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Abstract. We consider the mixed q-Gaussian algebras introduced by Speicher which
are generated by the variables Xi = li + l∗i , i = 1, . . . , N , where l∗i lj − qij lj l

∗
i = δi,j

and −1 < qij = qji < 1. Using the free monotone transport theorem of Guionnet and
Shlyakhtenko, we show that the mixed q-Gaussian von Neumann algebras are isomorphic
to the free group von Neumann algebra L(FN ), provided that maxi,j |qij | is small enough.
Similar results hold in the reduced C∗-algebra setting. The proof relies on some estimates
which are generalizations of Dabrowski’s results for the special case qij ≡ q.

1. Introduction

A fundamental problem in the theory of operator algebras is whether two algebras
are isomorphic. The operator algebra (both the (reduced) C∗-algebra and von Neumann
algebra) of the free group FN with N generators has been a central object to study. In
particular, these algebras are isomorphic to the algebras generated by N free semi-circular
variables due to Voiculescu; see [VDN92]. Motivated from mathematical physics, Bożejko
and Speicher introduced the q-Gaussian variables [BS91], which can be regarded as a
deformation of the free semi-circular system. Since then, the q-Gaussian algebras have
been extensively studied. For an incomplete list of results, see [BKS97, Shl04, Nou04,

Śni04, Ric05, KN11, Avs11] among others. More recently, Dabrowski [Dab14], Guionnet
and Shlyakhtenko [GS14] have shown that the q-Gaussian algebras are isomorphic to the
algebras generated from the free groups for |q| small enough. This result was proved using
the powerful free monotone transport theorem. The first named author [Nel15] adapted
this to the non-tracial setting and showed that the finitely generated q-deformed free
Araki-Woods algebras are isomorphic to the finitely generated free Araki-Woods factor
for |q| small enough (cf. [Shl97], [Hia03]). In this paper, we give another application of
Guionnet and Shlyakhtenko’s theory.

The q-Gaussian variables and q-commutation relations were further generalized with
the motivation from physics. In [Spe93], Speicher introduced the commutation relation

(1) l∗i lj − qijljl∗i = δi,j
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where Q = (qij)
N
i,j=1 is a symmetric matrix with |qij| ≤ 1, and δi,j is the Kronecker delta

function. In this paper, we call the operator algebras generated by Xi = li+l
∗
i the mixed q-

Gaussian algebras and call Xi’s the mixed q-Gaussian variables. In fact, the so-called braid
relations (a.k.a. Yang–Baxter equation), which are more general than (1), were also studied
by Bożejko, Speicher, Nou, and Krȯlak in [BS94,Nou04,Krȯ00,Kró05], among others. As
for (1), Lust-Piquard [LP99] showed the Lp boundedness of the Riesz transforms associated
to the number operator of the system. More recently, Junge and the second named author
[JZ15] studied various properties of the mixed q-Gaussian von Neumann algebras and in
particular proved that they have the complete metric approximation property and are
strongly solid in the sense of Ozawa and Popa [OP10] as long as max1≤i,j≤N |qij| < 1.

In the present paper, we show that if max1≤i,j≤N |qij| is small enough then the mixed
q-Gaussian algebras are isomorphic to the algebras generated from FN . To state the result
precisely, let us denote by Γq(RN) the q-Gaussian von Neumann algebra of N generators,
C∗r (FN) (resp. L(FN)) the reduced C∗-algebra (resp. von Neumann algebra) generated
from FN .

Theorem 1. Let Q = (qij) be a symmetric N × N matrix with N ∈ {2, 3, . . .} and
qij ∈ (−1, 1). Let ΓQ be the von Neumann algebra generated by the mixed q-Gaussian
variables X1, . . . , XN . Then there exists a q0 = q0(N) > 0 depending only on N such that
ΓQ ∼= Γ0(RN) ∼= L(FN) and C∗(X1, . . . , XN) ∼= C∗r (FN) for all Q satisfying maxi,j |qij| <
q0.

The proof of this theorem relies on the construction of the conjugate variables and
potentials for ΓQ. To this end, we follow the idea of Dabrowski [Dab14] and obtain some
estimates which are generalized from similar ones for the qij ≡ q case.

