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Abstract

In this paper, we present an efficient ΓQR algorithm for solving the linear re-
sponse eigenvalue problem H xxx = λxxx, where H is ΠΠΠ−-symmetric with respect to
Γ0 = diag(In,−In). Based on newly introduced Γ -orthogonal transformations, the
ΓQR algorithm preserves the ΠΠΠ−-symmetric structure of H throughout the whole
process, which guarantees the computed eigenvalues to appear pairwise (λ,−λ) as
they should. With the help of a newly established implicit Γ -orthogonality theorem,
we incorporate the implicit multi-shift technique to accelerate the convergence of the
ΓQR algorithm. Numerical experiments are given to show the effectiveness of the
algorithm.
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1 Introduction

In this paper, we consider the standard eigenvalue problem of the form

H xxx ≡

[
A B
−B −A

] [
xxx1
xxx2

]
= λxxx, (1.1)
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where A and B are n×n real symmetric matrices. We refer to it a linear response eigen-
value problem (LREP). Any complex scalar λ and nonzero 2n-dimensional column vector
xxx that satisfy (1.1) are called an eigenvalue and its associated eigenvector, respectively,
and correspondingly, (λ,xxx) is called an eigenpair.

Our consideration of this problem is motivated by Casida’s eigenvalue equations
in [10, 15, 19, 22]. In computational quantum chemistry and physics, the excitation
states and response properties of molecules and clusters are predicted by the linear-
response time-dependent density functional theory. The excitation energies and tran-
sition vectors (oscillator strengths) of molecular systems can be calculated by solving
Casida’s eigenvalue equations [10, 15, 19]. There has been a great deal of recent work on
and interest in developing efficient numerical algorithms and simulation techniques for
computing excitation responses of molecules and for material designs in energy science
[2, 3, 12, 13, 17, 18, 20, 21].

Let

Γ0 =

[
In 0
0 −In

]
, Π ≡ Π2n =

[
0 In
In 0

]
. (1.2)

The matrix H in (1.1) satisfies

Γ0H =

[
A B
B A

]
and H Π = −ΠH . (1.3)

As a result of the second equation in (1.3), if (λ,xxx) is an eigenpair of H , i.e., H xxx = λxxx,
then (−λ,Πxxx) is also an eigenpair of H , and if also λ /∈ R, then

(
λ̄, x̄xx

)
and

(
−λ̄,Πx̄xx

)

are eigenpairs of H as well, where λ̄ is the complex conjugate of λ and x̄ takes entrywise
complex conjugation.

Previously in [2, 3, 23], LREP (1.1) was well studied under the condition that Γ0H

is positive definite. For the case, all eigenvalues of H are real. Without the positive
definite condition, the methods developed in [2, 3, 23] are not applicable.

Let Jn be the set of all n× n diagonal matrix with ±1 on the diagonal and set

ΓΓΓ 2n = {diag(J,−J) : J ∈ Jn}.

Note that Γ0 = diag(In,−In) ∈ ΓΓΓ 2n. In this paper, we will study an eigenvalue problem
for which the condition that Γ0H is positive definite is no longer assumed and it in
fact includes LREP (1.1) as a special case. Specifically, we will consider the following
eigenvalue problem

H xxx ≡

[
A B
−B −A

]
xxx = λxxx (1.4a)
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with the structure property:

there is a Γ = diag(J,−J) ∈ ΓΓΓ 2n with J = diag(±1) ∈ Jn

such that ΓH =

[
JA JB
JB JA

]
with JA, JB ∈ Rn×n being

symmetric.

(1.4b)

There are two reasons for considering this more general eigenvalue problem (1.4). The
first reason is that this includes (1.1), with/without Γ0H being positive definite, as a
special case, and the second one is that the intermediate eigenvalue problems in our later
iterative QR-like algorithm for solving (1.1) are of this kind, i.e., with Γ 6= Γ0.

It can be verified that the second equation in (1.3), H Π = −ΠH , still holds in the
case of (1.4b). Therefore the same results about the eigenvalue pattern we mentioned for
(1.1) remain valid. Namely, if (λ,xxx) is an eigenpair, then (−λ,Πxxx) is also an eigenpair,
and if also λ /∈ R, then

(
λ̄, x̄xx

)
and

(
−λ̄,Πx̄xx

)
are eigenpairs as well. Another interesting

result is about the Γ -orthogonality among the eigenvectors of H . Specifically, for two
eigenpairs (λ,xxx) and (µ,yyy) of H if λ 6= µ̄, then it holds that yyyHΓxxx = 0, where yyyH is the
conjugate transpose of yyy. This is because using (1.4b), we have

λyyyHΓxxx = yyyHΓH xxx = yyyHH
HΓxxx = µ̄yyyHΓxxx

and thus (λ− µ̄)yyyHΓxxx = 0 which yields yyyHΓxxx = 0 when λ 6= µ̄.
The matrix H in (1.4) has some nice block structures. In fact, the eigenvalue problem

(1.4) can be written as a special Hamiltonian eigenvalue problem

[
0 JM

JK 0

] [
yyy1
yyy2

]
= λ

[
yyy1
yyy2

]
with K = A−B, M = A+B, (1.5)

yyy1 = xxx1−xxx2, and yyy2 = xxx1+xxx2. There are several existing structure-preserving approaches
[6, 8, 13, 16] can be applied to solve the eigenvalue problem (1.5).

(a) A periodic QR (PQR) algorithm with orthogonal transformations [16] can be used
to solve the product eigenvalue problem (JK)(JM)yyy2 = λ2yyy2 for (1.5). Here, the n× n
block structure in (1.4) is exploited and the symmetry of the spectrum can be preserved.
However, the symmetric structures of JA and JB are destroyed during the iterations.

(b) The KQZ algorithm [13] with orthogonal and Π-orthogonal transformations can be
applied to solve H in (1.1). The block structure H Π = −ΠH is preserved during
the KQZ iteration. The reduced matrices JA and JB in (1.4b) are no longer symmetric
(tridiagonal), but only Hessenberg. It is mathematically different from the periodic QR
algorithm, but they have the similar amount of computational costs.

(c) An HR process proposed by Brebner and Grad (BG) [6] is used to reduce the product
eigenvalue problem (JK)(JM)yyy2 = λ2yyy2 to a pseudosymmetric form Czzz = λ2J ′zzz, where
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C is symmetric tridiagonal and J ′ is the inertia sign-matrix of JK or JM . The tridiagonal
pseudosymmetry in BG-algorithm are preserved during the HR iterations. The BG-
algorithm has the similar amount of computational costs as our ΓQR algorithm. However,
ill-conditioned K and M may cause the numerical instability of the BG-algorithm during
constructing J ′.

(d) The symplectic QR-like algorithm with symplectic transformations [8] can also be
applied to solve the special Hamiltonian eigenvalue problem (1.5). The Hamiltonian

matrix is reduced to a condensed Hamiltonian form

[
H1 H3

H2 −H1

]
with H1 and H2 be-

ing diagonal and H3 being symmetric triadiagonal, and then H3-block will converge to
a quasi-diagonal matrix. The symplectic QR-like algorithm does not really exploit the
symmetry properties of JA and JB. Instability can occur when the symplectic Gaussian
elimination matrices at some steps have larger condition numbers. This phenomenon can
not be avoided because to maintain the Hamiltonian structure only the Gaussian elimina-
tion without pivot is allowed. Furthermore, the symplectic matrices Q in the symplectic
QR-like algorithm satisfy Q⊤JQ = J , where J = Γ0Π. The Γ -orthogonal matrices Q
in our newly developed ΓQR algorithm (later) satisfy QΠ = ΠQ and Q⊤ΓQ = Γ ′ with
Γ, Γ ′ ∈ ΓΓΓ 2n. The intersection of these two classes is the set of matrices Q that satisfy
QΠ = ΠQ and Q⊤ΓQ = Γ ′ which is much smaller than two transformation sets.

(e) The Hamiltonian QR-algorithm with symplectic orthogonal transformations proposed
by [9] is only suitable for a very special Hamiltonian eigenvalue problem such as in (1.1)one of rank(B),

rank(K), and
rank(M) is one?or (1.5) with rank(B), rank(K), or rank(M) being one.

