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A positivity-preserving discontinuous Galerkin (DG) scheme [42] is used to solve the 
Extended Magnetohydrodynamics (XMHD) model, which is a two-fluid model expressed 
with a center-of-mass formulation. We prove that DG scheme with a positivity-preserving 
limiter is stable for the system governed by the XMHD model or the resistive MHD model. 
We use the relaxation system formulation [28] for describing the XMHD model, and solve 
the equations using a split level implicit–explicit time advance scheme, stepping over the 
time step constraint imposed by the stiff source terms. The magnetic field is represented 
in an exact locally divergence-free form of DG [23], which greatly improves the accuracy 
and stability of MHD simulations. As presently constructed, the method is able to handle 
a wide range of density variations, solve XMHD model on MHD time scales, and provide 
greatly improved accuracy over a Finite Volume implementation of the same model.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

In High Energy Density (HED) plasma systems, we usually must deal with a wide dynamic range of current carrying 
densities. When density is so low that the scale lengths are comparable to ion inertial length, the single fluid model would
break down. For these problems two-fluid physics is essential, but the applicability of existing numerical methods [6,16,17,
19,25,34] in this plasma regime is still limited. In this paper we develop a discontinuous Galerkin (DG) method to solve 
an extended Magnetohydrodynamics (XMHD) model based on a relaxation formulation, and will demonstrate that this 
numerical scheme has high accuracy, is computationally efficient, and can handle the large dynamic density range for HED 
plasmas.

DG schemes are widely used in the hyperbolic algorithms community, since the method can handle complex geometries, 
has an arbitrary order of accuracy, and is efficient in parallel calculations [9–12,31]. In addition, DG has further advantages 
for HED plasmas, because the density range is very wide, one often faces a problem where the initial density profile 
is nearly a δ-singularity (e.g. a pinched-down wire). Such problems are difficult to approximate numerically, and most 
previous techniques are based on the modification of the singularities with smooth kernels in some narrow region (e.g. 
[37,40] and the references therein), and hence smear such singularities. However, DG methods depend on the weak form of 
the equations and can solve such problems without modification, leading to a very accurate result [38]. The main challenge 
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with DG implementations lies in preserving the stability of the system. Near discontinuities, strong oscillations often appear 
that might send the physically positive quantities negative. When this occurs, the numerical simulation may break down. In 
our system, the quantities that should be preserved positive are: density ρ , pressure P , energy E . To ensure these quantities 
satisfy a positivity-preserving property, one could use a Total Variation Diminishing (TVD) scheme; however all TVD schemes 
will degenerate to lower order accuracy at smooth extrema [41]. In [42], a positivity-preserving high order DG scheme is 
developed for solving the compressible Euler equations, and in [39], the authors demonstrated the L1-stability of such a 
scheme. This scheme has been applied on solving the ideal magnetohydrodynamic (MHD) equations [3,7]. In this paper, 
we will demonstrate that the positivity-preserving DG scheme can establish a positivity-preserving property for a system 
described by an XMHD model or a resistive MHD model, thus preserving the stability of the system.

For solving the XMHD model, we use the relaxation algorithm proposed in [28] to solve the combination of generalized 
Ohm’s law (GOL) and the Maxwell–Ampére law for the electric field. The relaxation method is essentially a semi-implicit 
time differencing proven to converge to the solution of the algebraic equations that are the stiff source terms set equal to 
zero. In the case of XMHD this means the solution converges to GOL in which the electron inertial terms are neglected and 
to the Maxwell equation in which the displacement current term is neglected (Ampére’s Law). Using this algorithm, one can 
avoid the constraint imposed by the under-resolved stiff source terms to step over electron plasma and cyclotron frequencies, 
which are often under-resolved in the characteristic regime, and thereby allow one to solve the XMHD equations on MHD 
time scales. In this algorithm, the Hall term is locally implicit avoiding the substantial effort in solving a large linear system. 
Furthermore, with XMHD model, in low-density region, the current is suppressed by both Hall and electron inertial terms, 
one is able to use the unmodified Spitzer resistivity, which makes the plasma–vacuum transition automatic and physical. 
This algorithm has been implemented into an XMHD code called PERSEUS with a second-order finite volume (FV) scheme. 
Because of the extended stencil, FV is often too diffusive to characterize small-scale fluid instabilities and to resolve the 
local details of a shock structure without a large number of cells. On the other hand, DG scheme is more compact in the 
sense that every cell is treated independently, and the solution is localized within a cell. This leads to a reduced numerical 
diffusion. In this paper, we compare the performance of a DG formulation XMHD code to that of an FV formulation, and 
will demonstrate through numerical tests that DG has a significant advantage over the same order of FV in both memory 
and CPU time. Additionally we compare selected results with those found from the MHD model computed using the same 
algorithm. This comparison demonstrates the viability of the method for solving XMHD problems as well as to point out 
important deficiencies in MHD.

This paper is organized as follows. In Section 2 we introduce the XMHD model and the relaxation algorithm. In Section 3, 
we construct the DG scheme used in this paper, and demonstrate that a positivity-preserving limiter can preserve the 
positivity-preserving property in a system governed by an XMHD model or a resistive MHD model, we will also give a brief 
introduction on the implementation of our algorithm. In Section 4, we present the results of numerical tests, in some of 
the tests, we do a comparison with FV, to show that DG is more accurate and more efficient than an FV implementation. 
We also give examples of the method applied to fundamental plasma physics problems and provide a comparison with the 
MHD model for the same problems. Concluding remarks are provided in Section 5.

