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Most of classical theoretical ecology is based on the assumption that organisms in a community
can be naturally partitioned into groups of individuals that can be treated as identical. At the same
time, mounting experimental evidence from studies of microbial communities raises the intriguing
question whether this intuition is an accurate description of the microbial world. This work builds on
Mac Arthur’s model of competitive coexistence on multiple resources to construct a framework that
does not rely on postulated existence of species as fundamental ecological variables. In one parameter
regime, effective “species” with a core and accessory genome naturally appear in this model as
emergent concepts. However, the same model allows a smooth transition to a highly diverse regime
where the species formalism becomes inadequate. An alternative description is proposed based on
the dynamical modes of population fluctuations. This approach provides a naturally hierarchical
description of community dynamics which is well-defined even when the species description breaks
down. The relevance of this framework for understanding the complexity of naturally observed
microbial communities is discussed.

Although the basic unit participating in ecologi-
cal interactions is an individual organism, constructing
tractable theoretical models usually requires clustering
individuals into discrete groups within which organisms
are treated as identical; such classification can be based,
for example, on taxonomy, development stage, or pheno-
type [1]. The resulting tension is a long-standing issue in
community ecology: ever since Darwin [2], the difficulty
of drawing sharp boundaries partitioning natural diver-
sity into discrete categories [3] and the realization that
the individual-level variation can be an important actor
in ecological phenomena [4] made the “partitioned com-
munity” assumption of well-delimited, uniform groups
highly problematic.

The urgency of this issue has been highlighted over
the last decade, as advances in sequencing technology
prompted a boom in the study of microbial diversity in
natural environments [5–11]. In the microbial world,
the partitioning problem is intensified by the preva-
lence of asexual reproduction and horizontal gene trans-
fer [12, 13]. Nevertheless, the currently dominant view in
the field is that the partitioned community assumption,
while conceptually problematic, is operationally neces-
sary [14–17]. Thus the uncertainty in defining classifica-
tion criteria is treated merely as a caveat that one should
keep in mind when using the familiar species-based per-
spective (in the broad sense of “species” as a basic unit of
classification). Looking at micro-organisms through this
lens, we find unprecedented diversity [8, 9, 11], a puz-
zling prevalence of “rare species” [18, 19], and overall the
prospect of understanding these communities as inter-
acting systems of hundreds of poorly characterized types
appears rather daunting. But what if, as a thought ex-
periment, we took the difficulty of drawing sharp bound-
aries very seriously? The species-based intuition is in-
contestably useful, but might it be forcing onto our data
a structure that it does not possess [20, 21]?

Ultimately, of course, it is up to experimental evidence

to settle this question, and reports are conflicting [22–
26]. However, ideally we should be asking not whether
a species-based picture is “adequate”, but whether it is
superior to alternatives. How could we describe an ecol-
ogy where species did not exist? As long as species are
an operational requirement for describing ecological dy-
namics, our language will itself be a barrier for exploring
what could be a paradigm shift, an excitingly different
perspective on the microbial world. Therefore, prior to
becoming an experimental matter, it is first a question
of constructing a theoretical framework.

In order to construct a setting where alternative an-
alytical approaches could be tested, this work builds on
Mac Arthur’s model of competitive coexistence on mul-
tiple resources [27] to describe communities of organ-
isms defined by a “functional genotype”. In one parame-
ter regime, effective “species” with a core and accessory
genome emerge in this model as a natural description of
surviving genotypes. However, the same model allows a
smooth transition to a highly diverse regime where the
species formalism becomes inadequate. An alternative
description is proposed based on the dynamical modes of
population fluctuations. This approach provides a nat-
urally hierarchical description of community dynamics
which is well-defined even when the species description
breaks down. Within the model described here, the high-
diversity regime is more simple dynamically, and it is
intriguing to speculate that these results may suggest a
more optimistic viewpoint on the complexity of naturally
observed microbial communities.

Of course, the issues discussed above have a long his-
tory of thought in ecological literature (for a few recent
reviews, see [17, 28–31]). Again in the context of micro-
bial ecology, many authors argue for a holistic view of
the community [32] and many approaches exist that do
not explicitly require the partitioned community assump-
tion, including the very premise of metagenomic charac-
terizations [33, 34]. However, although such approaches

ar
X

iv
:1

50
4.

02
55

0v
1 

 [
q-

bi
o.

PE
] 

 1
0 

A
pr

 2
01

5



2

are frequently motivated by similar considerations, their
aim is typically not to challenge the partitioned commu-
nity picture, but to construct complementary, and often
coarse-grained viewpoints that may be more appropri-
ate or more convenient to address a particular question.
Here, the goal is to investigate a scenario when a parti-
tioned community description would be not merely incon-
venient, but incorrect. Although individual-based mod-
eling allows studying such species-less scenarios with sim-
ulations, no established theoretical framework currently
exists.

I. A MODEL FOR DIVISION OF LABOR:
METAGENOME PARTITIONING

To begin, consider the following model for division of
labor in large communities. Its mathematical structure
will be almost identical to that of Mac Arthur’s model of
competitive coexistence on multiple resources [27]; how-
ever, for the purposes of this work, the interpretation of
what constitutes a “species” will need to be modified. To
avoid confusion, the model will be defined de novo, with
notation and interpretation appropriate for this discus-
sion. The exact mapping onto the notations and termi-
nology of Mac Arthur is detailed in the Supplementary
Material (SM).

Consider a world with N resources i ∈ {1 . . . N} de-
noted A, B, etc. These resources can be harvested with
“pathways” Pi. An organism is defined by its “functional
type”, namely the pathways that it carries. Below, the
term “functional type” will be preferred to loaded terms
“genotype” or “phenotype”, since in the context of this
model inheritance and evolutionary dynamics will not be
considered explicitly. There are 2N − 1 possible func-
tional types; they will be denoted using a binary vector
of pathway presence/absence: ~σ = {1, 1, 0, 1, . . . }, or by a
string listing all resources it can harvest, e.g. “organism
ABD . . .” (the underline distinguishes specialist organ-
isms such as A from the resource they feed on, in this
case A). Let n~σ be the total number of organisms ~σ in
the population. The total benefit Ri from a resource i
is equally distributed among all organisms carrying the
pathway Pi; their number will be denoted Ti:

Ti ≡
∑

all ~σ carrying i

n~σ.

