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The hallmark of a major evolutionary transition, whereby independently replicating units became
grouped together into larger wholes, is the “decoupling” of fitness of the collective from the individual
fitnesses of the units. It is widely believed that the key element making such decoupling possible
is extensive cooperation between the lower-level entities. Here, it is demonstrated that cohesive
multicellular behavior can arise in a purely competitive setting as a generic consequence of division
of labor. A minimal theoretical model of competitive coexistence on multiple resources provides
an explicit manifestation of fitness decoupling in a rigorous mathematical sense. This form of
multicellular behavior is not vulnerable to “cheaters” and can be expected to be widespread in
microbial ecosystems.

In 1995, Maynard-Smith and Szathmary in their highly
influential work [1] introduced the concept of a major
evolutionary transition. Several of the transitions they
identified constitute evolutionary transitions in individ-
uality, e.g. the evolution of multicellularity, whereby in-
dependently replicating units became grouped together
into larger wholes. A hallmark of this process is the “de-
coupling” of fitness of the collective from the individual
fitnesses of the lower-level entities [2, 3].

This process is puzzling: how does a collective acquire
interests that are distinct from the interests of its mem-
bers? It is widely believed that the crucial role is played
by cooperative interactions among lower-level entities [2–
4]. This is highly intuitive: put simply, until coopera-
tion between individual units binds them into a coherent
whole, there is no whole, and therefore there can be no
interests of the whole. Without cooperation, a fit collec-
tive must necessarily be merely a collective made of fit
individuals: fitness decoupling cannot occur.

Accordingly, Michod’s model for the evolution of mul-
ticellularity [5] proceeds in two steps. First, cooperation
between organisms evolves as an individual trait, typi-
cally (though not always [4]) conditioned on their high re-
latedness. Second, once cooperation becomes sufficiently
strong, selection can act on collectives as true evolution-
ary “wholes”. The role cooperation is expected to play
in major evolutionary transitions is one of the reasons
this topic has enjoyed so much attention in the recent
literature.

At the same time, it is known that, at least in lab-
oratory conditions, artificial selection can successfully
act on entire ecosystems such as soil microbiota [6, 7],
where pervasive cooperation between organisms appears
unlikely. These findings were confirmed and nuanced by
simulation-based investigation [8] and could have impor-
tant implications for evolutionary theory. However, until
the mechanisms underlying apparent success of higher-
level selection in genetically inhomogeneous communities
are clearly understood theoretically, the relevance of such
observations for natural evolutionary processes will re-

main unclear.

The purpose of this work is to demonstrate that coop-
eration is indeed not a necessary ingredient for cohesive
multi-cellular behavior. It will be shown that the decou-
pling of collective fitness can occur in a purely competi-
tive setting. Evolution of cooperation is famously prone
to the emergence of “cheaters” and so requires very spe-
cial circumstances, such as conflict suppression or “polic-
ing” mechanisms [9]. In contrast, competition for mul-
tiple resources as considered in this work is a generic
occurrence in the highly diverse microbial communities
that dominate our planet [10–12]. These results suggest
that “acting as a whole”, in a rigorous mathematical,
rather than purely metaphorical sense, may be expected
to be ubiquitous in microbial ecology.

THE MODEL: COMPETITIVE COEXISTENCE
ON MULTIPLE RESOURCES

This work uses the “metagenome partitioning” model
introduced in [13], which builds on Mac Arthur’s
treatment of competitive coexistence on multiple re-
sources [14] to model division of labor in large commu-
nities. For convenience, all the relevant definitions are
reproduced below; for a detailed introduction and a dis-
cussion of the intuition behind the model, see [13].

Consider a world with N resources i ∈ {1 . . . N} de-
noted A, B, etc. These resources can be harvested with
“pathways” Pi. An organism is defined by its “func-
tional type”, namely the pathways that it carries. There
are 2N − 1 possible functional types; they will be de-
noted using a binary vector of pathway presence/absence:
~σ ∈ {0, 1}N . Let n~σ be the total number of organisms ~σ
in the population. The total benefit Ri from a resource
i is equally distributed among all organisms carrying the
pathway Pi; their number will be denoted Ti:

Ti ≡
∑

all ~σ carrying i

n~σ =
∑
~σ

n~σσi.
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The growth rate of every organism type is determined by
its resource surplus ∆ϕ:

∆ϕ~σ =
∑
i

σi
Ri
Ti
− χ~σ. (1)

Here the first term is the total benefit harvested by all
carried pathways, and the second term represents the
maintenance costs of organism ~σ. In [13], costs were mod-
eled as possessing some structure stemming from cross-
talk between pathways. For the purposes of this work,
a simpler model of unstructured random costs will be
sufficient:

χ~σ = |~σ|(1 + ε δχ~σ). (2)

Here the frozen disorder δχ~σ is a random variable drawn
out of the standard normal distribution (chosen once for
each organism type), and |~σ| ≡

∑
i σi is the number of

pathways carried by the organism. The reason for in-
cluding this factor will become clear shortly. Note that
N , ε and Ri are the only parameters in the model.