The HR algorithm proposed in [7] is a pioneering work for solving the eigenvalue
problem of an n× n matrix A having the property that there exists a so-called pseudo-
orthogonal matrix H in the sense that H⊤JH = J ′ for some J = diag(±1) and J ′ =
diag(±1) having the same inertia such that H−1A H = R is upper triangular. In light of
the HR algorithm in [7], the main task of this paper is to develop iterative ΓQR algorithms
for solving (1.4), while exploiting the inherent structures in H and Γ for better numerical
efficiency, based on (Γ, Γ ′)-orthogonal transformations with Γ, Γ ′ ∈ ΓΓΓ 2n to be defined
in Section 2. The transformations preserve the symmetry structures in ΓH and the
diagonal structure of Γ . Throughout this paper, we assume that H is nonsingular, and
thus 0 is not an eigenvalue of (1.1).

The rest of this paper is organized as follows. In Section 2, we introduce some basic
definitions and state their immediately implied properties. In Section 3, we first give
two kinds of Γ -orthogonal transformations, and then prove existence and uniqueness
of the ΓQR factorization and propose an algorithm to compute the factorization for a
given matrix G with GΠ = −ΠG. In Section 4, we present the ΠΠΠ−-upper Hessenberg
reduction/tridiagonalization and prove the implicit Γ -orthognality theorem of a ΠΠΠ−-
matrixG. In Section 5, we develop ΓQR algorithms for computing all eigenpairs of H and

4



analyze their convergence with the goal of an efficient implicit multi-shift ΓQR algorithm.
Numerical results of the ΓQR algorithm compared to the other existing algorithm are
shown in Section 6. Finally, some conclusions are drawn in Section 7.

Notation. Cn×m is the set of all n×m complex matrices with real entries, Rn = Rn×1,
and R = R1. We denote by In and 0m×n(0m) the n×n identity matrix and m×n (m×m)
zero matrix, respectively, and their subscripts may be dropped if their sizes can be read
from the context. Γ0 and Π2n are reserved as given by (1.2), and often the subscript to
Π2n is dropped, too, when no confusion is possible. The jth column of the identity matrix
I is eeej whose size will be determined by the context. We shall also adopt MATLAB-like
convention to access the entries of vectors and matrices. Let i : j be the set of integers
from i to j inclusive. For a vector uuu and a matrix X, uuu(j) is the jth entry of uuu and X(i,j)

is the (i, j)th entry of X; X(I1,I2) is the submatrix of X consist of intersections of all

rows i ∈ I1 and all columns j ∈ I2; X
⊤ is the transpose of X. We denote by eig(A) the

spectrum of matrix A, and diag(X,Y ) is the 2-by-2 block-diagonal matrix with diagonal
blocks X and Y .

2 Definitions and Preliminaries

In this section, we introduce several kinds of matrix classes and their essential properties.
Recall Π2n defined in (1.2).

Definition 2.1. Let G ∈ R2n×2m with m ≤ n. G is called a ΠΠΠ±-matrix if i.e.,

GΠ2m = ±Π2nG, i.e., G =

[
G1 G2

±G2 ±G1

]
with G1, G2 ∈ R

n×m. (2.1)

Denote by ΠΠΠ±2n×2m the set of all 2n× 2m ΠΠΠ±-matrices, and ΠΠΠ±2n :=ΠΠΠ±2n×2n for short.

In this definition and those below, to save space and avoid repetitions, we often pack
two statements into one: one for ΠΠΠ+-matrix and the other for ΠΠΠ−-matrix. In the same
spirit, in definitions/statements in the rest of this paper, any of them with phrases in
parentheses is understood that the phrases can be used to replace the phrases immediately
before for another definition/statement.

We say a matrix X, possibly nonsquare, is upper Hessenberg if X(i,j) = 0 for i > j+1,
upper triangular if X(i,j) = 0 for i > j, and diagonal if X(i,j) = 0 for i 6= j. This
is consistent with the standard definitions of upper Hessenberg, upper triangular, and
diagonal matrices which are usually for square matrices.

A quasi-upper triangular matrix means that it is a block upper triangular matrix with
diagonal blocks being 1× 1 or 2× 2. Similarly, a quasi-diagonal matrix means that it is
a block diagonal matrix with diagonal blocks being 1× 1 or 2× 2.
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Definition 2.2. Let G ∈ΠΠΠ−2n×2m as in (2.1).

1. G is ΠΠΠ−-upper Hessenberg if G1 is upper Hessenberg and G2 is upper triangular.

G is unreduced ΠΠΠ−-upper Hessenberg if G1 is unreduced upper Hessenberg.

2. G isΠΠΠ−-upper (ΠΠΠ−-quasi-upper) triangular if G1 is upper (quasi-upper) triangular
and G2 is strictly upper triangular.

Denote by U
−
2n×2m (qU−2n×2m) the set of all 2n × 2m ΠΠΠ−-upper (ΠΠΠ−-quasi-upper)

triangular matrices, and write, for short, U−2n := U
−
2n×2n and qU−2n := qU−2n×2n.

3. G is ΠΠΠ−-diagonal (ΠΠΠ−-quasi-diagonal) if G1 is diagonal (quasi-diagonal) and G2 is
diagonal.

Denote by D
−
2n×2m (qD−2n×2m) the set of all 2n × 2n ΠΠΠ−-diagonal (ΠΠΠ−-quasi-

diagonal) matrices, and write, for short, D−2n := D
−
2n×2n and qD−2n := qD−2n×2n.

Definition 2.3. 1. LetG ∈ΠΠΠ+
2n as in (2.1). G isΠΠΠ+-symmetric (ΠΠΠ+-sym-tridiagonal),

if G1 is symmetric (symmetric tridiagonal) and G2 is symmetric (diagonal).

2. Let G ∈ ΠΠΠ−2n as in (2.1). G is ΠΠΠ−-symmetric (ΠΠΠ−-sym-tridiagonal) with respect
to Γ ∈ ΓΓΓ 2n if ΓG is ΠΠΠ+-symmetric (ΠΠΠ+-sym-tridiagonal).

3. G is unreducedΠΠΠ±-sym-tridiagonal if it isΠΠΠ±-sym-tridiagonal andG1 is unreduced.

The following propositions are direct consequences of Definitions 2.1 – 2.3 and are
rather straightforward to verify.

Proposition 2.1. (i) G ∈ ΠΠΠ±2n×2m if and only if ΓG ∈ ΠΠΠ∓2n×2m and GΓ ′ ∈ ΠΠΠ∓2n×2m
for any Γ ∈ ΓΓΓ 2n and Γ ′ ∈ ΓΓΓ 2m.

(ii) The inverse of a ΠΠΠ±-(upper triangular) matrix is still a ΠΠΠ±-(upper triangular)
matrix.

(iii) The product G̃G of two 2n × 2n matrices G̃ and G in their respective categories
belongs to the one as listed in the following table. don’t need the other

table? keep it any-
way?

❍
❍
❍
❍
❍
❍

G̃

G
ΠΠΠ+ ΠΠΠ−

ΠΠΠ+ ΠΠΠ+ ΠΠΠ−

ΠΠΠ− ΠΠΠ− ΠΠΠ+

Proposition 2.2. Let G ∈ΠΠΠ−2n. Then G has 2n eigenvalues, appearing in pairs (λ,−λ)
for real or purely imaginary eigenvalues λ and in quadruples (±λ,±λ̄) for complex eigen-
values λ.
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Proof. By Definition 2.1, it holds that

det(G− λI) = det(ΠG− λΠ) = det(GΠ + λΠ) = det(G+ λI) = 0.

The assertion follows immediately.

Definition 2.4. Q ∈ΠΠΠ+
2n×2m is Γ -orthogonal with respect to Γ ∈ ΓΓΓ 2n if Γ ′ := Q⊤ΓQ ∈

ΓΓΓ 2m. Denote by OΓΓΓ
2n×2m the set of all 2n×2m Γ -orthogonal matrices, and OΓΓΓ

2n := OΓΓΓ
2n×2n

for short.

