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Abstract

In this paper, we apply semi-Lagrangian discontinuous Galerkin (SLDG) methods for linear

hyperbolic equations in one space dimension and analyze the error between the numerical and

exact solutions under the L2-norm. In all the previous works, the theoretical analysis of the

SLDG method would suggest a suboptimal convergence rate due to the error accumulation over

time steps. However, numerical experiments demonstrate an optimal convergence rate and, if the

terminal time is large, a superconvergence rate. In this paper, we will prove optimal convergence

and optimal superconvergence rates. There are three main difficulties: 1. The error analysis on

overlapping meshes. Due to the nature of the semi-Lagrangian time discretization, we need to

introduce the background Eulerian mesh and the shifted mesh. The two meshes are staggered,

and it is not easy to construct local projections and to handle the error accumulation during time

evolution. 2. The superconvergence of time dependent terms under the L2-norm. The error of

the numerical and exact solutions can be divided into two parts, the projection error and the time

dependent superconvergence term. The projection strongly depends on the superconvergence rates.

Therefore, we need to construct a sequence of projections and improve the superconvergence rates

gradually. 3. The stopping criterion of the sequence of projections. The sequence of projections

are basically of the same form. We need to show that the projections exist up to some certain order

since the superconvergence rate cannot be infinity. Hence, we will seek some “hidden” condition for

the existence of the projections. In this paper, we will solve all the three difficulties and construct

several local projections to prove the optimal convergence and superconvergence rates. Numerical

experiments verify the theoretical findings.
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1 Introduction

In this paper, we apply semi-Lagrangian discontinuous Galerkin (SLDG) methods for linear hyper-

bolic equations in one space dimension. SLDG methods with mass conservation were first proposed

for Vlasov applications in [27, 26]. Since then, there have been a strong line of research development

for theoretical understanding [16] and applications [20, 19, 4, 5] of SLDG methods. Usually, the

convergence analysis of semi-Lagrangian methods [17, 26] suggest an error estimate of hp/τ , where

h and p are the mesh size and approximation order for spatial discretization, respectively; and the

denominator with time step size τ indicates the error accumulation over time steps. Yet, for the

SLDG method, such estimate is suboptimal [26]; furthermore, little is known on the theoretical

level on the superconvergence of the method. In this paper, we investigate the optimal convergence

and optimal superconvergence of the numerical approximations toward the exact solutions under

the L2-norm.

Superconvergence of discontinuous Galerkin methods for hyperbolic equations have been studied

intensively. We refer the reader to [1, 2, 3, 11, 8, 6, 7, 9, 10, 12, 29, 13, 14, 24, 25, 23, 31, 28, 18] for

an incomplete list of references on the superconvergence of DG methods for hyperbolic problems. It

is not easy to obtain optimal superconvergence rates for time dependent hyperbolic equations. The

first work in this direction was given in [31], where Fourier analysis was applied. In [31, 21], the

authors used piecewise polynomials of degree k, with k = 1, 2, 3, as the numerical approximations

and rewrote the DG methods into finite difference schemes. By doing so, the size of amplification

matrices would depend on k, and it is extremely difficult to find the eigenvalues and eigenvectors

when k is large. Subsequently, in [29], the authors first proved k + 2-th order superconvergence

of the DG approximation towards a particular projection of the exact solution, and the same

convergence rate at the downwind-biased Radau points. Different from the technique in [31], the

energy analysis was developed in [29], and the proof works for all k. However, the superconvergence

rates at the downwind point as well as the cell average are still not optimal. Recently, correction

function technique was developed in [11] to obtain the 2k + 1-th order superconvergence. The

idea was further developed to obtain the optimal superconvergence rates for DG methods with

upwind-biased numerical fluxes [6], and for problems with singular initial data [18]. The extension

to problems in two space dimensions was also demonstrated in [8]. Moreover, the analysis for

nonlinear equations was discussed in [9]. Some recent development of the superconvergence of DG

methods can be found in the review papers [24, 10]. However, no previous works discussing fully

discretized DG methods without Fourier analysis is available.

In this paper, we consider the SLDG methods for linear hyperbolic equations, and investigate

the optimal convergence and optimal superconvergence of the error between the numerical and

exact solutions under the L2-norm, motivated by our numerical verification in Section 5. Below we

summarize the main ideas of our analysis presented in the paper.

1. Due to the special time discretization, the SLDG scheme contains two sets of meshes: the

background Eulerian mesh and the shifted mesh. After each time step, one has to perform a L2

projection of the evolved numerical approximation from the shifted mesh to the background

Eulerian mesh. In a standard semi-Lagrangian convergence analysis, the projection error

accumulates during time evolution, leading to a suboptimal convergence rate in the theoretical

analysis [17, 26]. However, numerical experiments demonstrate an optimal convergence rate.

Therefore, we have to construct a special projection such that the projection error does not

accumulate during time evolution and the rest high-order term would not affect the optimal
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convergence rate. Indeed, it is not easy to prove the optimal convergence rate on overlapping

meshes. To the best knowledge of the authors, the only work with optimal convergence rate

for DG methods in this direction was given in [22], where the semi-discretized central DG

methods were discussed. No previous works discussed the superconvergence of DG methods on

overlapping meshes. However, for SLDG methods, the semi-discrete version does not exist.

Hence the idea in [22] cannot be applied directly. The basic idea for optimal convergence

contains two steps. We first assume the exact solution u(x) to be a polynomial of degree k+1

and construct a special local projection such that the SLDG scheme maps the projection of

u(x) on the shifted mesh to the projection of u(x) on the background Eulerian mesh, see (3.1).

In the second step, we consider a general smooth solution, and project it to a polynomial of

degree k + 1 with projection error O(hk+2). The accumulation of the projection error is of

(k + 1)-th order accurate, hence it does not affect the optimal convergence rate during time

evolution.

2. The superconvergence of time dependent terms under the L2-norm. It is well known that by

using piecewise polynomials of degree k, the error between the numerical and exact solutions

under the L2-norm is at most (k + 1)-th order accurate. In [30], the authors applied Fourier

analysis and studied the case of piecewise linear functions on uniform meshes. The leading

error term is shown to be of a constant magnitude independent of time t. This motivates the

division of the numerical error into two parts, one being the leading time independent term

and the other being a time dependent superconvergent term, see (4.9). If the final time is large,

the superconvergence term would dominate and we can observe the desired superconvergence

rate under the L2-norm. It is not easy to obtain the optimal superconvergence rate under the

L2-norm. To the best of our knowledge, no previous results on the optimal superconvergence

for fully discretized DG methods are available. In this paper, we will construct a sequence of

projections that can be used for monomials with different degrees. More precisely, we define

projection P` such that if the exact solution u(x) = xk+`, then the SLDG scheme maps the

projection of u(x) on the shifted mesh to the projection of u(x) on the background Eulerian

mesh. However, in the general treatment of DG method, only one projection can be used,

hence the relationship among the projections have to be investigated.

3. The stopping criterion of the sequence of projections. Numerical experiments demonstrate

that the superconvergence rate is 2k + 1, leading to ` ≤ k + 1. Therefore, special stopping

criterion in the construction of the projections has to be studied. In this paper, we will prove

a special equality that serves as the stopping criterion, i.e. the projection exists if and only if

the special equality is valid. Here we would like to point out that the stopping criterion given

in the paper is quite different from those given by the correction function technique, e.g. [11].

In the correction function technique, we should apply Legendre expansion of the numerical

approximations, and demonstrate that the numerical flux due to the correction function does

not vanish after k + 1 steps. However, in SLDG method no numerical fluxes available, hence

we need to explore new stopping criterion.

Finally, we comment that the technique introduced in this paper has special mesh requirements.