The resource surplus ∆ϕ is used to generate biomass.
The simplest approach is to equate the biomass of the or-
ganism with its cost, so that excess resources are “spent”
on making new organisms.1 The total biomass change
due to resource-dependent growth or death is then given
by:

χ~σ
dn~σ
dt

= n~σ∆ϕ~σ. (3)

In this model, a given random realization of the costs
χ~σ summarizes all the biochemistry that makes different
organisms types more or less efficient at processing their
resources; our focus will therefore be on studying the
dynamics of the model while the costs of organisms are
held fixed. The types that are present at non-zero abun-
dance in a given community C will be denoted Ω(C). As
established in [13], any community C will eventually con-
verge to an equilibrium C∗ uniquely determined by the
set of organism types Ω(C) = P (irrespectively of their
initial abundance). At this equilibrium, certain types
S∗ = Ω(C∗) ⊂ P establish at a non-zero abundance,
while others “go extinct”, their abundance exponentially
decreasing towards zero. Here and below, the starred
quantities refer to equilibrium of ecological dynamics.

The equilibrium C∗ will be stable with respect to any
perturbations restricted to organisms in P , but may be
invaded by some other organism ~σ /∈ P . Assuming a
weak mutation rate for loss/acquisition of pathways, this
model can be seen as “mesoscopic” population genetics

1 This differs from the convention used in [13], where the biomass
was equated to |~σ|. This difference is insignificant; the approach
taken in this work is perhaps more appealing aesthetically.
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FIG. 1. The metagenome partitioning model. Organ-
isms are defined by the pathways they carry, the benefit from
each resource is equally partitioned among all organisms who
can harvest it, and growth/death of each individual is deter-
mined by the resource surplus it experiences.

for bacteria evolving through horizontal gene transfer.
For the purposes of this work, it will be assumed that
mutation events introduce a random new type, but are
sufficiently rare that ecological dynamics have time to
equilibrate before a novel invader can arise, so that pop-
ulation proceeds from equilibrium to equilibrium. After
infinite time, the community in this model will stabilize
at the unique equilibrium that cannot be invaded by any
organism. This state will be called the final equilibrium.

For simplicity, consider an environment E0 with all re-
sources supplied in equal abundance: Ri ≡ R. The final
equilibrium community for one random realization of or-
ganism costs with R = 100, N = 10 and ε = 10−3 is
depicted in Fig. 2A. In this case it consists of 9 organ-
ism types present at varying abundances. It is natural
to ask: for a given initial set of competing organisms P ,
what determines which organisms S∗ survive?

INDIVIDUAL FITNESS PREDICTS THE
OUTCOME OF COMPETITION BETWEEN

INDIVIDUALS

Intuitively, the fitness of an organism must be deter-
mined by its cost: χ~σ is the lowest resource harvest
at which an organism can persist, and by analogy with
Tilman’s R∗ rule, low-cost types should have a competi-
tive advantage.

To define fitness, consider an assay whereby an organ-
ism ~σ is placed (at abundance n~σ = 1) in the environment
E0 with no other organisms present. Its initial growth
rate is given by:

χ~σ
dn~σ
dt

∣∣∣∣
t=0

=
∑
i

Riσi − χ~σ = |~σ|R− χ~σ,

so that

dn~σ
dt

∣∣∣∣
t=0

= R
|σ|
χσ
− 1.

As expected, the growth rate is determined by the or-
ganism’s cost, specifically its cost per pathway (this is
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why the factor |σ| was included in the cost model (2)).
Our goal is to define fitness as a quantity predicting sur-
vival; for this purpose, additive constants or rescaling is
irrelevant. It is therefore natural to subtract the baseline
|σ|/χσ ≈ 1 and define the individual fitness of type ~σ as

f~σ ≡
|σ|
χσ
− 1. (4)

This is a quantity of order ε, and so with this definition,
ε serves as the natural scale. The fitness ranking between
organism types is random and is set by the disorder δχ.

To see that the individual fitness defined in this way is
indeed predictive of the outcome of competition between
types, consider the example equilibrium state depicted in
Fig. 2A. Note that the set of 9 survivors predominantly
consists of highly fit individuals; in particular, the top 3
types by fitness are all present, and the remaining types
are all within the top 30 (out of 1023 total competing
types).

