AN APPLICATION OF FREE TRANSPORT TO MIXED ¢-GAUSSIAN
ALGEBRAS

BRENT NELSON*® AND QIANG ZENG®

ABSTRACT. We consider the mixed ¢-Gaussian algebras introduced by Speicher which

are generated by the variables X; = [; +{},i = 1,..., N, where [Jl; — q;;1;I7 = 6;;

and —1 < ¢;; = ¢j; < 1. Using the free monotone transport theorem of Guionnet and
Shlyakhtenko, we show that the mixed ¢g-Gaussian von Neumann algebras are isomorphic
to the free group von Neumann algebra L(F ), provided that max; ; |¢;;| is small enough.
Similar results hold in the reduced C*-algebra setting. The proof relies on some estimates
which are generalizations of Dabrowski’s results for the special case ¢;; = q.

1. INTRODUCTION

A fundamental problem in the theory of operator algebras is whether two algebras
are isomorphic. The operator algebra (both the (reduced) C*-algebra and von Neumann
algebra) of the free group Fy with N generators has been a central object to study. In
particular, these algebras are isomorphic to the algebras generated by N free semi-circular
variables due to Voiculescu; see [VDN92|. Motivated from mathematical physics, Bozejko
and Speicher introduced the ¢-Gaussian variables [BS91|, which can be regarded as a
deformation of the free semi-circular system. Since then, the ¢-Gaussian algebras have
been extensively studied. For an incomplete list of results, see [BKS97,Shl04,|[Nou04]
Sni04, Ric05,[KN11,|Avs11] among others. More recently, Dabrowski [Dabl4|, Guionnet
and Shlyakhtenko |[GS14] have shown that the ¢-Gaussian algebras are isomorphic to the
algebras generated from the free groups for |¢| small enough. This result was proved using
the powerful free monotone transport theorem. The first named author [Nell5| adapted
this to the non-tracial setting and showed that the finitely generated ¢-deformed free
Araki-Woods algebras are isomorphic to the finitely generated free Araki-Woods factor
for |¢q| small enough (cf. [Shl97], [Hia03]). In this paper, we give another application of
Guionnet and Shlyakhtenko’s theory.

The ¢-Gaussian variables and g-commutation relations were further generalized with
the motivation from physics. In [Spe93], Speicher introduced the commutation relation

(1) Gl — qijlil; = di
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where Q = (¢;;)}j=1 18 a symmetric matrix with |g;;| < 1, and &;; is the Kronecker delta
function. In this paper, we call the operator algebras generated by X; = [;+(; the mixed ¢-
Gaussian algebras and call X;’s the mixed ¢g-Gaussian variables. In fact, the so-called braid
relations (a.k.a. Yang-Baxter equation), which are more general than (I]), were also studied
by Bozejko, Speicher, Nou, and Krolak in [BS94, Nou04, Kro00, Kr605], among others. As
for (1)), Lust-Piquard [LP99] showed the LP boundedness of the Riesz transforms associated
to the number operator of the system. More recently, Junge and the second named author
[JZ15] studied various properties of the mixed ¢-Gaussian von Neumann algebras and in
particular proved that they have the complete metric approximation property and are
strongly solid in the sense of Ozawa and Popa |[OP10] as long as maxi<; j<n |¢;;| < 1.

In the present paper, we show that if maxi<; j<n |g;;| is small enough then the mixed
g¢-Gaussian algebras are isomorphic to the algebras generated from Fy. To state the result
precisely, let us denote by I';(RY) the ¢-Gaussian von Neumann algebra of N generators,
C*(Fy) (resp. L(Fy)) the reduced C*-algebra (resp. von Neumann algebra) generated
from Fy.

