critical and near-critical Bernoulli percolation
have been studied extensively. In these settings, arm probabilities are expected to be-
have like power functions of the distance from the origin, and are thus naturally associ-
ated to the corresponding exponents. Existence and exact values of the exponents have
been derived for the one-arm event [8], as well as events associated to polychromatic
sequences [13], which include both open and closed dual connections, for percolation
on the triangular lattice, using conformal invariance and the SLE processes. Existence
of exponents for monochromatic arm sequences was proved in [1], where it was also
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shown that the exponents differ from polychromatic exponents. To the best of our
knowledge, arm probabilities in invasion percolation have not been studied previously.

Critical percolation is a natural point of comparison for invasion percolation because
the latter process is an example of self-organized criticality, loosely defined as the
tendency for a parameterless model to behave in the large time limit like a parametric
model at its critical point. It has been shown, for instance, that the cluster volume,
multi-point functions, and expected cluster sizes are of the same order for invasion and
critical percolation [2, 3].

Arm events are characterized up to permutation by a finite sequence specifying the
status (invaded, resp. open, or non-invaded, resp. closed) and the order in which the
connections appear. Our results imply that, for some color sequences, arm probabilities
in invasion percolation are comparable to the corresponding arm probabilities in critical
percolation. (See Theorem 1.) This theorem also implies existence of exponents, in
the sense of [13] on the triangular lattice, for all color sequences that include at least
two invaded (open) arms. For all other color sequences, we show in Theorem 2 that
the probabilities differ from those in critical percolation by a positive power of the
distance. Combining the two theorems, we find in particular that polychromatic arm
exponents of a given length in invasion percolation, if they exist, must generally depend
on the exact color sequence. This is unlike critical (site) percolation, where a “color-
switching” argument shows that arm probabilities are the same for all sequences of a
given length; see [9, Proposition 20].

1.1 Invasion Percolation

The invasion percolation cluster (IPC) is defined recursively as follows. Let (te) be an
i.i.d. family of uniform [0, 1] random variables, one assigned to each edge e ∈ E2 of the
nearest-neighbor lattice Z2. Our growth model begins with vertex and edge set

V0 = {0}, E0 = ∅, G0 = (V0, E0).

At each time n, let en = {xn, yn} be the edge in the boundary

∂Gn−1 = {{x, y} : x ∈ Vn−1, {x, y} /∈ En−1}

of Gn−1 such that ten is minimal, and define

Vn = Vn−1 ∪ {yn}, En = En−1 ∪ {en}, Gn = (Vn, En).

As (Gn) is an increasing sequence of graphs, we define the IPC as S = limnGn.
To define critical percolation, we pick any p ∈ [0, 1] and say that the edge e is p-open

if te < p and p-closed otherwise. A p-open cluster is a maximal set of vertices any two
of which are connected by a path of p-open edges. For p small, almost surely, there are
only finite p-open clusters, whereas for p large, there is a unique infinite p-open cluster.
So one defines θ(p) as the probability that 0 is in an infinite p-open cluster, and

pc = sup{p : θ(p) = 0}.
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We define the measure Pp on {0, 1}E2 as the one under which all coordinate functions
(ω(e) : e ∈ E2) are i.i.d. with

Pp(ω(e) = 1) = p = 1− Pp(ω(e) = 0),

and refer to an edge e with ω(e) = 1 simply as open; otherwise, closed. On Z2, it is
known that pc = 1/2, and we write Pcr for P1/2.

We now describe arm events, which are our main objects of study. A “color se-
quence” σ is a sequence, each entry of which is either the symbol O (for open) or C
(for closed); we write |σ|O for the number of open entries and |σ|C for the number of
closed entries, with |σ| defined to be the total number of entries. For B(n) = [−n, n]2,
we define a σ-connection between a vertex x and the set

∂B(n) = {z ∈ B(n) : ∃y ∈ B(n)c such that ‖z − y‖1 = 1}

as follows: write x →σ ∂B(n) if there exist |σ| disjoint paths from B(|σ|) + x to
∂B(n), |σ|O of which are open paths, and |σ|C of which are closed dual paths, and
their orientation is given by σ. By dual path, we refer to the associated percolation
model defined on the dual lattice (Z2

∗, E2∗ ), with vertex and edge sets

Z2
∗ = Z2 + (1/2, 1/2), E2∗ = E2 + (1/2, 1/2).

A dual edge e∗ bisects exactly one edge e, and we set ω(e∗) = ω(e). A closed dual path
is a sequence of closed edges e whose dual edges form a path on the dual lattice. (These
arm events are always considered up to cyclic permutation of σ.) A σ connection is
defined naturally for critical percolation in terms of open and closed edges; for the
IPC, we interpret “e is open” as meaning that e ∈ S, or that e is eventually invaded.
Likewise, “e is closed” means that e /∈ S, or that e is never invaded. For 1 ≤ m ≤ n, the
notation ∂B(m) →σ ∂B(n) is used similarly: there is a σ-connection between ∂B(m)
and ∂B(n). (If m ≤ |σ|, then the inner box is taken to be B(|σ|).)

For positive two sequences (an) and (bn), write an . bn if the ratio an/bn is bounded
as n→∞. If an . bn and bn . an, we write an � bn.

1.2 Main results

If σ is any color sequence, we define the reduced color sequence σ̃ by replacing any
consecutive stretch of at least two ‘C’ entries by two ‘C’ entries. Our first theorem
states that σ-arm events in invasion have probability comparable to those in critical
percolation for the reduced color sequence σ̃, provided that |σ|O ≥ 2. Note that if σ has
no stretches of more than three ‘C’ entries (for instance, in the open monochromatic
case), then σ = σ̃, and so σ-arm events have comparable probability in both models.

Let Aσ(n) be the event

Aσ(n) = {0→σ ∂B(n)}. (1.1)

When we write P(Aσ(n)), it is understood that the event Aσ(n) is taken in the IPC
S, so that, for example, “open” means “invaded.” As the IPC has an open path from
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0 to ∞ almost surely, we consider only sequences with |σ|O ≥ 1. We now present the
first theorem. Note that combined, both of its statements imply that if |σ|O ≥ 2, then

Pcr(Aσ̃(n)) � P(Aσ(n)).

Theorem 1. Let σ be a color sequence with |σ|O ≥ 1. Then

Pcr(Aσ̃(n)) . P(Aσ(n)). (1.2)

If |σ|O ≥ 2 then
P(Aσ(n)) . Pcr(Aσ̃(n)). (1.3)

Remark 1. It follows immediately from Theorem 1 that if σ has a least two O entries
and no more than two consecutive C entries, the probability of the corresponding arm
events in invasion and critical percolation are comparable, uniformly in n.

Remark 2. For any sequence σ with |σ|O ≥ 2, Theorem 1 provides matching upper
and lower bounds for the probability of the arm events. Our proofs are easily adapted
to the triangular lattice, and in this setting we obtain the existence of arm exponents
in the sense of [13, Theorem 4].

All color sequences covered in the next theorem are of the form

σk := (O,C,C, . . . , C︸ ︷︷ ︸
k times

).

For such arm events, we have two main bounds. The first inequality is strictly stronger
than the first inequality of the previous theorem, and shows that the arm probabilities
(even in the cases k ≤ 2, where σk = σ̃k) are not comparable in critical percolation
and in the IPC.

Theorem 2. There exists ε > 0 such that for all k ≥ 1,

Pcr(Aσ̃k(n))nε . P(Aσk(n)). (1.4)

For k = 1, 2, there exists ε > 0 such that

P(Aσk(n))nε . Pcr(Aσ̂k(n)), (1.5)

where σ̂k is a sequence of k ‘C’ entries and zero ‘O’ entries.

Remark 3. If an exponent αk exists for the invasion arm event Aσk(n), then by applying
the previous theorem, one has

α2 > β′2, β2 > α1, and β3 − ε ≥ αk for k ≥ 2,

where β′2 is the monochromatic (CC) exponent, β2 is the polychromatic (OC) exponent,
and β3 is the polychromatic (OCC) exponent for critical percolation. It is believed
(and proved on the hexagonal lattice [1]) that β′2 > β2, so this would give α2 > α1,
implying

0 < α1 < α2 ≤ α3 ≤ · · · ≤ β3 − ε < β3.

It is reasonable, based on our first theorem, to believe that α2 = α3 = α4 = · · · , but
we do not yet have a proof.
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Remark 4. The Incipient Infinite Cluster (IIC ), is the measure defined by the limit of
the conditional probabilities

lim
N→∞

P(A | 0→ ∂B(N)).

The limit was shown to exist in [4] for cylinder sets A and determines a measure PIIC

on configurations in {0, 1}E2 . An simple decoupling argument shows that for |σ|O ≥ 1,

PIIC(Aσ(n)) � Pcr(Aσ(n))

Pcr(0→ ∂B(n))
.

It has been observed that the IIC measure, although distinct from the invasion measure,
is similar in many respects [2, 3]. It may be possible to sharpen the results in Theorem
2 by comparing to IIC probabilities, instead of probabilities in critical percolation.

1.3 Notation

Here we review notation used throughout the paper. Recall that for n ≥ 1, B(n) =
[−n, n]2. For 1 ≤ m ≤ n, set

Ann(m,n) = B(n) \B(m).

Recall the definition of a σ-connection between ∂B(m) and ∂B(n) from the intro-
duction, and that we are working on two different probability spaces. The first contains
i.i.d. uniform random variables (te) assigned to the edges and a corresponding measure
P. It is on this space that the IPC S is defined, and on which we have notions of p-
openness. The second is the space {0, 1}E2 , with probability measures Pp under which
the coordinates are i.i.d. with probability p to be 1. On this first space, we define both
events

Aσ(n) = {0→σ ∂B(n) in S}
Aσ(m,n) = {∂B(m)→σ ∂B(n) in S}.

We also set Aσ(n, p, q) as the event that 0 →σ ∂B(n) but the open arms are p-open,
and the closed arms are q-closed (similarly for Aσ(m,n, p, q)). Similarly, on the second
space:

on {0, 1}E2 , Aσ(n) = {0→σ ∂B(n)}
Aσ(m,n) = {∂B(m)→σ ∂B(n)}.

1.4 Outline of the paper

In deriving our main results, we exploit the natural coupling of independent (Bernoulli)
percolation processes at different parameters and invasion percolation, and the “near-
critical” nature of the invasion cluster on large scales. We summarize some of the
relevant techniques and estimates from the literature in Section 2.
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In Section 3.1, we derive the lower bound (1.2) in Theorem 1. The proof proceeds
by the construction of a sequence of arms according to the sequence σ̃ from the origin
to a dual pn-closed circuit around 0 with one defect edge e (e is not required to be pn-
closed); e is itself connected to one of the open arms, and to an infinite pn-open cluster.
(See (2.1) for the definition of pn and Figure 3 for an illustration.) This construction
has a total probability cost of Pcr(Aσ̃(n)). The dual circuit and dual closed arms are
chosen in such a way that any region between two closed arms and the circuit is not
invaded. Additional non-invaded arms can be found in this region, provided there is
sufficient space. To show that with high probability the closed dual arms cannot come
too close to each other, we use the exact value of the five-arm exponent and Reimer’s
inequality (see Lemma 4) to bound the probability of a resulting six-arm event.