To construct local projections on overlapping meshes, we need to assume the spatial mesh to be

uniformly distributed following [22]. Moreover, the SLDG method is a fully discretized DG scheme,

hence the projection depends on the time step τ . To avoid projection change between different time
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steps, we need to assume the time mesh size to be a constant. Though the above assumptions are

essential in the theoretical analysis, numerical experiments demonstrate the same convergence and

superconvergence rates for general random meshes. Moreover, numerical experiments also indicate

that the uniform mesh assumption is reasonable as the error would accumulate randomly during

time evolution if such an assumption is missing. Some advanced techniques have to be developed

to obtain the optimal convergence and superconvergence rates for general random meshes, and this

will be discussed in the future.

The organization of this paper is as follows. In Section 2, we introduce the SLDG method.

We will proceed to prove optimal convergence and superconvergence rates in Sections 3 and 4,

respectively. Numerical experiments will be given in Section 5 to verify the theoretical results. We

will end in Section 6 with concluding remarks.

2 The SLDG method for a linear convection problem

In this paper, we consider the SLDG method for the following 1D linear convection problem with

constant speed on a bounded domain [xa, xb] with periodic boundary conditions{
ut + ux = 0, t > 0,

u(x, 0) = u0(x).
(2.1)

We discretize the computational domain Ω = [xa, xb] into N uniform elements:

xa = x 1
2
< x 3

2
< · · · < xN+ 1

2
= xb, (2.2)

with Ij = [xj− 1
2
, xj+ 1

2
] denoting an element of length h = xb−xa

N for j = 1, 2, · · · , N . Let ∆ = ∪jIj
be the set of mesh, and τ = tn+1 − tn represents the time discretization step, which is assumed to

be constant. In the framework of DG method, we consider the finite dimensional approximation

space

V k
h = {vh : vh|Ij ∈ P k(Ij), j = 1, 2, · · · , N}, (2.3)

where P k(Ij) denotes the set of polynomials of degree at most k over Ij .

For the purpose of carrying out theoretical analysis for a simple linear equation (2.1), we

introduce the SLDG scheme as a shifting and projection procedure [27]. In particular, to update

SLDG solution un+1
h ∈ V k

h from unh ∈ V k
h , we follow the following two steps:

1. Sτ (forward shifting): Sτ (unh(x)) = unh(x− τ).

2. P∆: L2 projection on each computational cell base on the mesh ∆.

Thus, the SLDG scheme for a linear equation (2.1) can be written as

un+1
h = P∆ ◦ Sτ (unh)

.
= G(unh). (2.4)

We denote Ij to be the background Eulerian cell, and Ĩj to be the upstream cell obtained by tracing

Ij along characteristics from time level tn to tn+1.
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3 Optimal convergence

In this section, we prove the optimal convergence rate of the SLDG scheme. We assume uniform

mesh with τ = λh, where λ < 1 is a constant. When τ ≥ h, the situation can always be decomposed

to the whole grid shifting of the DG solution on the uniform mesh, together with a SLDG scheme

with τ < h.

3.1 Norms and notations

In this subsection, we define several norms and introduce the notations for projection that will be

used throughout the paper.

Norms. Denote ‖u‖0,Ij to be the standard L2 norm of u in cell Ij . For any natural number `, we

consider the norm of the Sobolev space H`(Ij), defined by

‖u‖`,Ij =

 ∑
0≤α≤`

∥∥∥∥∂αu∂xα

∥∥∥∥2

0,Ij


1
2

.

Moreover, we define the norms on the whole computational domain as

‖u‖` =

 ∑
1≤j≤N

‖u‖2`,Ij

 1
2

.

For convenience, if we consider the standard L2 norm, then the corresponding subscript will be

omitted. Moreover, we define the standard L∞ norm of u in Ij as ‖u‖∞,Ij , and define the L∞ norm

on the whole computational domain as

‖u‖∞ = max
1≤j≤N

‖u‖∞,Ij .

Notations. We introduce the following notations for projections.

• P∆: L2 projection onto the mesh ∆.

• P ∗∆: the special projection onto the mesh ∆.

• P : the special projection on a reference interval Ij . The idea of introducing the notation P

is to enable a representation of the special projection such that its uniqueness and existence

can be proved, see Lemma 3.1.

3.2 Basic idea

We first demonstrate the basic idea assuming u(x) ∈ P k+1([xa, xb]). The key point is to show that

the leading term of the numerical error (of order hk+1) will not accumulate with each time step

evolution. There are two key components to show the optimal convergence rate.
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1. Find a special projection P ∗∆u. More precisely, we write the error as e = u− uh = η − ξ,
where η = u− P ∗∆u and ξ = uh − P ∗∆u, with P ∗∆u being a special projection on the mesh ∆,

such that

P ∗∆ ◦ Sτu = P∆ ◦ Sτ ◦ (P ∗∆u)
(2.4)
= G ◦ P ∗∆u. (3.1)

The L.H.S of the above equation is to firstly evolve the solution by applying the operator

Sτ , followed by the special projection; while the R.H.S. of the equation is to firstly apply the

special projection P ∗∆, followed by the SLDG operator G. The equality is essential to the no

accumulation of error in time, as will be shown in (3.8). With the assumption of uniform

mesh, (3.1) gives rise to the following identity, ∀v ∈ V k
hˆ

Ij

P ∗∆u(x, tn+1)v(x) dx =

ˆ
Ij

Sτ ◦P ∗∆(u(x, tn))v(x) dx =

ˆ
Ij

Sτ ◦P ∗∆ ◦S−τ (u(x, tn+1))v(x) dx.

For simplicity of notation, let u(x) = u(x, tn+1), then we have ∀v ∈ V k
h

ˆ
Ij

P ∗∆u(x)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

P ∗
∆̃
u(x)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
P ∗

∆̃
u(x)v(x) dx, (3.2)

where P ∗
∆̃

= Sτ ◦P ∗∆◦S−τ is the special projection on the shifted cells Ĩj ’s. Please see Figure 1

for illustration of these intervals. It is easy to check that

P ∗
∆̃

(u(x− τ)) = Sτ ◦ P ∗∆ ◦ S−τu(x− τ) = Sτ ◦ P ∗∆u(x) = (P ∗∆u)(x− τ), (3.3)

where (P ∗∆u)(x − τ) is the right shift of P ∗∆u(x) by τ . In the rest of the paper, we always

use P ∗∆u(x− τ) to represent (P ∗∆u)(x− τ), the shift of the projection, and use P ∗∆(u(x− τ))

to represent the projection of u(x− τ). In general, P ∗∆(u(x− τ)) 6= (P ∗∆u)(x− τ). To prove

the existence and uniqueness of the special projection, we let P be the special projection on

a reference cell Ij , ˆ
Ij

Pu(x)v(x) dx
.
=

ˆ
Ij

P ∗∆u(x)v(x) dx,

and transform P ∗
∆̃

(on mesh ∆̃) into P (on the reference interval Ij) by coordinate transfor-

mation. In particular,

ˆ x
j+1

2

x
j− 1

2
+τ
P ∗

∆̃
u(x)v(x) dx =

ˆ x
j+1

2

x
j− 1

2
+τ
P ∗

∆̃
(u(x− τ) + u(x)− u(x− τ))v(x) dx

=

ˆ x
j+1

2

x
j− 1

2
+τ

[Pu(x− τ) + P (u(x)− u(x− τ))]v(x) dx

=

ˆ x
j+1

2

x
j− 1

2
+τ

[Pu(x− τ) + u(x)− u(x− τ)]v(x) dx (3.4)

where we applied (3.3) in the second step and the last step is due to the fact that u(x) −
u(x− τ) ∈ P k with u(x) ∈ P k+1[xa, xb]. Similarly, we have

ˆ x
j− 1

2
+τ

x
j− 1

2

P ∗
∆̃
u(x)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

[Pu(x− τ + h) + u(x)− u(x− τ + h)]v(x) dx, (3.5)
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where we introduced h on the right-hand side since the integral is in cell Ĩj−1, not in cell Ĩj
and we need to shift one cell. From (3.2), (3.4), (3.5), we have ∀v ∈ V k

h

ˆ
Ij

Pu(x)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

[Pu(x− τ + h) + u(x)− u(x− τ + h)]v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[Pu(x− τ) + u(x)− u(x− τ)]v(x) dx. (3.6)

For example, in a simplified P 1 setting, we consider u(x) = x2 and let Pu = r1x+ s1 on the

reference cell Ij . Then (3.6) gives

ˆ
Ij

(r1x+ s1)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

[(r1(x− τ + h) + s1) + (x2 − (x− τ + h)2)]v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[(r1(x− τ) + s1) + (x2 − (x− τ)2)]v(x) dx, ∀v ∈ P 1(Ij).