For every organism, its individual rate of replication or
death is determined by its resource surplus ∆ϕ:

∆ϕ~σ =
∑
i

σi
Ri
Ti
− χ~σ. (1)

Here the first term is the total benefit harvested by all
carried pathways, and the second term represents the
maintenance costs of organism ~σ; these will be discussed
shortly. This abstract model might, for example, describe
carbon-limited growth of a community of organisms in a

well-mixed environment supplied with N different sugars
at rates Ri per unit time. Pi is the pathway that allows
a microorganism to metabolize a given sugar.

Note that, perhaps counter-intuitively, the starting
point for our discussion is not yet a community of unique
individuals. Although that is our final destination, to
demonstrate continuity with previous ideas the entire ar-
gument can be explained as a new perspective on a famil-
iar model, and the generalization to a truly individual-
based description will be discussed later.

The resource surplus ∆ϕ is used to generate biomass.
For simplicity, the biomass of an organism can be equated
with the number of pathways it carries |~σ| ≡

∑
i σi. The

total biomass change due to resource-dependent growth
or death is then given by:

|~σ|dn~σ
dt

= n~σ∆ϕ~σ. (2)

If one were to introduce a mutation rate for
loss/acquisition of a pathway, this would become a rich
dynamical model of “mesoscopic” population genetics for
a population of bacteria evolving through horizontal gene
transfer. For the purposes of this work, however, we can
ignore dynamical questions and focus on the “final equi-
librium state”, for a given set of costs χ~σ. This is the
state to which the community converges in the infinite-
time limit, assuming a weak exposure to an external pool
of all possible organism types. At such an equilibrium,
two conditions must be satisfied: first, all organisms that
are present in the community must have zero resource
surplus, so that they neither grow nor die. Second, the
community must be stable with respect to invasion by
organism types that are currently absent: all such organ-
isms must therefore have negative resource surplus. Such
an equilibrium always exists and is stable; this is because
the dynamics (2), as noted in Ref. [27], can be seen as
a gradient-ascent-optimization of the objective function
(see SM):

F =
∑
i

Ri lnTi −
∑
~σ

χ~σn~σ.

To gain intuition, consider the case of N = 2 (Fig. 1).
With 2 resources, there are only 3 organism types: A, B
and AB, and the dynamics (2) reduce to the following

Resources:

Pathways:

𝑅𝐴 𝑅𝐵

𝑃𝐴 𝑃𝐵

∅ ∅

𝜒𝐴𝐵 > 𝜒𝐴 + 𝜒𝐵 :   𝐴 and 𝐵 only

𝜒𝐴𝐵 < 𝜒𝐴 + 𝜒𝐵 :

𝑅𝐴
𝑅𝐵

𝐴𝐵 , 𝐴

𝐴𝐵

𝐴𝐵 , 𝐵

FIG. 1. Equilibria of the metagenome partitioning model for
N = 2.
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three equations:

ṅA = nA

(
RA

nA + nAB
− χA

)
ṅB = nB

(
RB

nB + nAB
− χB

)
ṅAB =

1

2
nAB

(
RA

nA + nAB
+

RB
nB + nAB

− χAB
)

Analysing these equations, one finds that the final com-
munity structure is determined primarily by the cost dif-
ference between the specialists and the generalist (see
SM). If χAB > χA+χB , the generalist AB is not compet-
itive and the final state is a community of two specialists
A and B. Alternatively, if χAB < χA + χB , the domi-
nating type will be AB, possibly supplemented by either
A or B if there is a sufficient excess of the respective re-
source. This example demonstrates that the metagenome
partitioning model captures the idea of division of labor
in a community. Intuitively, some functional capabili-
ties are more compatible that others. If two metabolic
enzymes require different conditions for optimal func-
tion, or if their enzymatic activity is characterized by
an undesirable cross-talk, expressing them in the same
organism would require maintaining two separate com-
partments at an extra cost; for instance, the nitrogen-
fixing enzyme nitrogenase is inactivated by oxygen, and
as a result, maintaining oxygen respiration and nitrogen
fixation functional simultaneously in the same organism
would be extremely costly and is never observed. Con-
versely, an organism can efficiently make use of several
enzymes requiring similar specific conditions (e.g. spe-
cific levels of pH) by investing into the maintenance of
a dedicated compartment only once, but harvesting the
benefit from all.

Motivated by these examples, one can complete the
model by defining organisms costs χ~σ based on their en-
zyme content ~σ as follows:

χ~σ = χ0 + |~σ|+
∑
ij

Jijσiσj . (3)

The cost of an organism is composed of the baseline
cost χ0 of maintaining basic structures (e.g. cell wall,
ribosomes, replication machinery), a fixed cost per car-
ried pathway, and a correction that arises from (positive
or negative) interactions between pathways, given by an
N×N matrix Jij . For simplicity, Jij is taken to be a con-
stant random matrix of Gaussian elements characterized
by mean 〈J〉 = µ and variance 〈(J − µ)2〉 = J2

0 . Since
one expects cross-talk between enzymes to be detrimen-
tal more often than beneficial, µ will be positive. In this
simple model, all the complexity of the enzymatic chem-
istry and properties of the environment is summarized in
a random matrix Jij with two parameters. For simplicity,
this work will assume all the resources to be supplied in
equal abundance: Ri ≡ R. Note that resource amount is
not a dynamic variable here: the resource flux is always

fully consumed by the community. However, as organ-
ism ~σ multiplies, this increases the total expression Ti of
the pathways it carries (for all i such that σi = 1), and
therefore the benefit that any one organism can harvest
from the corresponding resources Ri/Ti is reduced. In
this sense, one can say that, for example, organism AC
“depletes” resources A and C, because its presence re-
duces the benefit that other organisms can obtain from
these particular resources.

II. THE METAGENOME PARTITIONING
MODEL LEADS TO EMERGENT SPECIES WITH

A CORE AND ACCESSORY GENOME.

Which of the 2N − 1 organism types survive in the fi-
nal equilibrium state of the community? In traditional
evolutionary models, an important role is played by “fit-
ness” of different organisms. In the setting described
here, it is natural to define the fitness of an organism
as its initial growth rate (at n~σ = 1) in a pristine en-
vironment, i.e. with no other organisms present. In this
situation the total resource harvest collected by ~σ is given
by
∑
i σiRi = |~σ|R, and therefore:

f~σ =
∆ϕ~σ
|~σ|

=
|~σ|R− χ~σ
|~σ|

= R− χ~σ
|~σ|
.