The proof of (1.3) appears in Section 3.2. We decompose the probability of the arm
event in invasion according to the position of the first outlet ê1, the invaded edge with
maximal weight in the IPC. If tê1 < τ , the entire invasion is made of τ -open edges,
and in particular, any invaded arms are τ -open. As for non-invaded arms, Lemma 5
shows that any region which contains one (resp. two) consecutive non-invaded arms
from the origin must contain one (resp. two) pc-closed arms. If ê1 is near the origin,
the boundary of the invasion at the step when ê1 is added to the invasion graph
contains long closed dual arms from (ê1)

∗ to ∂B(n); see Lemma 5. This unlikely event
generates a small probability factor allowing us to use an argument from [3] to sum over
a partition of the possible values of τ without losing any logarithmic factors. If ê1 is far
from the origin, its weight is likely to be close to pc. This is quantified using estimates
for the correlation length from [3], and the same summation argument introduced in
that paper.

The first inequality of Theorem 2, (1.4), is derived in Section 4.1 by constructing
outlets in annuli in a positive density of scales. Outlets are edges whose weight is greater
than any edges invaded at a later stage. We connect these successive outlets by pc-
open paths, and this ensures that closed connections placed between dual circuits which
have defects at the outlets remain non-invaded. By quasimultiplicativity, constructing
the outlets and extending closed arms through all annuli has a probability cost of
Pcr(Aσk(n)) times a (very small) gluing factor depending on the number of outlets
placed. The large number of choices of possible placements for the annuli then beats
this gluing factor and yields the additional nε.

The upper bound (1.5) is proved in Section 4.2. Here, we show that the event
Aσk(n) implies Aσ̂k(|σk|, n, pc) when k = 1, 2, so, using (2.2), we have

P(Aσk(n)) ≤ CP(Aσk(n) | Aσ̂k(|σk|, n, pc))Pcr(Aσ̂k(n)).

The problem is then reduced to showing that the conditional probability is O(n−ε) for
some ε > 0. By a characterization of the occurrence of an invaded circuit in an annulus
in Lemma 8, showing this bound reduces to finding with high probability, a p-open
circuit around 0 enclosed by a p-closed dual circuit for some p > pc. We estimate this
conditional probability using a decoupling idea due to Kesten and Zhang [6].
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2 Tools from near-critical percolation

For any p ∈ [0, 1] and n ≥ 1, define the box-crossing event σ(n) that there is an open
path in B(n) connecting the left side {−n}× [−n, n] to the right side {n}× [−n, n]. It
is known that for p > pc, Pp(σ(n))→ 1, and so, given ε > 0, we define the correlation
length L(p, ε) of p as

L(p, ε) = min{n ≥ 1 : Pp(σ(n)) > 1− ε}.

Kesten [5, Eq. 1.24] has shown that there is ε0 such that for any ε1, ε2 ∈ (0, ε0], one has

L(p, ε1) � L(p, ε2) as p ↓ pc,

so we simply write L(p) for L(p, ε0).
It is useful to roughly invert the function p 7→ L(p), so for n ≥ 1, we define

pn = min{p : L(p) ≤ n}. (2.1)

Below, we list various properties of correlation length and “classical results” that
we will use. Recalling the definition of Aσ(n) in (1.1), we extend this definition to
Aσ(n, p, q) for n ≥ 1 and p, q ∈ [0, 1] as the event that ∂B(|σ|) is connected to ∂B(n)
by |σ|O p-open paths, |σ|C q-closed duals paths, and these paths occur in the orientation
given by σ.

• For any σ, there is a constant C > 0 such that, for m ≤ n ≤ min{L(p1), L(p2)},
we have the estimate:

(1/C)Pcr(Aσ(m,n)) ≤ P(Aσ(m,n, p1, p2)) ≤ CPcr(Aσ(m,n)). (2.2)

This is proved in [9, Theorem 27] when p1 = p2. The proof given there also
applies to our case. See [2, Lemma 6.2] for a proof in case σ = (O,C,O,C).

• There is a constant C > 0 such that for all n,

P(∂B(n)→∞ by a pn-open path) ≥ C. (2.3)

See [5, Theorem 2].

• (Similar to [5, Eq. (2.25)].) There are constants C1, C2 > 0 such that for all
p > pc and all n ≥ L(p),

P(∃ a p-closed dual path of diameter at least n/10 in B(n)) ≤ C1e
−C2

n
L(p) .

(2.4)

• By [3, Eq. (2.10)], there is D ∈ (0, 1) such that for all n,

Dn ≤ L(pn) ≤ n. (2.5)
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• We will make use of a slight generalization of the Harris-FKG association in-
equality, sometimes referred to as the “generalized FKG inequality”. This will
allow the usual FKG techniques to be extended to some cases where events are not
monotone; we will describe an example below when outlining “gluing” arguments.

The version we give is from [9, Lemma 13]. Suppose A1 and A2 are increasing
events in the space of the (te) variables. That is, suppose that for each configu-
ration (te) ∈ A1 and each (t′e) satisfying t′e ≥ te for all e, we have (t′e) ∈ A1 (and
similarly for A2). Suppose that B1 and B2 are two decreasing events. Last, sup-
pose that there are finite disjoint subsets Ξ+, Ξ−, Ξ ⊆ E2 such that A1 depends
only on the edge variables in Ξ+ ∪ Ξ, B1 on the variables in Ξ− ∪ Ξ, A2 on the
variables in Ξ+, and B2 on the variables in Ξ−. Then

P (A2 ∩B2 | A1 ∩B1) ≥ P(A2)P(B2) . (2.6)

• The Russo-Seymour-Welsh (RSW) theorem [11, 12] says that, at criticality, open
and closed box crossings are likely on all scales. We must extend our definition of
σ(n), defining σ(m,n) to be the event that there is an open path in the rectangle
[−m,m]× [−n, n] connecting the left side of this rectangle to the right side. With
this notation, RSW says that for any c > 0, there is a δc > 0 such that

δc ≤ lim inf
n

Pcr(σ(n, cn)) ≤ lim sup
n

Pcr(σ(n, cn)) ≤ 1− δc . (2.7)

In fact, δc can be chosen so that the bounds of (2.7) hold uniformly in the per-
colation parameter p, up to the correlation length:

δc ≤ inf
n:max{n, cn}≤L(p)

Pp(σ(n, cn)) ≤ sup
n:max{n, cn}≤L(p)

Pp(σ(n, cn)) ≤ 1−δc . (2.8)

A useful graph-theoretic fact is that there is an open left-right crossing of the box
[0,m]× [0, n] if and only if there is no closed dual top-bottom crossing of the dual
box [1/2,m− 1/2]× [−1/2, n+ 1/2]. This observation, combined with (2.7) and
(2.8) (along with the symmetries of the lattice) give analogous RSW bounds for
closed dual crossings.

• We will often require use of standard “gluing” and “arm separation” techniques
to extend and connect arms in critical and near-critical percolation. These tech-
niques originated in [5] and have the RSW estimates as their chief ingredient.
Because we will often omit details in the particular cases where these tools are
used, we give here a typical application of these techniques (for more detail, see
[9, Section 4]).

Fix the particular color sequences σ1 = (C), σ2 = (O,C), σ3 = (O). We claim
that

Pcr(Aσ1(5n), 0↔ 3ne1) � Pcr(Aσ2(n))Pcr(Aσ3(n)) . (2.9)

It is clear by inclusion and independence that the left-hand side of (2.9) is bounded
above by the right-hand side, so we focus on the lower bound. Note that the right-
hand side is the probability of the event that 0 has an open and closed connection
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to distance n and that 3ne1 has an open connection to distance n. The intuition
behind the bound is the following: given these “distance n” connections, there
is at least some uniform (in n) constant probability that the closed connection
from 0 is connected to a closed rectangle crossing connecting B(n) to ∂B(5n)
(the existence of such a crossing is furnished by the RSW technology). Similarly,
the open connections from 0 and 3ne1 have bounded conditional probability of
connecting to the same open rectangle crossing connecting B(n) to B(n) + 3ne1.

To make this precise, we mandate the connections from 0 to ∂B(n) and 3ne1
to 3ne1 + ∂B(n) have particular “landing sites”. That is, we ask that we can
choose the closed arm from 0 to connect to ∂B(n) specifically in the segment
{−n}×[−δn, δn] for some δ small, and the open arm to connect to {n}×[−δn, δn].

We also ask that the arms not come too close to each other’s endpoints: namely,
that the closed arm not enter [n − δn, n] × [−δn, δn], and that the open arm
not enter [−n,−n + δn] × [−δn, δn]. We also mandate the arm from 3ne1 have
its endpoint in {2n} × [−δn, δn]. This can be done using small scale “fences” –
rectangle crossings near arm endpoints – to insulate the arms from each other
and then direct them.

Last, we ask for each of the separated arms to be “extensible”. Taking the open
arm from 0 as an example and letting z denote its endpoint, this means that for
some fixed small ε > 0 there is an open vertical crossing of z + [0, εn]× [−εn, εn]
which is connected to the open arm by part of an open circuit; similar construc-
tions are used on the remaining arms. Figure 1 depicts these arm extensions near
the boundary of the small squares. The resulting event has probability at least
cPcr(Aσ2(n))Pcr(Aσ3(n)) for some small uniform c; see [9, Theorem 11].

Condition on the above event. We can now attach crossings of rectangles of
diameter order n to the small extensions of the preceding paragraph to direct the
arms appropriately. Given the RSW estimates and generalization of FKG given
at (2.6) (here we require the fixed, disjoint landing sites), these rectangle crossings
can be shown have at least constant conditional probability. For instance, letting
z′ denote the endpoint of the open arm from 3ne1, we ask for there to be an open
left-right crossing of the rectangle z′ + [n, 2n] × [−εn, εn]. The existence of this
rectangle crossing guarantees occurrence of {0 ↔ 3ne1}; a similar extension is
used on the closed arm. These rectangle crossings are depicted connecting the
two squares (for the open crossing) and connecting the left square outward toward
∂B(5n) (for the closed crossing) in Figure 1.

When applying the generalized FKG inequality above, one should take as A1

and B1 the events guaranteeing the existence of well-separated open and closed
arms (respectively) from 0 and 3ne1. The events A2 and B2 can be taken to be
the existence of the open and closed “extensions” of these arms; because these
extensions are chosen localized in disjoint regions, we obtain the appropriate
disjointness for the edges on which these events depend. The resulting event
has probability at least cPcr(Aσ2(n))Pcr(Aσ3(n)) for some possibly smaller c and
implies Aσ1(5n) ∩ {0↔ 3ne1}, completing the proof.

