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a b s t r a c t

We derive the lower bound of the penalty parameter in the C0 IPDG for the bi-harmonic
equation. Based on the bound,wepropose a pre-processing algorithm.Numerical examples
are shown to support the theory. In addition, we found that an optimal penalty does exist.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We study the problem of optimal penalty parameter for the C0 IPDG (interior penalty discontinuous Galerkin) which has
been proposed for the bi-harmonic equation (see [1] and the references therein). It has the practical value in the sense that
the penalty parameter has an impact on the error and the linear system.

The choice of the penalty parameter for interior penaltymethods has been considered bymany researchers. The idea is to
sharpen the inequalities in the proof of the ellipticity of the operator and the major tool is the trace inverse inequalities [2].
Shahbazi [3] considered the symmetric IPDG for the Poisson equation with Dirichlet boundary conditions and derived an
explicit expression for the penalty parameter. It is shown that the penalty parameter depends on the polynomial basis and
the quality of the mesh. Epshteyn and Riviére [4] performed a detailed analysis on the symmetric IPDG and provide ample
numerical examples. In particular, they showed that the parameter depends on the smallest cot θ over all angles of the
triangle in 2D or over all dihedral angles in the tetrahedron in 3D. For further study on the penalty problem, we refer the
readers to [5–11].

In this paper, we consider the estimation of the penalty parameter for the C0 IPDG for the bi-harmonic equation following
the spirit of [3,4]. The C0 IPDG has a simpler formulation since there is no need to penalize the value of the function across
the elements.We found that the error increases as the penalty parameter passes certain optimal value if a uniform penalty is
used. To further optimize the numericalmethod,we propose a pre-processing algorithm to compute the penalty parameters,
in particular, when themesh is unstructured. This is also useful for the h−p adaptive IPDG. The rest of the paper is arranged
as follows. In Section 2, we introduce the C0 IPDG for the bi-harmonic equation [12,1]. Analysis of the optimal parameter
is contained in Section 3. We present the algorithm for the pre-processing C0 IPDG in Section 4. In Section 5, we present
numerical examples to support our analysis.
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2. C0 IPDG

Let Ω denote a bounded polygonal Lipschitz domain in R2 with boundary ∂Ω , and let n denote the unit outward normal.
The appropriate solution space of the bi-harmonic equation is

H2
0 (Ω) = {u ∈ H2(Ω) | u = ∂u/∂n = 0 on ∂Ω}.

We also need the dual space (H2
0 (Ω))′ = H−2(Ω) as well as spaces H−2+α(Ω) for α > 0. Given a function f ∈ H−2(Ω), the

bi-harmonic equation is to seek a function u ∈ H2
0 (Ω) such that

∆2u = f in Ω, (2.1a)

u =
∂u
∂n

= 0 on ∂Ω. (2.1b)

Following [1,12], we define

(u, v) =


Ω

uv dx and a(u, v) = (D2u : D2v),

where D2u : D2v =
2

i,j=1 uxixjvxixj . A weak formulation for (2.1) is: For f ∈ H−2(Ω), find u ∈ H2
0 (Ω) such that

a(u, v) = (f , v) ∀v ∈ H2
0 (Ω). (2.2)

Nowwe give a brief introduction to the C0 IPDG for the bi-harmonic equation and refer the readers to [13,12,1] for more
details. Let Th be a shape-regular triangulation of Ω with mesh size h and Vh ⊂ H1

0 (Ω) be the Pk Lagrange finite element
space (k ≥ 2) associated with Th. The space Vh is a subspace of C0(Ω̄) ∩ H2(Ω, Th) where

H2(Ω, Th) = {v ∈ L2(Ω) : vT = v|T ∈ H2(T ) ∀T ∈ Th}.

Let Eh be the set of edges in Th, define EB
h = Eh ∩ ∂Ω and E0

h = Eh \ EB
h . For e ∈ E0

h , the common edge of two adjacent
triangles T±

∈ Th, and v ∈ H2(Ω, Th), we define the jump in the flux to be

[[∂v/∂n]] =
∂vT+

∂ne


e
−

∂vT−

∂ne


e
.