To confirm the generality of this observation, Fig. 2B
shows the median fitness rank of the types S∗ that survive
at equilibria of randomly initialized populations. Specif-
ically, for a given cost structure, 10 random subsets Pi
of 100 types each were equilibrated to determine sur-
vivors S∗

i . The procedure was repeated for ε ranging from
10−5 to 0.1, and for 10 random realizations of the cost
structure at each ε. Thus for each value of ε, a total of
100 randomly constructed communities were evaluated.
Fig. 2B shows the median fitness rank of survivors S∗

within the respective subset P , averaged over these 100
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FIG. 2. Individual fitness is a good predictor of compe-
tition outcome. A: Final (non-invadable) community equi-
librium for one particular random realization of the model
(N = 10, ε = 10−3). Rows correspond to surviving organism
types and the pathways they carry; rows are labeled by fitness
rank and colored to reflect organism abundance. For example,
one of the survivors carries pathways 1 and 2 only; its fitness
rank is #28 and abundance ≈ 10. The final equilibrium con-
sists of highly fit types (within top 30 out of 1023). B: The
median fitness rank of survivors, weighted (dashed) or not
weighted (solid) by abundance. Curves show mean over 100
random communities for each ε; the standard deviation across
100 instances is stable at approximately 40% of the mean for
both curves, independently of ε (not shown to reduce clut-
ter). The panel indicates that fitness rank is predictive of
both survival and abundance at final equilibrium.

instances, where the median was either weighted (blue
dashed line) or not weighted (red solid line) by abun-
dance of the type at equilibrium. The weighted median
rank is considerably lower, indicating that fitter types
are present at higher abundance. This figure confirms
that the fitness rank of a type is strongly correlated both
with its probability of survival and with its abundance
at equilibrium.

Also apparent from Fig. 2B is that for small enough
ε, the structure of the final equilibria does not signifi-
cantly depend on this parameter. This can be intuitively
understood as follows. Consider two resources A,B and
organisms σA = {1, 0}, σB = {0, 1}, and σAB = {1, 1}.
If

χAB > χA + χB , (5)

it easily follows that the “generalist” organism σAB will
eventually be outcompeted by the two specialists σA and
σB . Conversely, if the opposite inequality holds, then
σA and σB cannot stably coexist in the final equilibrium,
since σAB will always be able to invade, displacing one
of them. In this way, in the metagenome partitioning
model, community composition is shaped primarily by in-
equalities like (5), which are invariant under changes in ε
and depend only on the realization of disorder. The dom-
inant effect of ε is to set the time scale for the ecological
dynamics. In what follows, ε will be fixed at 10−3 ≈ 2−N ,
sufficiently small to be in the regime where equilibrium
structure is no longer sensitive to ε. The large-ε regime
will be discussed later.

While Fig. 2 demonstrates that the fitness rank is in-
deed correlated with organism abundance at equilibrium,
it also shows that this notion of individual fitness is not
wholly sufficient. For example, at the equilibrium shown
in Fig. 2A, the type ranked 4th in individual fitness went
extinct, but 6 other types ranked as low as #29 remained
present, despite being individually “less fit”.

The origin of this is clear: the instantaneous growth
rate r, and therefore fitness, of any organism type is a
function of the traits it possesses, encoded by ~σ, but also
of the state of the environment E , encoded by the re-
source harvest vector hi ≡ Ri/Ti:

r(~σ, E) ≡ r(~σ, {hi}) =
1

χ~σ

(∑
i

σihi − χ~σ

)
.

As organisms reproduce or die, they modify their envi-
ronment and thus their own fitness and the fitness of all
other types. This, of course, is the standard argument
of niche construction theory [15]. For example, consider
the three-resource world depicted in Fig. 1, and assume
that σAB = {1, 1, 0} is the most fit type with a very low
cost. As σAB multiplies, it depletes resources A and B
(in the sense that the benefit Ri/Ti any organism can
harvest from them is reduced). As a result, the final
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equilibrium is highly likely to include the specialist or-
ganism σC = {0, 0, 1}, even if its cost is relatively high,
and under other circumstances (if σAB were less fit) it
would lose to σAC = {1, 0, 1} or σBC = {0, 1, 1}.

In general, for any type ~σ0, it is possible to adjust
the cost of some other organism types to ensure that ~σ0
will survive at final equilibrium. Therefore, any fitness
function of ~σ0 that could predict its fate with certainty
would have to depend on the traits of all other organisms
in the population. Constructing such a fitness function
would be equivalent to solving the equilibrium popula-
tion structure and declaring survivors to be the most fit;
such concept of fitness would be tautological and have
no predictive value. In contrast, a function that depends
only on the traits ~σ can be useful (see Fig. 2), but any
such function is necessarily an imperfect predictor.

Motivated by these considerations, we will accept, for
now, that the definition (4) constitutes the most useful
notion of individual fitness that is available in this con-
text, and continue with the argument. After discussing
the results that stem from this decision, we will return
to re-examine this issue.

To summarize, individual fitness as defined above is
strongly predictive of the outcome of competition be-
tween individuals, but is not the whole story. How else
can we characterize the ensemble of factors that deter-
mine survival or extinction of particular types?