One can show that such a special projection exists and is unique with the condition that P

preserves the mass
´
Ij
Pu(x)dx =

´
Ij
u(x)dx. We use Mathematica to find

r1 =
1

3
(h− 2τ), s1 = h2/12. (3.7)

Lemma 3.1 in the next section establishes the existence and uniqueness of such a special

projection in a general setting.

2. The numerical error does not accumulate with P ∗∆u. When (3.1) holds, then after

applying SLDG operator G for n time steps, we have

Gn ◦ P ∗∆u = P ∗∆ ◦ Snτ u = P ∗∆ ◦ Snτu, (3.8)

assuming u(x) ∈ P k+1([xa, xb]). That is to say, applying SLDG operators G n times on the special

projection, is the same as applying the special projection only once on the analytical solution Snτu.

This indicates that the numerical error does not accumulate with SLDG time steps. For a general

result on error accumulation, please see Lemma 3.5.

Ĩj−1 Ĩj

Ij

xj−3/2 + τ xj− 1
2

+ τ xj+ 1
2

+ τ

xj− 1
2

xj+ 1
2

Figure 1: Ij is a cell of the Eulerian background mesh at tn. Ĩj is obtained from Ij by tracing along
characteristics to tn+1. Ij intersects with Ĩj−1 and Ĩj .
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3.3 General proof of optimal convergence rate

We first define the projection to be used in this section. Given a function f(x) ∈ C(Ω), similar to

(3.6), we define the projection Pf in cell Ij such that for any v ∈ V k
h , we have

ˆ x
j− 1

2
+τ

x
j− 1

2

[Pf(x− τ + h) + f(x)− f(x− τ + h)]v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[Pf(x− τ) + f(x)− f(x− τ)]v(x) dx =

ˆ
Ij

Pf(x)v(x) dx, (3.9)

and ˆ
Ij

Pf(x) dx =

ˆ
Ij

f(x) dx, (3.10)

where Pf(x− τ) can be obtained by shifting the projection of f(x) to the right by τ . Likewise for

Pf(x − τ + h). Now, we can state several lemmas demonstrating the properties of the projection

given above.

Lemma 3.1. The projection given above is well-defined i.e. the projection exists and it is unique.

Proof. We first demonstrate that the projection (3.9)-(3.10) is not over-determined. Actually, we

take v = 1 in (3.9), then the left-hand side of (3.9) turns out to be

ˆ x
j− 1

2
+τ

x
j− 1

2

[Pf(x− τ + h) + f(x)− f(x− τ + h)] dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[Pf(x− τ) + f(x)− f(x− τ)] dx

=

ˆ x
j+1

2

x
j+1

2
−τ

[Pf(x)− f(x)] dx+

ˆ x
j+1

2
−τ

x
j− 1

2

[Pf(x)− f(x)] dx+

ˆ
Ij

f(x) dx

=

ˆ
Ij

Pf(x) dx,

where in the first step, we applied substitutions. Therefore, the condition (3.9) with v = 1 is

redundant. Next, we show the uniqueness and existence of the projection. We rewrite (3.9) as

ˆ x
j− 1

2
+τ

x
j− 1

2

Pf(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
Pf(x− τ)v(x) dx−

ˆ
Ij

Pf(x)v(x) dx

=

ˆ x
j− 1

2
+τ

x
j− 1

2

[f(x− τ + h)− f(x)]v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ

[f(x− τ)− f(x)]v(x) dx. (3.11)

It is easy to see that (3.11) and (3.10) form a linear system. The system has a unique solution if

and only if the homogeneous system has zero solution only. Therefore, we set the right-hand sides

of (3.10) and (3.11) to be zero, and prove that Pf is also zero. To do that we assume

ˆ x
j− 1

2
+τ

x
j− 1

2

Pf(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
Pf(x− τ)v(x) dx−

ˆ
Ij

Pf(x)v(x) dx = 0, (3.12)
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and ˆ
Ij

Pf(x) dx = 0. (3.13)

We take v(x) = Pf(x) and apply Cauchy-Schwarz inequality and substitutions to obtain

ˆ
Ij

[Pf(x)]2 dx

=

ˆ x
j− 1

2
+τ

x
j− 1

2

Pf(x− τ + h)Pf(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
Pf(x− τ)Pf(x) dx

≤
ˆ x

j− 1
2

+τ

x
j− 1

2

1

2
[Pf(x− τ + h)]2 +

1

2
[Pf(x)]2 dx+

ˆ x
j+1

2

x
j− 1

2
+τ

1

2
[Pf(x− τ)]2 +

1

2
[Pf(x)]2 dx

=

ˆ x
j+1

2

x
j+1

2
−τ

1

2
[Pf(x)]2 dx+

ˆ x
j+1

2
−τ

x
j− 1

2

1

2
[Pf(x)]2 +

ˆ
Ij

1

2
[Pf(x)]2 dx

=

ˆ
Ij

[Pf(x)]2 dx.

Therefore, the “≤” in step two should be “=”, and hence we have Pf(x) = Pf(x − τ + h),

∀ x ∈ (xj− 1
2
, xj− 1

2
+ τ) and Pf(x) = Pf(x− τ), ∀ x ∈ (xj− 1

2
+ τ, xj+ 1

2
). Then Pf(x) = Pf(x− τ +

h) = Pf(x−τ) in the complex plane. If Pf(x) is not a constant, then it has k roots in the complex

plane, denoted as z1, · · · , zk. Since Pf(x) = Pf(x− τ), then z̃1 = z1 + τ, · · · , z̃k = zk + τ are also

the roots of Pf(x). Hence {z1, · · · , zk} = {z̃1, · · · , z̃k}. This is a contradiction, since
∑

i zi 6=
∑

i z̃i
as τ 6= 0. Now we conclude that Pf(x) must be a constant. Then by (3.13), we have Pf(x) = 0,

and finish the proof.

Moreover, it is easy to check that the projection (3.9)-(3.10) is local, which further yields the

following lemma [15].

Lemma 3.2. The projection (3.9)-(3.10) satisfies

‖f − Pf‖Ij ≤ Chk+1‖f‖k+1,Ij ,

where the constant C is independent of h.

In addition, we also have the following estimate of the special projection.

Lemma 3.3. The projection (3.9)-(3.10) satisfies

‖Pf‖∞,Ij ≤ C‖f‖∞,Ij

for any continuous function f in Ij , and the constant C is independent of h.

Proof. We define a special norm in P k(Ij) as

|||f |||j = max
0≤i≤k


∣∣∣∣∣∣
ˆ x

j− 1
2

+τ

x
j− 1

2

f(x− τ + h)xidx+

ˆ x
j+1

2

x
j− 1

2
+τ
f(x− τ)xidx−

ˆ
Ij

f(x)xidx

∣∣∣∣∣∣ ,
∣∣∣∣∣
ˆ
Ij

f(x)dx

∣∣∣∣∣
 .