We see that the relative fitness of different types is de-
termined by their cost per pathway. Fig. 2A shows the
fitness of all organism types for one realization of costs
χ~σ that will be used throughout this work, generated for
N = 20, R = 100, χ0 = 0.9 and one random realiza-
tion of the matrix Jij . The matrix Jij was obtained by
generating a Gaussian random matrix with µ = 0.05 and
J0 = 0.05, and applying a “neighbor bias”, shifting ele-
ments immediately above and below diagonal Ji,i±1 by
a constant b = −0.15 (not reflected in Eq. (3)). This
favors organism types that express consecutive pathways
and was done to improve visual clarity of subsequent fig-
ures.

Examining Fig. 2A, one can see that extreme special-
ists (|~σ| = 1) have reduced fitness; this is due to the base-
line cost term χ0 in Eq. 3. As the number of expressed
pathways |~σ| is increased, the relative importance of the
baseline cost goes down; however, the competitiveness of
wide-spectrum generalists (|~σ| ≈ N) is affected by path-
way cross-talk which is, on average, detrimental (µ > 0).
The parameters above were chosen to be representative
of the regime where the fitness peak |~σ| = k∗ is located
at an intermediate organism size, in this case k∗ ≈ 5.

For these particular costs χ~σ, the final population
state, determined numerically (see SM), is composed of
11 organism types in stable coexistence (Fig. 2B). These
types are not necessarily the ones characterized by max-
imal fitness in an empty environment: as organisms mul-
tiply, they modify their environment by depleting re-
sources, altering the fitness landscape for other organ-
ism types. For example, note that one of the domi-
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FIG. 2. The metagenome partitioning model leads to emergent species with a core and accessory genome. A.
Fitness of all 2N − 1 organism types, defined as the growth rate in a pristine environment with equally abundant resources
Ri ≡ R = 100, for one particular random realization of the Jij cost model used throughout the text. The organisms that survive
in the final state (red) tend to be selected among high-fitness organisms, but not exclusively (cf. type ABC), because organisms
modify their environment and therefore fitness of other organisms. B. The choice of costs in A gives a community with 11
types. Plot shows the pathway content of these types (also provided in labels); color reflects the stable abundance of each type
in the population. C. A heterogeneous habitat can be thought of as composed of multiple independent micro-environments,
each of which may favor different organism types. Here, color reflects the abundance of the specified organism type (rows) in
a given micro-environment (columns) for a habitat composed of 30 micro-environments with weak heterogeneity F0 = 0.005.
Shown are the 17 types whose biomass exceeds 0.1% of the total. Color scale as in B; rows are ordered to optimize the clustering
pattern in the next panel. D. A matrix of pairwise Hamming distances between the 17 types of panel C. Organisms form 4
clear groups, or effective “species” with core and accessory genomes.

nant established types (organism ABC) has a compar-
atively low fitness when placed in a pristine environment
(Fig. 2A); however, it thrives once the other 3 dominant
types strongly deplete all resources except A, B and C.
In general, the fate of an organism in an ecosystem is
determined both by its own fitness and by its interaction
with other organisms, in an environment that is modified
by their presence. The metagenome partitioning model
captures this in a simple setting with few parameters.

How sensitively does the final equilibrium of the com-
munity depend on the exact values of χ~σ? In general,
any habitat can be thought of as a collection of microen-
vironments whose characteristics exhibit some degree of
heterogeneity. This heterogeneity can be described as a
modification of organism costs:

χ′~σ = χ~σ +H~σ.

The magnitude of H~σ compared to the parameters of
our model (χ0, µ, J0 and the neighbor bias b) charac-
terizes how strongly the tendency of functional traits to
associate in an organism is modified across microenvi-
ronments. In general, there is no reason to assume H~σ
to be small. For example, in E. Coli, losing the capac-
ity to produce a metabolically expensive aminoacid such
as arginine has a fitness effect that is highly dependent
on the environment and varies from strongly deleterious
to strongly beneficial when a single environmental char-
acteristic, namely the free concentration of the deficient
aminoacid, is modified [35, 36]. Further, even if H~σ is
indeed small compared to the relevant parameters of the
model, its effect on the final population state can still
be significant: intuitively, to have no effect, H~σ should

be small compared not to χ~σ itself, but to differences
between χ~σ. Since there are exponentially many organ-
ism types, surprisingly small H~σ can modify competition
outcome.

Consider first the case when environment heterogene-
ity is weak. Its effect on organism costs can be translated
into a more intuitive effect on fitness; for this, one can set
H~σ = |~σ|F~σ and then model F~σ by independently draw-
ing values from a Gaussian distribution of width F0 for
each micro-environment. In other words, environment
heterogeneity has the effect of adding a small random
contribution to the fitness of all organism types.

Fig. 2C shows the final equilibria for 30 micro-
environments at F0 = 0.005 (shown are all the types
with significant presence in the habitat, whose biomass
combined over all micro-environments exceeds 0.1% of
the total). Although F0 is an order of magnitude smaller
than any other parameter in the model, even this small
perturbation is often sufficient to change which organ-
isms survive in the final state. If the habitat is sampled
on a scale that cannot distinguish between individual
micro-environments, all the organism types appearing in
Fig. 2C will be observed. Note, however, that these 17
types cluster into just four groups (Fig. 2D), with mem-
bers of each group exhibiting strong functional similarity
to each other. Observing this in an experiment, we would
characterize this habitat as harboring 4 “species” of or-
ganisms that share a “core genome”, differing only in a
small number of pathways, the “accessory genome” [37].

Intuitively, this clustering arises for two reasons. Con-
sider a particular organism type ~σ0. First, under the
Jij cost model, if ~σ0 has high fitness (low cost per en-
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zyme), i.e. is made primarily of pathways that “go well
together”, then the fitness of its neighbors in functional
space (with one pathway added or removed) will, on av-
erage, also be high. Second, the resources not depleted
by other organisms shape a niche that favors types with
pathway content similar to ~σ0. Therefore, if cost mod-
ification causes type ~σ0 to be displaced, the organism
displacing it will likely be one of its high-fitness neigh-
bors that shares largely the same niche. As a result,
the metagenome partitioning model contains a regime
where species with a core and accessory genome arise as
an emergent phenomenon. The expected number M of
these effective species can be estimated as the number of
high-fitness types (|~σ| ≈ k∗) that can tile the resource
space and therefore coexist at strong abundance in a sin-
gle micro-environment: M ≈ N/k∗, which is indeed 4 in
this case.