Often, for short, we may say Q ∈ ΠΠΠ+
2n×2m is Γ -orthogonal, by which we mean there

is Γ ∈ ΓΓΓ 2n that has the requirement of the definition satisfied. Similarly, we may simply
say Q is Γ -orthogonal. The same understanding applies to the expression Q ∈ OΓΓΓ

2n×2m.

Proposition 2.3. Let Qi ∈ OΓΓΓ
2n with respect to Γi ∈ ΓΓΓ 2n for i = 1, 2, and suppose

Γ2 = Q⊤1 Γ1Q1.

(i) Q1Q2 ∈ OΓΓΓ
2n with respect to Γ1.

(ii) Qi is nonsingular and Q−1i = Γi+1Q
⊤
i Γi, where Γ3 := Q⊤2 Γ2Q2.

(iii) If also Qi ∈ U
+
2n, then Qi = Ji ⊕ Ji for some Ji ∈ Jn.

Proof. Items (i) and (ii) follow from Definition 2.4 directly. For item (iii), Q−1i ∈ U
+
2n by

Proposition 2.1(ii). On the other hand, by item (ii), Q−1i = Γi+1Q
⊤
i Γi which isΠΠΠ+-lower

triangular. This implies that Qi = Ji ⊕ Ji for some Ji ∈ Jn, completing the proof of
item (iii).

3 ΓQR Factorization

Definition 3.1. G = QR is called a ΓQR factorization of G ∈ ΠΠΠ−2n×2m with respect to

Γ ∈ ΓΓΓ 2n if R ∈ U
−
2n×2m and Q ∈ OΓΓΓ

2n with respect to Γ or if R ∈ U
−
2m and Q ∈ OΓΓΓ

2n×2m
with respect to Γ .

The case when R ∈ U
−
2m and Q ∈ OΓΓΓ

2n×2m with respect to Γ in this definition
corresponds to the so-called skinny QR factorization in numerical linear algebra.

Definition 3.2. Let M =

[
M1 M2

−M2 −M1

]
∈ΠΠΠ−2n, and set

M1i = (M1)(1:i,1:i), M2i = (M2)(1:i,1:i).

[
M1i M2i

−M2i −M1i

]
is called the ithΠΠΠ−-leading principal submatrix ofM and its determinant

is called the ith ΠΠΠ−-leading principal minor of M .
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The next theorem shows that almost every ΠΠΠ−-matrix G ∈ ΠΠΠ−2n×2m has a ΓQR
factorization with respect to a given Γ ∈ ΓΓΓ 2n and the factorization is unique if it is
required that the top-left quarter of the R-factor has positive diagonal entries.

Theorem 3.1. Suppose that G ∈ΠΠΠ−2n×2m(m ≤ n) has full column rank and Γ ∈ ΓΓΓ 2n.

(i) If G = QR = Q̃R̃ (with Q, Q̃ ∈ OΓΓΓ
2n×2m and R, R̃ ∈ U

−
2m) are two ΓQR factoriza-

tions of G with respect to Γ , then

Q̃⊤ΓQ̃ = Q⊤ΓQ ∈ ΓΓΓ 2m

and there is a ΠΠΠ+-diagonal matrix D = J ⊕ J with J ∈ Jm such that Q̃ = QD and
R̃ = DR. In particular, if the top-left quarters of R and R̃ have positive diagonal
entries, then D = I2m, Q = Q̃, and R = R̃.

(ii) G has a ΓQR factorization with respect to Γ if and only if no ΠΠΠ−-leading principal
minor of G⊤ΓG vanishes.

Proof. We first prove item (i). Let Γ ′ = Q⊤ΓQ and Γ̃ ′ = Q̃⊤ΓQ̃. From the assumption
we have

Γ ′R = Q⊤ΓQR = Q⊤ΓQ̃R̃ ⇒ Q⊤ΓQ̃ = Γ ′RR̃−1.

Similarly, Q̃⊤ΓQ = Γ̃ ′R̃R−1. Therefore

Γ̃ ′R̃R−1 = Q̃⊤ΓQ = (Q⊤ΓQ̃)⊤ = (Γ ′RR̃−1)⊤ = R̃−⊤R⊤Γ ′. (3.1)

Because Γ̃ ′R̃R−1 ∈ U
−
2m and at the same time R̃−⊤R⊤Γ ′ is ΠΠΠ−-lower triangular, we

conclude that R̃R−1 and R̃−⊤R⊤ must be diagonal. Set

D = R̃R−1 ∈ΠΠΠ+
2m (3.2)

which implies R̃−⊤R⊤ = (R̃R−1)−⊤ = D−1. Thus, from (3.1) and (3.2), we have Γ̃ ′D =
Q̃⊤ΓQ and Γ ′D−1 = Q⊤ΓQ̃. This implies Γ ′ = DΓ̃ ′D, and thus

D2 = I2m, Γ ′ = Γ̃ ′ ∈ ΓΓΓ 2m.

So D = diag(J,−J) for some J ∈ Jm and R̃ = DR. Furthermore, since G = QR = Q̃R̃
has full column rank, it follows that Q̃ = QD.

Now if also the top-left quarters of R and R̃ have positive diagonal entries, then
R̃ = DR implies D = I2m, as expected.

Next we prove item (ii).
Necessity. Let P be the permutation matrix

P = [eee1, eee3, · · · , eee2m−1 |eee2, eee4, · · · , eee2m] ∈ R
2m×2m. (3.3)
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Suppose that G = QR is a ΓQR factorization with respect to Γ , and let Γ ′ = Q⊤ΓQ.
Then

P⊤G⊤ΓGP = (P⊤R⊤P )(P⊤Γ ′P )(P⊤RP ) =: R⊤pΓ
′
pRp,

where Rp = P⊤RP is upper triangular and Γ ′p = P⊤Γ ′P is diagonal, as in

Rp =



R11 · · · R1m
...

. . .
...

0 · · · Rmm


 , Γ ′p =



Γ ′11 0

. . .

0 Γ ′mm


 (3.4)

with Rij ∈ ΠΠΠ−2 , Rii =

[
di 0
0 −di

]
, and Γ ′ii ∈ ΓΓΓ 2 for i, j = 1, · · · ,m. Since G has full

column rank, it follows that det(Rii) 6= 0 for i = 1, · · · ,m. Therefore, there is no leading
principal minor of P⊤G⊤ΓGP of even order vanishes, i.e., noΠΠΠ−-leading principal minor
of G⊤ΓG vanishes.

Sufficiency. Suppose that G ∈ΠΠΠ−2n×2m and no ΠΠΠ−-leading principal minor of M :=

G⊤ΓG vanishes. Then there is an LU factorization of Mp := P⊤MP : Mp = LpR̂p with
nonsingular

Lp =




I2 0
L21 I2
...

. . .
. . .

Lm1 · · · Lm,m−1 I2


 , R̂p =



R̂11 · · · R̂1m

. . .
...

0 R̂mm


 , (3.5)

where Lij ∈ΠΠΠ+
2 and R̂ij ∈ΠΠΠ−2 . Decompose R̂p as

R̂p =



R̂11 0

. . .

0 R̂mm







I2 R12 · · · R1m

. . .
. . .

...
. . . Rm−1,m

I2



=: D̂pRp (3.6)

with Rij = R̂−1ii R̂ij ∈ΠΠΠ+
2 . Then we have

Mp = LpR̂p = LpD̂pRp = R⊤p D̂
⊤
pL
⊤
p = M⊤p . (3.7)

The uniqueness of the LU factorization implies that L⊤p = Rp. Since Mp is symmetric,

it follows that D̂p = diag({R̂ii}
m
i=1) is symmetric. Because R̂ii ∈ΠΠΠ−2 , R̂ii must be of the

form R̂ii =

[
di 0
0 −di

]
for i = 1, · · · ,m. Write

R̂ii =

[√
|di| 0

0
√
|di|

] [
sgn(di) 0

0 −sgn(di)

] [√
|di| 0

0
√
|di|

]
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and denote

D
1/2
p = diag(

{[√
|di| 0

0
√
|di|

]}m

i=1

), Γ ′p = diag(

{[
sgn(di) 0

0 −sgn(di)

]}m

i=1

). (3.8)

From (3.7) and (3.8) we have

G⊤ΓG = PMpP
⊤ = (PLpD

1/2
p P⊤)(PΓ ′pP

⊤)(PD
1/2
p L⊤pP

⊤) =: R⊤Γ ′R, (3.9)

where R = PD
1/2
p L⊤pP

⊤ ∈ U
+
2m and Γ ′ = PΓ ′pP

⊤. Let

Q− := GR−1Γ ′ ∈ΠΠΠ+
2n×2m. (3.10)

With the help of (3.9), it can be verified that

Q⊤−ΓQ− = (Γ ′R−⊤G⊤)Γ (GR−1Γ ′) = Γ ′R−⊤(R⊤Γ ′R)R−1Γ ′ = Γ ′

which says Q− ∈ OΓΓΓ
2n×2m. Therefore

G = (GR−1Γ ′)(Γ ′R) =: Q−R− with R− ∈ U
−
2m (3.11)

to give G = QR, a ΓQR factorization.