COMMUNITY FITNESS

A convenient property of the metagenome partition-
ing model is that the dynamics (3) possess a Lyapunov
function [13, 14]:

F =
1

C

(∑
i

Ri ln
Ti
Ri
−
∑
~σ

χ~σn~σ

)
+ F0. (6)

Here C and F0 are constants introduced for later con-
venience. Specifically, set C =

∑
iRi and F0 = 1; this

choice ensures that close to community equilibrium, F is
of order ε (see Supplementary Material; SM). This func-
tion, defined for n~σ ≥ 0 and Ti > 0, has the property
that C ∂F

∂n~σ
= ∆ϕ~σ, and therefore F is monotonously in-

creasing as the system is converging to equilibrium. To
illustrate this, Fig. 3 shows 10 trajectories of ecologi-
cal dynamics for the same system as in Fig. 2A, start-
ing from random initial conditions (see SM). Far from
equilibrium, mean individual fitness and F increase to-
gether (Fig. 3, inset), confirming that individual fitness
is a useful predictor. However, as the equilibrium is ap-
proached, Fig. 3 shows that virtually every trajectory has
portions whereby dynamics increase F at the expense of
mean individual fitness. Note that each of the trajecto-
ries in Fig. 3 converges to the same equilibrium depicted
in Fig. 2A. This is because F is convex and bounded from
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FIG. 3. Community dynamics maximize a global ob-
jective function F at the expense of mean individual
fitness. 10 trajectories of ecological dynamics for an example
system, starting from random initial conditions and converg-
ing to the equilibrium depicted in Fig. 2A. Inset: a zoomed-
out version of the same plot; data aspect ratio as in the main
panel.

above (see SM), and its maximum is therefore unique. It
follows that community equilibrium always exists, is sta-
ble and is uniquely determined by the set of competing
types. The goal of this section is to demonstrate that F
possesses all the qualities one might expect from a bona
fide fitness function of the community as a whole.

To speak of a whole-community fitness function, one
first needs to define the relevant Darwinian process.
Imagine a collection of islands α, each experiencing iden-

tical influxes R
(α)
i ≡ Ri of our N resources. Each is-

land α harbors a community C∗
α of organisms at equi-

librium of their ecological dynamics. On each island,
a weak mutation occasionally introduces a random new
organism type; if this type can invade, the community
transitions to a new equilibrium and awaits a new muta-
tion. This process defines evolution of each community
independently. In addition, two islands α and β may
occasionally come into contact. The communities they
harbor then merge, equilibrate, and by the time the is-
lands separate again, both harbor the same community,
which, by definition, will be called the result of competi-
tion between communities C∗

α and C∗
β .

The first observation to make is that for each island,
F is monotonously increasing throughout its evolution-
ary history. To see this, notice that F is continuous and
non-singular in all nσ (as long as Ti > 0 for all i: it is as-
sumed that each island has discovered all pathways; once
discovered, it will never go extinct). Therefore, intro-
ducing a new type at a vanishingly small abundance will
leave F unchanged, and if this type can invade the com-
munity, the convergence to the new equilibrium is a valid
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trajectory of ecological dynamics on which F increases.
Similarly, since the equilibrium state depends only on the
organism types but not their initial abundance, the com-
petition between communities S∗

α and S∗
β can be recast

as introducing types Ω(C∗
β) at a vanishingly small abun-

dance into community C∗
α or vice versa; in both cases,

therefore, the equilibration process can only increase F
(or leave it intact if no types can invade).

Merely demonstrating that F is increased by evolution
is however, not enough. For communities in this model
to qualify as true fitness-bearing entities, there must be
a sense in which a more fit community can be expected
to “outcompete” one that is less fit. Therefore, the next
section examines the competition between communities.

COMMUNITY FITNESS IS MORE PREDICTIVE
OF COMPETITION OUTCOME THAN

INDIVIDUAL FITNESS

Consider a community C∗
α coming into contact with

community C∗
β as described above, and denote the equi-

librated community as C∗ with no subscripts. If none of
the organism types from island β could invade the com-
munity C∗

α, then C∗ = C∗
α. In this case community C∗

α

is the clear winner. In general, however, the space of
competition outcomes is richer than merely one commu-
nity taking over the other: both competitors C∗

α, C∗
β can

contribute to C∗. If one contributes more types than
the other, it can be pronounced more successful at com-
petition, since the resulting community C∗ is closer to
it in terms of composition (since community equilibrium
is uniquely determined by the set of competing types,
similarity between communities is evaluated by counting
shared organism types irrespectively of their abundance).
What makes a community more likely to be successful?