For simplicity, we use v± to denote vT± . Moreover, we let

∂2v

∂n2
e

= ne · (∇2v)ne,

and define the average normal–normal component to be
∂2v

∂n2
e


=

1
2


∂2v+

∂n2
e

+
∂2v−

∂n2
e


,

where ne is the unit normal pointing from T− to T+. When e ∈ EB
h , ne is the unit outward normal and we define

[[∂v/∂n]] = −
∂v

∂ne
and


∂2v

∂n2
e


=

∂2vT

∂n2
e

,

where T is the triangle with edge e.
Following [12], the discrete form for the bi-harmonic equation can be written as follows: For f ∈ H−2+α(Ω), for some

α > 1/2, find uh ∈ Vh such that

ah(uh, v) = (f , v) ∀v ∈ Vh, (2.3)

where

ah(w, v) = Ah(w, v) + bh(w, v) + ch(w, v), (2.4)

and

Ah(w, v) =


T∈Th


T
D2w : D2v dx,

bh(w, v) =


e∈Eh


e


∂2w

∂n2
e


∂v

∂ne


+


∂2v

∂n2
e


∂w

∂ne


ds,

ch(w, v) =


e∈Eh

σe

|e|


e


∂w

∂ne

 
∂v

∂ne


ds.

Here σe > 0 is the penalty parameter, which may take different values on different edges.
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3. Optimizing the penalty parameter

In this section, we proceed to find an optimal parameter σe, whose estimation relies on the following trace inverse
inequalities [2]:

e
v2ds ≤

(k + 1)(k + d)
d

A(e)
V(T )


T
v2dx,

where A, V denote the length of e and the area of T , respectively.
We define the mesh dependent norm ∥ · ∥h on Vh as follows

∥v∥
2
h =


T∈Th

|v|
2
H2(T )

+


e∈Eh

σe

|e|
∥[[∂v/∂n]]∥2

L2(e). (3.5)

The penalty needs to be large enough to guarantee the ellipticity of

ah(v, v) =


T∈Th


T
D2v : D2v dx + 2


e∈Eh


e


∂2v

∂n2
e


∂v

∂ne


ds +


e∈Eh

σe

|e|


e

 ∂v

∂ne

2 ds. (3.6)

Let us consider the second term on the right-hand side. Note that

∂2v

∂n2
e

= ne ·


∂2v

∂x2
∂2v

∂x∂y
∂2v

∂x∂y
∂2v

∂y2

 ne = n2
1
∂2v

∂x2
+ 2n1n2

∂2v

∂x∂y
+ n2

2
∂2v

∂y2
, ne = (n1, n2)

T

and thus by Cauchy–Schwarz inequality
∂2v

∂n2
e

2

≤


∂2v

∂x2

2

+ 2


∂2v

∂x∂y

2

+


∂2v

∂y2

2

.

As a consequence, we have for e ∈ E0
h∂2v

∂n2
e


L2(e)

≤
1
2

D2v+

L2(e) +

1
2

D2v−

L2(e) , (3.7)

and for e ∈ EB
h∂2v

∂n2
e


L2(e)

≤
D2v


L2(e) , (3.8)

whereD2w
2
L2(e) =


e


∂2w

∂x2

2

+ 2


∂2w

∂x∂y

2

+


∂2w

∂y2

2

dxdy,

with w = v, v+ and v−. To estimate the second normal derivative, we employ the following result (Eqs. (36) and (37)
of [4]): For any v ∈ PkT (T ), and e is an edge of T ,

∥v∥L2(e) ≤


2(kT + 1)(kT + 2) cot θT

|e|
∥v∥L2(T ), (3.9)

where θT and kT are the smallest angle and the degree of polynomial approximation in the triangle T , respectively. With the
above result, we have for e ∈ E0

h∂2v

∂n2
e


L2(e)

≤


CT+

2|e|
|v|

2
H2(T+)

+


CT−

2|e|
|v|

2
H2(T−)

,

and e ∈ EB
h∂2v

∂n2
e


L2(e)

≤


2CT

|e|
|v|

2
H2(T )

,
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where

CE = (kE − 1)kE cot θE, with E = T , T+ and T−.

Here we have to use the fact that ∂2v
∂n2e

is a polynomial of degree kE −2 to obtain CE . Therefore, by Cauchy–Schwarz inequality


e∈Eh


e


∂2v

∂n2
e


∂v

∂ne


ds

≤


e∈Eh

∂2v

∂n2
e


L2(e)

 ∂v

∂ne


L2(e)

≤


e∈EB

h


2CT

|e|
|v|

2
H2(T )

 ∂v

∂ne


L2(e)

+


e∈E0

h


CT+

2|e|
|v|

2
H2(T+)

+


CT−

2|e|
|v|

2
H2(T−)

 ∂v

∂ne


L2(e)

≤


3

T∈Th

ST |v|
2
H2(T )

 1
2


e∈EB

h

2CT

Se

 ∂v
∂ne

2
L2(e)

|e|
+


e∈E0

h

 ∂v
∂ne

2
L2(e)

2|e|


CT+

Se
+

CT−

Se


1
2

,

where Se are positive constants which depend on edge e, and

ST =

3
i=1

Sei
3

with ei being the edges of the triangle T . By Young’s inequality, we have that

2

e∈Eh


e


∂2v

∂n2
e


∂v

∂ne


ds ≤


T∈Th

ST |v|
2
H2(T )

+


e∈EB

h

6(kT − 1)kT cot θT
Se

 ∂v
∂ne

2
L2(e)

|e|

+


e∈E0

h

3
 ∂v

∂ne

2
L2(e)

2|e|


(kT

+

− 1)kT
+

cot θT+

Se
+

(kT
−

− 1)kT
−

cot θT−

Se


.