9



Figure 1: Depiction of the gluing argument outlined above. The closed arm from 0 is
extended all the way to ∂B(5n) (not shown). Note that the arms in B(n) may wander
throughout the box, though they may not come close to each other’s endpoints.

• One consequence of the above gluing techniques is the “quasi-multiplicativity” of
arm events. This says that, up to constants, an arm event can be decomposed
into two smaller-scale arm events. Fix some color sequence σ. Then uniformly in
p ≥ pc and |σ| ≤ k < m < n ≤ L(p), we have

Pp(Aσ(k, n)) �σ Pp(Aσ(k,m))Pp(Aσ(m,n)) . (2.10)

Here “�σ” means that the ratio of the two sides is uniformly bounded by constants
which depend possibly on σ but not on k ,m, n, p.

3 Proof of Theorem 1

Given a color sequence σ, recall the definition of the reduced sequence σ̃. It is the
sequence obtained from σ by replacing any subsequence of l consecutive ‘C’ entries by
min(l, 2) ‘C’ entries. For example, if

σ = (O,C,C,C,O,C),

then
σ̃ = (O,C,C,O,C),

whereas τ = (O,C,O,C) is equal to τ̃ .

3.1 Proof of the lower bound

Here we prove the inequality

Pcr(Aσ̃(n)) . P(Aσ(n)) (3.1)

Proof. We will first show that with positive probability, on the event Aσ̃(n, pc, pn), we
can force the existence of an outlet for the invasion in the annulusAnn(n, 2n). An outlet
is an edge e ∈ S such that if e = es (the s-th invaded edge), then te > sup{ter : r > s}.
The event Oe in the next lemma does not directly imply that the edge e is an outlet,
but if it is combined with the conditions (a) one endpoint of e is invaded and (b) the

10



e

Figure 2: The outlet construction in Lemma 3. The edge e crosses the defect in an otherwise
pn-closed dual circuit Ce. The open paths from e are pc-open; if these connections have
pn-open extensions to 0 and ∞, then e will be an outlet.

other endpoint of e is connected to ∞ by a pn-open path, then e is an outlet. We
mainly give the lemma and its proof to illustrate the general technique used to build
four-arm edges that can be turned into outlets.

In the conditions below, items 1 and 2 imply that e∗ is part of a pn-closed dual
circuit Ce around 0 with one defect (an edge which is not pn-closed), the edge e. See
Figure 2 for an illustration.

Lemma 3. For e ∈ Ann(n, 2n), let Oe be the event that the following conditions hold:

1. te ∈ (pc, pn),

2. one endpoint of the dual edge e∗ is connected by a pn-closed dual path in Ann(n, 2n)
around the origin to the other endpoint of e∗,

3. one endpoint of e is connected to ∂B(4n) by a pc-open path, and

4. the other endpoint of e is connected to ∂B(n/2) by a pc-open path.

There exists C > 0 such that for all n,

P

 ⋃
e∈Ann(n,2n)

Oe

 ≥ C.
Proof. By (2.2),

Pcr(Aτ (4n)) ≤ CP(Aτ (4n, pc, pn)),

where τ = (OCOC). By directing these arms as in [5] with the generalized FKG
inequality and the RSW theorem, one obtains C such that for all n and e ∈ Ann(n, 2n),

P(Oe) ≥ CPcr(Aτ (4n))(pn − pc).
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e

Figure 3: The event A∗σ̃(K,n, pc, pn). The construction is as in Figure 2, with additional
connections from B(K) (the innermost box) to the closed defected circuit crossed by e, and
a pn-open extension of the path from e which connects e to ∞ (in the annulus Ann(n, 2n)).
Note that e is not yet guaranteed to be an outlet; this will be enforced by imposing conditions
on the weights in B(K).

Since the events (Oe) are disjoint,

P(∪eOe) =
∑
e

P(Oe) ≥ Cn2Pcr(Aτ (4n))(pn − pc)

≥ Cn2Pcr(Aτ (n))(pn − pc).

In the last inequality we have used quasimultiplicativity. Last, we use the scaling
relation [9, Prop. 34]

n2Pcr(Aτ (n))(pn − pc) � 1.

We will naturally want to force an edge e for which Oe occurs to be an outlet. We
also want to do this in such a way that there are σ̃ arms from ∂B(|σ̃|) to ∂B(n). To do
so, it will be easier to begin the arms from some fixed box B(K) instead of near 0. So
for n ≥ 8K ≥ 8|σ̃|, we consider the event A∗σ̃(K,n, pc, pn) comprised of the following
conditions (see Figure 3):

1. there is an edge e in Ann(n, 2n) for which Oe occurs,

12



2. there is a pn-open path connecting e to ∞,

3. there is a σ̃ connection from B(K) to ∂B(n); the open paths are pc-open, the
closed dual paths are pn-closed, one of the open paths further connects to e, the
other open paths further connect to edges dual to those on the pn-closed circuit
Ce with one defect from the definition of Oe, and the closed dual paths further
connect to the same circuit.

Note that the pn-open path from item 2 is not necessarily disjoint from the pc-open
path from item 3 of the definition of Oe, and the pc-open path from the σ̃-connection
in item 3 connecting to e is not necessarily disjoint from the pc-open path from item 4
of the definition of Oe.

We next claim that

P(Aσ̃(K,n, pc, pn)) ≤ CP(A∗σ̃(K,n, pc, pn)). (3.2)

To justify (3.2), first let Fn be the event that there is an edge e ∈ B̃(n) := B(n/4) +
(3n/2)e1 such that the following conditions hold:

1. the weight te ∈ (pc, pn),

2. one endpoint of the dual edge e∗ is connected to the top of the box [n, 2n] ×
[−2n, 2n] by a pn-closed dual path (inside the box), and the other is connected
to the bottom by another disjoint such path,

3. one endpoint of e is connected to ∂B(n/2) by a pc-open path remaining in the
set [0, 2n]× [−n, n], and

4. the other endpoint of e is connected to ∂B(4n) by pc-open path remaining in
[0, 4n]× [−n, n].

By a similar argument to that given for Lemma 3, but now explicitly directing the
pc-open arms as in [5], one obtains

P(Fn) ≥ C > 0.

Next, we define the event F ′n that there is a pn-closed dual path P connecting the
top side of [−2n,−n]× [−2n, 2n] to the bottom (within the box), and P is connected
in [−2n, 0] × [−n, n] by |σ̃| − 1 arms to ∂B(n/2) so that these arms, along with the
pc-open one from the event Fn, have relative orientation σ̃. We claim that also

P(F ′n) ≥ C > 0. (3.3)

To see why, we condition on the left-most pn-closed dual path connecting the top of
[−2n,−n]× [−2n, 2n] to the bottom. For any such path P , let D(P ) be the event that
it is leftmost. Then by the RSW theorem,

0 ≤ C ≤
∑
P

P(D(P )).
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Now let F ′n(P ) be the event that P is connected by |σ̃| − 1 arms to ∂B(n/2) within
[−2n, 0] × [−n, n] so that these arms, along with the pc-open one from the event Fn,
have relative orientation σ̃. By the RSW theorem, P(F ′n(P )) > 0 uniformly in P , and
this event is independent of D(P ), so we obtain

P(F ′n) ≥
∑
P

P(F ′n(P ))P(D(P )) ≥ C,

proving (3.3). Note that by independence, we also have

P(Fn ∩ F ′n) ≥ C.

Next if F ′′n is the event that there are pn-closed dual paths within [−2n, 2n]× [n, 2n]
and [−2n, 2n]× [−2n,−n] connecting the left and right sides of those boxes, then the
RSW theorem gives P(F ′′n ) ≥ C and by the generalized FKG inequality,

P(Fn ∩ F ′n ∩ F ′′n ) ≥ C.

Once again, we apply the generalized FKG inequality to obtain P(Gn) ≥ C, where Gn
is the event that Fn∩F ′n∩F ′′n occurs, and the pc-open path from item 4 of the definition
of Fn is connected to infinity by a pn-open path. (Here we are using (2.3).) Therefore

P(Aσ̃(K,n, pc, pn)) ≤ CP(Aσ̃(K,n/2, pc, pn))P(Gn).

By a gluing argument with the generalized FKG inequality,

P(Aσ̃(K,n/2, pc, pn))P(Gn) ≤ P(A∗σ̃(K,n, pc, pn)),

and these two inequalities justify (3.2).
We have now placed an outlet-like edge e in the annulus Ann(n, 2n) (although it

still needs to be guaranteed to be invaded – this will occur later by forcing a pc-open
path from 0 to it), so we set on our next task, which is to make sure that the adjacent
closed arms described in the sequence σ̃ can be chosen not to come too close to each
other. Whenever n ≥ 8K ≥ 8k|σ̃|, where

k = |σ|,

we define A∗,kσ̃ (K,n, pc, pn) that A∗σ̃(K,n, pc, pn) occurs, but the closed arms for the
σ̃-connection can be chosen so that each pair associated to adjacent ‘C’ entries is k-
separated in Ann(2K,n/4): their intersections with Ann(2K,n/4) remain Euclidean
distance at least k form each other. (Note that each pair of length-two sequences of
‘C’ entries in σ̃ are separated by ‘O’ entries.) In this modified event, we still insist
that one of the pc-open paths connects B(K) to e and the other pc-open paths connect
B(K) to the dual circuit Ce from the definition of Oe.

Claim 1. For any K large enough, one has for n ≥ 8K,

P(A∗σ̃(K,n, pc, pn)) ≤ 2P(A∗,kσ̃ (K,n, pc, pn)). (3.4)

14



γ1 γ21
1

P2

P11

1

R1

Figure 4: The arms construction from Lemma 4. We show that the closed arms in
A∗σ̃(K,n, pc, pn) may be chosen separated by arguing that otherwise there would be a six-arm
point. In the figure, this six-arm point is where the paths γ11 , γ21 , and two open paths nearly
meet; the arms extend from this meeting point to the boundary of the small box.

Proof. To show this claim, the main step is to show (in the following lemma) that
when the event on the left occurs, but the one on the right does not, we can find an
edge associated to a certain “six-arm” event. See Figure 4.

Lemma 4. If n ≥ 8K ≥ 8k|σ̃| and A∗σ̃(K,n, pc, pn) occurs but A∗,kσ̃ (K,n, pc, pn) does
not, then there is an edge f ∈ Ann(2K,n/4) with the following six-arm conditions to
distance |f |/2:

1. four disjoint pn-closed dual arms from B(f, 2k) (the rectangular box of sidelength
2k centered on the midpoint of f) to ∂B(f, |f |/2), and

2. two additional disjoint pn-open arms from B(f, 2k) to ∂B(f, |f |/2).

The arms follow the color sequence (OCCOCC).