Let C∗
α and C∗

β each consist of k organism types. Then
on the one hand, the community C∗ is simply the re-
sult of competition between 2k individual types (fewer
if Ω(C∗

α) and Ω(C∗
β) overlap), and we have established

(Fig. 2) that the individual fitness rank of a type in the
pool of competitors is generally a good predictor of its
survival. It is therefore reasonable to expect that out
of 2k competing types, the survivors will predominantly
be the ones with higher individual fitness. This predicts
that the community whose members have higher average
fitness should be more successful. On the other hand, we
have also established that the ultimate equilibrium com-
munity that cannot be invaded by any type, and so will
out-compete any other community, corresponds to the
maximum of F , and generally not the maximum aver-
age individual fitness. This suggests that F , rather than
individual fitness, should be the better predictor of the
competition outcome.

To settle the competition between these two hypothe-
ses, the following procedure was implemented. For a

given random realization of the cost structure δχ, M =
50 random organism types were selected. These 50 types
were used to construct all 230300 possible combinations
of k = 4 types. All such combinations were indepen-
dently equilibrated; communities where the equilibrium
state had fewer than k = 4 types or where some pathways
were not represented were excluded. The mean individ-
ual fitness and the putative “collective fitness” F of the
remaining 70160 communities are shown in Fig. 4A. This
procedure puts at our disposal multiple examples of com-
munities where individual and collective fitness are both
high, both low, or one is high while the other is low (the
quadrants highlighted in Fig. 4A). Competing pairs of
communities drawn from these pools will make it possi-
ble to determine which of the two factors, individual or
collective fitness, is the better predictor of community
competition outcome.

To begin, consider the cyan and magenta quadrants (I
and III, respectively). Any community from the magenta
quadrant is more fit than any cyan community, both in
the collective sense and as measured by the average mem-
ber fitness. Therefore, there is little doubt that the ma-
genta communities should be more successful in pairwise
competitions. To confirm this, Fig. 4B presents the re-
sults of an “elimination assay” competing communities
from these quadrants. 500 random pairs were drawn,
and correspond to columns in Fig. 4B. For each pair, the
organism types from both communities (up to 8 types
each time, fewer if the two sets of 4 had overlap) were
equilibrated together; the rows in Fig. 4B correspond to
these types, ordered by individual fitness: high (top) to
low (bottom). For each organism type that went extinct
during equilibration, its provenance was identified (did
it come from the magenta or the cyan community?), and
the corresponding rectangle in the image in Fig. 4B is col-
ored accordingly; in cases when the eliminated type was
present in both communities, it was colored yellow. The
dominant color in the elimination assay in Fig. 4B is cyan,
confirming that the cyan communities are less successful
at contributing their members to the final equilibrium.
Note also that the colored entries are predominantly lo-
cated in the bottom half of the table: the eliminated
types tend to also have low individual fitness. This is the
expected result.

Now, consider the competition between blue and red
quadrants (II and IV). An elimination assay conducted
in an identical manner is presented in Fig. 4C. Now the
colored entries are predominantly red and occupy the
top half of the table. In other words, members of the
red communities are being outcompeted despite the fact
that their individual fitness is higher. Surprisingly, the
individual fitness of an organism is less predictive of its
ability to survive competition than the collective fitness
of the community of which it was part.
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FIG. 4. Community fitness is more predictive of competition outcome than individual fitness. A: Community
fitness vs. mean individual fitness, measured in units of ε, for 70160 communities composed of 4 organism types (see text).
Communities in which both characteristics are in the top 10% or bottom 10% are highlighted in color and labeled I through
IV. B: Elimination assay competing quadrants I (cyan) vs III (magenta). 500 randomly drawn community pairs (columns)
were jointly equilibrated, with up to 8 organism types each time (rows; ordered by individual fitness). For each organism that
went extinct during equilibration, the corresponding cell in the table is colored by the organism provenance. As expected, that
most eliminated organisms were from the less fit cyan communities (there are more cyan cells than magenta). These organisms
were also less fit individually (most colored cells are in the lower half of the table). C: Same, competing quadrants II (blue) vs
IV (red). The dominant color is now red: most eliminated types were from red communities, and went extinct despite being
individually more fit than average (most colored cells are in the upper half of the table). Columns ordered by dominant color
from magenta to cyan (panel B) and blue to red (panel C).

COMMUNITY AS A FITNESS-BEARING UNIT

Consider an observer who is unaware of the internal
structure of the community on each island, and who is
able to measure only the overall response of each island
(total expression of each pathway ~T = {Ti}) to the re-

source influx ~R = {Ri}. First, consider an island αG
harboring a single organism type: the complete general-
ist σG = {1, 1 . . . 1}. Its abundance at equilibrium will be
nG = Ti = Rtot/χG, where Rtot =

∑
iRi. Although re-

sources may be supplied in varying abundance, the island
αG can only express all pathways at the same level.