2. XMHD model

2.1. Governing equations

In the study of HED plasmas, we are often in a regime where the ion inertial length or even the electron inertial length 
are resolved by the cell dimensions. When this occurs, standard MHD does not accurately describe the system, and a more 
generalized model is called for. The two-fluid model expressed with a center-of-mass formulation, which is the XMHD 
model, covers most of the physics occurring in this regime. The primary exception being due to space-charge effects, which 
is neglected in the quasineutral XMHD model. The XMHD model is given by:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1)

∂

∂t
(ρu) + ∇ · (ρuu + IP ) = J × B (2.2)

∂En

∂t
+ ∇ · [u(En + P )

]= u · (J × B) + ηJ2 (2.3)

∂B

∂t
+ ∇ × E = 0 (2.4)

∂E

∂t
− c2∇ × B = − 1

ε0
J (2.5)

∂J

∂t
+ ∇ ·

(
uJ + Ju − 1

nee
JJ − e

me
IPe

)
= nee2

me

(
E + u × B − ηJ − 1

nee
J × B

)
(2.6)

∂t Se + ∇ · (ue Se) = (γ − 1)n1−γ
e ηJ2. (2.7)
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Where ρ , P , u = (ux, u y, uz), En , B = (Bx, B y, Bz), E = (Ex, E y, Ez), J = ( J x, J y, J z), and Se denote the density, pressure, 
velocity field, the sum of the kinetic and internal energies, magnetic field, electric field, current density, and electron entropy 
density, respectively. The resistivity is η. We have qi = −Zqe = Ze, with Z being the net ion charge. With the assumption 
of quasineutrality and to leading order in me/mi , we have ne = Zni = nZ . ρ = mini + mene , μ = Zme/mi , ue = u − J/(nee), 
J = e(Zniui − neue). We also have P = (γ − 1)(En − ρu2/2) and Pe = Senγ −1

e .

We have chosen to model the electron equation of state using the electron entropy density given by Se = Pe/nγ −1
e

because we are unable to prove that the electron pressure will remain positive when the electron energy equation is 
used. The issue arising in the proof of electron pressure positivity is due to the non-positive nature of the electron energy 
equation source terms which directly involve the electric field; however, the electron entropy density source term is positive 
and we can easily prove electron pressure positivity. The proof of positivity of the total pressure is also complicated by the 
non-positive nature of the total energy source term, but in that case the proof goes through if certain time-step restrictions 
are applied. The disadvantage of the use of the electron entropy density over the electron energy density is that the entropy 
density only allows for adiabatic changes in the thermodynamic variables and hence we cannot capture weak solutions in 
the form of electron shocks. Such circumstances could arise for instance in the form of Langmuir shocks. As we are primarily 
concerned with low-frequency phenomena, well below the electron plasma frequency, we do not consider the use of the 
electron entropy density to be a great restriction.

There is also a constraint implied in (2.4). Taking the divergence of (2.4) shows that if ∇ · B is initially 0, it is always 0. 
This gives us a constraint ∇ · B = 0. For local preservation of ∇ · B = 0, we use the locally divergence-free DG method [23], 
which eliminates the need for an expensive divergence cleaning scheme or the use of global divergence-free elements or a 
global divergence free reconstruction.

By switching off the electron inertia term, electron pressure and the Hall term in Eq. (2.6), we get the resistive MHD 
model, which is characterized by (2.1)–(2.5), and

E + u × B = ηJ. (2.8)

If not specified, for simplification, MHD model is used to refer to resistive MHD model throughout this paper.
For the class of problems of interest to us XMHD has several important advantages over the two-fluid model. These are: 

1. A direct comparison to MHD can be made by simply switching off some terms in Generalized Ohm’s Law (2.6); 2. The 
relaxation method (to be discussed in Section 2.2) can be used to step over the plasma frequency and electron cyclotron 
frequency when they do not have to be resolved. This greatly reduces the computational cost of XMHD modeling. We have 
not been successful thus far in implementing a similar scheme for the full two-fluid model. The reason for this is due to 
finite charge separation which is a topic beyond the scope of this paper. Thus there would appear to be no advantage to the 
two-fluid model for quasineutral problems and many advantages for the XMHD model.

2.2. Relaxation model

Eqs. (2.5) and (2.6) are non-dimensionalized to exhibit the dimensionless parameters that characterize the relaxation. 
This gives the following [28]:

∂E

∂t
= c2

v2
(∇ × B − J) (2.9)

∂J

∂t
+ ∇ ·

(
uJ + Ju − λi

L0n
JJ − mi L0

meλi
IPe

)
= L2

0n

λ2
e

(
E + u × B − λi

L0n
J × B − ηJ

)
, (2.10)

where v = L0/t0 is the characteristic speed and L0, t0 are representative length and time respectively. The electron and ion 
inertial lengths are λ2

j = m j/n0e2μ0. The relaxation parameters are c2/v2 and L2
0/λ

2
e .

In High-Energy-Density (HED) plasmas the phenomena of interest often occur on time scales much slower than the char-
acteristic electron plasma and electron cyclotron frequencies, which means, v � c and λe � L0, forcing that (2.9) and (2.10)
relax to the equilibrium:

∇ × B = J (2.11)

E + u × B − λi

L0n
J × B + λi

L0n
∇ Pe = ηJ. (2.12)

This means that, when the electron inertial scale is under-resolved, the solution relaxes to the inertia-less GOL and J
will be constrained by J = ∇ × B. This model is implemented into an algorithm in which we use an implicit–explicit time 
advance, allowing time steps comparable to MHD. Thus we can solve problems in which the Hall effect is important without 
significant computational cost over that of standard MHD with the caveat that the CFL condition for the speed of light must 
be respected. Our experience has shown for most problems we can use a much reduced speed of light without affecting the 
results significantly. Typically this reduction factor is in the range of 15–30 for HED problems. For more information on the 
relaxation method, please refer to [28].

The formulation of the XMHD model given by (2.1)–(2.7) is not standard [27,30]. The differences are relevant for the 
implementation of the numerical algorithm. Note that the momentum and energy equations have source terms and as true 
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source terms they depend only on the independent variables with no derivatives. In most formulations of XMHD the current 
is a dependent variable determined through Ampére’s law and the electric field is determined by the generalized Ohm’s law. 
In the present formulation in which displacement current is retained, the electric field and current density are independent 
variables having separate evolution equations. Hence the terms on the RHS of (2.2), (2.3), (2.6) and (2.7) are true source 
terms. There are issues that are potential cause for concern by not having a fully conservative form in which all terms are 
in divergence form. These are: 1. the J × B force term may affect shock capturing ability of the numerical discretization and 
2. the non-positive form of the energy source term could affect the positivity of the pressure. We address the first concern 
by providing tests that show the DG scheme does well in capturing shocks and discontinuities and the second concern is 
addressed by proving that the positivity-preserving limiter preserves the stability of the system.

3. Discontinuous Galerkin formulation

In this section, we construct the DG methods that will be used for the XMHD model.