Proof of Lemma 4. Suppose that Aσ̃(K,n, pc, pn) occurs, but Akσ̃(K,n, pc, pn) does not.
Fixing any choice of arms satisfying the event Aσ̃(K,n, pc, pn), we will now make pos-
sibly new choices for the closed arms in each sequence of length 2 of ‘C’ entries. If
there are r subsequences of length two of ‘C’ entries, we first fix pn-closed dual arms
γ11 , γ

1
2 , . . . , γ

r
1 , γ

r
2 (in clockwise order) corresponding to them in int(Ce) \ B(K) from

∂B(K) to the pn-closed dual circuit Ce with one defect. For each i, the arms γ1i and
γ2i are bounded on either sides by (possibly non-distinct) pc-open arms P 1

i , P
2
i , which

delimit a region Ri between ∂B(K) and Ce. We now choose γ̂1i and γ̂2i to be pn-
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closed dual arms in Ri which are counterclockwise-most and clockwise-most (so that
the region between them is maximal).

The arms γ̂1i , γ̂
2
i for i = 1, . . . r, along with the P 1

i , P
2
i give a total of |σ̃| arms from

∂B(K) to Ce which are oriented according to σ̃, so since A∗,kσ̃ (K,n, pc, pn) does not
occur, there must be an i such that γ̂1i and γ̂2i come within distance k of each other
in Ann(2K,n/4). Therefore we can find f ∈ Ann(2K,n/4) such that the arms γ̂1i , γ̂

2
i

intersect B(f, k). These arms furnish the four disjoint pn-closed dual arms in part 1.
By extremality, for each dual edge g∗ on γ̂1i ∪ γ̂2i , there is a pn-open path from g to one
of P 1

i or P 2
i . Since both of γ̂1i and γ̂2i intersect B(f, k), we find pn-open arms which

can be continued to ∂B(f, |f |/2) when they meet either P 1
i or P 2

i .

We continue with n ≥ 8K ≥ 8k|σ̃| as in Lemma 4. For f ∈ Ann(2K,n/4), write
Ef for the event in the Lemma 4. Then

P(A∗σ̃(K,n, pc, pn) \A∗,kσ̃ (K,n, pc, pn)) ≤
∑

f∈Ann(2K,n/4)

P(A∗σ̃(K,n, pc, pn), Ef ). (3.5)

Using independence and a gluing argument (similar to [9, p. 1599]), the above summand
is at most

P(Aσ̃(K, |f |/2, pc, pn))P(Ef )P(A∗σ̃(2|f |, n, pc, pn)) ≤ CP(A∗σ̃(K,n, pc, pn))P(Ef ). (3.6)

By (2.2),
P(Ef ) ≤ CPcr(Aρ(|f |/2)).

Here, ρ is the sequence (OCCOCC), and Aρ(|f |/2) is the ρ-connection event between
∂B(6) and ∂B(|f |/2). (The constant C depends on k, but since k is fixed for us,
this does not matter.) By Reimer’s inequality [10] and the RSW theorem, there is
δ > 0 such that Pcr(Aρ(|f |/2)) ≤ C|f |−δPcr(Aρ′(|f |/2)), where ρ′ = (OOCOC). The
universal value of the 5-arm exponent is 2 [7, Lemma 5], [9, Theorem 24, 3], so we
obtain

P(Ef ) ≤ C|f |−2−δ.

Combine this inequality on P(Ef ) with (3.5) and (3.6) for

P(A∗σ̃(K,n, pc, pn) \A∗,kσ̃ (K,n, pc, pn)) ≤ CP(A∗σ̃(K,n, pc, pn))
∑

f∈Ann(2K,n/4)

|f |−2−δ

≤ CK−δP(A∗σ̃(K,n, pc, pn)).

Choosing any K ≥ k|σ̃| so that CK−δ ≤ 1/2 gives

P(A∗,kσ̃ (K,n, pc, pn)) = P(A∗σ̃(K,n, pc, pn))− P(A∗σ̃(K,n, pc, pn) \A∗,kσ̃ (K,n, pc, pn))

≥ (1/2)P(A∗σ̃(K,n, pc, pn))

and completes the proof of (3.4).
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From now on, fix K ≥ k|σ̃| as in Claim 1. Combine (2.2), (3.2), and (3.4) for
n ≥ 8K to get

Pcr(Aσ̃(K,n)) ≤ CP(A∗,kσ̃ (K,n, pc, pn)). (3.7)

(From here on, we fix K.) In this last step, we must force the edge e for which Oe
occurs to actually be an outlet, and force the pc-open arms in the σ̃-connection to be
invaded. To do this, we note that A∗,kσ̃ (K,n, pc, pn) implies the event Âσ̃(2K,n, pc, pn)

that all of the conditions from A∗,kσ̃ (K,n, pc, pn) occur, but that the σ̃ arms begin at
∂B(2K) (instead of ∂B(K)) and the pairs of adjacent closed arms remain k-separated
in Ann(2K,n/4). Because this event only depends on the state of edges in B(2K)c,
we will combine it with a fixed event defined in terms of edges in B(2K) to ensure the
additional necessary invasion conditions.

Since there are only finitely many choices of starting points on ∂B(2K) for our arms
in Âσ̃(2K,n, pc, pn), we can choose vertices {xi}, dual vertices {yi}, and a constant C
such that, conditioned on Âσ̃(2K,n, pc, pn) the probability is at least C that {xi} and
{yi} are the starting points of σ̃-arms in the definition of Âσ̃(2K,n, pc, pn). We simply
want to connect these points to arms from the origin. So we consider the event Ê that
the following conditions hold. See Figure 5 for an illustration.

1. There are |σ̃|O pc-open paths from 0 to the xi’s. They are disjoint outside of
B(|σ̃|).

2. There are |σ̃|C disjoint pn-closed dual paths from ∂B(|σ̃|) to the yi’s.

3. There is a pn-closed dual circuit around 0 in Ann(|σ̃|, |σ|) with |σ̃|O defects.

4. There are |σ| disjoint paths from ∂B(|σ|) to ∂B(2K). |σ|O of these are portions
of the pc-open paths from item 1, |σ̃|C of these are portions of the pn-closed dual
paths from item 2, and |σ|C − |σ̃|C of these have no weight restriction, and lie
between the adjacent closed dual paths from item 2 in such a way that if we were
to count these additional dual paths as closed, then there would be a σ-connection
from ∂B(|σ|) to ∂B(2K).

In item 4, the non-weight restricted paths lie between pairs of closed dual paths in σ̃
and function as the additional closed arms (in the IPC) forming the arm event with
sequence σ.

Calling F̂ the event that our fixed {xi} and {yi} are the starting points on ∂B(2K)
of arms in Âσ̃(2K,n, pc, pn), one then has by independence

P(A∗,kσ̃ (K,n, pc, pn)) ≤ CP(Âσ̃(2K,n, pc, pn), F̂ , Ê). (3.8)

On the event on the right, all pc-open arms from 0 in the definition of Âσ̃(2K,n, pc, pn)∩
Ê must be invaded, and the edge e from the definition of Oe is also invaded – it is
an outlet. For this reason, no pn-open edges are ever invaded, and so the pn-closed
dual arms from the definition of Âσ̃(2K,n, pc, pn) ∩ Ê are not invaded. Due to the
presence of the pn-closed dual circuit with defects from item 3, no edges are invaded
in the regions delimited by (a) the adjacent pn-closed dual arms from item 2, (b) the
pn-closed dual circuit from item 3, and (c) the closed dual circuit Ce with one defect
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x1x2x3

y1

x4

y2

Figure 5: The construction inside B(2K) used to build the “fixed event” Ê. When this event
is intersected with Âσ̃ and the event F̂ (which fixes the starting points of the arms in Âσ̃),
the invasion will have arms as in the definition of Aσ. The boxes, in order from smallest to
largest, are B(|σ̃|), B(|σ|), B(2K).

from the definition of Oe. Therefore the additional paths from item 4 are not invaded.
Since the pn-closed dual paths from Âσ̃(2K,n, pc, pn) remain at least distance k from
each other in Ann(2K,n/4), the additional paths from item 4 can be extended to ones
which reach ∂B(n/4), and they will not be invaded. Therefore

P(Âσ̃(2K,n, pc, pn), F̂ , Ê) ≤ P(Aσ(n/4)).

Combine this with (3.7) and (3.8) to obtain

Pcr(Aσ̃(K,n)) ≤ CP(Aσ(n/4)).

By quasimultiplicativity of arm events, we finish with our claimed statement (3.1):

Pcr(Aσ̃(n/4)) ≤ CPcr(Aσ̃(K,n)) ≤ CP(Aσ(n/4)).

3.2 Proof of the upper bound

The next proposition is the upper bound complementing (3.1). We let σ be a color
sequence with |σ|O ≥ 2. We must show that there is a C > 0 such that for all n,

P(Aσ(n)) ≤ CPcr(Aσ̃(n)). (3.9)
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ê1

Figure 6: An illustration of Lemma 5. The first outlet ê1 lies on an open arm. All open
arms extend to ∂B(n) (the outer box), so if ê1 ∈ B(n/2) (the middle box) and has weight
less than τ , there are τ -closed arms from ê1 to the the extremities of the open arms. These
have diameter least n/2.

Proof. We first split the probability according to the location of the “first outlet” ê1.
This is the unique edge with tê1 > te for all invaded edges e.

P(Aσ(n), ê1 ∈ B(n/2)) + P(Aσ(n), ê1 /∈ B(n/2)). (3.10)

To deal with the first probability, we use a lemma. We write τ̂1 for the weight tê1 . We
will need the following definitions: for n ≥ 1, set log(0) n = n and, for n for which it is
defined, set log(k) n = log(log(k−1) n). For n > 10, put

log∗ n = max{k ≥ 0 : log(k) n > 10},

and for n > 10 and j = 0, . . . , log∗ n with M > 0 fixed until later, define

pn(j) = p⌊
n

M log(j) n

⌋.
(Recall the definition of pn in (2.1).)

Lemma 5. Suppose that Aσ(n) occurs. If ê1 ∈ B(n/2) and τ̂1 ≤ pn/2(j), then the
following occur.

1. If pn/2(j + 1) < τ̂1, there are two disjoint pn/2(j + 1)-closed dual arms from
∂B(n/2) to ∂B(n).
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2. There are |σ|O disjoint pn/2(j)-open arms from ∂B(|σ|) to ∂B(n/2).

3. There are |σ̃|C disjoint pc-closed dual arms from ∂B(|σ|) to ∂B(n/2).

4. The arms from items 2 and 3 appear in the sequence specified by σ̃.

Proof. Let us consider these properties in order. See Figure 6 for an illustration.

1. Just before adding ê1 to the invasion, the entire invasion is pn/2(j)-open and is
surrounded by a pn/2(j + 1)-closed dual circuit around the origin containing ê∗1.
Only one edge, ê1, on this closed dual circuit will ever be invaded, and so ê1 is an
edge whose removal from the invasion disconnects 0 from infinity. Therefore ê1
is on exactly one of the open arms from ∂B(|σ|) to ∂B(n), and any other open
arm must be completely contained in the invasion at that point. To encompass
this arm, the pn/2(j + 1)-closed dual circuit must cross the annulus Ann(n/2, n),
and so it must contain two disjoint pn/2(j+ 1)-closed dual arms from ∂B(n/2) to
∂B(n).