In the final section of the paper, we discuss how the same methods (along with those
present in [Nel15]) can be used to handle a generalization of (1) which falls into the type
III setting.

2. The Mixed q-Gaussian Algebra

We refer the readers to [BS94, LP99, JZ15] for unexplained preliminary facts for the
mixed q-Gaussian variables. Let (ei)

N
i=1 be an orthonormal basis of RN . The Fock space

associated with the mixed q-Gaussian variables is defined as FQ = ⊕∞n=0H
n
Q, where Hn

Q is

isomorphic to (CN)⊗n as a vector space and H0
Q = CΩ with Ω being the vacuum state.

Let Sn denote the symmetric group on n elements and write i = (i1, . . . , in) for a vector
in [N ]n := {1, . . . , N}n. The inner product of FQ is given by

〈ei1 ⊗ · · · ⊗ eim , ej1 ⊗ · · · ⊗ ejn〉Q = δm,n
∑
σ∈Sn

a(σ, j)〈ei1 , ejσ−1(1)
〉 · · · 〈eim , ejσ−1(n)

〉.

Here a(σ, j) is a product of (qkl) defined as follows: We write τ1 = (12), τ2 = (23), . . . , τn =
(n1) for transpositions. It is well known that (τi)

n
i=1 is a generating set of Sn and that the
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number of inversions of σ ∈ Sn is given by

|σ| = min{k ∈ N : σ = τi1 · · · τik}.

For σ ∈ Sn, assume |σ| = k and σ = τm1 · · · τmk . Then (see [BS94,LP99])

a(σ, i) =
k−1∏
j=1

q(iσj(mk−j), iσj(mk−j+1))q(imk , imk+1),

where σj = τmk−j+1
· · · τmk and we have written qi1i2 = q(i1, i2). Let Xi = li + l∗i be the

mixed q-Gaussian variables. Here li = l(ei) is the left creation operator and l∗i the left
annihilation operator. One can check that l∗i is the adjoint operator of li with respect to
the inner product 〈·, ·〉Q of L2(ΓQ, τQ). Similarly, we can define ri and r∗i . By definition,

li(ej1 ⊗ · · · ⊗ ejn) = ei ⊗ ej1 ⊗ · · · ⊗ ejn ,

ri(ej1 ⊗ · · · ⊗ ejn) = ej1 ⊗ · · · ⊗ ejn ⊗ ei,

l∗i (ej1 ⊗ · · · ⊗ ejn) =
n∑
k=1

δi,jkqij1 · · · qijk−1
ej1 ⊗ · · · ⊗ ejk−1

⊗ ejk+1
⊗ · · · ⊗ ejn .

Let ΓQ denote the mixed q-Gaussian von Neumann algebra generated by Xi, i = 1, . . . , N .
By [BS94], there is a normal faithful tracial state τQ on ΓQ defined as τQ(X) = 〈XΩ,Ω〉Q
for X ∈ ΓQ. If maxij |qij| < 1, then there is a canonical unitary isomorphism between
L2(ΓQ, τQ) and FQ given by

X 7→ XΩ, for X ∈ ΓQ,

which extends continuously to L2(ΓQ). From time to time this identification will be used
implicitly in the following and we write 〈·, ·〉τQ for the inner product of L2(ΓQ, τQ). Given
a finite-length tensor ξ ∈ FQ, there is a unique element W (ξ) in ΓQ such that W (ξ)Ω = ξ,
and W (ei1 ⊗ · · · ⊗ ein) is called the Wick word (a.k.a. Wick product in the literature) of
ei1 ⊗ · · · ⊗ ein .