3.1. Local divergence-free discontinuous Galerkin formulation

In this paper, we only consider problems which can be considered invariant in z direction. Therefore, we have ∂z = 0, 
and ∇ = (∂x, ∂y, 0). Given this, we can summarize Eqs. (2.1)–(2.7) with the following form:

Ut + f(U)x + g(U)y = s(U) (3.1)

where

U = (ρ,mx,my,mz,En, Bx, B y, Bz, Ex, E y, Ez, J x, J y, J z, Se)
T ,

f(U) =
(

mx,mxux + P ,myux,mzux, (En + P )ux,0,−Ez, E y,0, c2 Bz,−c2 B y,

ux Jx + J xux − 1

Zne
J x J x − e

me
Pe, ux J y + J xu y − 1

Zne
J x J y, ux J z + J xuz − 1

Zne
Jx J z, Seuex

)T

,

g(U) =
(

my,mxu y,myu y + P ,mzu y, (En + P )u y, Ez,0,−Ex,−c2 Bz,0, c2 Bx,

u y Jx + J yux − 1

Zne
J y J x, u y J y + J yu y − 1

Zne
J y J y − e

me
Pe, u y J z + J yuz − 1

Zne
J y J z, Seuey

)T

,

s(U) =
(

0, J y Bz − J z B y, J z Bx − J x Bz, J x B y − J y Bx,

ux( J y Bz − J z B y) + u y( J z Bx − J x Bz) + uz( J x B y − J y Bx) + η
(

J 2
x + J 2

y + J 2
z

)
,

0,0,0,− J x

ε0
,− J y

ε0
,− J z

ε0
,

Zne2

me

(
Ex + u y Bz − 1

Zne
J y Bz − η J x

)
,

Zne2

me

(
E y + uz Bx − 1

Zne
J z Bx − η J y

)
,

Zne2

me

(
Ez + ux B y − 1

Zne
Jx B y − η J z

)
,

(γ − 1)n1−γ
e η

(
J 2

x + J 2
y + J 2

z

))T

(3.2)

with

ux = mx

ρ
, u y = my

ρ
, uz = mz

ρ
,

uxe = ux − J x/(Zen), u ye = u y − J y/(Zen), uze = uz − J z/(Zen).

We consider the computational domain [0, Lx] × [0, L y], and use rectangular mesh defined as

0 = x 1
2

< · · · < xNx+ 1
2

= Lx, 0 = y 1
2

< · · · < yN y+ 1
2

= L y,

with Ii j = [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] representing the cells. For simplicity, we apply uniform meshes only, and denote 	x

and 	y to be the mesh sizes in x and y directions, respectively.
Following [23], we define the finite element space as

V k
h =

{
v : v|Ii j ∈ Pk(Ii j),

(
∂v6 + ∂v7

)
= 0

}
,

∂x ∂ y
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where Pk(Ii j) = (P(Ii j))
15, with P(Ii j) being the space of polynomials of degree at most k in cell Ii j . v6 and v7 are the sixth 

and seventh components of the basis functions used to expand Bx and B y . Note that, by using such a finite element space, 
∇ · B = 0 is locally preserved automatically. Although a local divergence free constraint does not guarantee global divergence 
free solutions, it has been shown that a local condition is very accurate [8], although [1] and [2] report some advantages in 
using a global divergence free reconstruction over a local constraint. We provide a numerical test of the global divergence 
of the magnetic field in Section 4.6.2, which supports the conclusion of [8].

Then the DG scheme is the following: find Q ∈ V k
h , such that for any v ∈ V k

h

(Qt,v)i j = (f(Q),vx
)

i, j +
y

j+ 1
2∫

y
j− 1

2

f̂i− 1
2 , jv

+
i− 1

2 , j
dy −

y
j+ 1

2∫
y

j− 1
2

f̂i+ 1
2 , jv

−
i+ 1

2 , j
dy

+ (g(Q),vy
)

i, j +
x

i+ 1
2∫

x
i− 1

2

ĝi, j− 1
2

v+
i, j− 1

2
dx −

x
i+ 1

2∫
x

i− 1
2

ĝi, j+ 1
2

v−
i, j+ 1

2
dx

+ (s(Q),v
)

i, j, (3.3)

where (u, v)i j = ∫Ii j

∑15

=1 u
v
dxdy and v+

i− 1
2 , j

(y), v−
i+ 1

2 , j
(y), v+

i, j− 1
2
(x), v−

i, j+ 1
2
(x) are the traces of v on left, right, lower, up-

per edge of the cell Ii j , respectively. More details can be found in [42]. With the definition of the traces, the one-dimensional 
numerical fluxes are: f̂i− 1

2 , j = f̂(Q−
i− 1

2 , j
(y), Q+

i− 1
2 , j

(y)) and ĝi, j− 1
2

= ĝ(Q−
i, j− 1

2
(x), Q+

i, j− 1
2
(x)). The local Lax–Friedrichs (LLF) 

flux is used to evaluate ̂fi− 1
2 , j , ̂gi, j− 1

2
:

f̂i− 1
2 , j = 1

2

[
f
(
Q−

i− 1
2 , j

(y)
)+ f

(
Q+

i− 1
2 , j

(y)
)]+ 1

2
|λ|i− 1

2 , j

[
Q−

i− 1
2 , j

(y) − Q+
i− 1

2 , j
(y)
]

ĝi, j− 1
2

= 1

2

[
g
(
Q−

i, j− 1
2
(x)
)+ g

(
Q+

i, j− 1
2
(x)
)]+ 1

2
|λ|i, j− 1

2

[
Q−

i, j− 1
2
(x) − Q+

i, j− 1
2
(x)
]
. (3.4)

We do not presently have a solution for a full Riemann solver or even an approximate Riemann solver. Therefore we have 
used an ad-hoc form of an LLF flux based on an estimate of the maximum eigenvalues of the flux Jacobian computed re-
spectively from the Euler ((2.1)–(2.3)), Maxwell ((2.4)–(2.5)), and GOL ((2.6)–(2.7)) sub-blocks. These maximum eigenvalues, 
sometimes called freezing speeds [35], are the local values of |u| +cs , c, |ue| +ces for the Euler, Maxwell, and GOL sub-blocks
respectively, where c2

es = mi
me

c2
s is the electron sound speed and c2

s = γ Pρ−1 is the acoustic speed. We have found the LLF 
flux based on these values to be entirely satisfactory and we note that the same values are used in the finite volume code 
and that with DG, far less diffusion is exhibited than FV, which will be shown in Section 4.

|λ|i, j are the freezing speeds evaluated on cell {i, j}, and in Eq. (3.4) we set

|λ|i− 1
2 , j = max

(|λ|i−1, j, |λ|i, j
)

|λ|i, j− 1
2

= max
(|λ|i, j−1, |λ|i, j

)
.