(3.14)
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By the proof of Lemma 3.1, it is easy to verify that ||| · |||j is indeed a norm in P k(Ij). By the norm

equivalence in finite dimensional spaces and scaling argument, there exists a positive constant C

independent of h, such that h‖v‖∞,Ij ≤ C|||v|||j for any v ∈ P k(Ij). Hence

‖Pf‖∞,Ij ≤ Ch−1|||Pf |||j = Ch−1|||f |||j ≤ C‖f‖∞,Ij ,

where the second step follows from (3.9).

Next, we demonstrate why the projection (3.9)-(3.10) is useful, and the result is given below.

Lemma 3.4. Suppose the exact solution at time level n is f(x + τ) ∈ P k+1(Ij−1 ∪ Ij), and the

numerical solution is given as unh = P (f(x + τ)) in cell Ij−1 and Ij , then un+1
h = Pf(x) at time

level n+ 1 in cell Ij .

Proof. The proof would be basically the same as that given in Subsection 3.2, hence we skip most

of the details.

Define P̃ = Sτ ◦ P ◦ S−τ , then following the analysis in (3.3), (3.4) and (3.5), we have

ˆ x
j+1

2

x
j− 1

2
+τ
P̃ f(x)v(x) dx =

ˆ x
j+1

2

x
j− 1

2
+τ

[Pf(x− τ) + f(x)− f(x− τ)]v(x) dx,

and
ˆ x

j− 1
2

+τ

x
j− 1

2

P̃ f(x)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

[Pf(x− τ + h) + f(x)− f(x− τ + h)]v(x) dx.

Therefore, by (3.9), we have

ˆ
Ij

Pf(x)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

P̃ f(x)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
P̃ f(x)v(x) dx

=

ˆ x
j− 1

2
+τ

x
j− 1

2

Sτ ◦ P ◦ S−τf(x)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
Sτ ◦ P ◦ S−τf(x)v(x) dx

=

ˆ x
j− 1

2
+τ

x
j− 1

2

Sτ ◦ P (f(x+ τ))v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
Sτ ◦ P (f(x+ τ))v(x) dx,

which further yields

Pf(x) = G(P (f(x+ τ))) = un+1
h (3.15)

by the definition of the SLDG scheme (2.4).

As the general treatment of finite element methods, we split the error between the exact and

numerical solutions as e = u− uh = η − ξ, where η = u− Pu and ξ = uh − Pu. In Lemma 3.4, we

considered some special exact solutions. The following lemma is used for general exact solutions.

Lemma 3.5. Suppose the exact solution at time level n is u(x) ∈ Ck+2(Ω), then

‖ξn+1‖ ≤ ‖ξn‖+O(hk+2).
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Proof. We first consider the error in cell Ij and introduce some notations. We rewrite the exact

solution at time level n (t = tn) as u(x, tn) = uk+1(x) + r(x), where uk+1(x) ∈ P k+1(Ij−1 ∪ Ij)
and r(x) = u(x)− uk+1(x) with r(x) = O(hk+2) in Ij−1 ∪ Ij . It is easy to see, at time level n+ 1

(t = tn+1), the exact solution is u(x, tn+1) = u(x− τ, tn), then

ξn+1(x) = un+1
h − Pu(x, tn+1) = G(unh)− P (uk+1(x− τ))− P (r(x− τ))

= G(unh)− GP (uk+1(x))− P (r(x− τ))

= G(ξn) + GP (r(x))− P (r(x− τ)),

where in line 2, we used Lemma 3.4. Therefore,

‖ξn+1(x)‖Ij ≤ ‖G(ξn)‖Ij + ‖GP (r(x))‖Ij + ‖P (r(x− τ))‖Ij
≤ ‖G(ξn)‖Ij + ‖Pr(x− τ)‖Ij + ‖P (r(x− τ))‖Ij
≤ ‖G(ξn)‖Ij + Ch1/2‖r(x)‖∞,Ij−1∪Ij

≤ ‖G(ξn)‖Ij + Chk+2+1/2,

where in the second step, we used the definition of the SLDG scheme (2.4) and the property of the

L2 projection in the SLDG scheme, the third step follows from Lemma 3.3. The above inequality

further yields

‖ξn+1(x)‖2 =

N∑
j=1

‖ξn+1(x)‖2Ij

≤
N∑
j=1

(
‖G(ξn)‖Ij + Chk+2+1/2

)2

=

N∑
j=1

‖G(ξn)‖2Ij + 2

N∑
j=1

Chk+2+1/2‖G(ξn)‖Ij +

N∑
j=1

(Chk+2+1/2)2

≤
N∑
j=1

‖G(ξn)‖2Ij + 2

√√√√ N∑
j=1

(Chk+2+1/2)2

N∑
j=1

‖G(ξn)‖2Ij +

N∑
j=1

(Chk+2+1/2)2

≤
(
‖G(ξn)‖+ Chk+2

)2
≤
(
‖ξn‖+ Chk+2

)2
,

where in the last step, we applied the property of the L2 projection in the SLDG scheme. Finally,

take square roots on both sides of the above inequality, we finish the proof.

Remark 3.6. In the proof of Lemma 3.5, we want r(x) = O(hk+2) in Ij−1∪Ij . This is a reasonable

assumption, and there are several ways to obtain this condition. For example, one may choose

uk+1(x) as the L2 projection of u(x) over Ij−1 ∪ Ij or as the truncated Taylor expansion of u(x) at

x = xj− 1
2
, etc.

Remark 3.7. The r(x) in the proof given above may different in the estimates of different cells.

For example, if we consider the estimate of ξ in cell Ij , the r(x) given in Ij−1 might be totally

different from the one if we consider the estimate in cell Ij−1.

Finally, we can state the main result in this section.
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Theorem 3.8. Suppose u ∈ Ck+2(Ω) and the numerical approximations uh ∈ V k
h over a uniform

mesh. The initial discretization is given as the special projection (3.9)-(3.10). Then we have

‖(u− uh)(t)‖ ≤ C(1 + t)hk+1, (3.16)

where the positive constant C does not depend on h.

Proof. We apply Lemma 3.5 recurrently to obtain

‖ξn‖ ≤ ‖ξ0‖+ Cnhk+2 ≤ Cthk+1.

Therefore, by Lemma 3.2, we have

‖en‖ = ‖ηn‖+ ‖ξn‖ ≤ C(1 + t)hk+1.

4 Superconvergence

In this section, we proceed to investigate the superconvergence of the SLDG scheme, i.e. the time

dependent part of the L2 error is of order 2k+1. We first present the basic idea and then use a special

example to demonstrate the difficulties. Finally, we prove the (2k + 1)-th order superconvergence.

We will define several new projections as corrections of the special projection given in Section 3.

For simplicity of presentation, we denote the projection P given in (3.9)-(3.10) as P1. Moreover,

we also assume τ = λh with λ < 1 in this section.

4.1 Basic idea

We first demonstrate the basic idea to obtain the optimal superconvergence rate. Following the

same idea in Section 3, we first consider u(x) ∈ P 2k+1 for simplicity. We would like to construct a

special projection P ∗∆ such that (3.1) holds for u(x) ∈ P 2k+1. If such a projection exists, the error

can then be decomposed into two parts: the leading projection error (of order hk+1) together with

the time dependent superconvergence term which may accumulate during time evolution (of order

h2k+1), see Theorem 4.12. To find the special projection, we consider a sequence of monomials

xk+1, xk+2, · · · , x2k+1 and look for special projections denoted as Pi (1 ≤ i ≤ k + 1) act on them,

i.e., Pi is used to project xk+i to V k
h . Subsequently, we will show that Pix

k+j = Pjx
k+j for

i ≥ j. Due to the linearity of the SLDG algorithm, the special projection for u(x) ∈ P 2k+1 is

exactly Pk+1. For a general smooth function u(x), we can write u(x) = u2k+1(x) + r(x), where

u2k+1(x) ∈ P 2k+1(Ij−1 ∪ Ij) and r(x) = O(h2k+2). By the same analysis in Section 3, only the

high-order term r(x) contributes to the error accumulation, leading to the optimal superconvergence

rate.

