arXiv:1509.05033v1 [hep-th] 16 Sep 2015

CERN-PH-TH-2015-213

Colliding waves on a string in AdS;

David Veglﬂ
CMSA, Harvard University, Cambridge, MA 02138, USA

Institute for Advanced Study, Princeton, NJ 08540, USA

Theory Group, Physics Department, CERN, CH-1211 Geneva 23, Switzerland
(Dated: September 18, 2015)

This paper is concerned with the classical motion of a string in global AdSs. The initially static
string stretches between two antipodal points on the boundary circle. Both endpoints are perturbed
which creates cusps at a steady rate. The cusps propagate towards the interior where they collide.
The behavior of the string depends on the strength of forcing. Three qualitatively different phases
can be distinguished: transparent, gray, and black. The transparent region is analogous to a standing
wave. In the black phase, there is a horizon on the worldsheet and cusps never reach the other
endpoint. The string keeps folding and its length grows linearly over time. In the gray phase, the
string still grows linearly. However, cusps do cross to the other side. The transparent and gray
regions are separated by a transition point where a logarithmic accumulation of cusps is numerically
observed. A simple model reproduces the qualitative behavior of the string in the three phases.

I. INTRODUCTION

This paper investigates the formation of worldsheet
horizons on a long string that moves in a fixed back-
ground geometry. If one perturbs the string endpoint,
then a wave is created that propagates down the string.
At the location of the wavepacket, the string is effectively
longer now. Any perturbation that travels through this
region suffers a time delay'. Event horizons form when
the rate of waves is large enough so that perturbations
cannot cross them. Here we would like to understand the
transition from a horizon-free string to one with an event
horizon as the amplitude of waves crosses a critical value.

The nature of the problem requires the study of steady
states where the initial transient oscillations have already
died out. This demands very stable numerical calcula-
tions. An exact discretization technique ﬂ] (see also ﬂ])
will be used that operates by adding elementary shock-
waves (l.e. cusps) to the string. We will consider a
string in (241)-dimensional global anti-de Sitter space-
time. The string stretches between two points on the
boundary which is a circle. According to the AdS/CFT
correspondence Bﬁ], the boundary gauge theory con-
tains a Wilson loop on which the string ends ﬂa, ]. The
Wilson loop lies along the path of an infinitely heavy
quark-antiquark pair and the string is the holographic
dual to the color flux tube that connects them.

On the Poincaré patch, the building blocks of [1l] are
shrinking /expanding circular strings that all have world-
sheet horizons. Since we would like to start with a
horizon-free string, here global AdS will be considered?.

*Electronic address: dvegh@cmsa.fas.harvard.edu

1 This is reminiscent of the Shapiro time delay of general relativity.

2 The construction of a static string that stretches between two
boundary points ﬂE] presumably involves an infinite number of
cusps. The waves created by perturbing the endpoints would

Both endpoints of the string will be perturbed. This
creates (shock)waves on the string that propagate with
the speed of light. The quark and the antiquark will
be kicked? in alternating direction at equal time spacing
starting at ¢t = 0. After some time, this non-equilibrium
system reaches a steady state. Depending on the rate
and the strength of the kicks, the string can move in
qualitatively different ways:

e For small kicks (not necessarily in the linear
regime), the cusps on the string pass through each
other and a standing wave forms. The string length
oscillates around a constant value.

e For large enough kicks, an event horizon forms
on the string worldsheet. Even though individual
cusps pass through each other, a cusp might not
make it all the way across the string, since on the
other side new cusps are constantly being added.
The string grows linearly in time.

e Surprisingly, for intermediate kick strengths, there
is another phase. Even though the string has no
event horizon, its length grows forever at a linear
pace. The discovery of this new “gray phase” is the
main result of the paper.

In the next section, a colliding string wave solution in
flat spacetime is described. Section III discusses the case
of a string in AdS3 and studies the behavior of the string
in the three phases. Section IV describes a simple model
that qualitatively explains the numerical results.

propagate in this bath of cusps. See ﬂQ] for related numerical
simulations.