Note that Fig. 2C shows only relatively abundant or-
ganisms: the 0.1% biomass threshold eliminates 7 addi-
tional types that appear at a low abundance in a single
or few microenvironments and thus have a very weak rel-
ative presence in the habitat as a whole (Fig. S1). Thus
the model described here also naturally includes a pre-
viously suggested explanation for the “rare species” phe-
nomenon as a consequence of environment heterogene-
ity [19]. Note also that setting the number of micro-
environments to 30 was an arbitrary choice. If more
micro-environments were sampled, new types would oc-
casionally be observed; however, the dominant 4-cluster
structure would remain intact (Fig. S2). Importantly,
therefore, the interpretation that “the habitat harbors
4 species” remains invariant, while the exact number of
types observed in micro-environments can change.

Microenvironments 

Heterogeneity F
0
=0.200.A

1 30

Pairwise functional similarity

212 types

B

FIG. 3. The high-diversity regime: species clustering
is lost. Same as Figs. 2CD for a larger heterogeneity param-
eter F0 = 0.2. A. For very large habitat homogeneity, each
micro-environment supports different organism types. Axes
as in Fig. 2C. Shown are 212 types that exceeded the 0.1%
biomass threshold (not labeled to reduce clutter). B. The ma-
trix of Hamming distances between 212 types in the habitat
no longer possesses a clustered structure.

III. THE MODEL ADMITS A SMOOTH
TRANSITION INTO A HIGH-DIVERSITY

REGIME WHERE SPECIES CLUSTERING IS
LOST.

Consider now the case of large heterogeneity. As F0

is increased, the clustering of types is progressively re-
duced. Fig. 3 repeats panels Fig. 2CD with F0 increased
to 0.2. At this heterogeneity parameter, each microenvi-
ronment favors its own set of organism types with hardly
any overlap between microenvironments; as a result, di-
versity in the habitat is vastly increased: 30 microen-
vironemnts now harbor 212 types that exceed the 0.1%
total biomass threshold. These types no longer display a
clustered structure (Fig. 3B). Whether or not this is an
adequate representation of any real habitat harboring a
diverse microbial community, this setting allows us to ask
a novel type of question: how many species are there in
the ecosystem displayed in Fig. 3? Clearly, 212 would be
an incorrect answer, just as for the ecosystem displayed
in Fig. 2CD the number of effective species was 4 rather
than 17. This time, however, no underlying structure of
the problem justifies any clustering procedure. The “how
many species?” question has no answer in this regime;
instead, the “species”-based description is no longer ad-
equate.

How, then, should one characterize this ecosystem?
One would like to construct an alternative viewpoint
that would be equivalent to counting species when they
are well-defined, but would remain applicable even when
“species” no longer exist. Note that this is a different task
than inventing another metric for characterizing the func-
tional diversity of a community; numerous such metrics
have been proposed in the literature [38]. In the problem
at hand, we are content with the simplest such metric,
namely the number of species; the difficulty lies in, first,
defining this quantity in the setting described here, and
second, extending it to regimes were species are no longer
well-defined.

IV. DYNAMICAL MODES AS AN
ALTERNATIVE TO SPECIES

The solution proposed here is to consider the spectrum
of dynamical modes in the system.

Consider a community at equilibrium with respect to
the deterministic growth/death dynamics (2). Denoting
~n the vector of abundances of all 2N − 1 organism types,
so that nα ≡ n~σα (using Greek indices to label distinct
organism types), one can write these dynamics as

d~n

dt
= ~g(~n), (4)

where

gα(~n) =
1

|~σα|
nα∆ϕ~σα .
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0

1

|λ|

A

Modes in pathway expression space

4 pure (non−interacting) species

 

 

ABCDEFGH I J K LMNOPQRST

−1 −0.5 0 0.5 1 10 20 30
0

1

|λ|

B An interacting community with ~4 species

Microenvironments Modes in pathway expression space
ABCDEFGH I J K LMNOPQRST 10 20 30

0

1

|λ|

C A highly diverse community: a single collective mode

Microenvironments Modes in pathway expression space
ABCDEFGH I J K LMNOPQRST

FIG. 4. The spectrum of dynamical modes quantifies functional diversity. A. Eigenvalue spectrum (left) and the
projection of eigenmodes into the pathway expression space, for a non-interacting community of 4 “pure” species (the 4 dominant
types from Fig. 2B). The thin black lines link each mode with the matching eigenvalue in the spectrum. B. Left: the eigenvalue
spectrum for a community with F0 = 0.005 (cf. Fig. 2) accumulated over K micro-environments, presented as a function of K.
Right: the eigenmodes of the entire community (K = 30) projected into the pathway space, ordered by decreasing |λ|. Red,
positive components; blue, negative components. The matching eigenvalue is shown for top 5 modes. Note the similarity of the
top 4 modes with those of panel A. C. Same as B, for the high-diversity regime at large environmental heterogeneity (F0 = 0.2;
Fig. 3). Only one mode has a large |λ| and corresponds to a collective whole-community response.

This time we will not require that no other type can in-
vade, but only that the abundance of all present organism
types had equilibrated and every one of them has zero re-
source surplus. In other words, we will consider a fixed
point of the dynamics (4).

One can now perform the stability analysis around this
fixed point, i.e. consider the eigenmodes of the matrix

Mαβ =
∂gα
∂nβ

. (5)

This matrix characterizes interactions between organism
types: Mαβ is the change in growth rate of type α in-
duced by a perturbation in the abundance of type β.
Considering separately the types that are present (denote
their set S) and those that are absent, one can write:

Mαβ =


−nα
|α|

∑
i∈α∩β

Ri
T 2
i

if α ∈ S

1

|α|
δαβ∆ϕα if α /∈ S,

(6)

where i ∈ α ∩ β denotes pathways present in both types
α and β, and δ is the Kronecker symbol.