2. Since the first outlet has weight at most pn/2(j), so does every edge in the invasion,
including |σ|O open arms from ∂B(|σ|) to ∂B(n/2).

3. Make a choice of arms from ∂B(|σ|) to ∂B(n) that satisfy the event Aσ(n). Fix
two open arms α1, α2 in the invasion which appear consecutively in the sequence
σ, but are separated by at least l ≥ 1 closed dual arms, and let R be the region
bounded by the αi’s, ∂B(|σ|), and ∂B(n/2).

If l = 1, since there is a non-invaded arm separating the two invaded arms, any
path in R joining α1 to α2 must contain at least one non-invaded edge. Since any
pc-open path joining α1 to α2 in R would be contained in the invasion, there can
be no such path in R. By duality there is at least one pc-closed dual arm from
the ∂B(|σ|) to ∂B(n/2) in R.

In the case l ≥ 2, consider the two extremal non-invaded dual arms in R. That
is, β1 is a non-invaded dual arm such that the region R1 bounded by α1, β1,
∂B(|σ|), and ∂B(n/2) is minimal. The other extremal arm β2, similarly defined,
serves as part of the boundary of a region R2 whose boundary also includes α2.
β1 and β2 are disjoint since l ≥ 2, and so are R1 and R2. No pc-open path in R
whose initial edge touches α1 can exit R1 since such an arc must be invaded. It
follows that R1∪β1 contains a pc-closed dual arm from ∂B(|σ|) to ∂B(n/2). The
same holds for R2, so there are at least two pc-closed dual arms from ∂B(|σ|) to
∂B(n/2) in R.

The previous argument applies to any region between two consecutive open arms,
and produces a total of |σ̃|C pc-closed dual arms from ∂B(|σ|) to ∂B(n/2).

4. This follows immediately from the way the closed dual arms are obtained in the
previous item.

20



Given the previous lemma, we now decompose the first probability in (3.10) ac-
cording to the value of τ̂1. In case τ̂1 > pn/2(1) we bound

P(Aσ(n), ê1 ∈ B(n/2), τ̂1 > pn/2(1)) ≤ P(Cn(1)),

where Cn(j) is the event that there are two disjoint pn/2(j)-closed arms from ∂B(n/2)
to ∂B(n). From (2.4) and (2.5), one obtains the upper bound

P(Cn(1)) ≤ C1e
−C2

n/2
L(pn/2(1)) ≤ C1e

− 2C2
D
M log(n/2).

By quasimultiplicativity, there is α > 0 such that for all n ≥ 2,

Pcr(Aσ̃(n)) ≥ Cn−α,

so if we choose M large enough,

P(Aσ(n), ê1 ∈ B(n/2), τ̂1 > pn/2(1)) ≤ Pcr(Aσ̃(n)). (3.11)

For the probability of the remaining event, {Aσ(n), ê1 ∈ B(n/2), τ̂1 ≤ pn/2(1)},
Lemma 5 gives the bound

P(Aσ(n), ê1 ∈ B(n/2), τ̂1 ≤ pn/2(1))

=

log∗(n/2)−1∑
j=1

P(Aσ(n), ê1 ∈ B(n/2), τ̂1 ∈ (pn/2(j + 1), pn/2(j)])

+ P(Aσ(n), ê1 ∈ B(n/2), τ̂1 ≤ pn/2(log∗(n/2)))

≤
log∗(n/2)−1∑

j=1

P(Aσ̃(|σ|, n/2, pn/2(j), pc), Cn(j + 1))

+ P(Aσ̃(|σ|, n/2, pn/2(log∗(n/2)), pc)). (3.12)

In this equation, we are using the events Aσ̃(m,n, p, q) defined near (2.2).
The events Cn(j + 1) and Aσ̃(|σ|, n/2, pn/2(j), pc) depend on disjoint sets of edges,

so by (2.4) and (2.5), the sum (3.12) is bounded by

log∗(n/2)−1∑
j=1

C1P(Aσ̃(|σ|, n/2, pn/2(j), pc)) exp

(
−2C2

D
M log(j+1)(n/2)

)
+ P(Aσ̃(|σ|, n/2, pn/2(log∗(n/2)), pc)).

By an explicit construction, we can change the term |σ| to |σ̃| at the cost of a constant
factor, so we obtain

log∗(n/2)−1∑
j=1

CP(Aσ̃(n/2, pn/2(j), pc)) exp

(
−2C2

D
M log(j+1)(n/2)

)
+ CP(Aσ̃(n/2, pn/2(log∗(n/2)), pc)). (3.13)
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For the probability P(Aσ̃(n/2, pn/2(j), pc)), we use quasimultiplicativity and (2.2) for
the upper bound

P(Aσ̃(n/2, pn/2(j), pc)) ≤ CPcr

(
Aσ̃

(⌊
n/2

M log(j)(n/2)

⌋))

≤ CPcr(Aσ̃(n))Pcr

(
Aσ̃

(⌊
n/2

M log(j)(n/2)

⌋
, n

))−1
.

Once again, by quasimultiplicativity, we get the bound

P(Aσ̃(n/2, pn/2(j), pc)) ≤ CPcr(Aσ̃(n))
(
M log(j) n

)C3

. (3.14)

Plug this into (3.13) for the bound

CPcr(Aσ̃(n))

1 +

log∗(n/2)−1∑
j=1

(log(j)(n/2))−C4M

 . (3.15)

If M is large enough, C4M ≥ 1 and as in [3, Eq. (2.26)], the sum is bounded by a con-
stant independently of n. So we finish with an upper bound for (3.12) of CP(Aσ̃(n/2)).
Combining this with (3.11), we complete the bound on the first term of (3.10):

P(Aσ(n), ê1 ∈ B(n/2)) ≤ CP(Aσ̃(n)). (3.16)

We now aim to give a similar bound for the second term in (3.10). Once again we
need a lemma about arm events, but with another definition. We write

Hn(j) =

{
there is a pn(j)-open circuit D around 0 in B(n) \B(n/2)

and D ↔∞ by a pn(j)-open path in B(n/2)c

}
. (3.17)

As in [3, Eq. (2.21)], we have, for some C, c > 0

P(Hn(j)c) ≤ C exp(−cM log(j) n) for all n, j.

Lemma 6. Suppose Aσ(n) occurs. If ê1 /∈ B(n/2) and Hn/2(j) occurs, then the
following hold.

1. There are |σ|O pn/2(j)-open arms from ∂B(|σ|) to ∂B(n/4).

2. There are |σ̃|C pc-closed dual arms from ∂B(|σ|) to ∂B(n/4).

3. The arms appear in the sequence specified by σ̃.

Proof. The proof is essentially identical to that of Lemma 5. The only difference is
that it is now the occurence of Hn/2(j) which forces τ̂1 ≤ pn/2(j).
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ê1

Figure 7: An illustration of Lemma 6. The occurrence of a pn/2(j) open circuit in
Ann(n/4, n/2) pn/2(j)-connected to ∞ implies that τê1 ≤ pn/2(j) if ê1 ∈ B(n/2)c. By
definition, all invaded arms are pn/2(j)-open in this case. The boxes, in order from smallest
to largest, are B(|σ|), B(n/4), B(n/2), B(n).

The occurence of Hn/2(j) depends only on edges outside B(n/4), so can write:

P(Aσ(n), ê1 ∈ Bc(n/2))

≤
log∗(n/2)−1∑

j=1

P(Aσ̃(|σ|, n/4, pn/2(j), pc), ê1 ∈ Bc(n/2), Hn/2(j + 1)c, Hn/2(j))

+ P(Aσ̃(|σ|, n/4, pn/2(log∗(n/2)), pc), ê1 ∈ Bc(n/2), Hn/2(log∗(n/2)))

≤ C

log∗(n/2)−1∑
j=1

P(Aσ̃(n/4, pn/2(j), pc))P(Hn/2(j + 1)c)

+ CP(Aσ̃(n/4, pn/2(log∗(n/2)), pc)).

Since P(Hn/2(j + 1)c) ≤ C exp(−cM log(j+1)(n/2)), we conclude by a summation
similar to (3.15), since, as in (3.14)

P(Aσ̃(n/4, pn/2(j), pc)) ≤ CPcr(Aσ̃(n))(M log(j) n)C4 .

We then produce
P(Aσ(n), ê1 ∈ Bc(n/2)) ≤ CPcr(Aσ̃(n)),

and combine this with (3.16) for the final bound (3.9).

23



4 Proof of Theorem 2

4.1 Lower bound for k ≥ 1

Our next result is the first inequality in Theorem 2. It is a lower bound on the
probability of Aσk(n) in the IPC, and we state itagain here for the reader’s convenience:
for some ε > 0 independent of k and some C depending on k,

nεPcr(Aσ̃k(n)) ≤ CP(Aσk(n)) for all n. (4.1)

Here, σ̃k is the reduced arm sequence defined in our case by replacing the k ‘C’ entries
by min{k, 2} of them.

Proof of (4.1). We will deal with the cases k ≤ 2 and k > 2 separately; first we take
k ≤ 2 so that σ̃k = σk. Our main goal will be to find a positive density (in scales) of
outlets for the IPC on the event Aσk(n). (Recall that e ∈ S in an outlet if, when e = es,
the s-th invaded edge, one has tes > sup{ter : r > s}.) As usual, we will consider only
n of the form n = 2N for some N > 0. The reason is quasimultiplicativity: if the
statement holds for such n, then for a general n, putting n̂ = 2dlog2 ne,

nεPcr(Aσ̃k(n)) ≤ C(n̂)εPcr(Aσ̃k(n̂)) ≤ CP(Aσk(n̂)) ≤ P(Aσk(n)).

Fix a large positive integer κ to be chosen later; this will govern how often we
look for outlets. Ultimately, κ will not depend on N , but only on N -independent
constants related to, e.g., gluing and arm separation. We also fix some notation to
avoid proliferation of symbols. Let i0 be any fixed number with the property B(|σk|) ⊂
B(22κi0) (so that there is enough space in B(22κi0) to fit k+1 disjoint arms). Let N ′ =
bN/2κc−1, where we assume N is so large thatN ′ > i0. For each i = i0, . . . , N

′ and 0 ≤
a < κ, let Di = Ann(22κi, 22κi+2κ) and Eai = Ann(22κi+2a, 22κi+2a+1). An arbitrary
vector ρ = (ρ(i0), . . . , ρ(N ′)) ∈ {0, 1, . . . , κ− 1}N ′−i0+1 will denote a particular choice
of placement of outlets – we will demand that exactly one outlet occur in each Di,
and that it be placed particularly in some Eai . For a given ρ, we abbreviate the
corresponding near-critical probabilities: p̃i := p22κi+2ρ(i) .

Formally, for each such ρ, define the event Kρ as follows. Split each annulus E
ρ(i)
i

into 8 rectangular boxes with disjoint interiors numbered Si1, . . . , S
i
8 clockwise starting

from the upper right corner, in the natural way. (That is, Si1 is the upper-right of the
annulus, Si2 is the right, Si3 is the bottom-right, Si4 is the bottom, and so on.)