Theorem 1. Let Q = (¢;) be a symmetric N x N matrix with N € {2,3,...} and
¢j € (—1,1). Let I'p be the von Neumann algebra generated by the mixed g-Gaussian
variables X, ..., Xy. Then there exists a go = qo(/N) > 0 depending only on N such that
Lo = To(RY) = L(Fy) and C*(Xy, ..., Xy) = Cx(Fy) for all Q satisfying max; ; |¢;;| <
do-

The proof of this theorem relies on the construction of the conjugate variables and
potentials for I'g. To this end, we follow the idea of Dabrowski [Dab14] and obtain some
estimates which are generalized from similar ones for the ¢;; = ¢ case.

In the final section of the paper, we discuss how the same methods (along with those
present in [Nell5|) can be used to handle a generalization of (1)) which falls into the type
III setting.

2. THE MIXED ¢-GAUSSIAN ALGEBRA

We refer the readers to [BS94},|LP99,|JZ15] for unexplained preliminary facts for the
mixed g-Gaussian variables. Let (e;)L; be an orthonormal basis of RY. The Fock space
associated with the mixed g-Gaussian variables is defined as Fqo = ©52oH(), where H is
isomorphic to (CV)®" as a vector space and H% = CQ) with  being the vacuum state.
Let S,, denote the symmetric group on n elements and write ¢ = (i1, ...,1%,) for a vector
in [N]":={1,..., N}". The inner product of F, is given by

<62'1 @ @€y @ @ ejn)Q = 5m7n Z &(07 l) <€i17 eja—1(1)> T <eim7 eja—l(n)>‘
O'GSn

Here a(o, j) is a product of (gy) defined as follows: We write 71 = (12), 72 = (23),...,7, =
(nl) for transpositions. It is well known that (7;)7_; is a generating set of S,, and that the
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number of inversions of o € S, is given by
lo| =min{k eN:o=m,-- -7, }.

For o € S,, assume |o| =k and 0 = 7y, - - - Ty,,. Then (see [BS94,LP99])

k-1

G(U, Z) = H q(iO'j(mk_j)i 7;O'j(?”rlk_j+:|_))q(ifnk7 imk+1>7

j=1
where 0; = Ty, .y -+ T, and we have written g;;, = q(i1,42). Let X; = [; + [ be the
mixed ¢-Gaussian variables. Here [; = [(e;) is the left creation operator and [ the left

annihilation operator. One can check that [} is the adjoint operator of [; with respect to
the inner product (-,-)g of L?(Tg, o). Similarly, we can define r; and r}. By definition,

li(6j1®"'®€jn):€i®€jl®"'®€jn,

ri(en, @ ®ej,) =€ @ ®ej, @ e,

Llen® - ®e;,) = Z O Qigs * ** Gijn—1€js ® - Q €, B €5, ® -+~ Qe
k=1

Let I'g denote the mixed ¢-Gaussian von Neumann algebra generated by X;,i =1,..., N.
By [BS94], there is a normal faithful tracial state 7 on I'g defined as 7¢(X) = (X, Q)q
for X € I'g. If max;j|g;;| < 1, then there is a canonical unitary isomorphism between
L*(Tg, o) and Fg given by

X — XQ, for X € T'g,

which extends continuously to L?(T'g). From time to time this identification will be used
implicitly in the following and we write (-, -), for the inner product of L*(Tq, 7¢). Given
a finite-length tensor £ € Fg, there is a unique element W (¢) in I'g such that W (£)Q2 =&,
and W(e;, ® --- ®e¢;,) is called the Wick word (a.k.a. Wick product in the literature) of
€i1®”.®ein‘

Following [GS14, Dabl4], we consider C(Y3,...,Yy), the algebra of noncommutative
polynomials in N self-adjoint variables. Given a noncommutative power series

F(Vio Vo) = St ¥iy Yy @Yoy o Yo,
L,p

whose radius of convergence is greater than R > 1, we define the norm || F|lr = >,  |ai,|R".
Similarly, for

F(Y,...,Yy) =) aYi, Y,

with radius of convergence greater than R > 1 we define ||[F'[|gr = }_, |a;|R". For an algebra
A, we write A° for the opposite algebra of A, and write a® € A°? whenever a € A.
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3. THE DERIVATION 8]@) AND Z;

Consider the linear map
8J(Q) : C(Xl, C. 7XN> — B(LZ(FQ)), 8](Q)(X) = [X, Tj] = X?”j — TjX.
Fori=1,..., N, define
i Fq—Fo Zilep®- Q€)= Qi G ® - Q€.
We also write ¢;(j) = ¢ij, - - - ¢ij, for short.