One finds that some fluctuation modes are unstable
(have positive eigenvalues); these correspond to intro-
ducing an organism type that can invade the commu-
nity (α /∈ S and ∆ϕα > 0). Once such a type arrives,
the community will switch to another temporary equi-
librium. Consider these temporary equilibria, restricting
dynamics only to the set of organisms that are present:

M ′αβ ≡ Mαβ |nα>0,nβ>0 = −nα
|α|

∑
i∈α∩β

Ri
T 2
i

. (7)

Within this space, all fluctuation modes are stable (all
eigenvalues λ are negative) by the objective function op-

timization argument (see SM). Borrowing the term in-
troduced in [39], one can call them “ecomodes”. Below,
it is proposed that the appropriate extension of species
in this setting is to consider the most stable ecomodes,
i.e. ecomodes with strongly negative |λ|.

To motivate this, consider first a community composed
of just the 4 dominating types of Fig. 2B inhabiting a sin-
gle microenvironment. These organisms consume non-
overlapping sets of resources and do not interact; the
interaction matrix M ′αβ is therefore diagonal. For a com-

munity composed of “pure” (non-interacting) species, the
ecomodes are in one-to-one correspondence with the in-
dividual species (Fig. 4A): the eigenvalues λi = M ′αα are
given by their cost per enzyme (left panel), and the eigen-
modes are set by their pathway content (right panel).

After this simplest example, consider now the en-
tire habitat presented in Fig. 2CD. After summing over
several micro-environments, the total community is no
longer an equilibrium of any one system. K micro-
environments are K independent systems, each with re-
source abundance R and costs χ′~σ ≈ χ~σ. Consider this as
a community of organisms living all together in a habi-
tat with total resources KR. Although this community
is no longer at equilibrium, perturbing the abundance of
any one type still exerts a well-defined influence on the
growth/death rates of other types. Therefore, the inter-
action matrix M ′αβ can still be defined using Eq. (5), and

one can again consider its spectrum (for details, see SM).
Fig. 4B present the spectrum computed for the commu-
nity progressively summed over K micro-environments;
from K = 1 (a single micro-environment) to K = 30
(the entire habitat pooled together). One can see that
the spectrum dependence on K quickly stabilizes and is
dominated by 4 eigenvalues (Fig. 4B, left). Mapping the
eigenmodes into the pathway expression space reveals a
complex pattern of interactions (Fig. 4B, right); however,
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the structure of the dominant 4 ecomodes bears a clear re-
semblance to non-interacting case (Fig. 4A) and is deter-
mined by the core “genomes” of the dominant organism
types. In one of the previous sections, this habitat was
characterized as harboring 4 species; however, this inter-
pretation relied on a subjective judgement of Fig. 2D by
a human observer. In contrast, the eigenmode spectrum
provides an objective description: 4 dominant modes are
unambiguously identified.

If the eigenvalue threshold is lowered considerably, a
fifth mode becomes apparent. Examining the right panel
of Fig. 4B, one can see that this mode corresponds to the
competition between types NOPQRST and OPQRST
(compare with Fig. 2C, rows 2 and 3). These two types
have similar total abundance in the habitat and only
differ by one pathway; in the first approximation, the
immediate response of the community to most external
perturbations (e.g. fluctuation in resource abundance)
will not distinguish between them; however, the differ-
ence will become apparent at a longer time scale. Thus,
the eigenmode description of the community structure is
naturally hierarchical.

Finally, consider the high-diversity regime with 212
types of Fig. 3. By construction, the first micro-
environment and the community it harbors is identical
to that of Fig. 4B at K = 1; therefore, initially the
spectrum has the same 4 large eigenvalues. However,
as the community is pooled over highly heterogeneous
micro-environments, the eigenvalues “crash” (Fig. 4C,
left). The spectrum again stabilizes with respect to K,
but in a very different regime where it is dominated by a
single collective mode (Fig. 4C, right).

V. DYNAMICAL MODES IN AN
INDIVIDUAL-BASED DESCRIPTION

The last remaining step of the argument is to show
that the eigenmode structure can in fact be defined in
a community of unique individuals and does not require
assigning them to any groups such as functional types.
To see this, one only needs to remark that the exact same
procedure allows constructing an interaction matrix be-
tween each pair of individuals. First, one must translate
the continuous deterministic dynamics (4) into a stochas-
tic dynamics at the level of discrete individuals: each in-
dividual has a rate r at which it will either generate a
copy of itself or die, so that its expected “abundance”
after time dt is 1 7→ 1+r dt. This rate r is determined by
the resource surplus experienced by that particular indi-
vidual. Now, for each individual µ, consider the effect its
removal would have on the instantaneous growth rates r
of all other individuals ν in the population. This defines
the interaction matrix:

Mµν = − 1

|µ|
∑
i∈µ∩ν

Ri
T 2
i

. (8)

Unlike Eq. (7), this expression no longer involves any
quantities whose definition requires a pre-defined clas-
sification (such as nα, the “abundance of functional
type α”), but only a functional characterization of each
individual.

For a population of N individuals, the interaction ma-
trix M of size N × N will always have N eigenmodes.
Note, however, that if individuals µ and µ′ happen to be
functionally identical (or very close), then Mµν =Mµ′ν

for all ν, andM has a zero eigenvalue (or, respectively, a
very small one). In particular, if individuals were drawn
from a limited number K of distinct functional types, as
considered here, then N −K eigenvalues will be exactly
zero, and the remaining ones will coincide with the spec-
trum of Mαβ defined for functional types above. For the
community presented on Fig. 4B, the individual-based
analysis will show that the community has 4 dominant
eigenmodes (the four “species”), 1 smaller eigenvalue re-
flecting the most important split of one species into two
equiabundant competing types, and 12 more (for a total
of 17) reflecting the remainder of the internal structure
of the 4 clusters. If the level of functional characteri-
zation of individuals were more detailed, the remaining
eigenvalues would not be zero, but progressively smaller,
resolving finer and finer details. The dynamical mode for-
malism thus provides a naturally hierarchical description
for a community of unique individuals. Their grouping
into types, when it exists, is established as a result of
this analysis; in this framework, it no longer constitutes
a fundamental assumption.