3 By a slight abuse of language, discontinuous jumps in the accel-
eration of the string endpoint will be referred to as “kicks”. In
the absence of kicks, the string endpoint moves with a constant
acceleration on the Poincaré patch.
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II. FLAT SPACETIME

As a warmup exercise, let us first construct colliding
waves on the string in a flat background geometry. In
(24+1)-dimensional Minkowski space, an explicit solution
X(z,z) that describes two colliding waves is given by

f(2) = aysin(k12) 6(z)
9(Z) = agsin(kqz) 0(2)

OX(2,2) = & + Lf(2)% — f(2)és
0X(2,2) = & + 39(2)%81 — g(2)e
where 0(z) = H% is a smooth step function and
1 L1 1
€| = ﬁ(l, 1,0); & = ﬁ(l,—l,()); €3 = E(O,O, 1).

The spacetime signature is (—1,1, 1) and the coordinates
will be denoted ¢,z and y. The solution satisfies the

equation of motion and the Virasoro constraints,

i —

90X =0, (8X)?=(0X)*=0.

For simplicity, let us set

a1 = —ay =:a and ki=ko=:k (1)
Then, X (z,z) can be integrated and expressed in terms
of hypergeometric functions. A plot is shown in FIG.
[l Waves initially propagate with the speed of light.
When they collide, their effective speed in the back-
ground spacetime is slower. This can be seen in FIG.
@ because the boundary of the standing wave region is
not at a 45° angle (which corresponds to the speed of
light).
If the amplitude of the waves approaches a critical
value a. = 2, then the standing wave region vanishes. Be-
yond this value, the opening angle of the standing wave
region becomes negative, the string worldsheet folds and
the y(t, ) embedding function becomes multi-valued in
that region. The embedding function at late times in in
this region can be computed by setting 0(z) = 1. This

yields
X'(r,0) = 4%& ((8 + 2a?)T — a? cos 20 sin 27)
X*%(1,0) = ﬁ ((8 = 2a*)o + a?sin 20 cos 27)
XY(r,0) = 2asino cosT

where z =74 0 and Z = 7 — ¢. From these implicit for-
mulas, an explicit (but lengthy) expression for y(t, ) can
be obtained. A series of plots for a = 5 at various times
is shown in FIG.[2l Cusps move on the string and when

1]

FIG. 1: Spacetime embedding of the string at a = 1.5 and
k = 1. A standing wave region is visible at the top of the
figure where the waves collide. The opening angle of this

region is smaller than 45°.
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FIG. 2: Plots of the string for a = 5.0 and £ = 1 in the
standing wave region (or behind-the-horizon region) at fixed
times. Cusps move and collide on the string. The solution is

doubly periodic in ¢ and .

they collide, the string embedding becomes temporarily

smooth (see third plot). The motion is periodic.



FIG. 3: The basic string solution (in green) in global AdSs
spacetime. The string ends on two quarks (¢ and @) on the
boundary. The Poincaré patch is bounded by the two orange
surfaces.

III. ANTI-DE SITTER SPACETIME

AdSs3 can be embedded into R?? by considering the
universal covering space of the surface

Y ¥V =-Y? - YV2+Y2+Y:=—-1 (2)
The string equations of motion in conformal gauge are
ddY — (aY - Y)Y = 0. (3)
which are supplemented by the Virasoro constraints
aY - Y = dY - dY = 0.
The metric on global AdSs is
ds®> = —cosh?r dt* + dr? + sinh®r dy

where the relationship between (¢,7,¢) and Y; is

Y 1 = coshrcost
Yy = coshrsint
Y, = sinhrsine
Y5 = sinhrcosp

We are going to plot the string on Poincaré disk time
slices. The radial coordinate p € [0,1) of the disk is

defined by
B /coshr — 1
p= coshr +1
and the metric is

1+ %\
dsQ——<1i—22) dt* +

4
g (7o)

FIG. 4: Boosted string with a constant normal vector in global
AdS. The three figures are Poincaré disk timeslices at ¢t =
0, %, and 7. The string (shown in red) oscillates in the left-
right direction with a period of 2w. The shape is a circular
arc, perpendicular to the boundary circle (on the Euclidean
plane).

A normal vector to the string can be defined as

N €abeqY POY COY?

‘ oy -y
It satisfies N-Y = N-9Y = N-0Y =0and N-N =1. A
simple solution to the equation of motion is obtained by
setting N to be a constant vector. It is the AdS3 analog
of an infinitely long straight string in flat spacetime. The
string embedding corresponding to N(t) = (0,0,0,1) is
shown in FIG.