For each n > 1, we consider the following equivalence relation on [N]": i ~ j if 30 € S,
such that

= a-l'z (ja(l)u e ,ja(n))-

Let [z7] denote the equivalence class of i € [N]". Note that gi(j) = qx(i) for each j € [i]
and each k = 1,..., N; consequently, we may at times denote qx(i) by gx([z]). For each
equivalence class [i] we define the subspace

Fli ::Span{ej1®---®€jnil€ [Z]},

and denote by pp; the orthogonal projection onto Fp;. It is easy to see that H, % along with
the subspaces Fp;; (ranging over all equivalence classes and all n > 1) offers an orthogonal
decomposition of Fp, and consequently

p +Z Z P = 1,
n>1 [ie[N]"/~

where p is the projection onto the vacuum vector. For notational consistency, we will
often denote p = pygy € [N]°/ ~.

For each j =1,..., N it follows that
(2) 2=, >, sl
n>0 [{]€[N]™/~

Moreover, if ¢ := max;<; j<y |g;| satisfies >N < 1 then =; € HS(Fg), the Hilbert—
Schmidt operators on Fg, since for each n > 1

> lts= X (") =V

[Ele[N]?/~ ky+-+ky=n
Noting that [[;,7;] = 0, we see that
aj('Q)(Xi)(ez’l ® - ®eq,) = 0ijGin * iin€in @+ @ €y,

and hence GJ(Q) (X;) = 6;;2;. As the space of Hilbert-Schmidt operators is a two-sided
ideal in B(Fg), the Leibniz rule implies 8]@) maps C(Xy,..., Xy) into HS(Fg) for each
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j=1,..., N whenever Z; € HS(Fg). When this is the case, we think of 6](-@) as a densely
defined derivation
089 L2(Tg, 1) — HS(Fo).
Recall that L*(Do®T'Y, 7o ® 7¢) is isomorphic to HS(Fq) via the map
a® b’ — (-, b"Q)ald.

In particular, 1®1° — p . We will usually think of 8;@ as having range L?(To®I'%, 170 ®
7o)
Proposition 2. Suppose =; € HS(Fp). Then 8" (1®1°) = X;.

Proof. Fix i € [N]" and let m; € B(F) denote the projection onto tensors of length one.
Then there exist scalars ¢y, ..., ¢, such that

n
7T1Xi1 s inQ = E Ci€i,,
t=1

where we are summing over which operator X;,,..., X, created the vector e;,. We claim
a= > @K X P X - X, 2 Qg
d>0 Ll‘]e[N]d/N
= <Xi .. 'Xz‘t,laz'tXi .. 'Xz'nQ, Q>Q-

First note that the second equality is immediate from . Now, the only terms from
m1 X, - -+ X;, Q which contribute to ¢; are those where X, creates e;,; that is, ones where
the creation operator rather than the annihilation operator in X;, acts. Hence towards
computing ¢; we may replace X;, with [;, and compute

Xy Xy i Xopor - X, .
Recall that we have the partition of unity {py;: d > 0, [j] € [N]?/ ~}. For each d > 0
and [j] € [N]?/ ~, let {Qu]} be an orthonormai basis for F;. Then we have

Xy X i Xiay - Xi Q)