Another island αS harbors a community of perfect spe-
cialists: σA = {1, 0, 0 . . . }, σB = {0, 1, 0 . . . }, etc. Faced
with an uneven supply of resources, this island will ex-
actly adjust expression levels Ti to track the supply vec-
tor Ri, so that Ti = Ri/χi, where χi is the cost of each
respective specialist. Our external observer will conclude
that island αC is able to sense its environment and up-
regulate or downregulate individual pathways.

Such perfect regulation is, however, costly: typically,
σA, σB , etc. will not be the most cost-efficient combi-
nations. As a result, allowing the island αS to evolve
while holding ~R fixed, one will obtain an island αC har-
boring a different multi-organism community C. Unlike
αS , it will generally be unable to sense all resources in-
dependently and adjust expression patterns accordingly;
however, evolution will trade some of the sensing capacity
to fit the particular resource influx ~R with more efficient

pathway combinations.
To an external observer, therefore, each island is a co-

herent whole with an evolving complex behavior striving
to better adjust its response ~T to the environment ~R it
experiences, and in this particular model, the existence of
a function F satisfying all the properties of a valid fitness
function makes this metaphor exact. Importantly, how-
ever, the inner regulatory logic of this “coherent whole”
has the form of purely “selfish” competition between dif-
ferent motifs of partial expression of pathways, inviting
a parallel with other instances of “competition serving
the good of the multicellular whole” [16]. To conclude
this section, let us compute the community fitness F of
the single-organism community αG for the case Ri ≡ R
that was considered throughout this work. Applying the
definition (6), and using Ti = nG = NR/χG one finds:

F =
1∑
iRi

(∑
i

Ri ln
Ti
Ri
− nGχG

)
+ 1

= ln
N

χG
= ln(1 + fG) ≈ fG

where fG is the individual fitness (4) of organism σG, and
the approximate equality holds because fG is of order ε.
In other words, for a community consisting of a single
organism type, the community fitness coincides with the
individual fitness of this type, reinforcing the interpreta-
tion of a community as a “smarter” individual that had
evolved internal division of labor. This interpretation is
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specific to the particular model explored here, but within
this model, the metaphor is exact.

DISCUSSION

It is now time to revisit the definition of individual fit-
ness used in this work. By definition of the dynamics (3),
each organism merely pursues its own “selfish interest” in
the environment where it happens to be. In each instance
of “community competition” assayed in Fig. 4, whenever
some organism type invaded a community, it was because
its fitness in that particular environment was higher than
the fitness of types already present. One could therefore
argue that the surprising finding of Fig. 4, namely that
the competition outcome is better predicted by collective,
rather than individual, fitness is entirely a consequence
of the unsatisfactory definition of individual fitness that
sought to attribute a number to a genotype irrespectively
of its environment.

This observation is, of course, correct. However, the
view proposed in this work is that the distinction between
the individual growth rate and the useful notion of fitness
is precisely what underlies the phenomenon of “fitness de-
coupling” during an evolutionary transition, at least in
the model described here. In many circumstances, for
an entity placed in a sufficiently stable environment, and
sufficiently clearly demarcated from it, its likelihood to
survive can be reasonably approximated by a quantity
that depends only on its intrinsic traits; this constitutes
a “useful” notion of fitness. However, when the envi-
ronment experienced by individual organisms is variable
enough that their relative fitness rank is extensively reor-
ganized with each perturbation, this approximation fails.
From this perspective, the two quantities that become
“decoupled” are not the individual fitness and collective
fitness. Rather, they are the true environment-dependent
growth rate and the approximation of individual fitness
that would have been useful in other circumstances. Im-
portantly, this effect is a consequence of diversity of in-
teractions and would be obscured by the “historic focus
on pairwise interactions decoupled from their more com-
plex community context”, as stressed by the authors of
Ref. [17].

If this interpretation of the origin of “fitness decou-
pling” in this model is correct, then reducing the degree
to which environmental perturbations affect relative fit-
ness of individuals should make fitness decoupling less
pronounced. To test this prediction, consider the effect
of increasing ε, the parameter that determines the width
of the distribution of individual fitnesses. Intuitively, re-
turning to the example used previously, if organism σAC
is more fit than σC while resources are equally abundant,
reducing the availability of resource A can inverse this
relation, but the larger the difference in organism costs
χAC and χC , the more extreme such resource depletion

would have to be. Therefore, increasing ε will reduce the
relative effect that changing environment has on fitness
rank ordering. Fig. 5 repeats the analysis of Fig. 4A for
ε = 0.1 (rather than ε = 10−3 used until now). As pre-
dicted, the collective fitness is now strongly associated
with the fitness of individuals. In fact, a first indication
of this phenomenon can already be observed in Fig. 2B:
as ε is increased, the median fitness rank of survivors at
the final equilibrium begins to reduce. At high ε, it is
increasingly true that high collective fitness is merely a
reflection of high individual fitness of community mem-
bers.