VI. DISCUSSION

This work considered the question: can we imagine
ecology that is fundamentally not a system of interact-
ing species? Constructing a model combining ecology
and evolution [40] made it possible to avoid postulating
the existence of species as fundamental ecological vari-
ables. As demonstrated here, in one parameter regime,
species with a core and accessory genome naturally ap-
pear in our model as emergent concepts. However, the
same model allows a smooth transition to a highly diverse
regime where species become an inadequate description.
Its dynamics are qualitatively different, exhibiting a sin-
gle dominating collective mode, as opposed to K inter-
acting modes characteristic of a K-species community.
Importantly, both regimes admit a unified, naturally hi-
erarchical description in terms of dynamical modes of
community fluctuations that retains all the fine aspects
of dynamics and is still meaningful even when the species
description breaks down.

The specific example constructed here was intention-
ally simplified. Species may be well-defined (in terms of
clustering of types) without being weakly interacting as
in Fig. 2. Further, the high-diversity regime of Fig. 3 was
constructed by postulating that any combination of path-
ways constitutes a possible organism; for any such com-
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bination there exists a micro-environment where it is has
the highest fitness; and moreover, such an environment is
just as likely as any other. In such conditions there is of
course no reason for types to cluster into anything that
resembles species. The two regimes highlighted here are
the opposing extremes (very weak and very strong inter-
action) and neither is proposed to be an accurate repre-
sentation of reality. The point, rather, is that a model
capable of smoothly interpolating between the two ex-
tremes allows us to begin constructing a framework that
escapes the confines of the species paradigm. In the in-
terest of clarity of this proof-of-principle argument, one
fixed set of parameters of our model was used through-
out this paper. Simple arguments demonstrate that the
existence of the two regimes highlighted on Figs. 2 and 3
is a generic phenomenon for a wide range of model pa-
rameters (see SM). In between these two extremes lie
other dynamical regimes not discussed here which may
be closer to reality and deserve further investigation.

The dynamics considered in this work were determinis-
tic, and the questions of organism dispersal across micro-
environments constituting a habitat was not considered
explicitly; these are important simplifying assumptions
(see, for example, [41]). Relaxing them can be ex-
pected to push away from the neat clustering observed in
Fig. 2D, but if so, this only lends more weight to the argu-
ment that ecology need not always look like interactions
between well-defined species. Another strong simplifica-
tion was the purely additive dependence of organisms on
resources: combinatorial dependence (“and” instead of
“or”) is absent from the model. This simplification made
it possible to capture division of labor in the simplest
possible theoretical setting. In real ecological settings,
combinatorial effects lead to a proliferation of niches and
complexity and cannot be neglected.

The analysis presented here focused on infinite-time fi-
nal equilibrium states of interacting communities, ignor-
ing all questions about convergence to such equilibria, in
particular those associated with the inherently slow sam-
pling of the exponentially large space of possible func-
tional types. Dynamical mechanisms such as inheritance
and common descent may provide an independent reason
for the partitioned community assumption to hold: even
if taxonomic classification for microorganisms is globally

problematic, for a given community, it is often appropri-
ate to group together organisms that shared a common
ancestor recently as opposed to a million years ago. Vir-
tually all of the literature devoted to the “species prob-
lem” justifiably places inheritance and evolutionary dy-
namics at the center of the discussion. By deemphasizing
these much-discussed mechanisms, this work focused on
the purely functional aspect: in the community depicted
on Fig. 2, types cluster into species not because they
share recent ancestors, but because only certain combi-
nations of pathways are competitive. One advantage of
this complementary approach is the clear separation be-
tween the evolutionary sense of the term “species” and
the ecological assumption of a “partitioned community”;
as stressed in the introduction, the two are conceptually
quite distinct.

Deemphasizing inheritance also lends generality to the
argument: for example, it becomes possible to establish a
link to the game theory literature. In this field, problems
in economics, computer science and biology are modeled
as “games” between agents choosing between a limited
number of strategies, e.g. “cooperator” / “defector”. The
species problem as considered in this work could be re-
formulated as asking whether this limited-strategy de-
scription always provides an adequate model for the (in
principle, unbounded) spectrum of possible agent behav-
iors.

More work is required before the dynamical mode de-
scription becomes a full-scale theoretical framework ca-
pable of challenging the traditional species-based formal-
ism. Nevertheless, the results presented here argue for
the possibility that in our quest to understand the mi-
crobial communities that shape our environment and our
health, a key missing element could be theoretical [42].
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SUPPLEMENTARY MATERIAL

Appendix A: Mathematics of the model

1. Relation to the model of MacArthur

The dynamics (2) can be written as

dn~σ
dt

=
1

|~σ|
n~σ

(∑
i

σiAi − χ~σ

)
. (S1)

where Ai denotes the “available resources”. In the model
considered in this work, Ai = Ri

Ti
. In [27], Mac Arthur

considered a model of species competing for renewing
resources. In that model, the dynamics of organism pop-
ulations were identical to (S1), but the availability of
resources was given by Ai = Ri(1 − Ti/ri) (see equa-
tions (1)-(3) in [27]), where the extra parameter ri is the
renewal rate (or the “intrinsic rate of natural increase”).

The dynamics of the two models, therefore, differ only
by the choice of the functional form relating population
growth and the corresponding decrease of resource avail-
ability. The mapping between the notations of [27] and
those used here is provided in the table:

Notation for... In [27] Here

Species index i ~σ

Species abundance xi n~σ
Resources a species can harvest aij σi
Resource carrying capacity Kj Ri
Minimal resource requirement Ti χ~σ
“Resource weight” wi 1

Conversion factor (resources 7→ biomass) ci 1/|~σ|
Resource renewal rate rj N/A

The main difference between the two models is in the
treatment of species. In the model of Mac Arthur, each
species i was described by an arbitrary chosen vector of
parameters aij (probability to encounter and consume
resource j) and the magnitude of minimal resource re-
quirement (χ in our notation). The space of possibil-
ities is unconstrained, and the types available to form
a community are determined by historical contingency;
Mac Arthur then asks how many species can co-exist in
this way.

In the model considered here, aij are constrained to
be 0 or 1 and are determined by a “functional genome”
which also sets the minimal resource requirement of each
organism type. The resulting space of possibilities is
strongly constrained; in particular, it is exponentially
large, but finite. This makes it possible to consider the
final equilibrium state determined by ecological interac-
tions only, and to address a very different question: when
do the functional types favored by (heterogeneous) envi-
ronmental conditions cluster to form “species”?