=Y D mXiy e X L X - X6, Q
d>0 [jle[N]4/~

= Z Z Zﬂ-lXilu‘Xit—leit ®Cg[l] <Xit+1"'XinQ7<E]>Q

d=0 [jle[N]?/~ ¢

t+1

t+1

Furthermore, of the above terms the only ones which contribute to ¢; are those where
e;, survives; that is, where none of the operators X;,, ..., X;, , annihilate e;,. And yet,

to survive the action of my, Q[i] must be completely annihilated by X;, ---X;, ;. The
annihilation operators from X, --- X, , tasked with this must each skip over e; at a
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scalar cost g;,; for some k € [N]. Since CKLZ] is a linear combination ey, ® - -- R ey, k € [J],

the total scalar cost will be ¢;,(j). The remaining actions of X, --- X;,_, (any creation

operators and any annihilation operators acting on vectors left of e;, in the tensor product)
are unaffected by the presence of e;,. In summary, the contribution to ¢; from the terms
in the sum above is as follows:

> Y Sae (X Xogfh0) (KX,

d>0 [j]e[N]d/~ ¢

Noting that

) <Xi ---Xit*lgfi],@ <Xit+l---XinQ,gg[ﬂ> :<XZ» ---XitflpU]XiM---X,-HQ,Q> ,
Q Q = Q
l

we see that ¢; has the claimed value.

Thus for s € [N] we have
<X$7 Xil e Xin>TQ — <€S7 7T1Xi1 te XZnQ>Q

= Z<€S7 eit>Q<Q7 Xil T XitflaitXit+l T XZnQ>Q
t=1

={p 09Xy - Xi))ms
= (1®1°,09(Xs, - X, ) rgery-

Extending this via linearity from monomials to the dense subset C(X1, ..., Xx) C L?(Tg, 70)
concludes the proof. O

Corollary 3. Suppose =; € HS(Fg). Then
C(X1,...,Xn) ®C{Xy,..., Xx)? C Dom &\¥".
In particular, for a,b € C(Xy,..., Xy)
(3) OPa@b?) =aXh-—mo(1e1g®1)o(120? + 0P ®1)(a® ),

where m(a ® 0°) = ab. Consequently, is closable.

@
9;
Proof. The formula is a simple computation (cf. Proposition 4.1 in [Voi9§|, the proof
of Theorem 34 in [Dabl4], or Corollary 2.4 in [Nell5]). The closability of 8j(-Q) then
follows because this formula holds on the dense subset C( X3, ..., Xn)®C(Xy,..., XN)? C
LZ(FQ®FOP,TQ ®Tép). |:|

(@
aj

Let us update the notation so that from now on it denotes the closure of this

derivation.
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Let ¢ : S, — B(Hg) be the quasi-multiplicative function defined in [BS94] and define
PM =%« ¢(0). According to [BS94], we have

<€777>Q = 5n,m<€a P(n)77>0, for 5 € H(gﬂ? € Hg

Here (-,-)o is the inner product associated to (Io(R™),79). Let ¢ = maxi<;j<n |qil-
Assume ¢ < 1. By [Boz98, Theorem 2], we find

Py < [0 - [ 4]

_ gk
k=1 q

Using the Gauss identity, we have the estimate

(4) P < fo-a( 3 0) ] < (L)

1—2¢q

k=—00
Lemma 4. If e > 0 and ¢(3 — 2¢ + (3 + ¢)2N?) < 1, then there exists a noncommutative

power series representation of =; with radius of convergence greater than R = 2+5 > || X5l
such that

- o gN?(3 +¢)?
\:i_l 1 < = ,N
IS te e s TG 5 s mrepny — 0N

fori=1,...,N.