3.2. Positivity-preserving limiter

Physically, the density ρ and pressure P are positive. Therefore, the exact solution is in a convex set [7]

G =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w =

⎛
⎜⎜⎜⎜⎜⎝

ρ
mx

my

mz

En

Se

⎞
⎟⎟⎟⎟⎟⎠
∣∣∣ ρ > 0 and P = (γ − 1)

(
En − 1

2

(
m2

x + m2
y + m2

z

)
/ρ

)
> 0 and Se > 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (3.5)

We want to construct the numerical solution which is also in the set (3.5). We use forward Euler for time integration and 
maintain the positivity of density, pressure and electron entropy density at time level n + 1, provided that they are positive 
at time level n. It is clear that, En > 0 is automatically established if we have ρ > 0 and P > 0. In this section, we prove 
that the positivity-preserving property can be guaranteed with a special limiter in our XMHD model.

We consider the first five equations and the last one in the system (3.3). Following [42], at time level n, we use a vector 
of polynomials of degree k, wn

i j = (ρn
i j, mx

n
ij, my

n
ij, mz

n
ij, En

n
i j, Se

n
i j) to approximate the exact solution, and define the cell 

average wn
i j = (ρn

i j, mx
n
ij, my

n
ij, mz

n
ij, En

n
i j, Se). In this section, we always use un

i j = (ux
n
i j, u y

n
i j, uz

n
i j)

T for 
mn

i j

ρn = (
mx

n
ij

ρn , 
my

n
ij

ρn , 
mz

n
ij

ρn )T
i j i j i j i j
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as the numerical velocity in cell Ii j at time level n. For simplicity, if we consider a generic numerical solution on the whole 
computational domain, then the subscript i j will be omitted. By taking the test function v = 1 in (3.3) we have the scheme 
satisfied by the cell averages

wn+1
i j = 1

2
H1 + 1

2
H2, (3.6)

where

H1 = wn
i j + 2	t

	x	y

y
j+ 1

2∫
y

j− 1
2

f̂
(
w−

i− 1
2 , j

(y),w+
i− 1

2 , j
(y)
)− f̂

(
w−

i+ 1
2 , j

(y),w+
i+ 1

2 , j
(y)
)
dy

+ 2	t

	x	y

x
i+ 1

2∫
x

i− 1
2

ĝ
(
w−

i, j− 1
2
(x),w+

i, j− 1
2
(x)
)− ĝ

(
w−

i, j+ 1
2
(x),w+

i, j+ 1
2
(x)
)
dx (3.7)

H2 = wn
i j + 2	t

	x	y

∫
Ii j

s(x, y)dxdy, (3.8)

with f̂(·, ·) and ĝ(·, ·) being the one-dimensional numerical fluxes and

s = (0, J × B,u · (J × B) + ηJ2, (γ − 1)n1−γ
e ηJ2)T

.

For accuracy, we use L-point Gauss quadratures with L ≥ k + 1 to approximate the integral in (3.7). We refer the readers to 
[11] for more details of this requirement. The Gauss quadrature points on [xi− 1

2
, xi+ 1

2
] and [y j− 1

2
, y j+ 1

2
] are denoted by

px
i = {xβ

i : β = 1, · · · , L
}

and p y
j = {yβ

j : β = 1, · · · , L
}
,

respectively. Also, we denote ωβ as the corresponding weights on the interval [−1, 1]. Then the Gauss quadrature formula 
on the interval [xi− 1

2
, xi+ 1

2
] can be written as

x
i+ 1

2∫
x

i− 1
2

f (x)dx ≈
L∑

β=1

ωβ f
(
xβ

i

)
hi/2,

where hi = xi+ 1
2

− xi− 1
2

. Moreover, we use

p̂x
i = {x̂α

i : α = 0, · · · , M
}

and p̂ y
j = { ŷα

j : α = 0, · · · , M
}

with 2M − 1 ≥ k, as the Gauss–Lobatto points on [xi− 1
2
, xi+ 1

2
] and [y j− 1

2
, y j+ 1

2
], respectively. Also, we denote ω̂α as the 

corresponding weights on the interval [−1, 1]. Then the Gauss–Lobatto quadrature formula on the interval [xi− 1
2
, xi+ 1

2
] can 

be written as
x

i+ 1
2∫

x
i− 1

2

f (x)dx ≈
M∑

α=0

ω̂α f
(
x̂α

i

)
hi/2.

Let λ1 = 	t
	x and λ2 = 	t

	y , then H1 becomes

H1 = wn
i j + 2λ1

L∑
β=1

ωβ

[
f̂
(
w−

i− 1
2 ,β

,w+
i− 1

2 ,β

)− f̂
(
w−

i+ 1
2 ,β

,w+
i+ 1

2 ,β

)]

+ 2λ2

L∑
β=1

ωβ

[
ĝ
(
w−

β, j− 1
2
,w+

β, j− 1
2

)− ĝ
(
w−

β, j+ 1
2
,w+

β, j+ 1
2

)]
, (3.9)

where w−
i− 1

2 ,β
= w−

i− 1
2 , j

(yβ

j ) is a point value in the Gauss quadrature. Likewise for the other point values. Then we have the 
following lemma
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Lemma 3.1. For the discontinuous Galerkin method with the LLF flux, if wn ∈ G, then H1 ∈ G under the CFL condition

	t

	x
max

(‖ux + C0‖∞,‖u y‖∞,‖uz‖∞
)+ 	t

	y
max

(‖ux‖∞,‖u y + C0‖∞,‖uz‖∞
)≤ ω̂0

2
, (3.10)

and

	t

	x
max

(∥∥(ue)x
∥∥∞
)+ 	t

	y
max

(∥∥(ue)y
∥∥∞
)≤ ω̂0

2
, (3.11)

where C0 =
√

γ P
ρ , ‖v‖∞ is the standard L∞-norm of v on the whole computational domain, and (ue)x and (ue)y are the x and y

components of ue .