Our goal in this paper is to develop a structure-preserving QR-like algorithm to
compute all eigenvalues of H ∈ ΠΠΠ−2n. The basic idea is to calculate a sequence of Γ -
orthogonal matrices {Qi}, based on a ΓQR factorization, such that

Hi+1 = Q−1i HiQi, Q⊤i ΓiQi = Γi+1 for i = 1, 2, . . .,

where initially H0 = H . For this purpose, at first, we introduce two elementary Γ -
orthogonal transformations which will be used to zero out a specific entry of a vector.
Specifically, given Γ ∈ ΓΓΓ 2n and uuu ∈ R2n, we seek Q ∈ OΓΓΓ

2n to zero out some portion of
uuu. Two different kinds of matrices Q will be used to deal with all possible scenarios that
will occur in computing the ΓQR factorizations in Algorithm 3.1 later.

Let aaa ∈ Rk (1 ≤ k ≤ n), J ≡ diag(1, ..., k) ∈ Jk. Assume that aaa⊤Jaaa 6= 0. Let Pa

be a permutation which is chosen by interchanging row 1 and row r (2 ≤ r ≤ k) of J
such that ̂1aaa

⊤Jaaa = ̂1âaa
⊤Ĵâaa > 0, where âaa = Paaaa and Ĵ = PaJPa = diag(̂1, ..., ̂k). A

Householder-like transformation is proposed by [7] to zero out the elements of âaa(2:k) as
follows. Let

H(aaa)−1 = I −
̂1
β
(âaa− αe1)(âaa− αe1)

⊤Ĵ , Ĥ(aaa)−1 = H(aaa)−1Pa, (3.12a)

where α = −sign(âaa(1))

√
̂1âaa
⊤Ĵâaa and β = α[α− âaa(1)]. Then it can be verified that

Ĥ(aaa)−1aaa = [H(aaa)−1Pa]aaa = H(aaa)−1âaa = αe1, Ĥ(aaa)⊤JĤ(aaa) = Ĵ . (3.12b)
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Hyp Householder (hyperbolic Householder) transformation: Suppose 1 ≤ ℓ <
m ≤ n, uuu ∈ R2n and Γ = diag(γ1, . . . , γn,−γ1, . . . ,−γn) ∈ ΓΓΓ 2n. There are two cases:

Case 1. aaa← uuu(ℓ′:m′) with ℓ′ = n+ ℓ and m′ = n+m, J = diag(γℓ, . . . , γm);

Case 2. aaa← uuu(ℓ:m), J = diag(γℓ, . . . , γm).

Using (3.12) we construct a hyperbolic Householder Γ -orthogonal transformation Q with
respect to Γ through its inverse by Qh(ℓ′ : m′;uuu) not de-

fined yet

Q−1 =

{
Qh(ℓ

′ : m′;uuu), case 1;

Qh(ℓ : m;uuu), case 2,

= diag(Iℓ−1, Ĥ(a)−1, In−m, Iℓ−1, Ĥ(a)−1, In−m). (3.13)

Then it holds that

Q−1uuu = ûuu with

{
ûuu(ℓ′+1:m′) = 0, case 1;

ûuu(ℓ+1:m) = 0, case 2,
(3.14)

and Q⊤ΓQ = Γ ′, where Γ ′ = (γ′1, · · · , γ
′
n,−γ

′
1, · · · ,−γ

′
n) is given by

{
γ′s = γs , s = 1, · · · , ℓ− 1 and m+ 1, · · · , n,

γ′s+ℓ−1 = ĵs , s = 1, · · · ,m− ℓ+ 1.
(3.15)

Hyp Givens (hyperbolic Givens) transformation: Suppose 1 ≤ ℓ ≤ n , uuu ∈ R2n

and Γ = diag(γ1, · · · , γn,−γ1, · · · ,−γn) ∈ Γ2n. Let α← uuu(ℓ) , β ← uuu(n+ℓ). Define

{
c = 1√

1−r2 , s =
r√
1−r2 with r = β

α , if |α| > |β| ,

c = r√
1−r2 , s =

1√
1−r2 with r = α

β , if |α| < |β| .
(3.16)

We construct a hyperbolic Givens Γ -orthogonal transformation with respect to Γ
through its inverse by

Q−1 = Qg(ℓ;α;β) =

[
C S
S C

]
∈ Π+

2n, (3.17)

where C is obtained from In by resetting C(ℓ,ℓ) = c and S from On×n by resetting
S(ℓ,ℓ) = −s. Then we have

Q−1uuu = ûuu with ûuu(n+ℓ) = 0,

11



Algorithm 3.1 ΓQR factorization

Input: G ∈ΠΠΠ−2n×2m, Γ = diag(J,−J) ∈ ΓΓΓ 2n with J = diag(γ1, · · · , γn), n
′ ← 2n;

Output: Q ∈ OΓΓΓ
2n with respect to Γ , Γ ′ = Q⊤ΓQ ∈ Jn, and R ∈ U

−
2m such that

G = QR;

1: Q← I2n, Γsav ← Γ ;
2: for ℓ = 1 : m do
3: ℓ′ ← n+ ℓ , uuu← G(:,ℓ);

4: compute Hyp Householder Γ -orthogonal transformation: Q̃−1 = Qh(ℓ
′ : n′;uuu) with

respect to Γ (by (3.13));
5: Q← QQ̃ , G← Q̃−1G , Γ ← −Γ ′ (by (3.15));
6: α← G(ℓ,ℓ) , β ← G(ℓ′,ℓ);

7: compute Hyp Givens Γ -orthogonal transformation: Q̃−1 = Qg(ℓ;α, β) with respect
to Γ (by (3.17));

8: Q← QQ̃ , G← Q̃−1G , Γ ← Γ ′ (by (3.18));
9: uuu← G(:,ℓ);

10: compute Hyp Householder Γ -orthogonal transformation: Q̃−1 = Qh(ℓ : n;uuu) with
respect to Γ (by (3.13));

11: Q← QQ̃ , G← Q̃−1G , Γ ← Γ ′ (by (3.18));
12: end for

13: return Q← Q(:,[1:m,n+1:n+m]) , Γ
′ ← Γ , Γ ← Γsav, and R =

[
G(1:m,:)

G(n+1:n+m,:)

]
.

and Q⊤ΓQ = Γ ′, where

{
γ′ℓ = δγℓ, δ = c2 − s2 = ±1,
γ′j = γj , j 6= ℓ.

(3.18)

Remark 3.1. (i) Utilizing the special structure of ΠΠΠ−-matrix G ∈ ΠΠΠ−2n×2m, Q̃−1 at
lines 4, 7 and 10 of Algorithm 3.1 eliminates the (n + ℓ + 1 : 2n, ℓ) and (ℓ + 1 : n, ℓ)
or the (n + ℓ, ℓ)th and (ℓ, n + ℓ)th or the (ℓ + 1 : n, ℓ) and (n + ℓ + 1 : 2n, ℓ) entries of
G simultaneously, for ℓ = 1, . . . ,m. (ii) Upon exit, Algorithm 3.1 computes G = QR,
where Q ∈ OΓΓΓ

2n is a Γ -orthogonal matrix with respect to Γ and R ∈ U
−
2n×2m. It is worth

noting that Γ ′ is unknown before G = QR is computed but it is unique, according to
Theorem 3.1(i).