1. For each i = i0, . . . , N
′, there is a p̃i-closed dual circuit with one defect in E

ρ(i)
i ;

2. The aforementioned defected edge e in each E
ρ(i)
i is in Si2 and has te ∈ (pc, p̃i);

3. For each i = i0, . . . , N
′− 1, there are k disjoint p̃i+1-closed dual paths connecting

the above mentioned dual circuit in E
ρ(i)
i to that in E

ρ(i+1)
i+1 so that their inter-

sections with E
ρ(i)
i and E

ρ(i+1)
i+1 are in Si4, S

i+1
4 , and Si6, S

i+1
6 , respectively, and

the dual circuit in E
ρ(N ′)
N ′ has k disjoint p2N -closed dual connections to ∂B(2N )

so that their intersections with E
ρ(N ′)
N ′ are in SN

′
4 and SN

′
6 , respectively (only S4’s

are used if k = 1);
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Si+12

Si2

Si+14

Si+16

Si4

Si6

Figure 8: An illustration of E
ρ(i)
i (inner annulus) and E

ρ(i+1)
i+1 (outer annulus). A pc-open

path connects the defect in the p̃i-closed dual circuit in Si2 to the defect in the p̃i+1-closed
dual circuit in Si+1

2 . In the case shown, k = 2 p̃i+1-closed dual paths connect the two circuits.
Their intersections with the circuits lie in Si4, S

i+1
4 and Si6, S

i+1
6 , respectively.

4. For each i = i0, . . . , N
′−1, there is a pc-open path connecting the defects in E

ρ(i)
i

and E
ρ(i+1)
i+1 so that their intersections with E

ρ(i)
i and E

ρ(i+1)
i+1 are in Si2 and Si+1

2 ,

respectively, and the defect in E
ρ(N ′)
N ′ has a pc-open connection to ∂B(2N+1) so

that its intersection with E
ρ(N ′)
N ′ is in SN

′
2 ;

5. There is a pc-open circuit in Ann(2N , 2N+1) which has a p2N+1-open connection
to infinity, k disjoint p̃i0-closed dual paths from ∂B(|σk|) to the dual circuit in

E
ρ(i0)
i0

so that their intersections with E
ρ(i0)
i0

are in Si04 and Si06 respectively, and a

pc-open connection from 0 to the defect in Di0 so that its intersection with E
ρ(i0)
i0

is in Si02 (only S4’s are used if k = 1).

See Figure 8.
We make two major claims about the events {Kρ}:

a. There is a constant c > 0, uniform in ρ and independent of κ and N , such that

P(Kρ) ≥ cN
′−i0+1Pcr(Aσk(n));

b. For ρ 6= ρ′, the events Kρ and Kρ′ are disjoint.

We first prove the k ≤ 2 case of the theorem assuming the veracity of these claims.
First we show that, on the event Kρ, there are k closed (noninvaded) dual arms from
∂B(|σk|) to ∂B(2N ). Indeed, assume the contrary. Then, a closed (at the appropriate
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parameter value) edge e of one of the dual circuits from item 1 or of one of the closed
dual arms from items 3 or 5 must be invaded.

We show inductively in the invasion process that no such edge is invaded. Note
that the origin is in the p̃i0 infinite cluster, so the invasion will never take a p̃i0-closed
edge. Therefore no closed edge from the closed dual circuits or the closed dual arms is
invaded before crossing the defect in Di0 (or ever). Assume now that no closed edge
e as above has been invaded by the time directly after we invade the defect in Di,
for some i = i0, . . . , N

′ − 1. The invasion now has a pc-open path to the defect in
Di+1, so does not invade such e before reaching the “near” side of this defect. On the
other hand, once it reaches this defect, it will invade the defect before any p̃i+1-closed
edges. In particular, it will not invade any edge e in one of the closed dual circuits in
or dual arms leading to Dj , i0 ≤ j ≤ i+ 1 before this defect, since all applicable e are
p̃i+1-closed.

Last, once the defect of the circuit in DN ′ is invaded, the process will only invade
edges of the p2N+1-open infinite cluster. Since no e as above is p2N+1-open, we see that
each Kρ guarantees Aσk(n). (In the case k = 2, it is important that the closed arms
joining the dual circuits in each Di intersect S4

i and S6
i respectively, so that they can be

continued disjointly from circuit to circuit.) On the other hand, using the two claims,
we have

P(Aσk(n)) ≥ P(∪ρKρ) =
∑
ρ

P(Kρ)

≥ κN ′−i0+1cN
′−i0+1Pcr(Aσk(n)) ,

where we have used that there are κN
′−i0+1 possible values of ρ. Choosing κ = d2/ce

now proves the theorem.
It remains only to show that the two claims above hold. Claim b is easy, since

if ρ(i) 6= ρ′(i), then on Kρ there is a pc-open path across E
ρ(i)
i , but no such crossing

exists on Kρ′ . To see that Claim a holds, we can construct the event inductively using
standard techniques. The outlet construction technique from Lemma 3 allows us to

place a p̃i0-closed circuit with the necessary defect in E
ρ(i0)
i0

and two additional pc-
open arms from it with probability at least some uniform δ. In fact, by mimicking the
construction of an outlet with σ̃-arms connecting to its closed dual circuit from the
proof of (3.2), we can specifically guarantee in addition to the p̃i0-closed dual circuit:

• k disjoint p̃i0-closed dual connections from this circuit to ∂B(22κi0+2ρ(i0)) and
k disjoint p̃i0+1-closed dual connections from this circuit to ∂B(22κi0+2ρ(i0)+1)
(remaining in S4

i0
and S6

i0
respectively if k = 2), and

• pc-open connections from the defect to ∂B(22κi0+2ρ(i0)+1) and ∂B(22κi0+2ρ(i0))
(remaining in S2

i0
)

and that these connections are well-separated and “extensible” in the usual sense (as
in arm direction techniques in [5]). Using generalized FKG allows us to connect the
inner open path above to 0 and the p̃i0-closed dual arms to ∂B(|σk|) at a cost of at
most c0 Pcr(Aσk(22κi0+2ρ(i0))) for some uniform c0.
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The construction of subsequent circuits is the same; each circuit constructed will
cost a uniformly bounded constant probability, and connecting the ith to the i + 1st
with the appropriate arms costs a uniform constant multiple of

Pcr
(
Aσk

(
22κi+2ρ(i)+1, 22κ(i+1)+2ρ(i+1)

))
.

Note that this requires, as in our definition above, that the closed arms emanating

from E
ρ(i)
i are closed at parameter p̃i+1; otherwise, the constant would not be uniform

over choices of ρ.
Therefore, we have for some uniform c1 > 0

P (Kρ) ≥ cN
′−i0+1

1 Pcr
(
Aσk(22κi0+2ρ(i0))

)
Pcr
(
Aσk(22κN

′+2ρ(N ′)+1, 2N+1)
)

×
N ′∏
i=0

Pcr
(
Aσk

(
22κi+2ρ(i)+1, 22κ(i+1)+2ρ(i+1)

))
≥ cN ′−i0+1Pcr(Aσk(n)) ,

where in the last line we have used quasi-multiplicativity. This proves (4.1).
We now turn to the cases k > 2. The strategy is a straight-forward combination of

the proof of the case k ≤ 2 and the proof of the first inequality of Theorem 1. Because
the details are tedious and not so illuminating, we give here a sketch of the main idea.

Step 1. Defining the events. The strategy is to define an event similar to Kρ, from
the previous case, but now starting at some scale K. That is, given large positive K
so that B(|σk|) ⊂ B(K) and κ > 0, we set i0 so that B(4K) ⊂ B(22κi0) and then put,
for n = 2N , N ′ = bN/2κc − 1, where N is large enough so that N ′ > i0. We define
Di and Eai as before, and let ρ = (ρ(i0), . . . , ρ(N ′)) ∈ {0, 1, . . . , κ− 1}N ′−i0+1. Now let
Kρ = Kρ(K,κ,N) be defined similarly as before, the only differences being that (a)
we always take k = 2 in the definition; that is, we always use two closed dual paths
in all the items, (b) the p2N -closed dual connections in item 3 from the dual circuit

in E
ρ(N ′)
N ′ connect to the pc open circuit from item 5 in Ann(2N , 2N+1), (c) in item

5, the p̃i0-closed dual paths start at ∂B(K) instead of ∂B(|σk|) and the pc-open path
starts from ∂B(K) instead of 0, and (d) in item 5, we place a p2N -closed dual circuit
in Ann(2N , 2N+1) with one defect (an edge which is not p2N -closed) in the interior of
the pc-open circuit.

Exactly the same arguments as in the last case imply that for some c > 0, uniform
in ρ, κ,N , and K, one has

P(Kρ) ≥ cN
′−i0+1Pcr(Aσ2(K,n)), (4.2)

and for ρ 6= ρ′, the events Kρ and Kρ′ are disjoint.

Step 2. Separating the closed paths. This is the most involved step of the proof.
We must switch the strategy back to the one for the first inequality of Theorem 1. In
other words, we need to make sure that for our given value of k, the closed arms in
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the definition of Kρ can be chosen in such a way that they are k-separated (they do
not come within Euclidean distance k of each other in Ann(2K, 2N−1)). We begin by
defining events similar to the Kρ’s but with certain paths being k-separated.

Our separated event will be K∗ρ , and it is a subevent of Kρ. On Kρ, make a
measurable choice of the closed dual circuits in the Di’s, and all the arms connecting
either the circuits together, the innermost circuit to ∂B(K), or the outermost circuit
to the pc-open circuit in Ann(2N , 2N+1). We define these arms for i = i0, . . . , N

′ as
γi1, γ

i
2, and P i, where the γij ’s are the closed arms connecting the circuit in Di−1 to that

in Di (in the case i = i0, the arms start on ∂B(K) and in the case i = N ′, they end
on the pc-open circuit) and the P i’s are the corresponding pc-open arms connecting
outlets. Write xi, yi, zi for the starting points of γi1, P

i, and γi2, and x′i, y
′
i, z
′
i for the

ending points.
K∗ρ is defined as the subevent of Kρ on which the following occur:

1. possibly new closed arms γ̂i1, γ̂
i
2 can be selected such that they are k-separated

between the circuits in Di−1 and Di (in the case i = i0, we only require them to
be k-separated outside B(2K) and in the case i = N ′, inside B(2N−1)), and

2. defining ai, bi for the starting points of γ̂i1 and γ̂i2 and a′i, b
′
i for the ending points,

the arc of the circuit in Di−1 (or ∂B(K) in the case i = i0) between xi and zi
containing yi contains the corresponding arc between ai and bi, and similarly for
x′i, y

′
i, z
′
i and a′i, b

′
i.

The main argument of this step is to show that if K is large enough, then for all κ
fixed large enough, and all ρ, n, one has

P(Kρ) ≤ 2P(K∗ρ). (4.3)

The proof of this is similar to that of Claim 1. We sketch the idea here.