Proof. Following the argument of [Dabl4], let G, denote the Gram matrix of the inner
product on (I'g, 7¢) from the natural basis (e, ®---®e;,) of Hp, where i € [N]". Namely,

G, is the matrix of P in the basis (e;, ® --- ®e¢;, ). We write 1; = W(e, @ - ®e¢;, ) for
the Wick word. From the isomorphism L?(T'g, 7q) & Fg, we can also write
(Gn)ij = (e ® - B ey, ej @@€0 = (Yi, Vj)rg-

Let us define inductively the noncommutative polynomials, ¢). = 1 for the empty word ¢
and

(5) Q/Jil ..... in(}/zla s 7Y ) wzz ..... Z 521 Jij H qu%z 51501yt (Y17 ce 7YN)7

k=2,k>2

where the product over empty set is understood to be 1. It can be checked that v; =

(X, ..., Xy); cf. [Kro00]. Let us define B = Gn"?. Note that B is a positive-definite
symmetric N" X N" matrix and that B;; = 0 unless i ~ j. For each [i| = n let

(6) pi(Yla"'a Z % Yl>"'7YN)-
lj|=n

Then {p;i(Xy, ..., Xn)Q} =, is an orthonormal basis of H, and {pg(X1, ..., Xn)Q}xep is
an orthonormal basis of F;. We want to write Z; as a sum of tensors. Unlike the ¢;; = ¢
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case considered in [Dabl4], =; behaves more like a multiplier instead of a projection.
Consider

(YY) =) g (@pi(Ya. .. Yy) @ pi(Ya, ... Y.
n=0 |i|=n
One can check that
Zj(Xa, . X = ¢; ()¢,
which means that Z; can be identified as Z;(X3,...,Xy) via the isomorphism Fp =
L?(T'g,7g). By the change of basis formula (6]), writing w; = ;(Y1,...,Yn), we have

=V, Yy quj > ByByw; ® wj

n=0 |i|=n 5], kl=n
=3 Y 4 (B, ©uj,
n=0 [j],|k|=n

where we have used in the second equality that By, = 0 unless £ ~ 7, in which case
¢;(i) = gj(k). Taking the norm, we have

| 3 awEe o] <o > Juelle] 32 (B2
7], k|=n k lj|=n
By (B)), we find in the same way as the proof of [Dab14, Corollary 29] that
1 n
sup [lwilln < (R " —) |
li|=n 1—g¢q
Using the triangle inequality, we have
1 n
| 32 o], < 3Gl s sl < NPO) (rei55)
l|=n ljl=n
Combining with ., we have
2n
I k%1 kg = 1—gq 1—-2q/

17:|E|=n

2+€

Plugging in R = and summing over all n > 1, we complete the proof. 0J

4. PROOF OF THE MAIN THEOREM

Let us write A = C(Y,...,Yy). Suppose Z; is invertible. Let 0, : A - A® A% denote
the j-th free difference quotient with the property 0;P = ) . AY; B A ® B for a monomial
P e A. Since 0;X; = 6; ;5 :_1 = 0;;1 ® 1°, we have 0; = 0@)# , where # is the
multiplication in '@ .
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Proposition 5. Assume (¢, N) < 1. Then we have:

(i) There exist noncommutative power series &;(Y1, ..., Yy) of convergence radius R =
2+8 > || X;|| such that {¢;(X1, ..., Xy)})L, are the conjugate variables of X3,..., Xy.
(ii) There exists a self-adjoint potential V' (Y3, ..., Yy) which is also a noncommutative
power series of convergence radius R such that D,V (Y1,...,Yy) = &(Y1, ..., YN)
where D; is the cyclic gradient, i.e., D;P =} ,_,,. s BAfor P € A.
(iil) limgyo [|& (Y2, ..., Yy) = Yi[g=0fori=1,..., N.

Proof. By Lemma, Ej_l = Ej_l(Xl, ..., Xn) for anoncommutative power series =; Ay, YY)
and we can define a noncommutative power series

&GV, Yy) =57 (Ya, .. YN #Y;
—mo(1®1o®1)0(1®d?+09 e 1)(E(Y1,...,Yn)) € A
where (a ® b°)#x = axb and m(a ® b°) = ab. Then by (3)) we have

&= &(X1,..., Xy) = 05D (=71).
Consequently for P € C(X3,..., Xy) we have

<§j’ >TQ (= ]—1,8](@( Nus =(1® 1O’aj(P)>TQ®T(3p§
that is, {; is a conjugate variable.