Proof. The proof follows from [42] with some minor changes, so we omit it. �
Now we consider the source term s. We use a Gauss quadrature with L points to compute the integral of the source. 

Then H2 becomes

H2 =
L∑

α=1

L∑
β=1

ωαωβhαβ,

where

hαβ = wn
αβ + 2	tsαβ

and wn
αβ denotes the point value of wn

i j at (xα
i , yβ

j ). Likewise for sαβ .

Lemma 3.2. Suppose wn ∈ G, then we have hαβ ∈ G under the condition

	t ≤ min
i, j,α,β

As
(
xα

i , yβ

j

)
, (3.12)

where

As = ηJ2ρ +√η2J4ρ2 + 2P (J × B)2ρ/(γ − 1)

2(J × B)2
.

Proof. Suppose hαβ = (ρ̆, ρŭ, Ĕn, ̆Se)
T , with ŭ = m̆

ρ̆
. For simplicity, in this lemma, if we consider the point value at (xα

i , yβ

j )

at time level n, the corresponding index will be omitted. Then it is easy to show that ρ̆ = ρn > 0 and S̆e > 0. The second 
inequality is due to the positivity of the source term in (2.7). So we only need to show P̆ = (γ − 1)(Ĕn − 1

2 ρ̆ŭ2) > 0. Clearly, 
we have:

m̆ = m + 2	t(J × B)

Ĕn = En + 2	t
(
u · (J × B) + ηJ2)

which further yields

P̆

γ − 1
= En + 2	t

(
u · (J × B) + ηJ2)− [m + 2	t(J × B)]2

2ρ

= P

γ − 1
+ 2	tηJ2 − 2	t2 (J × B)2

ρ
.

Therefore, P̆ > 0 provided

	t ≤ ηJ2ρ +√η2J4ρ2 + 2P (J × B)2ρ/(γ − 1)

2(J × B)2
.

This condition can be made physically transparent as follows:

	t <
1√

2(γ − 1)

vth

v A v ′
A

or 	t <
η

μ0

1

v2
A

is sufficient for P̆ > 0, where vth is the thermal speed, v A is the Alfvén speed, v ′
A ≡ ∇×B√

μ0nmi
. �

Noticing the fact that wn+1 is the convex combination of H1 and hαβ we have the following result.
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Theorem 3.1. Consider the scheme satisfied by the cell averages of a DG formulation (3.6) with Lax–Friedrichs flux, if wn(x̂α
i , yβ

j ), 
wn(xα

i , ŷβ

j ), wn(xα
i , yβ

j ) ∈ G, then wn+1 ∈ G under the CFL condition (3.10) and (3.12).

Remark 3.1. Since MHD model shares the first five equations with XMHD model in system (3.3), the proof that the positivity-
preserving property can be guaranteed in MHD model follows exactly the same process, so we omit it here.

Remark 3.2. We have shown that the positivity-preserving property of pressure in the Euler equations extends to the XMHD 
model or MHD model. As indicated by (3.12), in extreme cases where the resistivity η is zero, and pressure P is very small, 
we may not be able to find a reasonable 	t to preserve the positivity of P̆ . Apparently that is an exceptional situation, 
which we have not yet encountered.

Now, we provide the implementation of the algorithm.

• Choose a small number consistent with the density that can be viewed as vacuum, which is typically ε = 10−9.
• If ρn

i j > ε, then proceed to the following steps. Otherwise, ρn
i j is identified as the approximation to vacuum, and we 

take wn
i j = wn

i j as the numerical solution and skip the following steps.
• In each cell, modify the density first. Evaluate

ρmin = min
αβ

{
ρn

i j

(̂
xα

i , yβ

j

)
,ρn

i j

(
xα

i , ŷβ

j

)
,ρn

i j

(
xα

i , yβ

j

)}
.

If ρmin < ε, then take ρ̃n
i j as

ρ̃n
i j = ρn

i j + θn
i j

(
ρn

i j − ρn
i j

)
,

with

θn
i j = ρn

i j − ε

ρn
i j − ρmin

,

and use ρ̃n
i j as the new numerical density by assigning: ρn

i j = ρ̃n
i j

• Modify the Se . Evaluate

Semin = min
αβ

{
Se

n
i j

(̂
xα

i , yβ

j

)
, Se

n
i j

(
xα

i , ŷβ

j

)
, Se

n
i j

(
xα

i , yβ

j

)}
.

If Semin < ε, then take S̃e
n
i j as

S̃e
n
i j = Se

n
i j + θn

i j

(
Se

n
i j − Se

n
i j

)
,

with

θn
i j = Se

n
i j − ε

Se
n
i j − Semin

,

and use S̃e
n
i j as the new electron entropy density by assigning: Se

n
i j = S̃e

n
i j

• Modify the pressure: For each q ∈ {w(̂xα
i , yβ

j ), w(xα
i , ̂yβ

j ), w(xα
i , yβ

j )}, compute P (q). If P (q) ≥ ε, then we take sq = 1. 
Otherwise, we calculate sq such that

P
(
(1 − sq)wq + sqq

)= ε.

Modify w̃n
i j = wn

i j + θ(wn
i j − wn

i j) with θ = minq{sq}.
• Use w̃n

i j as the DG approximation.

3.3. Time integration schemes

As described in [26,28], we use a semi-implicit advance scheme for the stiff source terms in (2.10) and (2.9). The split 
level implicit–explicit time advance is performed as follows:

1. Use 2nd order Runge–Kutta (Heun) method to perform time advance for (2.1)–(2.4) and (2.7)
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Fig. 1. Brio–Wu shock tube test. Density as a function of position, captured at t = 2.1 × 10−2.