Sketch of proof of (4.3). The proof is in two parts: first we need a result similar to
Lemma 4, stating that if we cannot choose such arms, then we can find an edge f
with a certain six-arm event. The second is to show that if K is large enough, then
the probability that this six arm event occurs in Ann(2K, 2N−1) conditional that Kρ

occurs is at most 1/2.
For the first part, our version of Lemma 4 is the following. The only main difference

is that the open arms can have defects, due to the presence of outlets in Kρ. The proof
is the same as in Lemma 4: one chooses for the arms γ̂i1, γ̂

i
2 the extremal ones relative

to Pi (so that the region between them not containing Pi is maximal). Such arms
clearly satisfy item 2 above, and if they are not k-separated, one finds a six-arm event.

Lemma 7. For n and K as above, if Kρ occurs but K∗ρ does not, then there is an edge

f ∈ Ann(2K, 2N−1) with the following six-arm conditions to distance |f |/2:

1. four disjoint p̃i-closed dual arms from B(f, 2k) (the rectangular box of sidelength
2k centered on the midpoint of f) to ∂B(f, |f |/2), and

2. two additional p̃i-open arms from B(f, 2k) to ∂B(f, |f |/2), each with at most one
defect.
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Set Ef to be the event described in Lemma 7. Then one has

P(Kρ \K∗ρ) ≤
∑

f∈Ann(2K,2N−1)

P(Kρ, Ef ).

The second part of this step is to bound the sum by (1/2)P(Kρ) if K is large. This
is accomplished similarly to before. One can show using independence and a gluing
argument that there is C such that

P(Kρ, Ef ) ≤ CP(Kρ)P(Ef ).

The argument is notationally much more complicated than before, but the idea is the
same. One uses independence to upper bound by a product of three probabilities:
P(Ef ), the probability of an event comprised of the conditions of Kρ from B(K) to
B(|f |/2), and an event comprised of the conditions ofKρ in B(2|f |)c. Then one glues all
the paths from the last two events, possibly reconstructing an outlet in Ann(|f |/2, 2|f |).

Still one has P(Ef ) ≤ |f |−2−δ. The difference here is that the Ef event now contains
defected paths, but these only add factors of log2 |f | (as in [9, Proposition 18]), and
one can simply take δ smaller to compensate. Therefore one has

P(Kρ \K∗ρ) ≤ CP(Kρ)
∑

f∈B(2K)c

|f |−2−δ

≤ (1/2)P(Kρ)

if K if fixed large enough.

Step 3. Forcing K∗ρ to imply Aσk(n). For this last step, we want to ensure that the
open paths connecting the outlets in K∗ρ are invaded, and that the regions between all
the closed arms are not invaded. Since all of the closed arms are k-separated, we can
then squeeze additional non-invaded arms between them, forcing Aσk(n).

We do this just as in the arguments starting in the paragraph after (3.7): we first
note that K∗ρ implies the event K̂∗ρ , which is the same as the event K∗ρ , but all the arms

start from ∂B(2K) and remain k-separated within B(2N−1). Then we fix dual vertices
x̂1, x̂2 and a vertex ŷ1, all on ∂B(2K) so that on K̂∗ρ , with positive probability, the
open arm starts at ŷ1 and the closed arms start at the x̂i’s. Next we define an event
in B(2K) similar to Ê: define E′ as the event that the following conditions hold.

1. There is a pc-open path from 0 to ŷi.

2. There are two disjoint p̃i0-closed dual paths from dual neighbors of 0 to the x̂i’s.

3. There is a p̃i0-closed dual circuit around 0 in Ann(3, |σk|) with one defect.

4. There are k + 1 disjoint paths from ∂B(|σk|) to ∂B(2K). One of these is a
portion of the pc-open path from item 1, two of these are portions of the p̃i0-
closed dual paths from item 2, and k− 2 of these have no weight restriction, and
lie between the closed dual paths from item 2 in such a way that if we were to
count these additional dual paths as closed, then there would be a σk-connection
from ∂B(|σk|) to ∂B(2K).
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Since K was fixed in the last step, we can find C > 0 such that

P(K∗ρ ∩ E′) = P(K∗ρ)P(E′) ≥ CP(Kρ).

On the other hand, K∗ρ ∩E′ implies the invasion event Aσk(2N−1). Indeed, on K∗ρ ∩E′,
we can follow two closed arms from neighbors of the origin up to ∂B(2N−1). We follow
arms from the origin to the circuit in Di0 , take a portion of the circuit over to the closed
arm from this circuit to the one in Di0+1, etc., all the way up to the closed arm from
the circuit in DN ′ to the p2N -closed dual circuit in Ann(2N , 2N+1). By the last step
and the definition of E′, the arms are k-separated from ∂B(|σk|) to the first circuit,
from the second to the third, etc., up to ∂B(2N−1). Due to item 2 in the definition of
K∗ρ and the placement of the arms in the boxes Si2, S

i
4, S

i
6 from the definition of Kρ,

the portions of the circuits we take to build these arms are also k-separated. Therefore
these two closed arms followed from ∂B(|σk|) to ∂B(2N−1) are k-separated.

Last, one can inductively prove (similar to the induction from the case k ≤ 2) that
the region between these two closed arms which does not contain any of the pc-open
arms is not invaded. Therefore one has

K∗ρ ∩ E′ ⊂ Aσk(2N−1).

Noting that for distinct ρ, ρ′, the events K∗ρ ∩ E′ and K∗ρ′ ∩ E′ are disjoint, we then
finish with the same computation as in the last case, using (4.2):

P(Aσk(2N−1)) ≥ P
(
∪ρ
{
K∗ρ ∩ E′

})
=
∑
ρ

P(K∗ρ ∩ E′)

≥ C
∑
ρ

P(Kρ)

≥ CcN ′−i0+1κN
′−i0+1Pcr(Aσ2(K,n))

≥ CcN ′−i0+1κN
′−i0+1Pcr(Aσ2(n)).

Taking κ = d2/ce finishes the proof.

4.2 Upper bound for k = 1, 2

Our aim is to prove the other bound of the second theorem: for k = 1, 2 and for some
ε > 0, C > 0,

P(Aσk(n)) ≤ Cn−εPcr(Aσ̂k(n)), (4.4)

where σk is the sequence of one ‘O’ and k ‘C’ entries, and σ̂k is the sequence of zero
‘O’ and k ‘C’ entries.

Proof. We begin with a lemma, which characterizes the event that there is a non-
invaded path crossing an annulus in the invasion. (The complement is the event that
there is an invaded circuit around 0.)
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Lemma 8. For 1 ≤ m ≤ n, there exists an open circuit around 0 in Ann(m,n) in the
invasion cluster S if and only if there is p ∈ [0, 1] such that both of the following hold:

1. There is a p-open circuit C around 0 in Ann(m,n).

2. There is a p-closed dual circuit C ′ around C.

Proof. First suppose that items 1 and 2 occur. Since the invasion must take an edge
dual to C ′, let s be the first number such that es (the s-th invaded edge) is in C ′. At
time s− 1, the invasion must have intersected C and therefore invaded all of C.

Conversely, suppose C is an invaded circuit around 0 in Ann(m,n). Let p′ =
max{te : e ∈ C} and let ê be the edge with tê = p′. At the moment directly before
the invasion takes ê, the dual external edge boundary of the invasion contains a dual
circuit C ′ around 0 that is p′-closed. The dual external edge boundary of a set V of
vertices is the set dual edges e∗ such that e = {v, w}, v ∈ V , w /∈ V , and there exists
an infinite vertex self-avoiding path in Z2 from w that does not touch V . We make the
following two observations:

1. C ′ does not intersect C. Since C ′ is p′-closed and C is p′-open, these circuits can
only intersect at ê. If C ′ contained (ê)∗, then C ′ would cross C at the edge ê
into the interior of C, but would not be able to cross again to reach the exterior.
Thus they cannot intersect at all.

2. C ′ is in the exterior of C. At the moment after invading ê, the dual external
edge boundary of the invasion still contains the dual circuit C ′. This is because ê
is part of the circuit C, which lies entirely in the invasion. Hence both endpoints
of ê are already in the invasion graph at the step preceding the addition of ê. It
follows that the dual external edge boundary does not change when ê is added.
By the preceding claim, either C ′ is in the exterior of C, or C it is separated
from the origin by C ′. The second case can be ruled out, since after taking ê the
invasion graph contains a path from the origin to C which does not cross C ′ by
definition.

Now we choose any p satisfying

p′ < p < min{te : e ∈ C ′},

so that C is p-open but C ′ is p-closed.

Given the preceding Lemma characterizing the one dual closed arm event in the
invasion, our strategy to derive (4.4) is as follows. First, we claim that the event
Aσk(n) in the invasion implies the event Aσ̂k(|σk|, n, pc). (Here σ̂k is the sequence of
k ‘C’ entries and zero ‘O’ entries, so the parameter pc is only for the closed arms.)
To see this, if k = 1, then Aσ̂k(|σk|, n, pc)c means (by duality) that there is a pc-open
circuit around 0 in Ann(|σk|, n), and any such circuit must be invaded, so it is in S,
the invasion graph, implying the event Aσk(n)c. In the case k = 2, Aσ̂k(|σk|, n, pc)c
means that there is a pc-open circuit around 0 with at most one defect. But this circuit
(minus its defect) will also have to be in the invasion, implying Aσk(n)c.
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Given the above claim, we write

P(Aσk(n)) = P(Aσk(n) | Aσ̂k(|σk|, n, pc))P(Aσ̂k(|σk|, n, pc))
≤ CP(Aσk(n) | Aσ̂k(|σk|, n, pc))Pcr(Aσ̂k(n)), (4.5)

and aim to show that the conditional probability is small. To do this, we will show
that in each annulus Ann(j) = Ann(3j , 3j+1), there is a uniformly positive conditional
probability (given P(Aσ̂k(|σk|, n, pc))) that there is p > pc such that there is a p-open
circuit around zero enclosed by a p-closed circuit. We then must show that these events
for different j are almost independent, so that with probability exponentially high in
the order log n number of annuli, at least one of them occurs, which forces Aσk(n) not
to occur. The independence claims will take some work to prove, and we will follow the
strategy from Kesten-Zhang [6, Theorem 2]. We will not look in every annulus Ann(j),
but in a constant fraction of them, and we will have to insulate different annuli from
each other using pc-closed circuits.

Proceeding with the details, for K ≥ 1 (which will later be of order log3 n), define
the random set

J = {j ∈ [1,K) : ∃ pc-closed dual circuit around 0 both in Ann(3j) and Ann(3j+2)}.

Let N = #J . By the FKG inequality, for any C > 0,

P(Aσ̂k(|σk|, 33K , pc), N ≤ CK) ≤ P(Aσ̂k(|σk|, 33K , pc))P(N ≤ CK).

Since occurrences of j ∈ J are independent for distinct j RSW and standard concen-
tration estimates show there are C, a > 0 such that

P(N ≤ CK) ≤ e−aK .