4.2 A special example

Before we provide the general proof of the optimal superconvergence, we would like to use the

special case of k = 1 to demonstrate the basic idea. In particular, when k = 1, we will show below

that the special projection satisfying (3.1) exists for u = x3, but it does not exists for u = x4, i.e.

P2 exists but P3 does not. Note that the existence of P1 has been shown in Lemma 3.1.
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Theorem 4.1. Consider k = 1, we can find a unique special projection P such that ∀u ∈ P 3

P ◦ Sτ (u) = G ◦ P (u); (4.1)

together with the condition that
´
Ij
Pu(x)dx =

´
Ij
u(x)dx. However, we cannot find such a special

projection such that (4.1) is satisfied ∀u ∈ P 4.

Proof. In our proof, we always refer to Figure 1 for the notation of intervals, and also define

P̃ = Sτ ◦ P ◦ S−τ as the projection on cell Ĩj in this section. Let ui(x) = xk+i, and assume

P (xk+i) = rix+ si on a reference cell Ij , then

P̃ ui(x− τ) = ri(x− τ) + si, x ∈ Ĩj ,

P̃ ui(x− τ + h) = ri(x− τ + h) + si, x ∈ Ĩj−1,

following the analysis in (3.3).

• The case of i = 2 and u(x) = x3. On Ĩj ,

P̃ (x3) = P̃ ((x− τ)3 + 3τ(x− τ)2 + 3τ2(x− τ) + τ3)

= (r2(x− τ) + s2) + 3τ(r1(x− τ) + s1) + 3τ2(x− τ) + τ3.

Similarly, on Ĩj−1,

P̃ (x3) = P̃ ((x− τ + h)3 + 3(τ − h)(x− τ + h)2 + 3(τ − h)2(x− τ + h) + (τ − h)3)

= (r2(x− τ + h) + s2) + 3(τ − h)(r1(x− τ + h) + s1) + 3(τ − h)2(x− τ + h) + (τ − h)3.

Analogy to (3.6), but for u(x) = x3, we have ∀v ∈ V k
h

ˆ
Ij

(r2x+ s2)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

[(r2(x− τ + h) + s2)

+ 3(τ − h)(r1(x− τ + h) + s1) + 3(τ − h)2(x− τ + h) + (τ − h)3]v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[(r2(x− τ) + s2) + 3τ(r1(x− τ) + s1) + 3τ2(x− τ) + τ3]v(x) dx,

We use Mathematica to compute r2 and s2. We apply (3.7) and take v = 1 to find the

above identify is automatically satisfied. Therefore, the condition for v = 1 cannot provide

any information of r2 and s2. Then we take v = x to obtain

r2 =
5

12
h2 − 2

3
hτ +

2

3
τ2. (4.2)

Also from the condition
´
Ij
Pu(x)dx =

´
Ij
u(x)dx, we have

ˆ
Ij

(r2x+ s2)dx =

ˆ
Ij

x3dx ⇒ s2 = 0. (4.3)
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• The case of i = 3 and u(x) = x4. On Ĩj ,

P3(x4) = P ((x− τ)4 + 4τ(x− τ)3 + 6τ2(x− τ)2 + 4τ3(x− τ) + τ4)

= (r3(x− τ) + s3) + 4τ(r2(x− τ) + s2) + 6τ2(r1(x− τ) + s1) + 4τ3(x− τ) + τ4.

Similarly, on Ĩj−1,

P3(x4) = (r3(x− τ + h) + s3) + 4(τ − h)(r2(x− τ + h) + s2)

+6(τ − h)2(r1(x− τ + h) + s1) + 4(τ − h)3(x− τ + h) + (τ − h)4.

Analogy to (3.6), but for u(x) = x4, we have ∀v ∈ V k
hˆ

Ij

(r3x+ s3)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

[(r3(x− τ + h) + s3) + 4(τ − h)(r2(x− τ + h) + s2)

+ 6(τ − h)2(r1(x− τ + h) + s1) + 4(τ − h)3(x− τ + h) + (τ − h)4]v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[(r3(x− τ) + s3) + 4τ(r2(x− τ) + s2) + 6τ2(r1(x− τ) + s1)

+ 4τ3(x− τ) + τ4]v(x) dx,

We also use Mathematica to find the values of r3 and s3. We apply (3.7),(4.2),(4.3) and take

v = 1 in the above equation to obtain

h2 − hτ + τ2 = 0.

Clearly, this is a contradiction.

We can see that P2 exists since the equation for v = 1 is redundant while P3 does not exist since

the equation for v = 1 yields a contradiction. We can use this observation to prove the optimal

superconvergence.

4.3 Optimal superconvergence

In this subsection, we proceed to prove the optimal superconvergence of the SLDG scheme.

We first define the projections to be used in this subsection. In cell Ij , for any f ∈ Ck(Ij), we

define a sequence of projections P`+1f , ` = 0, 2, · · · , k, such that for any v ∈ V k
h , we have

ˆ x
j− 1

2
+τ

x
j− 1

2

[∑̀
i=0

(τ − h)i

i!
P`+1−if

(i)(x− τ + h) + f(x)−
∑̀
i=0

(τ − h)i

i!
f (i)(x− τ + h)

]
v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[∑̀
i=0

τ i

i!
P`+1−if

(i)(x− τ) + f(x)−
∑̀
i=0

τ i

i!
f (i)(x− τ)

]
v(x) dx (4.4)

=

ˆ
Ij

P`+1f(x)v(x) dx.

and ˆ
Ij

P`+1f(x) dx =

ˆ
Ij

f(x) dx, (4.5)
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where f (i)(x) is the ith derivative of f(x). Before we demonstrate the existence and uniqueness of

the above projections, we define P⊥f(x) = f(x) − Pf(x) and would like to present the following

lemma.

Lemma 4.2. If P1, · · · , P` are well-defined, then we have

ˆ x
j+1

2

x
j+1

2
−τ

∑̀
i=1

P⊥`−i+1f
(i)(x)

(τ − h)i

i!
dx+

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=1

P⊥`−i+1f
(i)(x)

τ i

i!
dx = 0. (4.6)

Proof. For any 0 ≤ s ≤ `− 1, the projection Ps+1 satisfies

ˆ x
j− 1

2
+τ

x
j− 1

2

s∑
i=0

(τ − h)i

i!
P⊥s+1−if

(i)(x− τ + h)v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

s∑
i=0

τ i

i!
P⊥s+1−if

(i)(x− τ)v(x) dx =

ˆ
Ij

P⊥s+1f(x)v(x) dx.

Applying substitution, we have

ˆ x
j+1

2

x
j+1

2
−τ

s∑
i=0

(τ − h)i

i!
P⊥s+1−if

(i)(x)v(x+ τ − h) dx

+

ˆ x
j+1

2
−τ

x
j− 1

2

s∑
i=0

τ i

i!
P⊥s+1−if

(i)(x)v(x+ τ) dx =

ˆ
Ij

P⊥s+1f(x)v(x) dx.

We replace f(x) by f (`−s)(x) and take v(x) = x`−s to obtain

ˆ x
j+1

2

x
j+1

2
−τ

s∑
i=0

(τ − h)i

i!
P⊥s+1−if

(`−s+i)(x)(x+ τ − h)`−s dx

+

ˆ x
j+1

2
−τ

x
j− 1

2

s∑
i=0

τ i

i!
P⊥s+1−if

(`−s+i)(x)(x+ τ)`−s dx =

ˆ
Ij

P⊥s+1f
(`−s)(x)x`−s dx.

We replace i by i− `+ s+ i, then the above equation is equivalent to

ˆ x
j+1

2

x
j+1

2
−τ

∑̀
i=`−s

(τ − h)i−`+s

(i− `+ s)!
P⊥`−i+1f

(i)(x)(x+ τ − h)`−s dx

+

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=`−s

τ i−`+s

(i− `+ s)!
P⊥`−i+1f

(i)(x)(x+ τ)`−s =

ˆ
Ij

P⊥s+1f
(`−s)(x)x`−s dx.