By applying an appropriate transformation from the
S0O(2,2) isometry group of AdSs, the string can be
boosted and/or rotated. A boosted string will oscillate
in AdS with a period of 27. This is seen in FIG. @
At a given time, the string embedding on the 2d plane
parametrized by p and ¢ is a circle arc that is perpen-
dicular at both endpoints to the boundary circle. The
boundary circle has a unit radius and it is centered at
the origin. The center in polar coordinates (py and )
and radius (rg) of the circle arc can be computed in terms

of its normal vector N = (n1,na,ns,n4) to be

mn.
tan pg = n—i

_ 1+R? 2 2
po = —5 —Vnitn;

ro = \/432 (14 R2)2R2

S

where
1

R:
Vit 4 4 /g 4

(4)

and the two dimensional vector (f1,72) rotates with
global AdS time,

n1\ [ cost —sint '\ [n1

fy)  \ sint cost Ny
More complex strings can be glued from such
“straight” pieces. At the gluing points the string will

contain cusps that can collide. In AdS3, the situation on
the worldsheet is shown in FIG. Bl Time grows in the



FIG. 5: Four patches on the worldsheet. The dashed lines in
the middle are lightlike worldlines of two colliding cusps. The
normal vectors are labeled A, A’, N1, and N». The collision
formula computes any one of these vectors from the other
three.

up/right direction. The two dashed lines are the world-
lines of the cusps. Before the collision, the string consists
of three pieces that are characterized by three normal vec-
tors: Nl, A and NQ. We require A- Nl =A. NQ =1so
that the cusps move with the speed of light. After the
collision, A changes to A given by the collision formula

. . Ni + N
(N1 + Np)?

Further cusp collisions can be computed by repeated ap-

plications of the formula.

A. The setup

Let us now stretch a string between two antipodal
points on the boundary. The first picture in FIG. []shows
this embedding. The corresponding normal vector is con-
stant: Ny = (0,0,0,1). Waves can be sent in by perturb-
ing the two endpoints (see E] for a related calculation
on the Poincaré patch). The waves collide at ¢t = 7 and
scatter from each other.

From a technical standpoint, the simplest waves con-
sist of cusps and boosted straight string segments in be-
tween. For instance, one could consider a left-right os-
cillating endpoint that would generate a triangle wave
on the string. The quark on the boundary suffers equal
kicks in alternating directions.

The quarks will be kicked as follows. Let us consider
the string segment that ends on the quark. Let ¢;(t)
parametrize the quark position just before the it" kick.
This is an angle on the boundary circle of the Poincaré
disk. By kicking the quark we really mean that we let
its acceleration jump by a finite value. This creates a
cusp at the boundary and it starts moving toward the
interior. Behind the cusp a new string piece is created
whose endpoint angle will be denoted by ¢;1. At the
time of the kick, this new segment satisfies

pit1(ti) = wi(ts)  @ira1(ti) = @i(ti) (6)

/ .
Ny / NN

FIG. 6: Collision of cusps on the string (thick line). In an ap-
propriate frame the lines N1 and N» are static. The collision
inverts the velocity of A: ¥ — —1.

and
dpi+1 _ dp; + v
dt t:ti dt t:ti
where we have defined p; = %i_ and v; is the strength

of the i*" kick. This leads to particularly simple formu-
las. Finally, whenever an outgoing cusp reaches the AdS
boundary, the outermost string segment is removed from
the system. This allows cusps to exit the string.

In the remainder of this paper, we will consider square
waves: a kick of the quark, then two kicks in the opposite
direction, then two kicks in the original direction and so
on. This way the entire string will stay approximately at
the same position without boosting the initial string. The
kicks start at t = 0 and continue at equal time spacing
with respect to global AdS time. In the following, this
time spacing will be set to a fixed value At = % and only
the kick strength will be varied.

The simulations have been done using Wolfram’s
Mathematica HE] The algorithm is based on the au-
thor’s public code in @] with a few modifications:

e The code has been extended to handle string seg-
ments and cusps in global anti-de Sitter spacetime.

e Cusps are added according to the prescription
above.

e Cusps are removed when they reach the boundary.

e Due to the number of cusps, a projection has to
be performed on the N; - Nj = 1 subspace where
1 and j denote two neighboring string segments.
The projection is necessary, because real numbers
are stored digitally and the rounding errors would
otherwise grow exponentially with the number of
collisions.

e Finally, the string is plotted on Poincaré disk times-
lices.
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FIG. 7: Shockwave collision at small kick strengths (v = 0.6). The color of string segments alternates for enhanced visibility.
After some time, a standing wave forms and the motion is visibly periodic. The animation is available at Iﬂ]
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FIG. 8: String length in the transparent phase. The length fluctuates around a constant value as the standing wave oscillates.
The initial length of the string (between the UV cutoffs) is shown by a dashed line.