In the following, we use a small example with n = 3 and m = 2 by Wilkinson’s
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diagram to illustrate the elimination process in computing a ΓQR factorization of G.




× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×




Qh(4:6;uuu)
−−−→
=Q̃−1

1




× × × ×
× × 0 ×
× × 0 ×
× × × ×
0 × × ×
0 × × ×




Qg(1;α,β)
−−−→
=Q̃−1

2




× × 0 ×
× × 0 ×
× × 0 ×
0 × × ×
0 × × ×
0 × × ×




Qh(1:3;uuu)
−−−→
=Q̃−1

3




× × 0 ×
0 × 0 ×
0 × 0 ×
0 × × ×
0 × 0 ×
0 × 0 ×




Qh(5:6;uuu)
−−−→
=Q̃−1

4




× × 0 ×
0 × 0 ×
0 × 0 0

0 × × ×
0 × 0 ×
0 0 0 ×




Qg(2;α,β)
−−−→
=Q̃−1

5




× × 0 ×
0 × 0 0
0 × 0 0

0 × × ×
0 0 0 ×
0 0 0 ×




Qh(2:3;uuu)
−−−→
=Q̃−1

6




× × 0 ×
0 × 0 0
0 0 0 0

0 × × ×
0 0 0 ×
0 0 0 0




In general,after m steps we have computed 3m Γ -orthogonal matrices Q̃−11 , . . . , Q̃−13m suchwhat does
(Q̂−1

3m
, . . . , Q̂

−1

1
)

mean?that (Q̂−13m, . . . , Q̂−11 )G = R is a ΠΠΠ−-upper triangular.

Remark 3.2. Theorem 3.1(ii) reveals that almost all matrices in ΠΠΠ−2n×2m(m ≤ n) have
ΓQR factorizations. In practice, for a given 2n × 2m ΠΠΠ−-matrix G, one way to con-
struct its ΓQR factorization with respect to given Γ ∈ Γ2n is through reducing G to a
2n × 2m ΠΠΠ−-upper triangular matrix by a sequence of Γ -orthogonal transformations:
Hyp Householder Γ -orthogonal transformations and Hyp Givens Γ -orthogonal transfor-
mations. The Hyp Householder transformation in (3.12a) may not exist if âaaTJâaa = 0.
Similarly, the Hyp Givens transformation in (3.17) may not exist if |α| = |β|. In [1], it is
said that these cases can occur when the matrix is artificially designed. There is clearly a
numerical stability issue if âaaTJâaa ≈ 0 or |α| ≈ |β|. The danger of severe cancellation can
occurs and is discussed in [4, 5]. If a dangerous cancellation occurs at some ℓth step of
Algorithm 3.1, it is recommended pre-multiply the current G by a randomly generated
Γ -orthogonal Q̃−1 with Q̃TΓQ̃T = Γ ′. Then we set G ← Q̃−1G, Γ ← Γ ′, and continue
performing Algorithm 3.1 from the ℓth step. It usually can successfully circumvent the
cancellation by this [4, 5].
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4 Implicit Γ -orthogonality Theorem

Here and hereafter we suppose that H ∈ΠΠΠ−2n isΠΠΠ−-symmetric with respect to Γ ∈ ΓΓΓ 2n.

Definition 4.1. Given qqq1 ∈ R2n with qqq⊤1 Γqqq1 = ±1. For 1 ≤ m ≤ n, the mth order
ΠΠΠ+-Krylov matrix of H on qqq1 is defined as

K2m ≡ K2m(H , qqq1)

: =
[
qqq1,H qqq1, · · · ,H

m−1qqq1 |Πqqq1,Π(H qqq1), · · · ,Π(H m−1qqq1)
]
∈ R

2n×2m. (4.1)

Let K2m ≡ K2m(H , qqq1) be the subspace spanned by the columns of K2m.

Theorem 4.1. Let K2m ≡ K2m(H , qqq1) be the ΠΠΠ+-Krylov matrix (4.1), where m ≤ n.
Suppose rank(K2m) = 2m, and let K2m = Q2mR2m (with Q2m ∈ OΓΓΓ

2n×2m and R2m ∈
U
−
2m) be a ΓQR factorization with respect to Γ and set Γ ′ = Q⊤2mΓQ2m ∈ ΓΓΓ 2m. Then

H Q2m = Q2mT2m + zzzmeee
⊤
m −Πzzzmeee

⊤
2m, (4.2a)

Q⊤2mΓzzzm = Q⊤2mΓ (Πzzzm) = 0, (4.2b)

T2m = (Γ ′Q⊤2mΓ )H Q2m, (4.2c)

for some zzzm ∈ R2n, and Γ ′T2m is unreduced ΠΠΠ+-sym-tridiagonal, i.e., T2m is unreduced
ΠΠΠ−-sym-tridiagonal with respect to Γ ′.

Proof. Since K2m = Q2mR2m has full column rank and is the 2n × 2m ΠΠΠ+-Krylov
matrix by assumption, R2m is ΠΠΠ+-upper triangular and nonsingular and so is R−12m.
Using H Π = −ΠH , we have

H K2m = H
[
qqq1,H qqq1, · · · ,H

m−1qqq1,Πqqq1,Π(H qqq1), · · · ,Π(H m−1qqq1)
]

= K2mC2m + H
mqqq1eee

⊤
m −Π(H mqqq1eee

⊤
2m), (4.3)

where C2m = diag(C1,−C1) with C1 =

[
0⊤m−1 0
Im−1 0m−1

]
. Substituting K2m by Q2mR2m

into (4.3), we get

H Q2m = Q2m

[
R2mC2mR−12m + Γ ′Q⊤2mΓ (H mqqq1eee

⊤
m −ΠH

mqqq1eee
⊤
2m)R−12m︸ ︷︷ ︸

=:T2m

]

+ (I −Q2mΓ ′Q⊤2mΓ )(H mqqq1eee
⊤
m −ΠH

mqqq1eee
⊤
2m)R−12m. (4.4)

Set γmm = eee⊤mR−12meeem = eee⊤2mR−12meee2m and zzzm = γmm(I − Q2mΓ ′Q⊤2mΓ )H mqqq1. From
(4.4), we have

H Q2m = Q2mT2m + zzzmeee
⊤
m −Πzzzmeee

⊤
2m. (4.5)
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From the fact that Q⊤2mΓQ2m = Γ ′ it follows that

Q⊤2mΓzzzm = Q⊤2mΓ (Πzzzm) = 0. (4.6)

Therefore (Γ ′Q⊤2mΓ )H Q2m = T2m by (4.5) and (4.6). Because C2m in (4.4) is unreduced
ΠΠΠ−-upper Hessenberg, by Proposition 2.1 we know that T2m is unreduced ΠΠΠ+-upper
Hessenberg. Furthermore, since H is ΠΠΠ−-symmetric with respect to Γ , Q⊤2mΓH Q2m

is ΠΠΠ+-sym-tridiagonal and thus T2m is ΠΠΠ−-sym-tridiagonal with respect to Γ ′. This
completes the proof.

Theorem 4.2. Let Q2m ∈ R2n×2m (m ≤ n) be a Γ -orthogonal with respect to Γ such
that Q2meee1 = qqq1. Let Γ ′ = Q⊤2mΓQ2m. If Q2m satisfies (4.2a) for some unreduced
ΠΠΠ+-sym-tridiagonal, Γ ′T2m and zzzm ∈ R2n, then

K2m(H , qqq1) = Q2m

[
eee1, T2meee1, · · · , T

m−1
2m eee1,Πeee1,Π(T2meee1), · · · ,Π(Tm−1

2m eee1)
]

=: Q2mR2m (4.7)

is a ΓQR factorization of K2m(H , qqq1) and rank(K2m(H , qqq1)) = 2m.