Next, we replace s by `− s in the above equation to obtain

ˆ x
j+1

2

x
j+1

2
−τ

∑̀
i=s

(τ − h)i−s

(i− s)!
P⊥`−i+1f

(i)(x)(x+ τ − h)s dx

+

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=s

τ i−s

(i− s)!
P⊥`−i+1f

(i)(x)(x+ τ)s −
ˆ
Ij

P⊥`−s+1f
(s)(x)xs dx = 0, (4.7)
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for 1 ≤ s ≤ `. Denote the left-hand side of the above equation to be As +Bs, where

As =

ˆ x
j+1

2

x
j+1

2
−τ

∑̀
i=s

(τ − h)i−s

(i− s)!
P⊥`−i+1f

(i)(x)(x+ τ − h)s dx−
ˆ x

j+1
2

x
j+1

2
−τ
P⊥`−s+1f

(s)(x)xs dx,

and

Bs =

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=s

τ i−s

(i− s)!
P⊥`−i+1f

(i)(x)(x+ τ)s dx−
ˆ x

j+1
2
−τ

x
j− 1

2

P⊥`−s+1f
(s)(x)xs dx.

Then by (4.7) As +Bs = 0, and

∑̀
s=1

(−1)s+1

s!
Bs

=
∑̀
s=1

(−1)s+1

s!

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=s

τ i−s

(i− s)!
P⊥`−i+1f

(i)(x)(x+ τ)s dx−
ˆ x

j+1
2
−τ

x
j− 1

2

P⊥`−s+1f
(s)(x)xs dx


=

ˆ x
j+1

2
−τ

x
j− 1

2

[∑̀
s=1

∑̀
i=s

(−1)s+1

s!

τ i−s

(i− s)!
P⊥`−i+1f

(i)(x)(x+ τ)s −
∑̀
s=1

(−1)s+1

s!
P⊥`−s+1f

(s)(x)xs

]
dx

=

ˆ x
j+1

2
−τ

x
j− 1

2

[∑̀
i=1

i∑
s=1

(−1)s+1

s!

τ i−s

(i− s)!
P⊥`−i+1f

(i)(x)(x+ τ)s −
∑̀
i=1

(−1)i+1

i!
P⊥`−i+1f

(i)(x)xi

]
dx

=

ˆ x
j+1

2
−τ

x
j− 1

2

[∑̀
i=1

i∑
s=1

(
i
s

)
(x+ τ)s(−τ)i−s

(−1)i+1

i!
P⊥`−i+1f

(i)(x)−
∑̀
i=1

(−1)i+1

i!
P⊥`−i+1f

(i)(x)xi

]
dx

=

ˆ x
j+1

2
−τ

x
j− 1

2

[∑̀
i=1

i∑
s=0

(
i
s

)
(x+ τ)s(−τ)i−s

(−1)i+1

i!
P⊥`−i+1f

(i)(x)−
∑̀
i=1

(−1)i+1

i!
P⊥`−i+1f

(i)(x)xi

]
dx

−
ˆ x

j+1
2
−τ

x
j− 1

2

∑̀
i=1

(−τ)i
(−1)i+1

i!
P⊥`−i+1f

(i)(x) dx

=

ˆ x
j+1

2
−τ

x
j− 1

2

[∑̀
i=1

(−1)i+1

i!
P⊥`−i+1f

(i)(x)xi −
∑̀
i=1

(−1)i+1

i!
P⊥`−i+1f

(i)(x)xi

]
dx

+

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=1

P⊥`−i+1f
(i)(x)

τ i

i!
dx

=

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=1

P⊥`−i+1f
(i)(x)

τ i

i!
dx.

Similarly, we can also prove that

∑̀
s=1

(−1)s+1

s!
As =

ˆ x
j+1

2

x
j+1

2
−τ

∑̀
i=1

P⊥`−i+1f
(i)(x)

(τ − h)i

i!
dx.

Finally, by using the fact that As +Bs = 0, we have (4.6) and complete the proof.
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Now, we can state several lemmas demonstrating the properties of the projections P ′`s.

Lemma 4.3. If P1, · · · , P` are well defined, then so is P`+1, 0 ≤ ` ≤ k.

Proof. Following the same proof in Lemma 3.1, we only need to show that the projection (4.4)-(4.5)

is not over-determined, i.e. the condition with v = 1 in (4.4) is redundant. Actually, we take v = 1

in (4.4) to obtain

ˆ x
j− 1

2
+τ

x
j− 1

2

[∑̀
i=0

(τ − h)i

i!
P`+1−if

(i)(x− τ + h) + f(x)−
∑̀
i=0

(τ − h)i

i!
f (i)(x− τ + h)

]
dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[∑̀
i=0

τ i

i!
P`+1−if

(i)(x− τ) + f(x)−
∑̀
i=0

τ i

i!
f (i)(x− τ)

]
dx

=

ˆ x
j+1

2

x
j+1

2

P`+1f(x) dx.

With suitable substitutions, we can obtain

ˆ x
j+1

2

x
j+1

2
−τ

∑̀
i=0

(τ − h)i

i!
[P`+1−if

(i)(x)− f (i)(x)] dx

+

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=0

τ i

i!
[P`+1−if

(i)(x)− f (i)(x)] dx =

ˆ x
j+1

2

x
j+1

2

P`+1f(x)− f(x) dx,

which further yields

ˆ x
j+1

2

x
j+1

2
−τ

∑̀
i=1

(τ − h)i

i!
[P`+1−if

(i)(x)− f (i)(x)] dx+

ˆ x
j+1

2
−τ

x
j− 1

2

∑̀
i=1

τ i

i!
[P`+1−if

(i)(x)− f (i)(x)] dx = 0.

The above identity has been given in (4.6). Therefore, P`+1 exists and it is unique.

Remark 4.4. In the proof of (4.6), we took v(x) = x` (i.e. s = 0). Therefore, we need to assume

` ≤ k, and this is the reason why we cannot obtain (2k+2)th order superconvergence rate.

The above lemma has a straightforward corollary, hence we skip the proof.

Corollary 4.5. The projections P1, · · · , Pk+1 are well defined, i.e. each projection exists and is

unique.

Moreover, it is easy to check that the projection (4.4)-(4.5) is local. Therefore, we have the

following lemma [15].

Lemma 4.6. The projection (4.4)-(4.5) satisfies

‖f − P`+1f‖Ij ≤ Chk+1‖f‖k+1,Ij

for any 0 ≤ ` ≤ k, and the constant C is independent of h.

In addition, we also have the following estimate of the special projections P`+1, 0 ≤ ` ≤ k.
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Lemma 4.7. The projection (4.4)-(4.5) satisfies

‖P`+1f‖∞,Ij ≤ C‖f‖∞,Ij +
∑̀
i=1

Chk+i+1‖f (i+k+1)(x)‖∞,Ij

for any function f ∈ C`+k+1(Ij) and 0 ≤ ` ≤ k, and the constant C is independent of h.

Proof. We can rewrite (4.4) asˆ x
j− 1

2
+τ

x
j− 1

2

P`+1f(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
P`+1f(x− τ)v(x) dx−

ˆ x
j+1

2

x
j− 1

2

P`+1f(x)v(x) dx

=

ˆ x
j− 1

2
+τ

x
j− 1

2

f(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
f(x− τ)v(x) dx−

ˆ x
j+1

2

x
j− 1

2

f(x)v(x) dx

+

ˆ x
j− 1

2
+τ

x
j− 1

2

∑̀
i=1

(τ − h)i

i!
P⊥`+1−if

(i)(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ

∑̀
i=1

τ i

i!
P⊥`+1−if

(i)(x− τ)v(x) dx.