Thus
P(Aσ̂k(|σk|, 33K , pc), N ≤ CK) ≤ e−aKP(Aσ̂k(|σk|, 33K , pc)).

Using this, compute

P(Aσk(33K))

= P(Aσk(33K), Aσ̂k(|σk|, 33K , pc))
≤ P(Aσk(33K), Aσ̂k(|σk|, 33K , pc), N > CK) + e−aKP(Aσ̂k(|σk|, 33K , pc)). (4.6)

Looking back at (4.5), our goal is now to show that for some possibly smaller a > 0,

P(Aσk(33K), Aσ̂k(|σk|, 33K , pc), N > CK) ≤ e−aKP(Aσ̂k(|σk|, 33K , pc)). (4.7)

The purpose of including this event {N > CK} is that we will need to use at least
CK dual circuits to decouple order K annuli from each other. In these annuli we will
build p-open and p-closed circuits, for different values of p.
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For j ∈ [1,K), let Ej be the event that there is a p33j -open circuit C around 0
in Ann(3j + 1) and a p33j -closed dual circuit around C in Ann(3j + 1). Then by the
previous lemma, one has

Aσk(33K) ⊂ ∩j∈JEcj ,

where, as J is random, ∩j∈JEcj is short-hand for
⋃
Ĵ

(
(∩j∈ĴE

c
j ) ∩ {J = Ĵ}

)
. So to

prove (4.7), we must show

P
(
∩j∈JEcj , N > CK | Aσ̂k(|σk|, 33K , pc)

)
≤ e−aK . (4.8)

On the event j ∈ J , we can define C3j and D3j+2 as the innermost and outermost
pc-closed dual circuits around 0 in the annuli Ann(3j) and Ann(3j + 2) respectively.
We obtain the decomposition

P(∩j∈JEcj , N > CK,Aσ̂k(|σk|, 33K , pc))

=
∑

Ĵ :#Ĵ>CK

∑
(C3j ,D3j+2:j∈Ĵ)

P

(
∩j∈JEcj , J = Ĵ , Aσ̂k(|σk|, 33K , pc), C3j = C3j

and D3j+2 = D3j+2 for j ∈ Ĵ .

)

Using independence, the inner probability is decomposed as the following (large) prod-
uct, where we have written

J = {j(1) < · · · < j(N)}.

Namely,

P(∂B(|σk|)→σ̂k C3j(1), 1, . . . , j(1)− 1 /∈ J, C3j(1) = C3j(1))

×
N∏
`=1

P(Cj(`) →σ̂k D3j(`)+2, E
c
j(`)) (4.9)

×
N−1∏
`=1

P
(

D3j(`)+2 →σ̂k C3j(`+1), D3j(`)+2 = D3j(`)+2

C3j(`+1) = C3j(`+1), j(`) + 1, . . . , j(`+ 1)− 1 /∈ J

)
× P(D3j(N)+2 →σ̂k ∂B(33K), D3j(N)+2 = D3j(N)+2, j(N) + 1, . . . /∈ J).

The core of the argument, then, is to address the factors in (4.9) and show:

Proposition 9. There exists λ < 1 such that for all j, all self-avoiding dual circuits
C around 0 in Ann(3j), and all self-avoiding dual circuits D around 0 in Ann(3j+ 2),

P(Ecj | C →σ̂k D) ≤ λ.

Proof. We will argue by finding some sequence of events (Ξj) with Ξj ⊆ Ej and some
ε uniform in j, C,D such that P (Ξj | C →σ̂k D) ≥ ε. Define the subboxes Bj , B

′
j of

Ann(3j + 1) by

Bj = 33j+1(1 + 3−3)e1 +B(33j−3)

B′j = 33j+1(1 + 3−3)e1 +B(33j−4) .

The closed arm(s) connecting C to D in the event {C →σ̂k D} will be routed through
Bj to cross in B′j a four-arm edge, whose existence is furnished by the following claim.
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Claim 2. There exists δ > 0 uniform in j such that the following holds. Let Kj be the
event that there is a vertical edge e = {x, x + e2} ∈ B′j with te ∈ (pc, p33j ) having the
following disjoint connections.

• A pc-open arm from x to the central portion of the bottom side of Bj .

• A pc-open arm from x+ e2 to the top side of Bj.

• A pc-closed dual arm from each vertex of e∗, to the left and right sides of Bj
respectively.

Proof of claim. Let Kj,e denote the probability that the above connections occur from
a particular edge e ∈ B′j (with the specified bounds on its edge weight), but now with
the pc-closed arms mandated to be p33j -closed, and set

Nj =
∑
e∈B′j

1Kj,e .

Standard arm-direction techniques [5] show as j →∞,

P(Kj,e) � P(Aτ (33j , pc, p33j ))(p33j − pc) uniformly in e,

where τ is the sequence (OCOC). Using (2.2) and summing over e, we obtain

E[Nj ] � (33j)2Pcr(Aτ (33j))(p33j − pc).

On the other hand, [9, Prop. 34] gives that

(33j)2Pcr(Aτ (33j))(p33j − pc) � 1,

so ENj � 1.
Now note that for e 6= e′, the events Kj,e and Kj,e′ are disjoint, so

P(∪eKj,e) =
∑
e

P(Kj,e) = ENj ≥ C

for some C > 0. Since Kj,e implies the event in the claim, this completes the proof.

We use the event Kj to construct Ξj . Rather than give a precise construction,
we just give the outline and a picture. Assume that the event Kj occurs (along with
all the conditioned connections outside of the annulus appearing in (4.9)), and that
a reflected version K∗j occurs, where this event is Kj reflected about the e2-axis, in
corresponding reflected boxes B∗j and (B′j)

∗. Then by independence and the previous
lemma, P(Kj ∩K∗j ) > 0 uniformly in j.

By arm direction techniques [5] and gluing arguments, the closed dual arms from
e ∈ B′j (and from an edge f in the reflected (B′j)

∗ described in the event K∗j ) can
be extended disjointly from their endpoints on Bj and B∗j through the strip R ×
[−33j−3, 33j−3] to connect to the circuits C and D listed in Proposition 9 using the
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Figure 9: Depiction of the extension to produce Ξj. The annulus Ann(3j + 1) is the region
contained between the two smaller squares. The circuits C and D are the inner and outer
dashed circuits; depicted as boundaries of shaded regions. These shaded regions represent
parts of the configuration on which we have conditioned in our construction.

RSW theorem, with a net cost of at most a uniform constant in probability. Next, the
pc-open arms from e and f ending on the top and bottom boundaries of Bj and B∗j
can be completed into a pc-open circuit with two defects (e and f) around 0 in the thin
annulus

Ann(33j+1(1 + 3−3)− 33j−3, 33j+1(1 + 3−3) + 33j−3).

(This annulus is defined so that its inner and outer boundaries coincide with the left
and right boundaries of Bj .) Using the generalized FKG inequality and the RSW
theorem, this will also have at most a uniform constant cost. Note that the resulting
pc-open circuit with two defects is also p33j -open. A larger thin annulus, still contained
in Ann(3j + 1), will also be forced to contain a p33j -closed circuit around 0. For
specificity, we take this annulus to be

Ann(33j+1(1 + 3−3) + 33j−3, 33j+1(1 + 3−3) + 2 · 33j−3).

Using FKG and RSW again, this can be accomplished at cost of at most another
constant factor in probability. The final event illustrated in Figure 9 is denoted Ξj .

Whether k = 1 or 2, one has Ξj ⊂ {C →σ̂k D} ∩ Ej . The above line of reasoning
also gives that P(Ξj) ≥ ε for ε sufficiently small, uniformly in j and C, D. Taking
λ = 1− ε proves the claim.

At last, we return to (4.9), using the bound

P(Cj(`) →σ̂k D3j(`)+2, E
c
j(`)) ≤ λP(Cj(`) →σ̂k D3j(`)+2),
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and recombine everything (taking a = −C log λ), to obtain the upper bound

P(∩j∈JEcj , N > CK,Aσ̂k(|σk|, 33K , pc))

≤
∑

Ĵ :#Ĵ>CK

∑
(C3j ,D3j+2:j∈Ĵ)

λ#ĴP
(
J = Ĵ , Aσ̂k(|σk|, 33K , pc), C3j = C3j

and D3j+2 = D3j+2 for j ∈ Ĵ .

)
≤ λCKP(Aσ̂k(|σk|, 33K , pc), N > CK)

≤ e−aKP(Aσ̂k(|σk|, 33K , pc)),

which is (4.8). This therefore proves (4.7). Plugging into (4.6), one obtains

P(Aσk(33K)) ≤ e−aKP(Aσ̂k(|σk|, 33K , pc)) ≤ Ce−aKP(Aσ̂k(33K)),

and this is our version of a bound on (4.5).
To complete the proof of the main bound (4.4), for a given n, take K = b13 log3 nc,

and use quasimultiplicativity:

P(Aσk(n)) ≤ P(Aσk(33K)) ≤ Ce−aKP(Aσ̂k(33K))

≤ Cn−εP(Aσ̂k(n))

for suitable ε > 0.
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[3] Járai, A., Invasion percolation and the incipient infinite cluster, Comm. Math.
Phys., 236, 2003.

[4] Kesten, H. The incipient infinite cluster in two-dimensional percolation, Probab.
Theory Related Fields, 73, 1986.

[5] Kesten, H. Scaling Relations in 2D-Percolation, Comm. Math. Phys., 109, 1987.

[6] Kesten, H., Zhang, Y. Strict inequalities for some critical exponents in two-
dimensional percolation. J. Stat. Phys., 46, 1987.

[7] Kesten, H., Sidoravicius, V., Zhang, Y., Almost all words are seen in critical site
percolation on the triangular lattice, Electron. J. Probab., 3, 1998.

[8] Lawler, G., Schramm, O., Werner, W., One-Arm Exponent for Critical Percola-
tion, Electron. J. Probab., 7, 2002.

[9] Nolin, P. Near-critical percolation in two dimensions, Electron. J. Probab., 13,
2008.

36



[10] Reimer, D., Proof of the Van den Berg-Kesten conjecture, Combin. Probab. Com-
put., 9, 2000.

[11] Russo, L., A note on percolation, Z. Wahrsch. und Verw. Gebiete, 43, 1978.

[12] Seymour, P.D., Welsh, D.J.A., Percolation probabilities on the square lattice. Ad-
vances in graph theory (Cambridge Combinatorial Conf., Trinity College, Cam-
bridge, 1977). Ann. Discrete Math. 3, 1978.

[13] Schramm, O., Werner, W., Critical exponents for two-dimensional percolation.
Math. Res. Lett., 8, 2001

37


	1 Introduction
	1.1 Invasion Percolation
	1.2 Main results
	1.3 Notation
	1.4 Outline of the paper

	2 Tools from near-critical percolation
	3 Proof of Theorem ??
	3.1 Proof of the lower bound
	3.2 Proof of the upper bound

	4 Proof of Theorem ??
	4.1 Lower bound for k 1
	4.2 Upper bound for k=1,2