Proof. It holds that

H qqq1 = H Q2meee1 = (Q2mT2m + zzzmeee
⊤
m −Πzzzmeee

⊤
2m)eee1 = Q2mT2meee1. (4.8)

Assume that H i−1qqq1 = H i−1Q2meee1 = Q2mT i−1
2m eee1 holds for i = 2, · · · ,m− 1. Then

H
iqqq1 = H Q2mT i−1

2m eee1

= (Q2mT2m + zzzmeee
⊤
m −Πzzzmeee

⊤
2m)T i−1

2m eee1

= Q2mT i
2meee1 + zzzmeee

⊤
mT i−1

2m eee1 −Πzzzmeee
⊤
2mT i−1

2m eee1.

It can be verified that eee⊤mT i−1
2m eee1 = eee⊤2mT i−1

2m eee1 = 0. Therefore, we have H iqqq1 =
Q2mT i

2meee1 and thus (4.7) holds. Furthermore, R2m in (4.7) is nonsingular andΠΠΠ+-upper
triangular. Hence, rank(K2m(H , qqq1)) = 2m.

Theorem 4.3 (Implicit Γ -orthogonality theorem). Let H ∈ ΠΠΠ−2n be ΠΠΠ−-symmetric

with respect to Γ and Q, Q̃ ∈ R2n×2n be two Γ -orthogonal ΠΠΠ+-matrices with respect to
Γ ∈ ΓΓΓ 2n. Assume Qeee1 = Q̃eee1 and let

Γ ′ = Q⊤ΓQ, Γ̃ ′ = Q̃⊤ΓQ̃.

If H Q = QT2n and H Q̃ = Q̃T̃2n, where Γ ′T2n and Γ̃ ′T̃2n are unreduced ΠΠΠ+-sym-
tridiagonal, i.e., T2n and T̃2n are unreduced ΠΠΠ−-sym-tridiagonal with respect to Γ ′ and
Γ̃ ′, respectively, then Q = Q̃D, Γ ′ = Γ̃ ′, and T2n = DT̃2nD for some D = diag(J, J)
with J ∈ Jn.
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Proof. By Theorem 4.2, it holds that

K2n(H , Qeee1) = QR = Q̃R̃ = K2n(H , Q̃eee1),

where R and R̃ are nonsingular andΠΠΠ+-upper triangular. From Theorem 3.1(i), we know
that the ΓQR factorization of the nonsingular K2n(H , Qeee1) is unique modulo some ΠΠΠ+-
diagonal D = diag(J, J) with J ∈ Jn. Thus, Q̃ = QD, R̃ = DR, and consequently

Γ̃ ′ = Q̃⊤ΓQ̃ = DQ⊤ΓQD = DΓ ′D = Γ ′,

T̃2n = Γ̃ ′Q̃⊤ΓH Q̃ = Γ ′DQ⊤ΓH QD = D(Γ ′Q⊤Γ )H QD = DT2nD,

as expected.

5 ΓQR Algorithms

Based on ΓQR factorizations ofΠΠΠ−-matrices and inspired by the usual QR algorithm for
the standard eigenvalue problem [11], in this section, we will develop structure-preserving
ΓQR algorithms for solving the LREP (1.4) of a ΠΠΠ−-symmetric matrix H with respect
to Γ ∈ ΓΓΓ 2n. A straightforward extension of the usual QR algorithm is outlined in
Algorithm 5.1.

Algorithm 5.1 The simple ΓQR algorithm

Input: H ∈ΠΠΠ−2n a ΠΠΠ−-symmetric matrix with respect to Γ ∈ ΓΓΓ 2n;
Output: Γ ′H ∈ qD+

2n (ΠΠΠ+-quasi-diagonal).

1: H1 ←H , Γ1 ← Γ , i = 1;
2: repeat
3: compute the ΓQR factorization with respect to Γi: Hi = QiRi;
4: Γi+1 ← Q⊤i ΓiQi ∈ ΓΓΓ 2n, Hi+1 ← RiQi;
5: i← i+ 1;
6: until convergence H ←Hi.

Proposition 5.1. The following statements holds for Algorithm 5.1.

(i) Q−1i = Γi+1Q
⊤
i Γi, Hi+1 = Q−1i HiQi = RiHiR

−1
i , Γi+1Hi+1 = Q⊤i (ΓiHi)Qi.

(ii) Hi+1 = (Q1 · · ·Qi)
−1H (Q1 · · ·Qi), Γi+1Hi+1 = (Q1 · · ·Qi)

⊤(ΓH )(Q1 · · ·Qi).
Furthermore, Hi is ΠΠΠ

−-symmetric with respect to Γi.

(iii) Hi+1 = (Ri · · ·R1)H (Ri · · ·R1)
−1, Γi+1 = (Q1 · · ·Qi)

⊤Γ (Q1 · · ·Qi).

16



(iv) H i = (Q1 · · ·Qi)(Ri · · ·R1).

Let the spectral decomposition of H be

H X = XΛ with Λ ∈ qD−2n, X ∈ΠΠΠ+
2n. (5.1a)

For P as in (3.3), we have

P⊤ΛP = diag(Λ1, · · · , Λℓ) with eig(Λi) = {±λi}, or eig(Λi) = {±λi,±λ̄i}. (5.1b)

In light of the convergence proof of the HR algorithm in [7], we can also prove the
convergence of Algorithm 5.1.

Theorem 5.1. Given Γ ∈ ΓΓΓ 2n, let H ∈ΠΠΠ−2n be ΠΠΠ−-symmetric with respect to Γ having
the spectral decomposition (5.1). Suppose |λ1| > · · · > |λℓ| > 0 and Algorithm 5.1 is
executable for H in the sense that all ΓQR factorizations at line 3 exist. If the ΠΠΠ+-
LU factorization of X−1 = LxUx exists, where L⊤x , Ux ∈ qU+

2n with Lx having 1 × 1
and/or 2 × 2 unit diagonal blocks, conforming to the block structure of Λ and if the
ΓQR factorization of X = QxRx with respect to Γ exists, then Hi in Algorithm 5.1
converges to a ΠΠΠ−-quasi-diagonal matrix with its eigenvalues λi emerging in the order of
λ1, λ2, . . . , λℓ, as i→∞.

Proof. From the assumption, it follows that ΛiLxΛ
−i = I + Ei with Ei → 0 as i → ∞.

Let (I +RxEiR
−1
x ) = Q̃iR̃i be the ΓQR factorization with respect to Γ ′ := Q⊤xΓQx, and

set Γ̃i+1 := Q̃⊤i Γ
′Q̃i ∈ ΓΓΓ 2n. It holds that Q̃i → I2n because Ei → 0.

For i sufficiently large, we have

H
i = XΛiX−1 = XΛiLxΛ

−iΛiUx

= X(I + Ei)Λ
iUx

= Qx(I +RxEiR
−1
x )RxΛ

iUx

= (QxQ̃i)R̃iRxΛ
iUx

which gives a ΓQR factorization of H i. On the other hand, H i = (Q1 · · ·Qi)(Ri · · ·R1)
by Proposition 5.1(ii). Now apply the uniqueness of the ΓQR factorization as stated in
Theorem 3.1(i) to conclude that there is Di = diag(Ji, Ji) with Ji ∈ Jn such that

(QxQ̃i)Di = Q1 · · ·Qi, Di(R̃iRxΛ
iUx) = Ri · · ·R1,

and Γ̃i+1 = Γi+1. By Proposition 5.1(ii), we have

Hi+1 = DiQ̃
−1
i Q−1x H QxQ̃iDi = DiQ̃

−1
i RxΛR

−1
x Q̃iDi

which converges to aΠΠΠ−-quasi-diagonal matrix with its eigenvalues emerging in the order
of λ1, λ2, . . . , λℓ, as i→∞.
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Algorithm 5.2 ΠΠΠ−-sym-tridiagonalization

Input: ΠΠΠ−-symmetric matrix H with respect to Γ = diag(J,−J) with J =
diag(γ1, · · · , γn) ∈ Jn;

Output: Q ∈ OΓΓΓ
2n with respect to Γ , Γ ′ = Q⊤ΓQ ∈ ΓΓΓ 2n, and H ′ = Q−1H Q is a

ΠΠΠ−-sym-tridiagonal matrix with respect to Γ ′.