To summarize, changing ε tunes the magnitude of fit-
ness “decoupling”, and Fig. 2B can be seen as document-
ing the transition between a largely individualistic regime
(large ε) and a regime where the multi-individual, genet-
ically inhomogenous assembly of organisms increasingly
acts “as a whole”, in a rigorous mathematical, rather
than purely metaphorical sense (small ε). Importantly,
this “whole” is not bound together by any explicitly co-
operative interactions. The community-level description
was appropriate not because of a high degree of coop-
eration between members, but because the community
was the smallest unit whose environment was well-defined
and fixed (the overall resource influx ~R).

The discussion of cooperation requires a comment.
Consider yet again the example of a world with 3 re-
sources, where a highly fit organism σAB makes it possi-
ble for σC to survive at the final equilibrium despite it rel-
atively high cost. One could say that σAB provides a ben-
efit to σC by suppressing its direct competitors, so that
the “alliance” σAB + σC is selected over other possible
combinations. This scenario, summarized in the formula
“enemy of my enemy is my friend” can be interpreted as
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FIG. 5. Parameter ε tunes the magnitude of fitness
decoupling. Same as Fig. 4A, for ε = 0.1. Increasing ε re-
duces the relative importance of environment in determining
the organisms’ fitness ranking. As a result, collective and in-
dividual fitness remain strongly coupled. Defining quadrants
as in Fig. 4A leaves the blue and red quadrants empty.
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a form of cooperation [17]. Importantly, however, such
“cooperation” does not admit cheating. As a result, the
form of cohesive multicellular behavior described here is
not subject to the same vulnerabilities that make evo-
lution of cooperation in the traditional sense a difficult
process. It is a generic consequence of division of labor
and can be expected to be a common occurrence in the
highly diverse microbial communities that dominate our
planet.

In the particular model considered here, the
community-wide dynamics happened to take the form
of optimizing a global “community fitness”. This lucky
feature made it easier to demonstrate how environment-
dependent individual fitness translates into selection ef-
fectively acting on collective traits, e.g. favoring more effi-
cient alliances of co-evolved organisms rather than organ-
isms themselves. In general, of course, collective dynam-
ics are almost never reducible to optimizing one global
function, and one does not expect community to possess
a well-defined “fitness”. This, however, is hardly a lim-
itation of the model, as the same can be said about the
fitness of individual organisms. Fitness is not a funda-
mental property of any entity: organisms have traits cor-
related with their survival, which only translate into fit-
ness under some very specific circumstances when the en-
vironment is sufficiently stable and is sufficiently clearly
demarcated from the system (“individuality” [2, 9, 18]).
Such circumstances can arise via artificial selection in the
hands of an experimenter imposing a standardized per-
formance test in a particular environment [6, 7], or as a
consequence of evolution, e.g. a pitcher plant or a host an-
imal with its symbiont organisms. It seems likely that the
conditions experienced by the symbionts themselves are
not in this class, in which case the “behavior as a whole”
regime described here may be highly relevant for char-
acterizing consortia of microorganisms within real com-
munities. Some experimental data even provides circum-
stantial evidence for truly whole-community scale behav-
ior, e.g. the efficacy of fecal matter transplant in treating
C. difficile infections [20] or “lean microbiota” outcom-
peting “obese microbiota” in mice [21].

The discussion above relates the results presented here
to several themes and ideas widely discussed in the lit-
erature, particularly those concerning the role of the en-
vironment, co-evolution, and non-transitive competitive
structures, reviewed in Refs. [17, 19]. The central aim of
this paper was to present a rigorous mathematical struc-
ture exhibiting the phenomenon of “fitness decoupling”,
to which these ideas can be applied and which can be
interpreted both in terms of multi-level selection theory
and niche construction theory. It should be noted that
the same mathematics can admit different, and some-
times conflicting, interpretations, as illustrated by the
ongoing debates in multi-level selection theory [9]. How-
ever, the interpretation proposed here suggests that at
least some forms of simple multicellularity can be ex-

pected to be a widespread phenomenon that does not
require high relatedness or cooperation.
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SUPPLEMENTARY MATERIAL

Lyapunov function for community dynamics

This section reproduces portions of the supplementary
material to [13]. Consider the following objective func-
tion:

F̃ =
∑
i

Ri lnTi −
∑
~σ

χ~σn~σ, (S1)

defined for {n~σ ≥ 0}, and differing from the definition of
Eq. (6) only by normalization.

F̃ is bounded from above

To see this, note the inequalities:∑
i

Ti =
∑
~σ

|~σ|n~σ ≤ N
∑
~σ

n~σ

and for α, β > 0:

α lnx− βx ≤ α ln
α

eβ

Using these, and setting min~σ χ~σ = χ∗ > 0, one can
write:

F̃ ≤
∑
i

Ri lnTi − χ∗
∑
~σ

n~σ ≤
∑
i

(
Ri lnTi −

χ∗

N
Ti

)
≤
∑
i

Ri ln
NRi
eχ∗

F̃ is convex

To see this, note that for any function f(~n), the fol-
lowing two operations leave its convexity invariant (M is
an arbitrary matrix):

1. adding a linear function of its arguments:

f(~n) 7→ g(~n) = f(~n) +M~n;

2. performing a linear transformation of its argu-
ments:

f(~n) 7→ h(~n) = f(M~n).