Therefore, we obtain that

ah(v, v) ≥


T∈Th

(1 − ST )|v|
2
H2(T )

+


e∈Eh

σe − Ce

|e|

 ∂v

∂ne

2
L2(e)

where

Ce =


3(kT

+

− 1)kT
+

cot θT+

2Se
+

3(kT
−

− 1)kT
−

cot θT−

2Se
, e ∈ E0

h ,

6(kT − 1)kT cot θT
Se

, e ∈ EB
h .

Thus to guarantee the coercivity of ah, ST < 1 is required. Then the penalty needs to satisfy

σe > Ce. (3.10)

Wenote that the above analysis can be directly applied to the three dimensional case using the three-dimensional inverse
trace inequality. For simplicity, we only consider the two dimensional case in this short paper.

4. A pre-processing algorithm

In this section, we illustrate a pre-processing algorithm to compute σe. For simplicity, we choose Se to be a constant
independent on the edge e. Therefore, we have Se < 1. Since the penalty parameter σe depends on the edge, we can first
sweep the mesh and compute σe by using (3.10) for each edge. The algorithm is given below.

1. For each triangle T ∈ Th, find out the smallest angle and the degree of polynomial approximation, denoted as θT and kT ,
respectively.
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Fig. 1. The L2 error vs. the penalty parameter for an unstructured mesh with k = 2.

Table 1
The minimum and maximum of the penalty parameters. The fourth column is the error using the pre-
processing step. The fifth column is the error using a uniform penalty, i.e., the maximum value of penalty
parameters.

k min σe max σe err (LP) err (UP)

2 8.8479 1.800e+3 5.2558e−04 1.3379e−3
3 26.5491 5.400e+3 2.1591e−05 9.2242e−4

2. For each edge e ∈ EB
h , denote T as the triangle with edge e. Take

σe > 6(kT − 1)kT cot θT .

3. For each edge e ∈ E0
h , assume it is shared by two triangles T+ and T−. Take

σe >
3
2


(kT

+

− 1)kT
+

cot θT+ + (kT
−

− 1)kT
−

cot θT−


.

5. Numerical examples

We consider a simple domain in 2D. Let Ω = [0, 1] × [0, 1] and u(x, y) = sin2(πx) sin2(πy). It is easy to check that u
solves the bi-harmonic equation with

f (x, y) = 8π4 cos2(πx) cos2(πy) − 16π4 cos2(πx) sin2(πy) − 16π4 sin2(πx) cos2(πy) + 24π4 sin2(πx) sin2(πy).

We consider three unstructured meshes and a uniform mesh for the unit square. We generate the unstructured meshes
as follows. We choose a point (0.01, 0.5) in the unit square to obtain the initial mesh with 4 triangles. One of the triangle
is given by (0, 0), (0.01, 0.5), (0, 1). Then we uniformly refine the mesh into 512 triangles. We generate other two meshes
by choosing the points at (0.02, 0.5) and (0.05, 0.5), respectively. The uniform mesh also contains 512 triangles. For the
unstructured meshes, the theory predicts a larger penalty parameter due to the quality of the triangle.

We first compare the performance of the C0 IPDG using a uniform penalty on twomeshes. In Fig. 1, we show the L2 error
vs. the uniformpenalty. It can be seen that for small penalty, the L2 error is unstable for the unstructuredmeshes. In addition,
the optimal penalty increases as the mesh quality gets worse. An interesting observation is that the error gets larger as the
penalty parameter passes the optimal value. Thus an optimal penalty seems to exist. This is consistent with the claim by
Brenner that a large penalty adversely affects the accuracy [12]. While the optimal value cannot be obtained analytically, it
is always possible to test on a coarse mesh and make a good guess of it.

Secondly, we employ the pre-processing as above on the unstructured mesh with the point at (0, 01, 0.5). In Table 1, we
show the maximum and minimum of the penalty parameters. The last two columns are the error with the pre-processing
and the error with a uniform penalty parameter, respectively. Numerically, we see that it is worth doing a pre-processing
since the error is smaller and it is computationally very cheap.
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