1: Q← I2n, Γsav ← Γ , Hsav ←H , n′ ← 2n;
2: for ℓ = 1 : n− 1 do
3: ℓ′ ← n+ ℓ+ 1, uuu← G(:,ℓ);

4: compute Hyp Householder Γ -orthogonal transformation Q̃−1 = (Qh)(ℓ′:n′;uuu) with
respect to Γ (by (3.13));

5: Q← QQ̃, H ← Q̃−1H Q̃, Γ ← −Γ ′ (by (3.15));
6: α←H(ℓ+1,ℓ), β ←H(ℓ′,ℓ);

7: compute Hyp Givens Γ -orthogonal transformation Q̃−1 = (Qg)(ℓ+1;α,β) with re-
spect to Γ (by (3.17));

8: Q← QQ̃, H ← Q̃−1H Q̃, Γ ← Γ ′ (by (3.18));
9: uuu←H(:,ℓ);

10: Compute Hyp Householder Γ -orthogonal transformation Q̃−1 = (Qh)(ℓ+1:n;uuu) with
respect to Γ (by (3.13));

11: Q← QQ̃, H ← Q̃−1H Q̃, Γ ← Γ ′ (by (3.18));
12: end for
13: return Γ ′ ← Γ , Γ ← Γsav, H ′ ←H , H ←Hsav;

Note that we set (Qh)(ℓ:m;uuu) = I if ℓ = m.

check red text

In what follows, using Algorithm 5.1 as the basis, we focus on developing an efficient
structure-preserving ΓQR algorithm to solve the eigenvalue problem (1.4) for the ΠΠΠ−-
symmetric matrix H with respect to a given Γ such as Γ0 in (1.2). To do so, we first
reduce H to itsΠΠΠ−-sym-tridiagonal form with respect to Γ and then use the two special
Γ -orthogonal transformations described in section 3 to implicitly carry out lines 3 and 4 in
Algorithm 5.1. The first phase, theΠΠΠ−-sym-tridiagonalization, is given in Algorithm 5.2.
To illustrate the elimination process in the ΠΠΠ−-sym-tridiagonalization, we trace actions
on a small example with n = 4 in Table 5.1.
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H ←




× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×




,
H ← Q̃−1

1 H Q̃1 =

Q̃−1
1 = Qh(6 : 8;uuu)




× × × × × × 0 0
× × × × × × × ×
× × × × 0 × × ×
× × × × 0 × × ×
× × 0 0 × × × ×
× × × × × × × ×
0 × × × × × × ×
0 × × × × × × ×




,

H ← Q̃−1
2 H Q̃2 =

Q̃−1
2 = Qg(2 : α; β)




× × × × × 0 0 0
× × × × 0 × × ×
× × × × 0 × × ×
× × × × 0 × × ×
× 0 0 0 × × × ×
0 × × × × × × ×
0 × × × × × × ×
0 × × × × × × ×




,
H ← Q̃−1

3 H Q̃3 =

Q̃−1
3 = Qh(2 : 4;uuu)




× × 0 0 × 0 0 0
× × × × 0 × × ×
0 × × × 0 × × ×
0 × × × 0 × × ×
× 0 0 0 × × 0 0
0 × × × × × × ×
0 × × × 0 × × ×
0 × × × 0 × × ×




,

H ← Q̃−1
4 H Q̃4 =

Q̃−1
4 = Qh(7 : 8;uuu)




× × 0 0 × 0 0 0
× × × × 0 × × 0
0 × × × 0 × × ×
0 × × × 0 0 × ×
× 0 0 0 × × 0 0
0 × × 0 × × × ×
0 × × × 0 × × ×
0 0 × × 0 × × ×




,
H ← Q̃−1

5 H Q̃5 =

Q̃−1
5 = Qg(3 : α;β)




× × 0 0 × 0 0 0
× × × × 0 × 0 0
0 × × × 0 0 × ×
0 × × × 0 0 × ×
× 0 0 0 × × 0 0
0 × 0 0 × × × ×
0 0 × × 0 × × ×
0 0 × × 0 × × ×




,

H ← Q̃−1
6 H Q̃6 =

Q̃−1
6 = Qh(3 : 4;uuu)




× × 0 0 × 0 0 0
× × × 0 0 × 0 0
0 × × × 0 0 × ×
0 0 × × 0 0 × ×
× 0 0 0 × × 0 0
0 × 0 0 × × × 0
0 0 × × 0 × × ×
0 0 × × 0 0 × ×




,
H ← Q̃−1

7 H Q̃7 =

Q̃−1
7 = Qg(4 : α;β)




× × 0 0 × 0 0 0
× × × 0 0 × 0 0
0 × × × 0 0 × 0
0 0 × × 0 0 0 ×
× 0 0 0 × × 0 0
0 × 0 0 × × × 0
0 0 × 0 0 × × ×
0 0 0 × 0 0 × ×




.

Table 5.1: The ΠΠΠ−-sym-tridiagonalization for n = 4

19



In general, after n − 1 step in ΠΠΠ−-sym-tridiagonalization, we have computed 3n − 2
Γ -orthogonal matrices Q̃1, · · · , Q̃3n−2 such that

(
Q̃1 · · · Q̃3n−2

)−1
H

(
Q̃1 · · · Q̃3n−2

)
= H

′

is ΠΠΠ−-sym-tridiagonal with respect to Γ ′.
As in the usual QR algorithm, the shift technique should be incorporated to accelerate

the convergence of the simple ΓQR algorithm – Algorithm 5.1. By Proposition 2.2, we
choose the filtering polynomials p(x) as

{
p(x) = (x− λ)(x+ λ) for real or imaginary λ,

p(x) = (x− λ)(x+ λ)(x− λ̄)(x+ λ̄) for complex λ
(5.2)

to ensure p(H ) ∈ΠΠΠ+
2n. On the other hand, from Theorem 4.3, because of the uniqueness

of theΠΠΠ−-sym-tridiagonalization of H , the ΓQR factorization can be performed without
explicitly computing the ΓQR factorization of p(H ). It only needs to construct a Γ -
orthogonal transformation Q to reduce the first column of p(H ) to a vector parallel to
eee1. We outline the implicit multi-shift ΓQR algorithm in Algorithm 5.3.

Remark 5.1. (i) In Algorithm 5.3, lines 11–13 can be executed in two substeps with
p1(x) and p2(x), respectively, where

p1(x) = (x− λ1)(x+ λ1), p2(x) = (x− λ2)(x+ λ2)

for real or purely imaginary λ1 and λ2, and

p1(x) = (x− λ1)(x− λ̄1), p2(x) = (x+ λ1)(x+ λ̄1)

for complex λ1. Doing so enables that all computations are done in the real arith-
metics.

(ii) There are many other structure-preserving approaches as discussed in Section 1.
Based on the characteristic analysis of these algorithms, we will compare the perfor-
mance of the ΓQR algorithm with that of the PQR algorithm [16] in our numerical
studies. The flop counts of the implicit multi-shift ΓQR algorithm and the PQR
algorithm for aΠΠΠ−-symmetric matrix H with respect to Γ are summarized in Ta-
ble 5.2. In each phase, the ΓQR algorithm consumes less than the PQR algorithm,
especially in each iterative step in Phase ii. This is because the PQR algorithm
cannot take advantage of the symmetric structures in JA, JB of (1.4b) but has to
treat them like an n-by-n nonsymmetric matrix.
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Algorithm 5.3 Implicit Multi-shift ΓQR Algorithm

Input: ΠΠΠ−-symmetric matrix H with respect to Γ = diag(J,−J) with J =
diag(γ1, · · · , γn) ∈ Jn, and tolerance ǫ;

Output: Q ∈ OΓΓΓ
2n with respect to Γ , Γ ′ = Q⊤ΓQ ∈ ΓΓΓ 2n, Λ = Q−1H Q ∈ qD−2n;

1: Γsav ← Γ , Hsav ←H , Q← I2n, Λi ← ∅ (i = 1, 2);
2: while n > 2 do
3: Use Algorithm 5.2 to perform ΠΠΠ−-sym-tridiagonalization: H ← Q̃−1H Q̃, Q ←