2. Use 2nd order Runge–Kutta method to perform time advance for flux part in (2.9)–(2.10):

∂E

∂t
= c2

v2
(∇ × B) (3.13)

∂J

∂t
+ ∇ ·

(
uJ + Ju − λi

L0n
JJ − mi

me

L0

λi
IPe

)
= 0 (3.14)

3. Save the updated values obtained from step 1 and 2 as Q ∗ .
4. Perform a semi-implicit time advance for the source terms in (2.9)–(2.10). This leads to the following spatially local 

linear algebraic equations for En+1 and Jn+1

En+1 = E∗ − 	t
c2

v2
Jn+1 (3.15)

Jn+1 = J∗ + 	t
L2

0n∗

λ2
e

(
En+1 + u∗ × B∗ − λi

L0n∗ Jn+1 × B∗ − η∗Jn+1
)

. (3.16)

The semi-implicit step is performed after each step of the explicit Runge–Kutta time advance of (3.13) and (3.14). This 
time advance method forces a relaxation solution to (2.11) and (2.12) in the relaxation limit and accurately computes the 
current even if the relaxation limit is not approached, that is, when the electron inertial length scale is resolved [28]. The 
time advance could also be performed using a higher order strong-stability preserving integrator such as the third order 
Shu–Osher Runge–Kutta method [33].

4. Numerical tests

In this section, we present numerical examples to demonstrate the advantages of positivity-preserving DG scheme. For 
all the examples, if not otherwise stated, we use a 2nd order DG scheme.

For the tests done in Sections 4.1–4.3, we non-dimensionalize (2.1)–(2.7) as follows: U = U0Ũ, where Ũ is the set of 
dimensionless variables and U0 is the set of dimensional normalization factors. For U0 we used n0 = 6 × 1028 m−3, t0 =
100 ns, L0 = 1 mm, v0 = 104 m s−1, B0 = 580 T, E0 = 5.8 × 106 V/m, J0 = 4.6 × 1011 A/m2, T0 = 28 eV, η0 = 1.3 ×
10−5 � m, and the ion mass number is taken to be 27 for Aluminum.

4.1. The Brio–Wu shock tube problem

We first test the code against the benchmark problem originally used by Brio and Wu [5]. We employ the initial condi-
tion:

(ρ, ux, u y, uz, P , Pe, Bx, B y, Bz) =
{

(1.000ρ0,0,0,0,1.0ρ0,0.50ρ0,0.75
√

ρ0,+√
ρ0,0) for x < 0

(0.125ρ0,0,0,0,0.1ρ0,0.05ρ0,0.75
√

ρ0,−√
ρ0,0) for x > 0

(Ex, E y, Ez, J x, J y, J z) = (0,0,0,0,0,0).

When ρ0 = 10−2, with a resolution of 400, we have λe
	x = 4.34 × 10−2 and λi

	x = 1.9, so the ion inertial length λi is resolved 
by the spatial grid 	x, and the Hall term in (2.10) becomes important; The Hall term allows for decoupling of the ion 
motion from the electron flow into which the magnetic field is frozen. The Hall effect introduces dispersive whistler wave, 
which becomes the fastest wave in the system producing oscillations seen in Fig. 1(a), which is distinctly different from 
MHD [5], but similar to the two-fluid results [25].

For comparison, the MHD result is presented in Fig. 1(b), the model used is ideal-MHD model.
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Fig. 2. Density, thermal pressure and transverse field in a fast switch-on shock with ideal-MHD model, 400 cells, initial shock position at x = 0.

Fig. 3. Density, thermal pressure and transverse field in a fast switch-on shock with XMHD model, 400 cells, initial shock position at x = 0.

When the density is increased to ρ0 = 1, with a resolution of 400, we have λe
	x = 4.34 × 10−3 and λi

	x = 0.19, conse-
quently λi is not resolved by the spatial grid size, thus the result, as shown in Fig. 1(c), becomes close to the MHD result 
in [5].

In this test, the flow is always outgoing on the boundaries, and we use an outflow boundary condition. However, when 
ρ0 = 10−2, oscillating waves are introduced, causing the flow direction on the boundary to oscillate. We have to use inflow 
boundary condition when the flow becomes inward.

4.2. Fast shock test

The MHD fast shock is not included in the Brio–Wu problem. Therefore we provide a test by following the fast shock 
initial conditions in [13], with minor modifications. This test shows that the scheme correctly captures the shock even 
though the magnetic force is represented by the J × B source term and is not in full conservation form.

The initial state is as follows:

(ρ, ux, u y, uz, P , Pe, Bx, B y, Bz) =
{

(3ρ0,3.444,−1.333,0,16.33ρ0,8.16ρ0,3
√

ρ0,2.309
√

ρ0,0) for x < 0
(1ρ0,0.000,+0.000,0,1.000ρ0,0.50ρ0,3

√
ρ0,0.000

√
ρ0,0) for x > 0

(Ex, E y, Ez, J x, J y, J z) = (0,0,0,0,0,0).

We set ρ0 = 10−4, with a resolution of λe/	x = 0.144 and λi/	x = 6.3. Fig. 2 shows the ideal-MHD results, note that the 
shock structure is preserved very well, with only 1 grid cell in the shock. There are small oscillations near the shock region, 
which are expected since positivity-preserving limiter (PP-limiter) is the only limiter used in this scheme, which does not 
smooth away oscillations as much as a TVD limiter does. The use of slope limiter [18] can remove all the oscillations. No 
noticeable difference is found using a finer mesh, which implies the scheme is converged with a resolution as low as 400. 
Numerical result gives an average shock speed as 5.14, while its analytical solution is 5.17, taken into consideration the 
measurement error, the results are very close.

With XMHD model, we obtain results shown in Fig. 3. As there are no steady-state shock solutions in the XMHD model, 
the discontinuity emit waves that propagate outwards. The fact that there is a component of B, i.e., Bx , parallel to the 
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Fig. 4. DG vs. FV result for Pressure Balance Test. FV with 200 cells is most diffusive shown in black, DG with 200 cells shown in green agrees with 
analytical results best; FV with 1600 cells shown in red is closer to analytical results but still not as good as DG results with 200 cells. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

wave vector k and no pressure or density perturbations suggests that whistler waves are emitted and cause the oscillations 
observed in the B y plot in Fig. 3(c).

4.3. Pressure balance test

Here we provide a test [32] which more directly shows that DG is much less diffusive than second order FV and which 
shows the necessity of the PP-limiter. We set up the test with the following initial condition to guarantee the initial pressure 
balance:

(ρ, P , Pe, ux, u y, uz, Bx, B y, Bz, J x, J y, J z) =
{

(1.0,100.,50,0,0,0,0,10.0000,0,0,0,0) for x < 0
(0.1,10.0,5.,0,0,0,0,16.7332,0,0,0,0) for x > 0

(Ex, E y, Ez, J x, J y, J z) = (0,0,0,0,0,0).