2. Existence and stability of equilibrium

The study of equilibria of the metagenome partition-
ing model is simplified once the dynamics of the model
is reformulated as an optimization problem. This was
first done in Ref. [27]; here, because of the difference in
the way resource consumption is treated, the objective
function being optimized is different, but the argument
is similar. Consider the following objective function:

F =
∑
i

Ri lnTi −
∑
~σ

χ~σn~σ.

On the domain of interest {n~σ ≥ 0}, this F is bounded
from above. To see this, note the inequalities:∑

i

Ti =
∑
~σ

|~σ|n~σ ≤ N
∑
~σ

n~σ

and for α, β > 0:

α lnx− βx ≤ α ln
α

eβ

Using these, and setting min~σ χ~σ = χ∗ > 0, one can
write:

F ≤
∑
i

Ri lnTi − χ∗
∑
~σ

n~σ ≤
∑
i

(
Ri lnTi −

χ∗

N
Ti

)
≤
∑
i

Ri ln
NRi
eχ∗

The gradient of F is precisely the “competitive advan-
tage” of organism types:

∂F

∂n~σ
=
∑
i

Ri
Ti
σi − χ~σ = ∆ϕ~σ

(it is helpful to note that Ti =
∑
~σ σin~σ). Therefore, F

is always increasing along the trajectories of the model:

df

dt
=
∑
~σ

∂f

∂n~σ
ṅ~σ =

∑
~σ

n~σ
|~σ|

(∆ϕ~σ)2 ≥ 0

The population as a whole performs a gradient-ascent
optimization of F on the domain n~σ ≥ 0. Since F is
bounded, the final equilibrium always exists and is stable.
The argument does not guarantee that such an equilib-
rium is unique; several stable, non-invadeable equilibria
could in principle exist. In practice, for equiabundant
resources Ri ≡ R such multi-stability was not observed
in simulations: the population always converged to the
same state for all the initial conditions sampled. The
conditions under which multi-stability could be observed
requires further investigation. However, for the “perfect
tiling” regime as observed in Fig. 2 the set of dominant
types is determined uniquely; this will be proved in “The
perfect tiling regime” section below.
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3. The maximum number of coexisting types

The traditional question of how many types can coexist
for a given set of parameters, although not at the focus of
this work, is nevertheless instructive to address. A simple
linear algebra argument demonstrates that in the model
considered here, this maximum number is N : a stable
coexistence is possible only for a number of types that is
at most equal to the number of resources. This is because
for a given set of K types, the K equilibria conditions
∆ϕ~σ = 0 can be seen as a linear mapping between the
N -dimensional vector Ri/Ti and a K-dimensional vector
of organism costs χ~σ. In the generic case (i.e. if no special
symmetries exist in the cost structure), the existence of
such a mapping requires K ≤ N .

Symmetries in the cost structure can lead to degen-
erate equilibria circumventing this maximal coexistence
condition. Imagine, for example, that all organisms have
the exact same cost per pathway χ∗. In this maximally
degenerate case any combination of functional types can
coexist, provided that Ti = Ri/χ

∗: no division of labor
strategy is better than any other.

4. Numerical determination of the community
equilibria

To determine the final (non-invadable) equilibrium
state of a community, one could imagine choosing a ran-
dom starting point with a non-vanishing abundance of ev-
ery possible functional types, and evolving it according to
the dynamical equations for time t→∞. The argument
in the previous section guarantees that such evolution
would converge to an equilibrium state. Numerically,
however, such a procedure is highly memory-intensive:
simulating time evolution of 2N functional types is waste-
ful, since the final population is guaranteed to contain at
most N types with non-zero abundance (see section “The
maximum number of coexisting types”).

Conveniently, verifying that a configuration is a true
final equilibrium is much easier than finding it: one only
needs to check that the resource surplus ∆ϕ~σ is zero for
all types that are present and is negative for all those
that are absent. This verification is fast and is guaran-
teed to either confirm that the equilibrium state is cor-
rect, or provide a list of types that can invade it. There-
fore, a simple heuristic procedure can construct the final
equilibrium configuration through an iterated sequence of
“guesses”, whereby a subset of types is first equilibrated,
and then updated by removing types that went extinct
and adding those that can invade. This is the approach
adopted here.

Specifically, the “initial guess” S0 is constructed us-
ing the “fitness criterion” explained in the main text
(low cost per pathway = high fitness): for each path-
way i, the 10 most cost-efficient (lowest cost per path-

way) functional types (S
(i)
0 ) that contained pathway i

are determined; the union of these cost-efficient types,

all taken at equal abundance of 1 unit, constitutes the

“initial guess” S0 =
⋃
i S

(i)
0 . After this, the following

procedure is iterated: the guessed configuration of types
is evolved until satisfactory equilibrium using MatLab’s
variable-order differential equation solver ode15s; a satis-
factory equilibrium was defined as a configuration where
the vector of derivatives ṅ~σ of all simulated types would
fall below an arbitrary threshold of 10−4. At this point
the algorithm checks if this configuration can be invaded
by any type not included in this partial simulation. If
not, the configuration is accepted as being within the
pre-determined numerical error of the true final equilib-
rium. If, however, types are found that can invade, they
are added to the community at abundance 1, the previ-
ously considered types whose abundance fell below 10−2

are removed, and the simulation cycle is repeated.
This procedure is guaranteed to converge, because the

optimization function F is monotonously increasing at
every step. The result of convergence is guaranteed to be
a true non-invadable equilibrium because the invadability
criterion is checked for all types and is exact.

5. The “perfect tiling” regime

To develop an understanding for the structure of the
equilibria of the metagenome partitioning model, con-
sider, first, the situation where the final equilibrium con-
tains a set of dominating organisms that partition re-
sources with no overlap (cf. Fig. 4A). This “perfect
tiling” regime is an instructive starting point that will
help build intuition for the general case.

Call a set of organisms P a “perfect tiling” of the re-
source space if every resource is consumed by exactly one
organism in P . Define the “cost of the tiling” as the total
cost of all organisms in P :

χP ≡
∑
~σ∈P

χ~σ.