Given these observations, convexity of F̃ , and therefore
also the convexity of F as defined in (6), directly follows
from the convexity of the logarithm.

F̃ is increasing on trajectories

Since Ti =
∑
~σ σin~σ, the gradient of F̃ is precisely

the “resource surplus” experienced by different organism
types:

∂F̃

∂n~σ
=
∑
i

Ri
Ti
σi − χ~σ = ∆ϕ~σ

Therefore, F̃ is always increasing along the trajectories
of the model:

dF̃

dt
=
∑
~σ

∂F̃

∂n~σ
ṅ~σ =

∑
~σ

n~σ
|~σ|

(∆ϕ~σ)2 ≥ 0.

For any initial community state C, ecological dynamics
converge to the equilibrium corresponding to the unique
maximum of F̃ on the domain {n~σ ≥ 0 for ~σ ∈ Ω(C)}.
Since F̃ is bounded and convex, the final equilibrium
always exists and is unique and stable.

Normalization of community fitness

The typical value of F̃ as defined in equation S1 for
a community close to equilibrium can be estimated as
follows.

To estimate the first term, note that the cost per path-
way of all organisms is close to χ∗ = 1, and therefore the
overall expression Ti is approximately Ti ≈ Ri/χ∗ = Ri.

The second term is the total cost of all organisms in the
population

∑
~σ n~σχ~σ. At any equilibrium, it is equal to

the total resource abundance Rtot ≡
∑
iRi. This can be

seen in two ways. One approach is to use the equilibria
conditions to express the cost of all present organisms in
terms of resources:

∀~σ ∈ Ω(C) : χ~σ =
∑
i

σi
Ri
Ti

Therefore,

∑
~σ

n~σχ~σ =
∑
i

(∑
~σ

nσσi

)
Ri
Ti

=
∑
i

Ri.

Alternatively, this same equation can be derived from the
condition of maximization of F̃ , by setting n~σ ≡ Mp~σ,

and requiring ∂F̃
∂M = 0.

Putting these observations together, the expectation
for the value of F̃ at any equilibrium is therefore

F̃ =
∑
i

Ri lnTi −
∑
~σ

χ~σn~σ =
∑
i

Ri lnTi −
∑
i

Ri

≈
∑
i

Ri lnRi −
∑
i

Ri ≡ F̃0 (S2)
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When defining community fitness, it is natural to sub-
tract this baseline value from F̃ as defined in (S1), and
normalize by Rtot:

F =
F̃ − F̃0∑

iRi
.

This is the normalization chosen in equation (6) in the
main text.

Simulation of dynamics and numerical
determination of community equilibria

Calculations were performed in Matlab (Mathworks,
Inc.). Scripts performing calculations and reproducing
Figs. 2-5 are available as Supplementary File 1. Briefly,
community dynamics were computed using MatLab ODE
solver ode15s. Availability of all resources was set to
Ri = 100. Equilibria corresponding to a given set of types
Ω0 were determined as follows. Community was initial-
ized by setting the abundance of all types in Ω0 to 1.
Dynamics was simulated until the absolute magnitude of
all time derivatives ṅ~σ fell below threshold 10−4ε. At this
point, most types present in the community are present
at vanishingly small abundances that are in the process of
exponential extinction. To ensure that all low-abundance
types are indeed going extinct, the following protocol was

followed. All types with abundance below 10−4 were re-
moved from the population, the pruned community was
re-equilibrated (to account for any tiny adjustments this
removal might have caused), and the resulting state C∗

was tested for being a non-invadeable equilibrium.
If any of the initially present types in Ω0 could in-

vade this community C∗, these types were re-initialized
at abundance 1 and the equilibration process was re-
peated. This extremely rare occurrence captured the
cases where the number of types going extinct was so
large that their cumulative effect was sufficient to mask
a potential survivor, driven to low abundance during the
early stages of equilibration but now increasing. If no in-
vaders were detected, the state C∗ was identified as the
equilibrium corresponding to the set of types Ω0. This
protocol ensures that in the community C∗, the list of
survivors is exact, and their abundance is within accept-
able numerical error. The protocol always converged due
to convexity of “community fitness” F .

Initial conditions for Fig. 3

The trajectories displayed in Fig. 3 were simulated for
time T = 106 starting from 10 random initial conditions
whereby each of the 1023 types was set to an abundance
value drawn out of a log-uniform distribution between
10−5 and 100.
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