Therefore, define

I1
j = [xj− 1

2
, xj− 1

2
+ τ ], I2

j = [xj− 1
2

+ τ, xj+ 1
2
], Ĩ1

j = [xj− 1
2
, xj+ 1

2
− τ ], Ĩ2

j = [xj+ 1
2
− τ, xj+ 1

2
],

we have∣∣∣∣∣∣
ˆ x

j− 1
2

+τ

x
j− 1

2

P`+1f(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
P`+1f(x− τ)v(x) dx−

ˆ x
j+1

2

x
j− 1

2

P`+1f(x)v(x) dx

∣∣∣∣∣∣
−

∣∣∣∣∣∣
ˆ x

j− 1
2

+τ

x
j− 1

2

f(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
f(x− τ)v(x) dx−

ˆ x
j+1

2

x
j− 1

2

f(x)v(x) dx

∣∣∣∣∣∣
≤
∑̀
i=1

Chi
(
‖P⊥`+1−if

(i)(x− τ + h)‖I1j ‖v(x)‖I1j + ‖P⊥`+1−if
(i)(x− τ)‖I2j ‖v(x)‖I2j

)
=
∑̀
i=1

Chi
(
‖P⊥`+1−if

(i)(x)‖Ĩ2j ‖v(x)‖I1j + ‖P⊥`+1−if
(i)(x)‖Ĩ1j ‖v(x)‖I2j

)
≤
∑̀
i=1

Chi‖P⊥`+1−if
(i)(x)‖Ij‖v(x)‖Ij

≤
∑̀
i=1

Chk+i+1‖f (i+k+1)(x)‖Ij‖v(x)‖Ij

≤
∑̀
i=1

Chk+i+2‖f (i+k+1)(x)‖∞,Ij ,

where in the second inequality from the bottom, we applied Lemma 4.6. We also use the definition

of the special norm given in (3.14), following the same analysis in Lemma 3.3, we have

‖P`+1f‖∞,Ij ≤ Ch−1|||P`+1f |||j ≤ Ch−1|||f |||j +
∑̀
i=1

Chk+i+1‖f (i+k+1)(x)‖∞,Ij

≤ C‖f‖∞,Ij +
∑̀
i=1

Chk+i+1‖f (i+k+1)(x)‖∞,Ij .
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The next lemma shows the relationship among P`
′s, 1 ≤ ` ≤ k + 1.

Lemma 4.8. If f(x) ∈ P k+s(Ij), then Psf(x) = P`+1f(x), for all 1 ≤ s ≤ k and s ≤ ` ≤ k.

Proof. We use mathematical induction. Suppose f(x) ∈ P k+1(Ij), then f (i)(x) ∈ P k+1−i(Ij),

leading to P`+1−if
(i)(x) = f (i)(x) for all i = 1, · · · , `. Therefore, (4.4) turns out to be

ˆ x
j− 1

2
+τ

x
j− 1

2

[P`+1f(x− τ + h) + f(x)− f(x− τ + h)]v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[P`+1f(x− τ) + f(x)− f(x− τ)]v(x) dx =

ˆ
Ij

P`+1f(x)v(x) dx.

which is exactly (3.9). By Lemma 3.1, P1f(x) = P`+1f(x) for all 1 ≤ ` ≤ k. Now we make the

following assumption:

(A) If f(x) ∈ P k+m(Ij) then Pmf(x) = P`+1f(x) for all 1 ≤ m ≤ s− 1 and m ≤ ` ≤ k.

We want to show Psf(x) = P`+1f(x) for all s ≤ ` ≤ k and f(x) ∈ P k+s(Ij).

Assume f(x) ∈ P k+s(Ij), then f (i)(x) ∈ P k+s−i(Ij), leading to P`+1−if
(i)(x) = f (i)(x) for all

i = s, · · · , `. Therefore, (4.4) turns out to be

ˆ x
j− 1

2
+τ

x
j− 1

2

P`+1f(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
P`+1f(x− τ)v(x) dx

+

ˆ x
j− 1

2
+τ

x
j− 1

2

[
s−1∑
i=1

(τ − h)i

i!
P`+1−if

(i)(x− τ + h) + f(x)−
s−1∑
i=0

(τ − h)i

i!
f (i)(x− τ + h)

]
v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[
s−1∑
i=1

τ i

i!
P`+1−if

(i)(x− τ) + f(x)−
s−1∑
i=0

τ i

i!
f (i)(x− τ)

]
v(x) dx

=

ˆ
Ij

P`+1f(x)v(x) dx.

By using assumption (A) with m = s− i and the fact that `+ 1− i > s− i, we have

ˆ x
j− 1

2
+τ

x
j− 1

2

P`+1f(x− τ + h)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
P`+1f(x− τ)v(x) dx

+

ˆ x
j− 1

2
+τ

x
j− 1

2

[
s−1∑
i=1

(τ − h)i

i!
Ps−if

(i)(x− τ + h) + f(x)−
s−1∑
i=0

(τ − h)i

i!
f (i)(x− τ + h)

]
v(x) dx

+

ˆ x
j+1

2

x
j− 1

2
+τ

[
s−1∑
i=1

τ i

i!
Ps−if

(i)(x− τ) + f(x)−
s−1∑
i=0

τ i

i!
f (i)(x− τ)

]
v(x) dx

=

ˆ
Ij

P`+1f(x)v(x) dx.

We can see that P`+1 and Ps satisfy the same condition given in (4.4). By Corollary 4.5, we have

Psf(x) = P`+1f(x) and finish the proof.
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Following the analysis in Section 3, we demonstrate why the projection Pk+1 is useful, and the

result is given below.

Lemma 4.9. Suppose the exact solution at time level n is f(x + τ) ∈ P 2k+1(Ij−1 ∪ Ij), and the

numerical solution is given as unh = Pk+1(f(x+ τ)), then un+1
h = Pk+1f(x).

Proof. We define P̃k+1 = Sτ ◦ Pk+1 ◦ S−τ . Notice the fact that f(x) −
∑k

i=0
τ i

i! f
(i)(x − τ) ∈ V k

h ,

then

ˆ x
j+1

2

x
j− 1

2
+τ
P̃k+1f(x)v(x) dx =

ˆ x
j+1

2

x
j− 1

2
+τ

[
k∑
i=0

τ i

i!
Pk+1f

(i)(x− τ) + f(x)−
k∑
i=0

τ i

i!
f (i)(x− τ)

]
v(x) dx

=

ˆ x
j+1

2

x
j− 1

2
+τ

[
k∑
i=0

τ i

i!
Pk+1−if

(i)(x− τ) + f(x)−
k∑
i=0

τ i

i!
f (i)(x− τ)

]
v(x) dx,

where we applied Lemma 4.8 in the second step. Similarly,

ˆ x
j− 1

2
+τ

x
j− 1

2

P̃k+1f(x)v(x) dx

=

ˆ x
j− 1

2
+τ

x
j− 1

2

[
k∑
i=0

(τ − h)i

i!
Pk+1−if

(i)(x− τ + h) + f(x)−
k∑
i=0

(τ − h)i

i!
f (i)(x− τ + h)

]
v(x) dx.

By (4.4) with ` = k, we have

ˆ
Ij

Pk+1f(x)v(x) dx =

ˆ x
j− 1

2
+τ

x
j− 1

2

P̃k+1f(x)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
P̃k+1f(x)v(x) dx

=

ˆ x
j− 1

2
+τ

x
j− 1

2

Sτ ◦ Pk+1 ◦ S−τf(x)v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
Sτ ◦ Pk+1 ◦ S−τf(x)v(x) dx

=

ˆ x
j− 1

2
+τ

x
j− 1

2

Sτ ◦ Pk+1(f(x+ τ))v(x) dx+

ˆ x
j+1

2

x
j− 1

2
+τ
Sτ ◦ Pk+1(f(x+ τ))v(x) dx,

which further yields

Pk+1f(x) = G(Pk+1(f(x+ τ))) = un+1
h

by the definition of the SLDG scheme (2.4).