QQ̃, Γ ← Γ ′ (Γ ′ is an output of Algorithm 5.2);
4: if |H(n,n−1)| < ǫ(|H(n−1,n−1)|+ |H(n,n)|) then
5: Λ1 ← diag(H(n,n), Λ1), Λ2 ← diag(H(2n,n), Λ2),

I = [1, · · · , n − 1, n + 1, · · · , 2n − 1], H ←H(I,I), Γ ← Γ(I,I), n← n− 1;
6: else
7: if |H(n−1,n−2)| < ǫ(|H(n−2,n−2)|+ |H(n−1,n−1)|) then
8: Λ1 ← diag(H([n−1,n],[n−1,n]), Λ1), Λ2 ← diag(H([2n−1,2n],[n−1,n]), Λ2),

I = [1, · · · , n− 2, n + 1, · · · , 2n − 2], H ←H(I,I), Γ ← Γ(I,I), n← n− 2;
9: else

10: I = [n− 1, n, 2n − 1, 2n], H4 = H(I,I), and compute eig(H4) = {±l1,±l2};
11: hhh = p(H )eee1, where p(x) is as given in (5.2) (see also Remark 5.1(i)).
12: construct the Γ -orthogonal transformation Q1 such that Q−11 hhh = heee1;
13: H ← Q−11 H Q1, Q← QQ1, Γ ← Γ ′;
14: end if
15: end if
16: end while

17: Λ :=

[
Λ1 Λ2

−Λ2 −Λ1

]
∈ qD−2n, Γ

′ ← Γ , Γ ← Γsav, H ←Hsav.

Methods Phase Flop

ΓQR
i ΠΠΠ−-sym-tridiagonalization on H by Algorithm 5.2 8n3

ii one step of implicit double-shift ΓQR iteration (Al-
gorithm 5.3)

120n

PQR
i Hessenberg-triangular reduction by Householder

transformation on JKJM in (1.5)
11n3

ii one step of implicit double-shift PQR iteration [14] 35n2

Table 5.2: The flop counts of the ΓQR algorithm and the PQR algorithm
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6 Numerical Experiments

To test the efficiency of ΓQR algorithm, we borrow K and M in the numerical example of
[2] for the sodium dimer Na2 with order n = 1862. They are symmetric positive definite.
We then recover the Casida’s eigenvalue problem as in (1.1) by A = 1

2(K +M)− 4.88In
and B = 1

2(K −M) with an excitation energy 4.88, and reset K = A−B, M = A+B.
In Table 6.1, we list the CPU time by the ΓQR algorithm and PQR algorithm for the

computation of eigenvalues of H =

[
A B
−B −A

]
and KM , respectively.

All numerical computations are carried out by MATLAB Version 2014b, on a Mac-
Book Pro with a 2.8GHz Intel Core i7 processor and 8GB RAM, with the unit machine
roundoff u = 2−53 = 1.11 × 10−16.

Methods Phase Time (secs.)

ΓQR
i ΠΠΠ−-sym-tridiagonalization of H with Q accumulated 326.05

ii Implicit ΓQR algorithm (Algorithm 5.3) 399.23

PQR1 i Hessenberg-triangular reduction on KM 643.02

ii Implicit PQR algorithm 2078.09

Table 6.1: The CPU time by ΓQR and PQR.

Table 6.1 shows that the PQR algorithm takes about 3.6 times as much the CPU time
as ΓQR algorithm does. The ΓQR algorithm is much cheaper than the PQR algorithm,
as expected from Table 5.2.

To demonstrate accuracies in computed approximations, we calculate the relative
errors of eigenvalues and the normalized residual norms for the jth approximate eigenpair
(µj , zzzj): change e(µj ) to ǫ(µj )

in all figures

ǫ(µj) =
|µj − λj|

|λj |
and r(µj) =

||H zzzj − µjzzzj ||1
(‖H ‖1 + |µj |)||zzzj‖1

,

where λj denotes the jth “exact” eigenvalue of H obtained by MATLAB’s function eig.
The approximate eigenpair (µj, zzzj) is computed as follows: (1) apply the inverse

iteration with the computed eigenvalue µ0
j (by Algorithm 5.3) as the shift to theΠΠΠ−-sym-

tridiagonal matrix (an output of Algorithm 5.2) to compute an approximate eigenpair
(µ̃j , z̃zzj) of the ΠΠΠ−-sym-tridiagonal matrix, and (2) apply the inverse iteration again on

(µ̃j , Q̃z̃zzj) to the original ΠΠΠ−-symmetric H (Q̃ is another output of Algorithm 5.2) to getwhy does ΓQR
compute eigenpairs in
a different way from
PQR?

the corresponding approximate eigenpair (µj , zzzj) of the original H . On the other hand,
the approximate eigenpair of the PQR algorithm is computed by applying the inverse

1jupiter.math.nctu.edu.tw/∼wwlin/code/PQZ.zip
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Figure 6.1: Left: relative errors of eigenvalues; Right: relative residual norm of eigenpairs.

iteration with the computed eigenvalue as the shift directly to the originalΠΠΠ−-symmetric
matrix H .

Therefore, the dominant step for the computation of eigenpairs by the ΓQR algorithm
or the PQR algorithm is the LU factorization of the matrix H −µjI for the inverse iter-
ation. As before, the ΓQR algorithm is slightly more expensive than the PQR algorithm
because an extra linear system of theΠΠΠ−-sym-tridiagonal matrix needs to be solved with
O(n) flop counts.

In Figure 6.1 (left), we plot the relative errors of ǫ(µj) for j = 1, 2, . . . , 1862. Unfor-
tunately, we see that the ΓQR algorithm achieves only half of the accuracy that the PQR
algorithm can. This is because the Hyp Householder and Hyp Givens transformations
are not orthogonal matrices which lead to loss of accuracy during the reduction/iteration
process in the ΓQR algorithm. However, the Hyp Householder and Hyp Givens trans-
formations are Γ -orthogonal, which are strongly structure-preserving for ΠΠΠ−-symmetric
matrix with respect to Γ , and mutually contain so that the entry sizes of the reducedThis reason is too

vague.
ΠΠΠ−-symmetric matrix always achieve a balanced state. This is the reason why the ΓQR
algorithm still keep the half accuracy.

In Figure 6.1 (right), we plot the normalized residual norms r(µj), j = 1, . . . , 100
for the first 100 smallest positive eigenvalues of H . It is clear that if all eigenpairs are
obtained in this way, then the cost will dominant those of Algorithm 5.2 and 5.3. But
computing different eigenpairs by the inverse iteration are highly independent and thus
highly parallelizable.
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7 Conclusions

In this paper, we have developed an efficient implicit multi-shift ΓQR algorithm for solv-
ing the linear response eigenvalue problem (LREP) in (1.1) structurally. This algorithm
relies on two basic Γ -orthogonal transformations, which preserve ΠΠΠ−-symmetric struc-
ture of H with respect to Γ throughout the whole computation. Thus the computed
eigenvalues and eigenvectors are guaranteed to appear pairwise as in {(λ,xxx), (−λ,Πxxx)}
for a real or purely imaginary eigenvalue λ and in {(λ,xxx), (−λ,Πxxx), (λ̄, x̄xx), (−λ̄,Πx̄xx)} for
a true complex eigenvalue λ. Note that, these structures will be lost if the Γ -orthogonality
is not preserved owing to roundoff errors, as in the HR algorithm [7] and the usual QR
algorithm. We accelerate the convergence of the ΓQR algorithm by using the double-
shift technique based on the implicit Γ -orthogonality theorem, the final algorithm can
be found in Algorithm 5.3. To compare with the block structure-preserving periodic QR
algorithm, our algorithm costs much less than the PQR algorithm, and furthermore, the
numerical experiment shows that the ΓQR algorithm can compute eigenpairs overall asThis contradicts Fig-

ure 6.1 (left). I sug-
gest we drop the plots
for relative errors be-
cause we don’t know
if the “exact eigenval-
ues” by eig are truly
exact. PQR matches
well with QR in com-
puted eigenvalues be-
cause both are QR-
based alg.

accurate as the PQR algorithm. In summary, the ΓQR algorithm is an efficient structure-
preserving algorithm for solving the ΠΠΠ−-symmetric eigenvalue problem compared with
the other existing algorithms.
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