Following [GS14, Dab14], we consider C〈Y1, . . . , YN〉, the algebra of noncommutative
polynomials in N self-adjoint variables. Given a noncommutative power series

F (Y1, . . . , YN) =
∑
i,p

ai,pYi1 · · ·Yip ⊗ Yip+1 · · ·Yin

whose radius of convergence is greater thanR > 1, we define the norm ‖F‖R =
∑

i,p |ai,p|Rn.
Similarly, for

F (Y1, . . . , YN) =
∑
i

aiYi1 · · ·Yin ,

with radius of convergence greater than R > 1 we define ‖F‖R =
∑

i |ai|Rn. For an algebra
A, we write Aop for the opposite algebra of A, and write a◦ ∈ Aop whenever a ∈ A.
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3. The Derivation ∂
(Q)
j and Ξj

Consider the linear map

∂
(Q)
j : C〈X1, . . . , XN〉 → B(L2(ΓQ)), ∂

(Q)
j (X) = [X, rj] := Xrj − rjX.

For i = 1, . . . , N , define

Ξi : FQ → FQ, Ξi(ej1 ⊗ · · · ⊗ ejn) = qij1 · · · qijnej1 ⊗ · · · ⊗ ejn .
We also write qi(j) = qij1 · · · qijn for short.

For each n ≥ 1, we consider the following equivalence relation on [N ]n: i ∼ j if ∃σ ∈ Sn
such that

i = σ · j = (jσ(1), . . . , jσ(n)).

Let [i] denote the equivalence class of i ∈ [N ]n. Note that qk(j) = qk(i) for each j ∈ [i]
and each k = 1, . . . , N ; consequently, we may at times denote qk(i) by qk([i]). For each
equivalence class [i] we define the subspace

F[i] := span
{
ej1 ⊗ · · · ⊗ ejn : j ∈ [i]

}
,

and denote by p[i] the orthogonal projection onto F[i]. It is easy to see that H0
Q along with

the subspaces F[i] (ranging over all equivalence classes and all n ≥ 1) offers an orthogonal
decomposition of FQ, and consequently

p
 +
∑
n≥1

∑
[i]∈[N ]n/∼

p[i] = 1,

where p
 is the projection onto the vacuum vector. For notational consistency, we will
often denote p
 = p[(∅)] ∈ [N ]0/ ∼.

For each j = 1, . . . , N it follows that

Ξj =
∑
n≥0

∑
[i]∈[N ]n/∼

qj(i)p[i].(2)

Moreover, if q := max1≤i,j≤N |qij| satisfies q2N < 1 then Ξj ∈ HS(FQ), the Hilbert–
Schmidt operators on FQ, since for each n ≥ 1∑

[i]∈[N ]n/∼

‖p[i]‖2
HS =

∑
k1+···+kN=n

(
n

k1, . . . , kN

)
= Nn.

Noting that [li, rj] = 0, we see that

∂
(Q)
j (Xi)(ei1 ⊗ · · · ⊗ ein) = δi,jqii1 · · · qiinei1 ⊗ · · · ⊗ ein ,

and hence ∂
(Q)
j (Xi) = δi,jΞj. As the space of Hilbert–Schmidt operators is a two-sided

ideal in B(FQ), the Leibniz rule implies ∂
(Q)
j maps C〈X1, . . . , XN〉 into HS(FQ) for each
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j = 1, . . . , N whenever Ξj ∈ HS(FQ). When this is the case, we think of ∂
(Q)
j as a densely

defined derivation
∂

(Q)
j : L2(ΓQ, τQ)→ HS(FQ).

Recall that L2(ΓQ⊗̄ΓopQ , τQ ⊗ τ
op
Q ) is isomorphic to HS(FQ) via the map

a⊗ b◦ 7→ 〈·, b∗Ω〉aΩ.

In particular, 1⊗1◦ 7→ p
. We will usually think of ∂
(Q)
j as having range L2(ΓQ⊗̄ΓopQ , τQ⊗

τ opQ ).

Proposition 2. Suppose Ξj ∈ HS(FQ). Then ∂
(Q)∗
j (1⊗ 1◦) = Xj.

Proof. Fix i ∈ [N ]n and let π1 ∈ B(FQ) denote the projection onto tensors of length one.
Then there exist scalars c1, . . . , cn such that

π1Xi1 · · ·XinΩ =
n∑
t=1

cteit ,

where we are summing over which operator Xi1 , . . . , Xin created the vector eit . We claim

ct =
∑
d≥0

∑
[j]∈[N ]d/∼

qit(j)〈Xi1 · · ·Xit−1p[j]Xit+1 · · ·XinΩ,Ω〉Q

= 〈Xi1 · · ·Xit−1ΞitXit+1 · · ·XinΩ,Ω〉Q.