The tiling with the lowest cost will be called the optimal
tiling P ∗. Let S be the set of organisms present in the
final (non-invadable) equilibrium state of the community.
Proposition: If S contains a perfect tiling P ⊂ S, its

cost is optimal: χP = χP∗ . (And therefore, assuming a
non-degenerate cost structure, P = P ∗).
Proof: Assume the contrary: let P 6= P ∗ be a perfect

tiling that is a subset of the types present in the final
non-invadable community equilibrium S. Since all types
in P are present at non-zero abundance, their resource
surplus ∆ϕ is zero, and therefore:∑

~σ∈P

∆ϕ~σ = 0 ⇒ χP =
∑
i

Ri
Ti

By the same token, types in P ∗ are either present (∆ϕ =
0) or absent (∆ϕ < 0), and therefore:∑

~σ∈P∗
∆ϕ~σ ≤ 0 ⇒ χP∗ ≥

∑
i

Ri
Ti

= χP .
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Since P ∗ is the optimal tiling, we conclude that χP = χP∗
as claimed.

To summarize, if the final state contains a perfect
tiling, it will necessarily be the one with the lowest to-
tal cost. This clarifies how the survival of an organism
in the final equilibrium is related to its cost per pathway
(its individual “fitness”) but also to the interactions with
other types: even the organism with the absolute lowest
cost per pathway (highest fitness) is not guaranteed to
survive.

6. The N = 2 case

For N = 2, there are only two tilings: {A,B} and
{AB}, and any population equilibrium is always in the
perfect tiling regime. Applying the argument of the pre-
vious section, one concludes that the choice between the
two regimes is determined by the difference of the total
costs: δχ = χA + χB − χAB , as stated in the main text.

7. Stability analysis in the “perfect tiling” regime

The expressions (6) derived in the main text are com-
pletely general and are valid for any fixed point of the
dynamics (4). For a population in the “perfect tiling”
regime, they can be simplified considerably; this analysis
provides useful intuition. In this regime, α ∩ β = ∅ for
any distinct α, β ∈ S, and Ti is simply nα for the unique
type α such that i ∈ α. For simplicity, set Ri ≡ R like in
the main text; the abundance of the type α ∈ S is then
determined by the condition:

∆ϕα =
∑
i∈α

R

nα
− χα = |α| R

nα
− χα = 0.

Therefore, R/nα = χα/|α|, the cost per pathway.
As a result, the Jacobian Mαβ takes the simple form:

Mαβ =


−Λχ ∗

. . .

0 Λ∆ϕ

. . .


← α ∈ S

← α /∈ S

Here Λχ and Λ∆ϕ are diagonal matrices whose eigen-
values, respectively, are the cost per pathway χα/|α|
for types in S, and the resource surplus per pathway
∆ϕα/|α| for types not in S. The asterisk in the upper-
right block denotes some non-zero entries that have no
effect on the eigenvalues of the Jacobian Mαβ . As stated
in the main text, for every type α /∈ S that can invade
the community (∆ϕα > 0), there is an unstable mode
with a positive eigenvalue. After restriction to the set of
organisms in S, in the “perfect tiling” regime the Jaco-
bian Mαβ becomes purely diagonal M ′αβ = −Λχ, so that
each present type constitutes its own stable eiegenmode,

and the eigenvalues are given by the cost-per-pathway
ratio of the organisms in the optimal tiling (which are all
approximately equal near the fitness peak, see Fig. 2A).

Appendix B: Supplementary figures for Fig. 2
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FIG. S1. This figure reproduces Fig. 2CD, except that the
0.1% biomass threshold is not applied. The total number
of types observed in 30 microenvironments rises to 24 and
includes 7 additional types that appear at a low abundance in
a single or few microenvironments and thus have a very weak
relative presence in the habitat as a whole (“rare species”).
The last two rare types appear to form a new, fifth cluster
with an extremely low total abundance in the community.
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FIG. S2. Sampling more micro-environments increases the
total number of all observed types, from 24 in 30 micro-
environments to 44 in 500 (not shown). However, the clus-
tered structure of the types crossing the total biomass thresh-
old of 0.1% (presented in this figure) remains essentially in-
tact: the only difference is the addition of an 18th type, which
forms its own cluster with a very low relative abundance. By
chance, none of the first 30 micro-environments supported
this type, and therefore it did not appear on Fig. 2C.
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Appendix C: Generality of the clustered (Fig. 2)
and not clustered (Fig. 3) regimes

In the interest of clarity of presentation, a single set
of parameters was chosen and used throughout the anal-
ysis in the main text. However, the two regimes that
were discussed one where functional types cluster to-
gether (Fig. 2) and one where they do not (Fig. 3), are
generic: their existence does not depend on the particular
parameter values chosen here.

To see this, consider the following setting: let X be a
space of possible organism types, and F a fitness function
F : X 7→ R. The only assumption about F will be that
it possesses some continuity with respect to some metric
structure on X, so that close types tend to have similar
fitness (Fig. S3). Now, just like in the main text, consider
a habitat modeled as a collection of heterogeneous micro-
environments, the effect of heterogeneity being a random
additive contribution of magnitude h to the fitness of
each type. However, unlike the main text, imagine that
each micro-environment simply selects the highest-fitness
type, so that all ecological considerations are eliminated
entirely.

If h � h1 (see Fig. S3), the heterogeneity does not
appreciably modify the fitness profile, and the same type
will be selected in all micro-environments. If h ' h1,
different micro-environments may select different types;
however, the continuity of F will ensure that the selected
types cluster around its local maximum or maxima (A
and B in Fig. S3). Finally, if heterogeneity is very strong
h� h2, effectively randomizing the fitness values in each
microenvironment, the selected types will no longer ex-
hibit any clustered structure. Therefore, as stated in the
main text, the existence of the two regimes depicted in

Figs. 2 and 3 depends neither on the parameters nor on
the details of the underlying model of ecological interac-
tions, but is a direct consequence of the simplistic man-
ner in which environmental heterogeneity was assumed
to manifest itself.

Note, however, that this argument provides no way to
interpret either of the regimes in terms of the number of
effective species. The non-trivial part of the argument
made in this work is not the existence of a regime where

𝐴 𝐵

ℎ1

ℎ2

FIG. S3. A sketch of a hypothetical fitness function F(X),
where the multi-dimensional space X is represented as 1-
dimensional for simplicity.

types no longer cluster together. Rather, this simple way
of tuning the degree of clustering provided a convenient
toy-model setup to construct an alternative formalism
demonstrating that 17 functional types may represent 17
species, or four, or a collective regime with “no species
at all”, and the answer to this question is an emergent
property of the ecological interactions between individu-
als.
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