B. Transparent phase

For weak kicks, an example is shown in FIG. [l Three
time slices are plotted: (i) the initially static string, (ii)
after the start, waves start to propagate, and finally (iii)
after some time a standing wave forms®*. Cusps enter the
system as the quarks are kicked, they travel through the
middle part and they exit at the other endpoint. Thus,
this phase is termed transparent. There is an (approxi-
mately) constant number of cusps on the string at any
given time.

The string length is shown in FIG.[8 Here the length
is defined on a timeslice as the sum of lengths of all indi-
vidual string segments®. The geodesic length of a single
segment is given by

—

S@,f):log[_;z.m (X-?P—l}

where X and Y denote the two endpoints of the segment
on the hyperbola (2]) in the embedding space. In order to

4 This is similar to the linearized case where the resulting wave is
simply the sum of two waves traveling in opposite direction.

5 QGenerically, this is not the minimal distance between the two
endpoints.
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FIG. 9: Number of cusps on the string in the transparent
phase. At late times, in the steady state, it approaches a
constant.

have a finite result, the string is cut off in the ultraviolet.
In this paper the cutoff is set to peutog = 1 — 10~*. Then,
the initial length is sg = 4 artanh peytog ~ 19.8 which is
indicated by a dashed line in the figure.

The number of cusps as a function of global AdS time
is shown in FIG.[Q In the steady state, the cusp number
saturates (in this example around 60 cusps). This means
that cusps enter and leave the system at the same rate.
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FIG. 10: Shockwave collision at intermediate kick strengths (v = 1.1). Cusps pass through the string, but the motion is not
periodic. The string length increases linearly over time and cusps accumulate in the center. The animation is available at Iﬂ]
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FIG. 11: String length in the gray phase. The length fluctuates similarly to the transparent case. However, the average length

grows over time.

C. Gray phase

If one increases the strength of kicks, the system enters
a new phase. An example is shown in FIG. Three
time slices are plotted. The string keeps folding in the
center of AdS and becomes longer and longer. Cusps do
cross this region though and they exit at the other end.
This region will be called the gray phase.

The string length grows, see FIG. Il The number
of cusps grows linearly for a while, then as cusps start
exiting at the other end, the growth rate decreases. This
is shown in FIG. The numerical calculation shows
that the cusp number in the steady state grows linearly
over time.

The transparent/gray transition happens around v ~
0.71.
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FIG. 12: Number of cusps on the string in the gray phase.
The number of cusps grows linearly with time until the first
cusps exit on the other end (here around ¢ &~ 5). Then, the
string continues growing, albeit at a somewhat smaller rate.
The number of cusps grows linearly after a short transient.
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FIG. 13: Shockwave collision in the black phase at large kick strengths (here v = 3). There are two worldsheet horizons and
at late times the string fills in a region of the bulk. The animation is available at [11].
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FIG. 14: String length in the black phase.

D. Black phase

If the kick strength is further increased, eventually an
event horizon forms on the worldsheet. The cusps get
stuck in the bulk and the string keeps folding ad infini-
tum. An example is shown in FIG. The string length
is plotted in FIG. 14

Even though we have not provided a mathematical
proof for the existence of the horizon, long simulations
(up to t = 150) show strong evidence for this. Horizons
are seen to form whenever the collision of the first two
cusps results in a folded string. Then, further cusps con-
tinue to fold the string which simply gets longer at a rate
faster than the speed of light. Thus, cusps cannot reach
the other side. In our example of the “square wave”, the
horizon is determined to appear around v = 1.41.

E. Phase transitions

A rudimentary phase diagram is shown in FIG.
What is the nature of the phase transition between the
transparent and gray regions? FIG. [ and [[2] show the
change in cusp numbers in the two cases. Both figures
show a linear increase in the beginning, then the cusp
number either saturates or continues linearly in the trans-

parent and gray cases, respectively. Let us concentrate
on the gray phase. The elbow in FIG. indicates the
moment when the first cusps exit on the other end of the
string. Now the parameters can be tuned so that the
system moves toward either the black or the transparent
phase. Thus, there are two options:

e As the parameters approach the black (horizon) re-
gion, the elbow in FIG. moves to the right and
goes off to infinity. This signals the formation of
the worldsheet horizon.

e Right after the elbow, there is a transient region
where the growth is not linear yet. If the sys-
tem moves closer to the transparent phase, then
this transient region lasts longer and eventually di-
verges. The resulting plot is shown in blue in FIG.
The dashed red line is a logarithmic fit (power
law functions were not a good fit).