First note that the second equality is immediate from (2). Now, the only terms from
π1Xi1 · · ·XinΩ which contribute to ct are those where Xit creates eit ; that is, ones where
the creation operator rather than the annihilation operator in Xit acts. Hence towards
computing ct we may replace Xit with lit and compute

π1Xi1 · · ·Xit−1litXit+1 · · ·XinΩ.

Recall that we have the partition of unity {p[j] : d ≥ 0, [j] ∈ [N ]d/ ∼}. For each d ≥ 0

and [j] ∈ [N ]d/ ∼, let {ζ [j]

` } be an orthonormal basis for F[j]. Then we have

π1Xi1 · · ·Xit−1litXit+1 · · ·XinΩ

=
∑
d≥0

∑
[j]∈[N ]d/∼

π1Xi1 · · ·Xit−1litp[j]Xit+1 · · ·XinΩ

=
∑
d≥0

∑
[j]∈[N ]d/∼

∑
`

π1Xi1 · · ·Xit−1eit ⊗ ζ
[j]

`

〈
Xit+1 · · ·XinΩ, ζ

[j]

`

〉
Q
.

Furthermore, of the above terms the only ones which contribute to ct are those where
eit survives; that is, where none of the operators Xi1 , . . . , Xit−1 annihilate eit . And yet,

to survive the action of π1, ζ
[j]

` must be completely annihilated by Xi1 · · ·Xit−1 . The
annihilation operators from Xi1 · · ·Xit−1 tasked with this must each skip over eit at a
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scalar cost qitk for some k ∈ [N ]. Since ζ
[j]

` is a linear combination ek1 ⊗ · · · ⊗ ekd , k ∈ [j],
the total scalar cost will be qit(j). The remaining actions of Xi1 · · ·Xit−1 (any creation
operators and any annihilation operators acting on vectors left of eit in the tensor product)
are unaffected by the presence of eit . In summary, the contribution to ct from the terms
in the sum above is as follows:∑

d≥0

∑
[j]∈[N ]d/∼

∑
`

qit(j)eit

〈
Xi1 · · ·Xit−1ζ

[j]

` ,Ω
〉
Q

〈
Xit+1 · · ·XinΩ, ζ

[j]

`

〉
Q
.

Noting that∑
`

〈
Xi1 · · ·Xit−1ζ

[j]

` ,Ω
〉
Q

〈
Xit+1 · · ·XinΩ, ζ

[j]

`

〉
Q

=
〈
Xi1 · · ·Xit−1p[j]Xit+1 · · ·XinΩ,Ω

〉
Q
,

we see that ct has the claimed value.

Thus for s ∈ [N ] we have

〈Xs, Xi1 · · ·Xin〉τQ = 〈es, π1Xi1 · · ·XinΩ〉Q

=
n∑
t=1

〈es, eit〉Q〈Ω, Xi1 · · ·Xit−1ΞitXit+1 · · ·XinΩ〉Q

= 〈p
, ∂
(Q)
s (Xi1 · · ·Xin)〉HS

= 〈1⊗ 1◦, ∂(Q)
s (Xi1 · · ·Xin)〉τQ⊗τopQ .

Extending this via linearity from monomials to the dense subset C〈X1, . . . , XN〉 ⊂ L2(ΓQ, τQ)
concludes the proof. �

Corollary 3. Suppose Ξj ∈ HS(FQ). Then

C〈X1, . . . , XN〉 ⊗ C〈X1, . . . , XN〉op ⊂ Dom ∂
(Q)∗
j .

In particular, for a, b ∈ C〈X1, . . . , XN〉

∂
(Q)∗
j (a⊗ b◦) = aXjb−m ◦ (1⊗ τQ ⊗ 1) ◦ (1⊗ ∂(Q)

j + ∂
(Q)
j ⊗ 1)(a⊗ b◦),(3)

where m(a⊗ b◦) = ab. Consequently, ∂
(Q)
j is closable.