Let A be the number operator acting on C(Y1,...,Yy); that is, N is defined by N'P =
dP for any monomial P of degree d. Let X denote the inverse of N restricted to non-scalar
polynomials. Define

V(Ya,..., Yy ( Z&Yl,..., Y+Y§Z(Y1,...,YN)>.

Then by precisely the same arguments as in Step 4 of the proof of Theorem 34 in [Dab14],
one can see that D;V(Yy,...,Yy) = &(Y1,...,Yy). Indeed, thanks to Proposition [2| and
part (i) above, Lemma 36 in [Dabl4] can be verified using Lemma 12 in [Dabl4] in our
setting. The rest argument of Step 4 is algebraic, and does not use our particular inner
product of Fg.

Finally, Lemma I implies that =; (Yl, ..., Yy) converges to 1 ® 1° with respect to the
R-norm as ¢ — 0. By an argument similar to that of Lemma 4.3 in [Nell5|, it is easy to
see that this implies lim, 0 [|£;(Y1,...,Yn) — Y|l = 0. O

Proof of Theorem [I This follows from Proposition [5| and the free monotone transport
result of Guionnet and Shlyakhtenko [GS14, Corollary 4.3]. O
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5. THE TYPE III CASE

One could consider the following more general commutation relations:

(7) Ll = qilsli = aug,

for some {a;;}1<; j<n C C. In [Shl97], Shlyakhtenko considered the case
qij:O 1§Z7JSN7
a; =1 1<i<N,

a;; =a; € R 1<4,5 <N, 1#7j.
These commutation relations are satisfied by creation and annihilation operators on a Fock
space corresponding to a normalized basis of vectors with purely imaginary covariance.
Shlyakhtenko showed that the von Neumann algebra generated by the semi-circular oper-
ators {l; + [ }1<i<n, called a free Araki-Woods factor, is a full factor with type depending
on (a;j). In fact, provided the off-diagonal coefficients a;;, i # j, are not all zero, the factor
is of type IIL.

For —1 < ¢ < 1, the commutation relations for the case
Gij =4 L<i,j <N,
az‘j:a_jiez‘IR 1 SZ,] SNa 27&]7
are once again satisfied by creation and annihilation operators on a now ¢-Fock space,
and the von Neumann algebra generated by their corresponding semi-circular operators
is called a g-deformed free Araki-Woods algebra. These were originally defined by Hiai in

[Hia03], who established factoriality and a type classification in the situation that N = oo
along with other technical conditions on (a;;).

Using non-tracial free transport, it was shown in |[Nell5] that for finite N and sufficiently
small ¢, the g-deformed free Araki-Woods algebras are isomorphic to the corresponding
free Araki-Woods factor at ¢ = 0. By combining the methods of [Nell5] with those present
in this paper, it is easy to check that the same holds true in the mixed ¢ case. That is,
there exists some sufficiently small parameter gy > 0 such that the semi-circular operators
arising from the case

‘quygqo 1§273§N7
CLU:CL_]ZEZR 1§Z,]§N, ’L?éj,
generate a free Araki-Woods factor. We record this in the following theorem.

Theorem 6. Let Q = (¢;) be a symmetric N x N matrix with N ¢ {2.3,...} and
¢; € (—1,1). Let A = (a;;) be an N x N matrix with a;; = 1 and a;; = a;; € R for all
1<4i,j<N. Letly,..., Iy be creation operators satisfying the commutation relations
with constants determined by ) and A, and de ne X; =[; + 1} foreach 1 < j < N. Then
there exists ¢o = qo(IN, A) > 0 depending only on N and A such that for all @ satisfying
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max; ; |¢;;| < go the von Neumann algebra I'3 := W*(Xy, ..., Xy) is the free Araki-Woods
factor corresponding to the orthogonal representation R > ¢ +— (2471 — 1) € My(C).
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