We did this test with ideal-MHD model. The resistivity is set to zero leaving numerical diffusion as the only potential cause 
for plasma or magnetic flux to diffuse. In this way one can directly tell how diffusive a scheme is by observing the amount 
of diffusion. The result is as shown in Fig. 4, from which we can see that, with the same resolution (200), FV result is far 
more diffusive than DG. We find that FV needs 8 times the resolution (1600) to be comparable to DG with a resolution of 
200. And FV takes 200 times longer than DG for producing comparable results.

4.4. Moving planar foil

For problems with solutions containing δ-singularities most numerical methods perform poorly, since many numerical 
techniques approach these problems by modifying them with smooth kernels, and the singularities are severely smeared 
as a result. However, DG methods are based on the weak formulation, hence can solve such problems without modifica-
tions, leading to a very accurate result [38]. Here, we demonstrate this advantage by doing a moving planar aluminum foil 
problem with XMHD model. The planar foil, being sufficiently thin compared to our system, can be viewed as a δ-function. 
A magnetic field B is applied parallel to the foil, producing a current J flowing perpendicular to the direction of the applied 
magnetic field. As a result, a J × B force is produced perpendicular to the surface of the foil, accelerating it to the right. In 
the simulation, the foil is 6.25 μm (one grid cell) thick, 10 mm wide, magnitude of B is 116 T. Figs. 5(a)–5(c) are line plots 
captured at t = 34 ns by viewing in the direction parallel to the foil. Fig. 5(a) shows the DG result with 1600 mesh points. 
The δ structure is well preserved, the widest part spans only about 3 cells. Taking into account the thermal expansion, the 
widening because of numerical diffusion is small. However, for FV, also with 1600 mesh points, shown in Fig. 5(b), the foil 
expands much more. When FV mesh is refined to 11 200 cells, the result in Fig. 5(c) is much closer to DG in Fig. 5(a).

It is worth pointing out that this problem spans 9 orders of magnitude in density range, which covers near-vacuum 
(1019 m−3) to solid density (1028 m−3). That means, although a PP-limiter does not smooth oscillations near discontinuities 
as much as a TVD limiter does, it does preserve the stability of a system with a large dynamic range and steep density 
gradients. If the PP-limiter is turned off the results are very unstable and the test fails in a few time steps.

4.5. Some remarks on the comparison between DG and FV

From the tests done in Sections 4.3 and 4.4, and from some other tests we summarize our observations. The FV tests 
here are done with an implicit–explicit MUSCL scheme (Monotone Upwind Scheme for Conservation Laws) [14,22,36], using 
a TVD limiter (van Leer limiter). We did not use PP-limiter for the FV scheme because a PP-limiter restrict the Courant 
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Fig. 5. Number density n as a function of position x captured at t = 34 ns; Initial foil position: x = 5 mm.

number to about 0.2, while with a TVD FV scheme we can use a Courant number up to 0.6, thus PP-limiter increases the 
CPU time by a factor of three. We decided that it was not worth implementing a PP-limiter for our FV test results, which 
we will further verify through future work. On the other hand, a TVD DG scheme also requires a Courant number around 
0.2, thus there is no additional computational expense for DG to obtain the second order accuracy guaranteed by PP-limiter.

From all problems we have tested DG performs better than FV, as determined by less time and memory for produc-
ing comparable results. But the quantitative comparison is problem-dependent. For certain kinds of problems, e.g., shock 
problem and problems with a density profile as a δ function or with a steep gradient, as shown in Sections 4.3 and 4.4, 
DG performs much better than FV by using a computation time orders of magnitude less. For other problems, FV usually 
takes 3–4 times larger resolution to achieve the same result as DG, and takes 2–6 times longer to run. The reason for 
the better performance is that DG scheme is more compact and stores more localized information, so that it resolves the 
boundary layers and detailed local structures better, while FV uses a more extended stencil, which makes it easier for local 
information to diffuse away.

4.6. Two-dimensional tests and comparison of XMHD to MHD

We provide two additional tests that demonstrate the two-dimensional capabilities of the method and further highlight 
the differences between XMHD and MHD. The first test is a two dimensional shock problem which requires demanding 
performance on the shock capturing ability of the algorithm and which illustrates how the Hall term can greatly affect 
the results when compared to MHD. It also shows that the semi-implicit method allows computation of the Hall effect 
using a much reduced time step than would be required for a fully explicit computation. The second test is a collisionless 
reconnection test following the GEM challenge [4] tests. The purpose of this test is to display the method’s capabilities in 
the parameter regime where electron inertia plays a fundamental physical role.

4.6.1. Collisional bow-shock problem
The problem is set up as follows: The domain is x ∈ (−20.0 mm, 13.0 mm), y ∈ (−20.0 mm, 20.0 mm); 400 cells are 

used in y direction, while 330 cells for the x direction. The whole domain is initialized with uniform number density 
as n = 1023 m−3, temperature as 14 eV, magnetic field as B y = 16.4 T. We use Aluminum as the plasma material. And 
use spitzer resistivity for η. Inflow from left boundary with velocity as ux = 200 km s−1, sonic Mach number as Ms = 17, 
Alfvénic Mach number as Ma = 2.24 and magnetosonic Mach number as M f = 2.22. In the region, we put a block of size 
0.6 mm × 0.6 mm with its center 14 mm from left boundary, 20 mm from lower boundary. The block is constructed as a 
boundary condition on the block’s 4 edges ensuring that the mass flux normal to every edge is zero.

The test is done with MHD model and XMHD models separately, and the results at t = 140 ns are shown in Figs. 6(a) 
and 6(b). With the inflow being super-magnetosonic, a magnetosonic shock (fast shock in this case) will appear, as shown 
in both figures. But the shapes are considerably different using these two models. The differences are due to the Hall term 
in XMHD in the region behind the block. In this low-density region the Hall term suppresses current flow thereby affecting 
the magnetic field. While in MHD, without a vacuum resistivity, there is no such a suppression, allowing the current to grow 
unphysically large. The unphysical current forms a current sheet that is sufficient to support an X-point behind the block, 
then the plasma and magnetic flux piling up in front of the block gets through by reconnection. This mechanism for flux 
transport is mitigated by the Hall term in XMHD under the conditions we have chosen for this test, thereby producing very 
different results. If density is increased so that the Hall term is rendered ineffective, we find that XMHD results approach 
MHD results.