Proof. The formula is a simple computation (cf. Proposition 4.1 in [Voi98], the proof

of Theorem 34 in [Dab14], or Corollary 2.4 in [Nel15]). The closability of ∂
(Q)
j then

follows because this formula holds on the dense subset C〈X1, . . . , XN〉⊗C〈X1, . . . , XN〉op ⊂
L2(ΓQ⊗̄ΓopQ , τQ ⊗ τ

op
Q ). �

Let us update the notation ∂
(Q)
j so that from now on it denotes the closure of this

derivation.
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Let φ : Sn → B(Hn
Q) be the quasi-multiplicative function defined in [BS94] and define

P (n) =
∑

σ∈Sn φ(σ). According to [BS94], we have

〈ξ, η〉Q = δn,m〈ξ, P (n)η〉0, for ξ ∈ Hn
Q, η ∈ Hm

Q .

Here 〈·, ·〉0 is the inner product associated to (Γ0(RN), τ0). Let q = max1≤i,j≤N |qij|.
Assume q < 1. By [Boż98, Theorem 2], we find

‖(P (n))−1‖ ≤
[
(1− q)

∞∏
k=1

1 + qk

1− qk
]n
.

Using the Gauss identity, we have the estimate

(4) ‖(P (n))−1‖ ≤
[
(1− q)

( ∞∑
k=−∞

(−1)kqk
2
)−1]n

≤
( 1− q

1− 2q

)n
.

Lemma 4. If ε > 0 and q(3− 2q + (3 + ε)2N2) < 1, then there exists a noncommutative
power series representation of Ξi with radius of convergence greater than R = 2+ε

1−q > ‖Xi‖
such that

‖Ξi − 1⊗ 1◦‖R ≤
qN2(3 + ε)2

1− q(3− 2q + (3 + ε)2N2)
=: π(q,N)

for i = 1, . . . , N .

Proof. Following the argument of [Dab14], let Gn denote the Gram matrix of the inner
product on (ΓQ, τQ) from the natural basis (ei1⊗· · ·⊗ein) of Hn

Q, where i ∈ [N ]n. Namely,

Gn is the matrix of P (n) in the basis (ei1 ⊗ · · · ⊗ ein). We write ψi = W (ei1 ⊗ · · · ⊗ ein) for
the Wick word. From the isomorphism L2(ΓQ, τQ) ∼= FQ, we can also write

(Gn)ij = 〈ei1 ⊗ · · · ⊗ ein , ej1 ⊗ · · · ⊗ ejn〉Q = 〈ψi, ψj〉τQ .

Let us define inductively the noncommutative polynomials, ψε = 1 for the empty word ε
and

(5) ψi1,...,in(Y1, . . . , YN) = Yi1ψi2,...,in −
n∑
j=2

δi1,ij

j−1∏
k=2,k≥2

qi1ikψi2,...,ij−1,ij+1,...,in(Y1, . . . , YN),

where the product over empty set is understood to be 1. It can be checked that ψi =

ψi(X1, . . . , XN); cf. [Krȯ00]. Let us define B = G
−1/2
n . Note that B is a positive-definite

symmetric Nn ×Nn matrix and that Bij = 0 unless i ∼ j. For each |i| = n let

(6) pi(Y1, . . . , YN) =
∑
|j|=n

Bijψj(Y1, . . . , YN).

Then {pi(X1, . . . , XN)Ω}|i|=n is an orthonormal basis of Hn
Q, and {pk(X1, . . . , XN)Ω}k∈[i] is

an orthonormal basis of F[i]. We want to write Ξi as a sum of tensors. Unlike the qij ≡ q
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case considered in [Dab14], Ξi behaves more like a multiplier instead of a projection.
Consider

Ξj(Y1, . . . , YN) =
∞∑
n=0

∑
|i|=n

qj(i)pi(Y1, . . . , YN)⊗ p∗i (Y1, . . . , YN).