IV. A SIMPLE MODEL

The scattering of many cusps is a complex process, but
the steady state results are fairly robust. There are three
distinct phases with different characteristics. What is the
simplest model that incorporates these features?
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FIG. 15: Time evolution of the number of cusps on the string
in the transparent/gray phase transition point. The data
points are plotted in blue. The red curve is a simple loga-
rithmic fit. The function starts out linearly before the first
cusps exit on the other end, but this is not visible in the figure.

Here we discuss a simple model that reproduces the
three phases®. Let us consider cusps of equal v strength
that enter the string at every second on both side. The
model for the “Shapiro time delay” through the cusp is
simply that it increases the string length by v. In the fol-
lowing, the initial (¢ < 0) string length will be neglected.
If at a given time the string contains m cusps, its length
will be taken to be mv. Let n(t) denote the number of
cusps that have already exited by the time t. Let us now
consider a right-moving cusp that enters the string from
the left at t = ¢;, and exits on the right at tou. As it
travels through the string, the cusp has to cross at most
tout cusps that entered from the right since ¢ = 0. How-
ever, some of these left-moving cusps have already exited
before t;;, and their number must be subtracted. We then
have the equation

tout - tin - Vtout - Vn(tin) (7)
From this one gets

tin — I/?’L(tin)
1—v

(8)

tout (tin) =

This formula computes the time of “response” in terms
of the time of the kick. Using this expression, one can
compute n(t) by integrating

W= Y

tin=0,1,2,...

d [t — tout (tin)] (9)

This can be done numerically. (A simple Mathematica
code that does the job is attached to the paper.)

Finally, the cusp number N (¢) is simply the number of
cusps that have entered the system minus the number of
those that have left already,

N(t) = 2(t — n(t)) (10)

6 I thank Douglas Stanford for suggesting this model to me.
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FIG. 16: A rudimentary phase diagram where only the
strength of kicks v is varied. For v < v; the system is trans-
parent. At intermediate 11 < v < v» the string keeps growing
over time (gray phase). At large v > v» the worldsheet hori-
zon prevents cusps from reaching the other side (black phase).

Depending on the kick strength v, three phases are ob-
served.

e )<V < %: in the steady state, the cusp number
is constant. This corresponds to the transparent
phase of the string.

e 1 < v < 1: in the steady state, the cusp number

2
is linear in time. The slope depends on v. This

corresponds to the gray phase.

e v > 1: cusps never reach the other side. This cor-
responds to the black phase.

At the v = 3} transition point, N(¢) « v/ is observed
numerically. This simple model therefore does not re-
produce the quasi-logarithmic growth of cusps that we
have seen in FIG. It does, however, incorporate
enough string dynamics to correctly distinguish between
the three phases that we have seen through the cusp num-
ber function.

V. DISCUSSION

The string in anti-de Sitter spacetime is one of the
simplest holographic non-equilibrium systems. It is also
interesting, because the induced metric on the worldsheet
provides a two-dimensional toy model for gravity ﬂﬁ] In
particular, the worldsheet may contain an event horizon
whose formation can be studied.

This paper considered a string that connects two points
on opposite sides of the boundary of global AdS;. The
quarks at both endpoints are kicked repeatedly (here this
means that the acceleration of the string endpoint jumps
at the time of kicks). This creates cusps on the string that
propagate with the speed of light. The cusps eventually
collide in the middle. Depending on the strength of the
kicks, three qualitatively different phases were identified.
In the transparent region, the cusps behave like linearized
waves that pass through each other. In the black region, a
worldsheet horizon forms and nothing passes through the
string. In this paper, a new “gray” phase has also been
observed. In this phase, the string length keeps growing
in time. There is, however, no worldsheet horizon yet. A
simple model explained the time-evolution of the number
of cusps in all three phases.

The transparent and gray regions are separated by an
interesting transition point where the cusp number seems



to grow approximately logarithmically. This deserves fur-
ther investigations. It would be interesting to find anal-
ogous spacetime solutions in ordinary Einstein gravity.
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