We point out that the PP-limiter is essential for this test. When it is turned off a low pressure dip immediately forms 
behind the block and evolves to eventually become negative. We also point out that, we use the same time step for XMHD 
simulation with an MHD simulation, which saves considerable computational cost as compared to a fully explicit algorithm.
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Fig. 6. Bow shock simulation, captured at t = 140 ns.

It is important to note that the MHD results can be made to agree much better with XMHD by employing a suitable 
vacuum resistivity to suppress the current in low density region. However, one does not know a priori the spatial form 
or value needed for the vacuum resistivity to achieve physical results. One would first have to perform the more realistic 
XMHD simulation to which the MHD simulation could be adjusted to fit the results. This reveals the advantage of XMHD 
over MHD since one can use the realistic Spitzer resistivity model without any artificial modifications, which allows the 
self-consistent and physical transition from high density to low density regions. Moreover, one should not conclude that 
including a vacuum resistivity into the MHD equations is sufficient to recover all of the effects of the Hall term. Suppression 
of low-density currents is only one effect of the Hall term. The Hall modification of the electric field cannot be modeled by 
a vacuum resistivity and can generate anode–cathode asymmetries [15], enhanced magnetic reconnection [4], and can lead 
to instabilities not present in MHD [24] or instabilities modified by the Hall term [20,21].

4.6.2. Magnetic reconnection
For magnetic reconnection to occur, a mechanism is required to break the flux-frozen-in condition, which could be resis-

tivity, electron inertia, or anisotropic electron pressure [4]. In this section, we demonstrate the XMHD algorithm developed 
in this paper can solve the equations on the scale where electron inertia is important and yield results that are consistent 
with the full two-fluid model.

We initialize the problem using the GEM reconnection challenge initial conditions [4] modified appropriately for the 
XMHD model. The domain is x ∈ (−12.8λi, 12.8λi), y ∈ (−6.4λi, 6.4λi), speed of light is c = 55v A , mass ratio is mi/me = 25. 
The Harris sheet equilibrium is given by:

n(y) = sech2
(

y − L y/4

w0

)
+ sech2

(
y + L y/4

w0

)
+ 0.2

Bx(y) = tanh

(
y + L y/4

w0

)
− tanh

(
y − L y/4

w0

)
− 1.

We perturb the equilibrium as follows:

δBx = −0.1
4π

L y
cos

(
2πx

Lx

)
sin

(
4π y

L y

)

δB y = 0.1
2π

L
sin

(
2πx

L

)[
1 − cos

(
4π y

L

)]

x x y



X. Zhao et al. / Journal of Computational Physics 278 (2014) 400–415 413
Fig. 7. GEM challenge problem.

where Lx = 25.6λi , L y = 12.8λi , and the initial current sheet thickness w0 = 0.5λi . The simulation runs to 25Ω−1
i with 

a resolution of 800 × 400 cells. The legend values are based on the magnetospheric context for which we have chosen 
B = 50 n T, n = 1 × 106 m−3, L0 = 6 × 105 m, v A = 1.1 × 106 m s−1. The time step and cell size are ωpe	t = 0.2 and 
λe/	x = 6.1.

The results with XMHD model is as shown in Fig. 7. In Fig. 7 we have added some numerical diffusion in the form 
of a slope limiter [18] to smooth the oscillations and limit the thinness of the current sheet. Although we are able to 
obtain stable results by doing this, the scheme with the slope limiter is no longer second order accurate. Even with slope 
limiting there is remarkable detail visible in the flows inside and the shocks outside the separatrix. This result compares 
very favorably with those of [16], who used a finite volume two-fluid code with a Riemann solver. The time history of the 
reconnection rate shown in Fig. 7(b) is consistent with [16] and with the results of [29] who used a particle-in-cell method.

We tested the global divergence of the magnetic field for this problem as computed from the second order finite dif-
ference of adjacent cell mean values normalized to the average magnitude of the magnetic field divided by the cell length. 
This measure of the global divergence is Γ = 1

2 [Bx0(i + 1, j) − Bx0(i − 1, j) + B y0(i, j + 1) − B y0(i, j − 1)]/|B|. We compared 
the results with the local structure preserving constraint applied to the same simulation without structure preserving. 
We find the range of values of Γ without structure preserving is −0.033 < Γ < 0.033 and with structure preserving is 
−0.002 < Γ < 0.002. Furthermore we observe that the run without structure preserving began to diverge significantly from 
the run with structure preserving around t = 10Ω−1

i and was completely different at t = 25Ω−1
i and therefore in complete 

disagreement with the results of [16] who used a divergence cleaning method to preserve div B = 0.

5. Concluding remarks

In this paper, we constructed a positivity-preserving DG scheme that solves an XMHD model. As constructed, the scheme 
is able to handle challenging problems having a large dynamic density range (from near-vacuum to solid density), which 
covers the entire density range of interest in HED plasma problems. Because the XMHD model is physically consistent from 
high densities to vacuum, it can properly treat the low-density regions, and eliminate the need for the non-physical vacuum 
resistivity required in MHD models.

The DG scheme has a number of distinct advantages for HED type problems: it is accurate for problems with δ-function 
discontinuities; step-type contact and shock discontinuities; and very importantly, boundary layers and small-scale structure 
variations due to non-MHD effects at the ion and electron inertial scales.

We have proven that the PP-limiter preserves the stability of a system governed by an XMHD model or an MHD model. 
This is essential, as the sharp transitions from a dense state of matter to near vacuum greatly stress any numerical method 
to keep the density, and in particular, the pressure positive. Also there is an advantage PP-limiter over TVD limiter, that is, 
it does not degrade the order of accuracy at smooth extrema.

We have shown that the XMHD equations can be solved by the DG method in the context of a relaxation system 
using an implicit–explicit scheme. This is a critical requirement since most HED problems evolve on time scales many 
orders of magnitude slower than the natural frequencies of the XMHD or two-fluid model. In order to solve HED problems 
using an XMHD model we must in practice step over the plasma frequency and electron cyclotron frequencies. We have 
demonstrated that the method presented in this paper succeeds well in this regard as we are able to accurately solve 
high-density problems with a time step that is many orders of magnitude larger than 1/ωpe .
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