One can check that
Ξj(X1, . . . , XN)ψi = qj(i)ψi,

which means that Ξj can be identified as Ξj(X1, . . . , XN) via the isomorphism FQ ∼=
L2(ΓQ, τQ). By the change of basis formula (6), writing wj = ψj(Y1, . . . , YN), we have

Ξj(Y1, . . . , YN) =
∞∑
n=0

∑
|i|=n

qj(i)
∑
|j|,|k|=n

BijBkiwj ⊗ w∗k

=
∞∑
n=0

∑
|j|,|k|=n

qj(k)(B2)kjwj ⊗ w∗k,

where we have used in the second equality that Bki = 0 unless k ∼ i, in which case
qj(i) = qj(k). Taking the norm, we have∥∥∥ ∑

|j|,|k|=n

qj(k)(B2)kjwj ⊗ w∗k
∥∥∥
R
≤ qn

∑
|k|=n

‖wk‖R
∥∥∥∑
|j|=n

(B2)kjwj

∥∥∥
R

By (5), we find in the same way as the proof of [Dab14, Corollary 29] that

sup
|i|=n
‖wi‖R ≤

(
R +

1

1− q

)n
.

Using the triangle inequality, we have∥∥∥∑
|j|=n

(B2)kjwj

∥∥∥
R
≤
∑
|j|=n

|(G−1
n )kj| sup

|i|=n
‖wi‖R ≤ Nn‖(P (n))−1‖

(
R +

1

1− q

)n
.

Combining with (4), we have∥∥∥ ∑
|j|,|k|=n

qj(k)(B2)kjwj ⊗ w∗k
∥∥∥
R
≤ qnN2n

(
R +

1

1− q

)2n ( 1− q
1− 2q

)n
.

Plugging in R = 2+ε
1−q and summing over all n ≥ 1, we complete the proof. �

4. Proof of the Main Theorem

Let us write A = C〈Y1, . . . , YN〉. Suppose Ξi is invertible. Let ∂j : A → A⊗Aop denote
the j-th free difference quotient with the property ∂jP =

∑
P=AYjB

A⊗B for a monomial

P ∈ A. Since ∂jXi = δi,jΞj#Ξ−1
j = δi,j1 ⊗ 1◦, we have ∂j = ∂

(Q)
j #Ξ−1

j , where # is the
multiplication in ΓQ⊗̄ΓopQ .



AN APPLICATION OF FREE TRANSPORT TO MIXED q-GAUSSIAN ALGEBRAS 9

Proposition 5. Assume π(q,N) < 1. Then we have:

(i) There exist noncommutative power series ξj(Y1, . . . , YN) of convergence radius R =
2+ε
1−q > ‖Xi‖ such that {ξj(X1, . . . , XN)}Nj=1 are the conjugate variables of X1, . . . , XN .

(ii) There exists a self-adjoint potential V (Y1, . . . , YN) which is also a noncommutative
power series of convergence radius R such that DiV (Y1, . . . , YN) = ξi(Y1, . . . , YN)
where Di is the cyclic gradient, i.e., DiP =

∑
P=AYiB

BA for P ∈ A.
(iii) limq→0 ‖ξi(Y1, . . . , YN)− Yi‖R = 0 for i = 1, . . . , N .

Proof. By Lemma 4, Ξ−1
j = Ξ−1

j (X1, . . . , XN) for a noncommutative power series Ξ−1
j (Y1, . . . , YN)

and we can define a noncommutative power series

ξj(Y1, . . . , YN) := Ξ−1
j (Y1, . . . , YN)#Yj

−m ◦ (1⊗ τQ ⊗ 1) ◦ (1⊗ ∂(Q)
j + ∂

(Q)
j ⊗ 1)(Ξ−1

j (Y1, . . . , YN)) ∈ A,

where (a⊗ b◦)#x = axb and m(a⊗ b◦) = ab. Then by (3) we have

ξj := ξj(X1, . . . , XN) = ∂
(Q)∗
j (Ξ−1

j ).

Consequently for P ∈ C〈X1, . . . , XN〉 we have

〈ξj, P 〉τQ = 〈Ξ−1
j , ∂

(Q)
j (P )〉HS = 〈1⊗ 1◦, ∂j(P )〉τQ⊗τopQ ;

that is, ξj is a conjugate variable.