In this section, we redefine η and ξ as η = u − Pk+1u and ξ = uh − Pk+1u, then we still have

e = u−uh = η− ξ. In the above lemma, we considered some special exact solutions. The following

lemma is used for general exact solutions.

Lemma 4.10. Suppose the exact solution at time level n is u(x, tn) ∈ C2k+2(Ω), then

‖ξn+1‖ ≤ ‖ξn‖+O(h2k+2).

Proof. We first introduce some notations. We rewrite the exact solution u(x, tn) = u2k+1 + r(x),

u2k+1 ∈ P k+1(Ij−1 ∪ Ij) and r(x) = u(x)− u2k+1(x). Then at time level n+ 1, the exact solution

is u(x, tn+1) = u2k+1(x− τ) + r(x− τ). Moreover, we assume r(x) satisfies

‖r(s)(x)‖∞,Ij−1∪Ij ≤ Ch2k+2−s, s = 1, 2, · · · , 2k + 1. (4.8)
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We consider the error in cell Ij ,

ξn+1(x) = un+1
h − Pu(x, tn+1) = G(unh)− Pk+1(u2k+1(x− τ))− Pk+1(r(x− τ))

= G(unh)− GPk+1(u2k+1(x))− Pk+1(r(x− τ))

= G(ξn) + G(Pk+1r(x))− Pk+1(r(x− τ)).

where in line 2, we used Lemma 4.9. Therefore,

‖ξn+1(x)‖Ij ≤ ‖G(ξn)‖Ij + ‖G(Pk+1r(x))‖Ij + ‖Pk+1(r(x− τ))‖Ij
≤ ‖G(ξn)‖Ij + ‖Pk+1r(x− τ)‖Ij + ‖Pk+1(r(x− τ))‖Ij
≤ ‖G(ξn)‖Ij + Ch1/2‖Pk+1r(x)‖∞,Ij−1∪Ij + Ch1/2‖Pk+1(r(x− τ))‖∞,Ij

≤ ‖G(ξn)‖Ij + Ch1/2

(
‖r(x)‖∞,Ij−1∪Ij +

k∑
i=1

hk+i+1‖r(k+i+1)(x)‖∞,Ij−1∪Ij

)

≤ ‖G(ξn)‖Ij + Ch1/2

(
h2k+2 + h2k+2 +

k∑
i=1

hk+i+1hk+1−i

)
= ‖G(ξn)‖Ij + Ch2k+2+1/2,

where in the second line, we applied the property of the L2 projection in the SLDG scheme, the

fourth line requires Lemma 4.7 and the fifth line follows from (4.8). The above inequality further

yields

‖ξn+1(x)‖2 =
N∑
j=1

‖ξn+1(x)‖2Ij

≤
N∑
j=1

(
‖G(ξn)‖Ij + Ch2k+2+1/2

)2

≤
N∑
j=1

‖G(ξn)‖2Ij + 2
N∑
j=1

‖G(ξn)‖IjCh2k+2+1/2 +
N∑
j=1

(Ch2k+2+1/2)2

≤
N∑
j=1

‖G(ξn)‖2Ij + 2

√√√√ N∑
j=1

‖G(ξn)‖2Ij
N∑
j=1

(Ch2k+2+1/2)2 +

N∑
j=1

(Ch2k+2+1/2)2

= ‖G(ξn)‖2 + 2
√
‖G(ξn)‖2(Ch2k+2)2 + (Ch2k+2)2

≤
(
‖G(ξn)‖+ Ch2k+2

)2
.

Take square roots on both sizes of the above equation, we have

‖ξn+1(x)‖ ≤ ‖G(ξn)‖+ Ch2k+2 ≤ ‖ξn‖+ Ch2k+2,

where in the last step, we applied the property of the L2 projection in the SLDG scheme.

Remark 4.11. Similar to Remark 3.6, the assumption (4.8) is reasonable, we can simply choose

u2k+1 as the L2 projection of u(x, tn) in Ij−1∪Ij or as the truncated Taylor expansion of u(x, tn) at

x = xj− 1
2
, etc. Moreover, similarly to Remark 3.7, the r(x) in the proof given above may different

in the estimates of different cells.
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Finally, we can state the main result in this section.

Theorem 4.12. Suppose u ∈ C2k+2(Ω) and the numerical approximations uh ∈ V k
h over a uniform

mesh. The initial discretization is given as the special projection Pk+1. Then we have

‖(u− uh)(t)‖ ≤ Chk+1 + Cth2k+1, (4.9)

where the positive constant C does not depend on h or t.

Proof. We apply Lemma 4.10 recurrently to obtain

‖ξn‖ ≤ ‖ξ0‖+ Cnh2k+2 ≤ Cth2k+1.

Therefore,

‖en‖ = ‖ηn‖+ ‖ξn‖ ≤ Chk+1 + Cth2k+1,

where the estimate of η has been given in Lemma 4.6.

5 Numerical experiments

In this section, we use numerical experiments to verify our theoretical findings. We solve (2.1) with

u0(x) = sin(x). We first choose uniform meshes in both space and time, and take N = 20, 30, 40,

k = 1, 2 in all the tests. The results are given in Figure 2. The following observations are made:

• The projection error dominates for a long time initially, i.e. error does not grow in time until

much later.

• When the error starts to grow with time, the slope of such growth is measured to be of order

h2k+1. This is verified by the table on the right of Figure 2. We can observe 2k + 1-th order

superconvergence rate if the final time is large, i.e. when the time dependent error in (4.9)

starts to dominate.

Next, we consider nonuniform meshes and study the following three cases: (1) Random mesh in

space but uniform mesh in time; (2) Random mesh in time but uniform mesh in space; (3) Random

mesh in both space and time. In all the numerical experiments, the nonuniform meshes in space

are obtained by randomly and independently perturbing each node in a uniform mesh by up to

10%. The nonuniform meshes in time are obtained by randomly and independently perturbing the

CFL number 0.4 by up to 10%. The L∞-norm of the errors were given in Figures 3-5, respectively.

We can also observe 2k + 1th order superconvergence rate if the final time is large.

However, from Figures 3-5, we can observe severe oscillations of the error during time evolution

while the curves for uniform mesh are quite smooth. Therefore, the uniform mesh assumption is

reasonable in the theoretical analysis. To obtain the proof for nonuniform meshes, some advanced

techniques that can be used to handle the oscillations should be introduced. This work will be

discussed in the future.

6 Conclusions

In this paper, we proved the optimal convergence and optimal superconvergence rates for the SLDG

method for linear hyperbolic equations in one space dimension. Numerical experiments verify our

theoretical findings. The proof for nonuniform meshes will be discussed in the future.
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N Slope Order

P 1

20 1.53× 10−4

30 4.73× 10−5 2.90
40 2.01× 10−5 2.97

P 2

20 6.59× 10−8

30 8.62× 10−9 5.02
40 1.98× 10−9 5.11

Figure 2: Linear advection ut + ux = 0 with initial condition u(x, 0) = sin(x). Slopes of L∞ error
vs. time for long time simulations. Uniform meshes have N = 20, 30, 40 elements.

N Slope Order

P 1

20 1.88× 10−4

30 5.97× 10−5 2.83
40 2.45× 10−5 3.09

P 2

20 9.76× 10−8

30 1.30× 10−8 4.97
40 3.21× 10−9 4.86

Figure 3: Linear advection ut + ux = 0 with initial condition u(x, 0) = sin(x). Slopes of L∞ error
vs. time for long time simulations. Random nonuniform meshes have N = 20, 30, 40 elements. For
random nonuniform meshes, the length of an element is randomly perturbed by 0.1∆x.
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