Let N be the number operator acting on C〈Y1, . . . , YN〉; that is, N is defined by NP =
dP for any monomial P of degree d. Let Σ denote the inverse of N restricted to non-scalar
polynomials. Define

V (Y1, . . . , YN) = Σ

(
1

2

N∑
i=1

ξi(Y1, . . . , YN)Yi + Yiξi(Y1, . . . , YN)

)
.

Then by precisely the same arguments as in Step 4 of the proof of Theorem 34 in [Dab14],
one can see that DiV (Y1, . . . , YN) = ξi(Y1, . . . , YN). Indeed, thanks to Proposition 2 and
part (i) above, Lemma 36 in [Dab14] can be verified using Lemma 12 in [Dab14] in our
setting. The rest argument of Step 4 is algebraic, and does not use our particular inner
product of FQ.

Finally, Lemma 4 implies that Ξ−1
j (Y1, . . . , YN) converges to 1⊗ 1◦ with respect to the

R-norm as q → 0. By an argument similar to that of Lemma 4.3 in [Nel15], it is easy to
see that this implies limq→0 ‖ξj(Y1, . . . , YN)− Yj‖R = 0. �

Proof of Theorem 1. This follows from Proposition 5 and the free monotone transport
result of Guionnet and Shlyakhtenko [GS14, Corollary 4.3]. �
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5. The Type III Case

One could consider the following more general commutation relations:

(7) l∗i lj − qijljl∗i = aij,

for some {aij}1≤i,j≤N ⊂ C. In [Shl97], Shlyakhtenko considered the case qij = 0 1 ≤ i, j ≤ N,
aii = 1 1 ≤ i ≤ N,
aij = aji ∈ iR 1 ≤ i, j ≤ N, i 6= j.

These commutation relations are satisfied by creation and annihilation operators on a Fock
space corresponding to a normalized basis of vectors with purely imaginary covariance.
Shlyakhtenko showed that the von Neumann algebra generated by the semi-circular oper-
ators {li + l∗i }1≤i≤N , called a free Araki-Woods factor, is a full factor with type depending
on (aij). In fact, provided the off-diagonal coefficients aij, i 6= j, are not all zero, the factor
is of type III.

For −1 < q < 1, the commutation relations for the case qij = q 1 ≤ i, j ≤ N,
aii = 1 1 ≤ i ≤ N,
aij = aji ∈ iR 1 ≤ i, j ≤ N, i 6= j,

are once again satisfied by creation and annihilation operators on a now q-Fock space,
and the von Neumann algebra generated by their corresponding semi-circular operators
is called a q-deformed free Araki-Woods algebra. These were originally defined by Hiai in
[Hia03], who established factoriality and a type classification in the situation that N =∞
along with other technical conditions on (aij).

Using non-tracial free transport, it was shown in [Nel15] that for finite N and sufficiently
small q, the q-deformed free Araki-Woods algebras are isomorphic to the corresponding
free Araki-Woods factor at q = 0. By combining the methods of [Nel15] with those present
in this paper, it is easy to check that the same holds true in the mixed q case. That is,
there exists some sufficiently small parameter q0 > 0 such that the semi-circular operators
arising from the case

(8)

 |qij| ≤ q0 1 ≤ i, j ≤ N,
aii = 1 1 ≤ i ≤ N,
aij = aji ∈ iR 1 ≤ i, j ≤ N, i 6= j,

generate a free Araki-Woods factor. We record this in the following theorem.

Theorem 6. Let Q = (qij) be a symmetric N × N matrix with N ∈ {2, 3, . . .} and
qij ∈ (−1, 1). Let A = (aij) be an N × N matrix with aii = 1 and aij = aji ∈ iR for all
1 ≤ i, j ≤ N . Let l1, . . . , lN be creation operators satisfying the commutation relations (7)
with constants determined by Q and A, and de�ne Xj = lj + l∗j for each 1 ≤ j ≤ N . Then
there exists q0 = q0(N,A) > 0 depending only on N and A such that for all Q satisfying
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maxi,j |qij| < q0 the von Neumann algebra ΓAQ := W ∗(X1, . . . , XN) is the free Araki-Woods

factor corresponding to the orthogonal representation R 3 t 7→ (2A−1 − 1)it ∈MN(C).
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